1
|
Zhang Q, Kobras CM, Gebhard S, Mascher T, Wolf D. Regulation of heterologous subtilin production in Bacillus subtilis W168. Microb Cell Fact 2022; 21:57. [PMID: 35392905 PMCID: PMC8991943 DOI: 10.1186/s12934-022-01782-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background Subtilin is a peptide antibiotic (lantibiotic) natively produced by Bacillus subtilis ATCC6633. It is encoded in a gene cluster spaBTCSIFEGRK (spa-locus) consisting of four transcriptional units: spaS (subtilin pre-peptide), spaBTC (modification and export), spaIFEG (immunity) and spaRK (regulation). Despite the pioneer understanding on subtilin biosynthesis, a robust platform to facilitate subtilin research and improve subtilin production is still a poorly explored spot. Results In this work, the intact spa-locus was successfully integrated into the chromosome of Bacillus subtilis W168, which is the by far best-characterized Gram-positive model organism with powerful genetics and many advantages in industrial use. Through systematic analysis of spa-promoter activities in B. subtilis W168 wild type and mutant strains, our work demonstrates that subtilin is basally expressed in B. subtilis W168, and the transition state regulator AbrB strongly represses subtilin biosynthesis in a growth phase-dependent manner. The deletion of AbrB remarkably enhanced subtilin gene expression, resulting in comparable yield of bioactive subtilin production as for B. subtilis ATCC6633. However, while in B. subtilis ATCC6633 AbrB regulates subtilin gene expression via SigH, which in turn activates spaRK, AbrB of B. subtilis W168 controls subtilin gene expression in SigH-independent manner, except for the regulation of spaBTC. Furthermore, the work shows that subtilin biosynthesis in B. subtilis W168 is regulated by the two-component regulatory system SpaRK and strictly relies on subtilin itself as inducer to fulfill the autoregulatory circuit. In addition, by incorporating the subtilin-producing system (spa-locus) and subtilin-reporting system (PpsdA-lux) together, we developed “online” reporter strains to efficiently monitor the dynamics of subtilin biosynthesis. Conclusions Within this study, the model organism B. subtilis W168 was successfully established as a novel platform for subtilin biosynthesis and the underlying regulatory mechanism was comprehensively characterized. This work will not only facilitate genetic (engineering) studies on subtilin, but also pave the way for its industrial production. More broadly, this work will shed new light on the heterologous production of other lantibiotics. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01782-9.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Microbiology, Technische Universität Dresden, 01217, Dresden, Germany
| | - Carolin M Kobras
- Department Biology I, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.,School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Susanne Gebhard
- Department Biology I, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.,Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, BA2 7AY, UK
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität Dresden, 01217, Dresden, Germany
| | - Diana Wolf
- Institute of Microbiology, Technische Universität Dresden, 01217, Dresden, Germany.
| |
Collapse
|
2
|
An Amino Acid Substitution in RNA Polymerase That Inhibits the Utilization of an Alternative Sigma Factor. J Bacteriol 2017; 199:JB.00277-17. [PMID: 28507241 DOI: 10.1128/jb.00277-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 11/20/2022] Open
Abstract
Sigma (σ) factors direct gene transcription by binding to and determining the promoter recognition specificity of RNA polymerase (RNAP) in bacteria. Genes transcribed under the control of alternative sigma factors allow cells to respond to stress and undergo developmental processes, such as sporulation in Bacillus subtilis, in which gene expression is controlled by a cascade of alternative sigma factors. Binding of sigma factors to RNA polymerase depends on the coiled-coil (or clamp helices) motif of the β' subunit. We have identified an amino acid substitution (L257P) in the coiled coil that markedly inhibits the function of σH, the earliest-acting alternative sigma factor in the sporulation cascade. Cells with this mutant RNAP exhibited an early and severe block in sporulation but not in growth. The mutant was strongly impaired in σH-directed gene expression but not in the activity of the stress-response sigma factor σB Pulldown experiments showed that the mutant RNAP was defective in associating with σH but could still associate with σA and σB The differential effects of the L257P substitution on sigma factor binding to RNAP are likely due to a conformational change in the β' coiled coil that is specifically detrimental for interaction with σH This is the first example, to our knowledge, of an amino acid substitution in RNAP that exhibits a strong differential effect on a particular alternative sigma factor.IMPORTANCE In bacteria, all transcription is mediated by a single multisubunit RNA polymerase (RNAP) enzyme. However, promoter-specific transcription initiation necessitates that RNAP associates with a σ factor. Bacteria contain a primary σ factor that directs transcription of housekeeping genes and alternative σ factors that direct transcription in response to environmental or developmental cues. We identified an amino acid substitution (L257P) in the B. subtilis β' subunit whereby RNAPL257P associates with some σ factors (σA and σB) and enables vegetative cell growth but is defective in utilization of σH and is consequently blocked for sporulation. To our knowledge, this is the first identification of an amino acid substitution within the core enzyme that affects utilization of a specific sigma factor.
Collapse
|
3
|
YodL and YisK Possess Shape-Modifying Activities That Are Suppressed by Mutations in Bacillus subtilis mreB and mbl. J Bacteriol 2016; 198:2074-88. [PMID: 27215790 DOI: 10.1128/jb.00183-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/18/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Many bacteria utilize actin-like proteins to direct peptidoglycan (PG) synthesis. MreB and MreB-like proteins are thought to act as scaffolds, guiding the localization and activity of key PG-synthesizing proteins during cell elongation. Despite their critical role in viability and cell shape maintenance, very little is known about how the activity of MreB family proteins is regulated. Using a Bacillus subtilis misexpression screen, we identified two genes, yodL and yisK, that when misexpressed lead to loss of cell width control and cell lysis. Expression analysis suggested that yodL and yisK are previously uncharacterized Spo0A-regulated genes, and consistent with these observations, a ΔyodL ΔyisK mutant exhibited reduced sporulation efficiency. Suppressors resistant to YodL's killing activity occurred primarily in mreB mutants and resulted in amino acid substitutions at the interface between MreB and the highly conserved morphogenic protein RodZ, whereas suppressors resistant to YisK occurred primarily in mbl mutants and mapped to Mbl's predicted ATP-binding pocket. YodL's shape-altering activity appears to require MreB, as a ΔmreB mutant was resistant to the effects of YodL but not YisK. Similarly, YisK appears to require Mbl, as a Δmbl mutant was resistant to the cell-widening effects of YisK but not of YodL. Collectively, our results suggest that YodL and YisK likely modulate MreB and Mbl activity, possibly during the early stages of sporulation. IMPORTANCE The peptidoglycan (PG) component of the cell envelope confers structural rigidity to bacteria and protects them from osmotic pressure. MreB and MreB-like proteins are thought to act as scaffolds for PG synthesis and are essential in bacteria exhibiting nonpolar growth. Despite the critical role of MreB-like proteins, we lack mechanistic insight into how their activities are regulated. Here, we describe the discovery of two B. subtilis proteins, YodL and YisK, which modulate MreB and Mbl activities. Our data suggest that YodL specifically targets MreB, whereas YisK targets Mbl. The apparent specificities with which YodL and YisK are able to differentially target MreB and Mbl make them potentially powerful tools for probing the mechanics of cytoskeletal function in bacteria.
Collapse
|
4
|
|
5
|
Identification of the bacteriocin subtilosin A and loss of purL results in its high-level production in Bacillus amyloliquefaciens. Res Microbiol 2012; 163:470-8. [DOI: 10.1016/j.resmic.2012.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/22/2012] [Indexed: 11/17/2022]
|
6
|
Jeong JW, Snay J, Ataai MM. A mathematical model for examining growth and sporulation processes of Bacillus subtilis. Biotechnol Bioeng 2010; 35:160-84. [PMID: 18592506 DOI: 10.1002/bit.260350208] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A mathematical model for the growth process of the bacterium Bacillus subtilis is described. The model is a highly structured one. The driving motivation for development of the model and explicit accounting of major interactions of metabolic networks in the model is related to our eventual goal that the model will be used in the analysis of complex biological patterns. Bacillus subtilis was chosen in our study due to the interesting sporulation process that these cells undergo in response to adverse environmental conditions including nutrient limitation. Sporulation process in B. subtilis represents a primordial prototype of cellular differentiation in higher cellular systems. Thus a model for the B. subtilis growth process should prove extremely useful for understanding questions of developmental biology. The model is capable of simulating the transition between the exponential and stationary phase of growth in a batch culture. Since during the transition period the growth process and the metabolism become decoupled and many transient processes are taking place, such predictions are a severe test for the validity of any model. A strategy to examine the leading hypothesis on B. subtills sporulation implementing GTP as a component which signals sporulation initiation is described.
Collapse
Affiliation(s)
- J W Jeong
- Chemical and Petroleum Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
7
|
Demain AL. Microbial secondary metabolism: a new theoretical frontier for academia, a new opportunity for industry. CIBA FOUNDATION SYMPOSIUM 2007; 171:3-16; discussion 16-23. [PMID: 1302184 DOI: 10.1002/9780470514344.ch2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microbial secondary metabolites are the low molecular mass products of secondary metabolism. They include antibiotics, pigments, toxins, effectors of ecological competition and symbiosis, pheromones, enzyme inhibitors, immunomodulating agents, receptor antagonists and agonists, pesticides, antitumour agents and growth promoters of animals and plants. They have a major effect on the health, nutrition and economics of our society. They have unusual structures and their formation is regulated by nutrients, growth rate, feedback control, enzyme inactivation and induction. Regulation is influenced by unique low molecular mass compounds, transfer RNA, sigma factors and gene products formed during post-exponential development. The synthases of secondary metabolism are often coded by clustered genes on chromosomal DNA and infrequently on plasmid DNA. The pathways of secondary metabolism are still not understood to a great degree and thus provide a new frontier for basic investigations of enzymology, control and differentiation. Cloning and expression of genes in industrial microorganisms offer new opportunities for strain improvement and discovery. Microbial metabolites have already established themselves as coccidiostats, immunosuppressants, antihelminthic agents, herbicides and cholesterol-reducing drugs. Great potential exists for the discovery of antiviral, antiparasitic, antitumour and pharmacological compounds and new agricultural products. The future for natural products is bright indeed.
Collapse
Affiliation(s)
- A L Demain
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| |
Collapse
|
8
|
Shipkowski S, Brenchley JE. Bioinformatic, genetic, and biochemical evidence that some glycoside hydrolase family 42 beta-galactosidases are arabinogalactan type I oligomer hydrolases. Appl Environ Microbiol 2006; 72:7730-8. [PMID: 17056685 PMCID: PMC1694227 DOI: 10.1128/aem.01306-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoside hydrolases are organized into glycoside hydrolase families (GHFs) and within this larger group, the beta-galactosidases are members of four families: 1, 2, 35, and 42. Most genes encoding GHF 42 enzymes are from prokaryotes unlikely to encounter lactose, suggesting a different substrate for these enzymes. In search of this substrate, we analyzed genes neighboring GHF 42 genes in databases and detected an arrangement implying that these enzymes might hydrolyze oligosaccharides released by GHF 53 enzymes from arabinogalactan type I, a pectic plant polysaccharide. Because Bacillus subtilis has adjacent GHF 42 and GHF 53 genes, we used it to test the hypothesis that a GHF 42 enzyme (LacA) could act on the oligosaccharides released by a GHF 53 enzyme (GalA) from galactan. We cloned these genes, plus a second GHF 42 gene from B. subtilis, yesZ, into Escherichia coli and demonstrated that cells expressing LacA with GalA gained the ability to use galactan as a carbon source. We constructed B. subtilis mutants and showed that the increased beta-galactosidase activity generated in response to the addition of galactan was eliminated by inactivating lacA or galA but unaffected by the inactivation of yesZ. As further demonstration, we overexpressed the LacA and GalA proteins in E. coli and demonstrated that these enzymes degrade galactan in vitro as assayed by thin-layer chromatography. Our work provides the first in vivo evidence for a function of some GHF 42 beta-galactosidases. Similar functions for other beta-galactosidases in both GHFs 2 and 42 are suggested by genomic data.
Collapse
Affiliation(s)
- Stephanie Shipkowski
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 209 South Frear, University Park, PA 16802, USA.
| | | |
Collapse
|
9
|
Bobay BG, Mueller GA, Thompson RJ, Murzin AG, Venters RA, Strauch MA, Cavanagh J. NMR structure of AbhN and comparison with AbrBN: FIRST insights into the DNA binding promiscuity and specificity of AbrB-like transition state regulator proteins. J Biol Chem 2006; 281:21399-21409. [PMID: 16702211 PMCID: PMC1761137 DOI: 10.1074/jbc.m601963200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the molecular mechanisms of transition state regulator proteins is critical, since they play a pivotal role in the ability of bacteria to cope with changing environments. Although much effort has focused on their genetic characterization, little is known about their structural and functional conservation. Here we present the high resolution NMR solution structure of the N-terminal domain of the Bacillus subtilis transition state regulator Abh (AbhN), only the second such structure to date. We then compare AbhN to the N-terminal DNA-binding domain of B. subtilis AbrB (AbrBN). This is the first such comparison between two AbrB-like transition state regulators. AbhN and AbrBN are very similar, suggesting a common structural basis for their DNA binding. However, we also note subtle variances between the AbhN and AbrBN structures, which may play important roles in DNA target specificity. The results of accompanying in vitro DNA-binding studies serve to highlight binding differences between the two proteins.
Collapse
Affiliation(s)
- Benjamin G Bobay
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Geoffrey A Mueller
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Richele J Thompson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Alexey G Murzin
- Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | - Mark A Strauch
- Biomedical Sciences Department, Dental School, University of Maryland, Baltimore, Maryland 21201
| | - John Cavanagh
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695.
| |
Collapse
|
10
|
Dixon LG, Seredick S, Richer M, Spiegelman GB. Developmental gene expression in Bacillus subtilis crsA47 mutants reveals glucose-activated control of the gene for the minor sigma factor sigma(H). J Bacteriol 2001; 183:4814-22. [PMID: 11466285 PMCID: PMC99536 DOI: 10.1128/jb.183.16.4814-4822.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of excess glucose in growth media prevents normal sporulation of Bacillus subtilis. The crsA47 mutation, located in the gene for the vegetative phase sigma factor (sigma(A)) results in a glucose-resistant sporulation phenotype. As part of a study of the mechanisms whereby the mutation in sigma(A) overcomes glucose repression of sporulation, we examined the expression of genes involved in sporulation initiation in the crsA47 background. The crsA47 mutation had a significant impact on a variety of genes. Changes to stage II gene expression could be linked to alterations in the expression of the sinI and sinR genes. In addition, there was a dramatic increase in the expression of genes dependent on the minor sigma factor sigma(H). This latter change was paralleled by the pattern of spo0H gene transcription in cells with the crsA47 mutation. In vitro analysis of RNA polymerase containing sigma(A47) indicated that it did not have unusually high affinity for the spo0H gene promoter. The in vivo pattern of spo0H expression is not predicted by the known regulatory constraints on spo0H and suggests novel regulation mechanisms that are revealed in the crsA47 background.
Collapse
Affiliation(s)
- L G Dixon
- Departments of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
11
|
Nanamiya H, Ohashi Y, Asai K, Moriya S, Ogasawara N, Fujita M, Sadaie Y, Kawamura F. ClpC regulates the fate of a sporulation initiation sigma factor, sigmaH protein, in Bacillus subtilis at elevated temperatures. Mol Microbiol 1998; 29:505-13. [PMID: 9720868 DOI: 10.1046/j.1365-2958.1998.00943.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using a strain carrying a clpC-bgaB transcriptional fusion at the amyE locus, we found that the expression of a clpC operon was induced at the end of exponential growth in a sigmaB-independent manner and ceased around T3.5 in the wild type but not in a spo0H mutant. This suggests that some gene product(s) whose expression is dependent on sigmaH function is required for the turn-off of clpC transcription during an early stage of sporulation. A clpC deletion mutant showed a temperature-sensitive sporulation phenotype and exhibited an abnormally large accumulation of sigmaH in the cell at 45 degrees C after T2, at which time the sigmaH level in the wild type had begun to decrease. These results, together with the fact that spo0H transcription in the clpC deletion mutant was similar to that of the wild type, suggested that ClpC may be responsible for the degradation of sigmaH after the accomplishment of its role in sporulation. Moreover, as expected from these results, overproduction of Spo0A was also observed after the initiation of sporulation in the clpC deletion mutant at 45 degrees C.
Collapse
Affiliation(s)
- H Nanamiya
- College of Science, Rikkyo (St Paul's) University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Daniel RA, Haiech J, Denizot F, Errington J. Isolation and characterization of the lacA gene encoding beta-galactosidase in Bacillus subtilis and a regulator gene, lacR. J Bacteriol 1997; 179:5636-8. [PMID: 9287030 PMCID: PMC179446 DOI: 10.1128/jb.179.17.5636-5638.1997] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have isolated transposon insertions in the lacA gene encoding an endogenous beta-galactosidase of Bacillus subtilis. Upstream of the putative operon containing lacA is a negative regulator, lacR, which encodes a product related to a family of regulators that includes the lactose repressor, lacI, of Escherichia coli. New strains with insertions in the lacA gene should be of use in studies using lacZ fusions in B. subtilis.
Collapse
Affiliation(s)
- R A Daniel
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
13
|
Mandic-Mulec I, Doukhan L, Smith I. The Bacillus subtilis SinR protein is a repressor of the key sporulation gene spo0A. J Bacteriol 1995; 177:4619-27. [PMID: 7642487 PMCID: PMC177225 DOI: 10.1128/jb.177.16.4619-4627.1995] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
SinR is a pleiotropic DNA binding protein that is essential for the late-growth processes of competence and motility in Bacillus subtilis and is also a repressor of others, e.g., sporulation and subtilisin synthesis. In this report, we show that SinR, in addition to being an inhibitor of sporulation stage II gene expression, is a repressor of the key early sporulation gene spo0A. The sporulation-specific rise in spo0A expression at time zero is absent in a SinR-overproducing strain and is much higher than normal in strains with a disrupted sinR gene. This effect is direct, since SinR binds specifically to spo0A in vitro, in a region overlapping the -10 region of the sporulation-specific Ps promoter that is recognized by E-sigma H polymerase. Methyl interference and site-directed mutagenesis studies have identified guanine residues that are important for SinR recognition of this DNA sequence. Finally, we present evidence that SinR controls sporulation through several independent genes, i.e., sp0A, spoIIA, and possibly spoIIG and spoIIE.
Collapse
Affiliation(s)
- I Mandic-Mulec
- Public Health Research Institute, New York, New York 10016, USA
| | | | | |
Collapse
|
14
|
Abstract
The specificity of DNA-dependent RNA polymerase for target promotes is largely due to the replaceable sigma subunit that it carries. Multiple sigma proteins, each conferring a unique promoter preference on RNA polymerase, are likely to be present in all bacteria; however, their abundance and diversity have been best characterized in Bacillus subtilis, the bacterium in which multiple sigma factors were first discovered. The 10 sigma factors thus far identified in B. subtilis directly contribute to the bacterium's ability to control gene expression. These proteins are not merely necessary for the expression of those operons whose promoters they recognize; in many instances, their appearance within the cell is sufficient to activate these operons. This review describes the discovery of each of the known B. subtilis sigma factors, their characteristics, the regulons they direct, and the complex restrictions placed on their synthesis and activities. These controls include the anticipated transcriptional regulation that modulates the expression of the sigma factor structural genes but, in the case of several of the B. subtilis sigma factors, go beyond this, adding novel posttranslational restraints on sigma factor activity. Two of the sigma factors (sigma E and sigma K) are, for example, synthesized as inactive precursor proteins. Their activities are kept in check by "pro-protein" sequences which are cleaved from the precursor molecules in response to intercellular cues. Other sigma factors (sigma B, sigma F, and sigma G) are inhibited by "anti-sigma factor" proteins that sequester them into complexes which block their ability to form RNA polymerase holoenzymes. The anti-sigma factors are, in turn, opposed by additional proteins which participate in the sigma factors' release. The devices used to control sigma factor activity in B, subtilis may prove to be as widespread as multiple sigma factors themselves, providing ways of coupling sigma factor activation to environmental or physiological signals that cannot be readily joined to other regulatory mechanisms.
Collapse
Affiliation(s)
- W G Haldenwang
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| |
Collapse
|
15
|
Strauch MA, Wu JJ, Jonas RH, Hoch JA. A positive feedback loop controls transcription of the spoOF gene, a component of the sporulation phosphorelay in Bacillus subtilis. Mol Microbiol 1993; 7:967-74. [PMID: 8483422 DOI: 10.1111/j.1365-2958.1993.tb01188.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The spo0F gene of Bacillus subtilis encodes a protein that functions as a secondary messenger in a phosphorelay system controlling the initiation of sporulation. Transcription of the spo0F gene was known to be dependent on an intact gene for the transcription regulator Spo0A. In vitro footprint analysis revealed that Spo0A protein bound to two locations in the spo0F promoter region. Deletion of a 40 bp region upstream of one of the promoters (P2) abolished the activation of spo0F expression that occurs at the onset of stationary phase and sporulation. This 40 bp region contains a Spo0A-binding site. These observations are consistent with a hypothesis that Spo0A binding to this region is responsible for activating spo0F transcription. Additionally, Spo0A binding at a downstream site could modulate the level of this activation. Since Spo0F protein is required for the formation of Spo0A-P (the form needed for transcriptional activation) a positive feedback loop controls transcription of spo0F.
Collapse
Affiliation(s)
- M A Strauch
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92027
| | | | | | | |
Collapse
|
16
|
Hoch JA. The phosphorelay signal transduction pathway in the initiation of Bacillus subtilis sporulation. J Cell Biochem 1993; 51:55-61. [PMID: 8432743 DOI: 10.1002/jcb.240510111] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The formation of spores in Bacillus subtilis is a developmental process under genetic control. The decision to either divide or sporulate is regulated by the state of phosphorylation of the SpoOA transcription factor. Phosphorylated SpoOA (SpoOA approximately P) is both a repressor and an activator of transcription depending on the promoter it is affecting. SpoOA approximately P is the end product of the phosphorelay, a signal transduction system linking environmental information to the activation of sporulation. Activation or deinhibition of two ATP-dependent kinases, KinA and KinB, to phosphorylate the SpoOF secondary messenger initiates the phosphorelay. SpoOF approximately P is the substrate for the SpoOB protein, a phosphoprotein phosphotransferase which transfers the phosphate group to SpoOA. The SpoOA approximately P formed from this pathway orchestrates transcription events during the initial stage of spore development through direct effects on a variety of promoters and through the use of other transcription factors, termed transition state regulators, whose activity it controls. Because commitment to sporulation has serious cellular programming consequences and is not undertaken capriciously, the phosphorelay is subject to a variety of complex controls on the flow of phosphate through its components.
Collapse
Affiliation(s)
- J A Hoch
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
17
|
Smith I, Dubnau E, Predich M, Bai U, Rudner R. Early spo gene expression in Bacillus subtilis: the role of interrelated signal transduction systems. Biochimie 1992; 74:669-78. [PMID: 1391046 DOI: 10.1016/0300-9084(92)90139-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The early spo genes are subject to a number of different control mechanisms. We found that at least one histidine kinase, SpoIIJ, is important for the expression of early spo genes but that two others, ComP and DegS, also affect sporulation, especially when SpoIIJ is absent. This indicates the existence of a signal transduction network which may gather information from several sources to feed into the sporulation pathway. Early spo gene expression is inhibited by overproduction of two response regulators, SpoOF and ComA. This effect is eliminated by the elevated presence of their cognate histidine kinases, SpoIIJ and ComP, respectively. This suggests that the unphosphorylated response regulators cause the inhibition of sporulation.
Collapse
Affiliation(s)
- I Smith
- Department of Microbiology, Public Health Research Institute, New York, NY
| | | | | | | | | |
Collapse
|
18
|
Abstract
Sin is a Bacillus subtilis DNA-binding protein which is essential for competence, motility, and autolysin production but also, if expressed on a multicopy plasmid, is inhibitory to sporulation and alkaline protease synthesis. We have now examined the physiological role of Sin in sporulation and found that this protein specifically represses three stage II sporulation genes (spoIIA, spoIIE, and spoIIG) but not the earlier-acting stage 0 sporulation genes. sin loss-of-function mutations cause higher expression of stage II genes and result in a higher frequency of sporulation, in general. Sin binds to the upstream promoter region of spoIIA in vitro and may thus gate entry into sporulation by directly repressing the transcription of stage II genes. In vivo levels of Sin increase rather than decrease at the time of stage II gene induction, suggesting that posttranslational modification may play a role in downregulation of negative Sin function.
Collapse
Affiliation(s)
- I Mandic-Mulec
- Department of Microbiology, New York University School of Medicine, New York 10016
| | | | | | | |
Collapse
|
19
|
Qi FX, He XS, Doi RH. Localization of a new promoter, P5, in the sigA operon of Bacillus subtilis and its regulation in some spo mutant strains. J Bacteriol 1991; 173:7050-4. [PMID: 1840586 PMCID: PMC209066 DOI: 10.1128/jb.173.21.7050-7054.1991] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The sigA operon of Bacillus subtilis is transcribed from at least two SigA and two SigH promoters. Primer extension and promoter probe analyses have localized a fifth promoter, P5, that is active only at later sporulation stages (T3 to T5). Mutations in the genes for the sigma factors SigG, SigK, SigH, and SigE do not block transcription from P5. The expression from P5 is blocked or severely reduced in spo0A, spo0B, spo0E, and spo0K mutants.
Collapse
Affiliation(s)
- F X Qi
- Department of Biochemistry and Biophysics, University of California, Davis 95616
| | | | | |
Collapse
|
20
|
Chibazakura T, Kawamura F, Takahashi H. Differential regulation of spo0A transcription in Bacillus subtilis: glucose represses promoter switching at the initiation of sporulation. J Bacteriol 1991; 173:2625-32. [PMID: 1901572 PMCID: PMC207829 DOI: 10.1128/jb.173.8.2625-2632.1991] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have shown by S1 nuclease mapping with in vivo transcripts that the differential expression of a sporulation-regulatory gene, spo0A, is regulated by switching of two discrete promoters during the initiation of sporulation in Bacillus subtilis; vegetative mRNA was transcribed from an upstream promoter (Pv, vegetative promoter), and sporulation-specific mRNA was transcribed from the other promoter (Ps, sporulation-specific promoter) about 150 bp downstream of the Pv promoter. Transcription from the Pv promoter was at a low level and shut off at T0.5. On the other hand, transcription from the Ps promoter was strongly induced at T0.5 and increased until T2.5. In the presence of 2% glucose, Pv-directed transcription was not shut off and was observed even at T1.5, whereas the induction of Ps-directed transcription was completely repressed. A mutant in which the spo0A gene was transcribed only from the Ps promoter could sporulate normally in the presence of 0.1% glucose but could not sporulate at all in the presence of 2% glucose. In a catabolite-resistant sporulation mutant carrying crsA47 (sigA47), a mutation within the gene encoding sigma A, normal promoter switching from Pv to Ps was observed in the presence of 2% glucose.
Collapse
Affiliation(s)
- T Chibazakura
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | | | |
Collapse
|
21
|
Weir J, Predich M, Dubnau E, Nair G, Smith I. Regulation of spo0H, a gene coding for the Bacillus subtilis sigma H factor. J Bacteriol 1991; 173:521-9. [PMID: 1898930 PMCID: PMC207041 DOI: 10.1128/jb.173.2.521-529.1991] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Bacillus spo0H gene codes for sigma H, which, as part of the RNA polymerase holoenzyme E sigma H, is responsible for the transcription of several genes which are expressed at the beginning of the sporulation process. In this communication, we examined the regulation of the spo0H gene of Bacillus subtilis by using lacZ reporter gene assays, quantitative RNA determinations, and Western immunoassay. The expression of the spo0H gene increases as the culture enters the mid-logarithmic stage of growth. This increased expression requires the genes spo0A, spo0B, spo0E, and spo0F, and the requirement for at least spo0A and spo0B can be bypassed when the abrB gene is mutated. The expression of the spo0H gene is constitutive in the presence of the abrB mutation, being expressed at higher levels during vegetative growth. In addition, the sof-1 mutation, in the spo0A structural gene, can bypass the need for spo0F in spo0H expression. The transcriptional start site of spo0H was determined by using RNA made in vivo as well as in vitro. These studies indicate that spo0H is transcribed by the major vegetative RNA polymerase, E sigma A. spo0H RNA and sigma H levels during growth are not identical to each other or to the pattern of expression of spoVG, a gene transcribed by E sigma H. This suggests that spo0H is regulated posttranscriptionally and also that factors in addition to sigma H levels are involved in the expression of genes of the E sigma H regulon.
Collapse
Affiliation(s)
- J Weir
- Department of Microbiology, Public Health Research Institute, New York, New York
| | | | | | | | | |
Collapse
|
22
|
Bai U, Lewandoski M, Dubnau E, Smith I. Temporal regulation of the Bacillus subtilis early sporulation gene spo0F. J Bacteriol 1990; 172:5432-9. [PMID: 2118512 PMCID: PMC213209 DOI: 10.1128/jb.172.9.5432-5439.1990] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The initiation of sporulation in Bacillus subtilis depends on seven genes of the spo0 class. One of these, spo0F, codes for a protein of 14,000 daltons. We studied the regulation of spo0F by using spo0F-lacZ translational fusions and also measured Spo0F protein levels by immunoassays. spo0F-lacZ and Spo0F levels increased as the cells entered the stationary phase, and this effect was repressed by glucose and glutamine. Decoyinine, which lowers GTP levels and allows sporulation in the presence of normally repressing levels of glucose, induced spo0F-lacZ expression and raised Spo0F levels. The expression of spo0F-lacZ was dependent on spo0A, -0B, -0E, -0F, and -0H genes, a spo0H deletion causing the strongest effect. In most respects, the spo0F gene was regulated in a manner similar to that of spoVG. However, the presence of an abrB mutation did not relieve the dependence of spo0F gene expression on spo0A, as it does with spoVG (P. Zuber and R. Losick, J. Bacteriol. 169:2223-2230, 1987).
Collapse
Affiliation(s)
- U Bai
- Department of Microbiology, New York University Medical Center, New York 10016
| | | | | | | |
Collapse
|
23
|
Strauch M, Webb V, Spiegelman G, Hoch JA. The SpoOA protein of Bacillus subtilis is a repressor of the abrB gene. Proc Natl Acad Sci U S A 1990; 87:1801-5. [PMID: 2106683 PMCID: PMC53571 DOI: 10.1073/pnas.87.5.1801] [Citation(s) in RCA: 261] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The spoOA gene of Bacillus subtilis is critical for the initial stages in the developmental cycle leading to the formation of an endospore. We show that one function of the SpoOA protein is to negatively regulate another regulatory locus, abrB, which controls the expression of many genes associated with the onset of sporulation. Purified SpoOA protein binds to a specific region of the abrB promoter and functions as a repressor of transcription in an in vitro assay. The binding of the SpoOA protein is independent of the binding of the AbrB protein, which is known to autoregulate its expression. This independence mirrors the temporal sequence of events in abrB control.
Collapse
Affiliation(s)
- M Strauch
- Department of Molecular and Experimental Medicine, Research Institute of Scripps Clinic, La Jolla, CA 92037
| | | | | | | |
Collapse
|
24
|
Errington J, Vogt CH. Isolation and characterization of mutations in the gene encoding an endogenous Bacillus subtilis beta-galactosidase and its regulator. J Bacteriol 1990; 172:488-90. [PMID: 2104611 PMCID: PMC208459 DOI: 10.1128/jb.172.1.488-490.1990] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have isolated mutations that appear to inactivate the gene (lacA) encoding an endogenous beta-galactosidase activity in Bacillus subtilis and in a closely linked negative regulatory element (lacR). Both genes map to the hisA-thrA region. The lacA mutations may help to avoid some of the problems arising from the use of the Escherichia coli lacZ gene as a reporter gene in B. subtilis.
Collapse
Affiliation(s)
- J Errington
- Department of Biochemistry, University of Oxford, United Kingdom
| | | |
Collapse
|
25
|
Crissman JW, Causey SC, Thorne L, Pollock TJ. Accumulation of the insecticidal crystal protein of Bacillus thuringiensis subsp. kurstaki in post-exponential-phase Bacillus subtilis. Appl Environ Microbiol 1989; 55:2302-7. [PMID: 2508556 PMCID: PMC203072 DOI: 10.1128/aem.55.9.2302-2307.1989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A gene from Bacillus thuringiensis subsp. kurstaki that codes for a Lepidoptera-specific insecticidal toxin (delta-endotoxin) was engineered for expression in Bacillus subtilis. A low-copy-number plasmid vector that replicates in Escherichia coli and B. subtilis was constructed to transform B. subtilis with gene fusions first isolated and characterized in E. coli. Naturally occurring promoter sequences from B. subtilis (43, veg, ctc, and spoVG) were inserted upstream from the plasmid-borne structural gene. In the most prolific case, when the sporulation-specific spoVG promoter was fused to the heterologous toxin gene, the toxin product accumulated during postexponential growth to greater than 25% of the total cell protein. However, the resulting specific activity of the insecticidal toxin product was not commensurate with the abundance of the protein.
Collapse
|
26
|
Mathiopoulos C, Sonenshein AL. Identification of Bacillus subtilis genes expressed early during sporulation. Mol Microbiol 1989; 3:1071-81. [PMID: 2481799 DOI: 10.1111/j.1365-2958.1989.tb00257.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Labelled cDNA transcribed in vitro from early-sporulation RNA was enriched for sporulation-specific sequences by subtractive hybridization to an excess of vegetative RNA and used to probe libraries of Bacillus subtilis chromosomal DNA. From the initial collection of clones that coded for RNAs transcribed preferentially during sporulation, several were subcloned and studied in more detail. It was found that two clones contained sequences (dciA and dciB) that had an undetectable level of transcription during vegetative growth but had transcripts that started to appear no later than eight minutes after induction of sporulation. A third DNA segment (dciC) was expressed at a low level in vegetative cells and increased within four minutes after induction of sporulation. The effects of spoO mutations, i.e. mutations that prevent cells from reaching stage I of the sporulation process, were tested. Induction of the dciA and dciB transcripts was significantly reduced in strains carrying mutations in the spoOA and spoOH genes but not in a spoOB mutant strain. In addition, a product of the abrB locus, a locus in which mutations are known to partially overcome the pleiotropic effect of spoOA and spoOB mutations, seemed to be required for dciA and dciB expression.
Collapse
Affiliation(s)
- C Mathiopoulos
- Department of Molecular Biology and Microbiology, Tufts University Health Sciences Campus, Boston, Massachusetts 02111
| | | |
Collapse
|
27
|
Zuber P, Healy J, Carter HL, Cutting S, Moran CP, Losick R. Mutation changing the specificity of an RNA polymerase sigma factor. J Mol Biol 1989; 206:605-14. [PMID: 2500529 DOI: 10.1016/0022-2836(89)90569-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe a mutation that changes the fine specificity of promoter selection by a secondary form of RNA polymerase holoenzyme in Bacillus subtilis. The product of regulatory gene spo0H is an RNA polymerase sigma factor called sigma H, which directs transcription of a sporulation gene known as spoVG. We show that the spo0H mutation spo0H81, which blocks transcription from the wild-type spoVG promoter, enhances transcription from a mutant form of the spoVG promoter (spoVG249) bearing a severe down-mutation (a G.C to A.T transition) at position -13 in the "-10 region." Suppression of the spoVG249 mutation is specific in the sense that the transcription from several other spoVG mutant promoters was not restored by the mutant sigma. Evidently, spo0H81 is a change-of-specificity mutation that alters sigma H-RNA polymerase in a way that decreases its capacity to use the wild-type spoVG promoter, while increasing its capacity to use the mutant promoter. Transcription experiments in vitro using RNA polymerase containing the wild-type or mutant sigma support this interpretation. The spo0H81 mutation causes a threonine (Thr100) to isoleucine substitution in a region of sigma H that is highly homologous among sigma factors of diverse origins. We discuss the possibility that Thr100 is an amino acid-base-pair contact site and that sigma factors contact the -10 region of their cognate promoters by means of amino acid residues in this highly conserved region.
Collapse
Affiliation(s)
- P Zuber
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The start point of spoIIA transcription was defined by primer extension analysis with two separate primers. It was 27 bases upstream from the putative translation initiation codon of the first open reading frame in the spoIIA locus. A region extending at least 52 bases upstream from the transcription start site was necessary for transcription, as determined with integrative plasmids. Transcription of spoIIA was dependent on the spoOA, spoOB, and spoOF loci, but this dependency was partly overcome by increasing the number of copies of the spoIIA promoter region. Transcription of spoIIA was absolutely dependent on the spoOH locus, which codes for the RNA polymerase sigma factor sigma H. Regions approximately -35 and -10 upstream from the spoIIA transcription start site showed sequence homology with Bacillus subtilis sigma H promoters.
Collapse
Affiliation(s)
- J J Wu
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | | | | |
Collapse
|
29
|
Bernlohr RW, Saha AL, Young CC, Toth BR, Golden KJ. Nutrient-stimulated methylation of a membrane protein in Bacillus licheniformis. J Bacteriol 1988; 170:4113-8. [PMID: 3410825 PMCID: PMC211416 DOI: 10.1128/jb.170.9.4113-4118.1988] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
When nitrogen-starved vegetative cells of Bacillus licheniformis A5 were presented with a good nitrogen source in the presence of chloramphenicol and methyl-labeled methionine, a 40-kilodalton (kDa) protein was found to be reversibly methylated, with a half-life of approximately 10 to 15 min. The 40-kDa protein was strongly methylated in response to the addition of ammonia, glutamine, or sodium glutamate nitrogen sources that produce generation times of less than or equal to 90 min) but was very poorly methylated in the absence of a nitrogen source or in the presence of potassium glutamate or histidine (generation times of greater than 150 min). The methylated protein was found to be membrane associated, but the methylation reaction did not appear to be related to chemotaxis, because the spectrum of nutrients that promoted methylation was different from that which prompted a chemotactic response. In addition, the methyl residue on the 40-kDa protein was found to be alkali stable. Approximately 180 to 640 molecules of the methylated protein were found per cell. The characteristics of this methylated protein were consistent with the hypothesis that the reversible methylation of the protein functions in nutrient sensing to regulate growth, cell division, and the initiation of sporulation.
Collapse
Affiliation(s)
- R W Bernlohr
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | | | | | |
Collapse
|
30
|
Hulett FM, Jensen K. Critical roles of spo0A and spo0H in vegetative alkaline phosphatase production in Bacillus subtilis. J Bacteriol 1988; 170:3765-8. [PMID: 3136148 PMCID: PMC211360 DOI: 10.1128/jb.170.8.3765-3768.1988] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Growth conditions established to optimize vegetative alkaline phosphatase production and stability in Bacillus subtilis were used to compare alkaline phosphatase synthesis and secretion in isogenic strains JH646 (spo0A12) and JH646MS (spo0A12 abrB15). A mutation in spo0A blocked vegetative alkaline phosphatase production, and a second mutation at the abrB locus resulted in hyperinduction of vegetative alkaline phosphatase. Phosphate regulation of vegetative alkaline phosphatase synthesis was unaffected in the double mutant. spo0H, on a multicopy plasmid, partially overcame the spo0A effect.
Collapse
Affiliation(s)
- F M Hulett
- Laboratory for Cell, Molecular and Developmental Biology, University of Illinois, Chicago 60680
| | | |
Collapse
|
31
|
Carter HL, Wang LF, Doi RH, Moran CP. rpoD operon promoter used by sigma H-RNA polymerase in Bacillus subtilis. J Bacteriol 1988; 170:1617-21. [PMID: 3127379 PMCID: PMC211009 DOI: 10.1128/jb.170.4.1617-1621.1988] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Three promoters direct transcription of the sigA (rpoD) operon in Bacillus subtilis. Promoters P1 and P2 are used during the exponential growth phase, whereas P3 is used only during the stationary phase. We examined the use of these promoters in promoter-probe plasmids and found that expression from P3 was prevented by a mutation in spoOH, which encodes the secondary RNA polymerase sigma factor sigma H. Moreover, we found that sigma H-containing RNA polymerase efficiently and accurately used the P3 promoter in vitro. Evidently, this operon, which is essential for exponential growth, is transcribed during the early phase of sporulation by this secondary form of RNA polymerase. Comparison of the nucleotide sequences of the P3 promoter and the spoVG promoter, which also is used by sigma H-RNA polymerase, revealed sequences at the -10 and -35 regions of these promoters that may signal recognition of promoters by sigma H-RNA polymerase.
Collapse
Affiliation(s)
- H L Carter
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | | | | | | |
Collapse
|
32
|
Dubnau E, Weir J, Nair G, Carter L, Moran C, Smith I. Bacillus sporulation gene spo0H codes for sigma 30 (sigma H). J Bacteriol 1988; 170:1054-62. [PMID: 3277943 PMCID: PMC210873 DOI: 10.1128/jb.170.3.1054-1062.1988] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The DNA sequences of the spo0H genes from Bacillus licheniformis and B. subtilis are described, and the predicted open reading frames code for proteins of 26,097 and 25,447 daltons, respectively. The two spo0H gene products are 91% identical to one another and about 25% identical to most of the procaryotic sigma factors. The predicted proteins have a conserved 14-amino-acid sequence at their amino terminal end, typical of sigma factors. Antibodies raised against the spo0H gene product of B. licheniformis specifically react with RNA polymerase sigma factor protein, sigma 30, purified from B. subtilis. We conclude that the spo0H genes of B. licheniformis and B. subtilis code for sigma 30, now known as sigma H.
Collapse
Affiliation(s)
- E Dubnau
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | | | | | | | | | |
Collapse
|
33
|
Feavers IM, Price V, Moir A. The regulation of the fumarase (citG) gene of Bacillus subtilis 168. MOLECULAR & GENERAL GENETICS : MGG 1988; 211:465-71. [PMID: 3130545 DOI: 10.1007/bf00425702] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The level of fumarase activity in Bacillus subtilis depends on the nutritional environment; in rich medium low vegetative levels increase towards the end of the exponential phase, whereas in minimal glucose medium levels are relatively high throughout growth. Analysis of the enzyme levels in spoO mutants has revealed that a functional spoOH gene is required for the efficient expression of fumarase in both media. This highlights a regulatory role for the spoOH gene product not only in control of postexponentially expressed genes, but also during vegetative growth in defined medium. S1 transcript mapping reveals three transcriptional startpoints for the fumarase structural gene (citG) in B. subtilis. The upstream promoter region P1, which appears to contain two transcriptional startpoints, is functional in both Escherichia coli and B. subtilis. Promoter P2, which is located closer to the structural gene, is only functional in B. subtilis. Transcription from this promoter is strictly dependent on a functional spoOH gene; this gene has recently been shown to encode a minor sigma factor.
Collapse
Affiliation(s)
- I M Feavers
- Department of Microbiology, University of Sheffield, UK
| | | | | |
Collapse
|
34
|
Abstract
The newly identified sin gene affects late growth processes in Bacillus subtilis when it is overexpressed or inactivated in the chromosome. S1 nuclease mapping of the sin gene transcripts in vivo reveals the existence of three transcripts (RNAI, RNAII, and RNAIII). By correlating 5' ends of sin gene transcripts with DNA sequence, we have identified three different promoterlike sequences (P1, P2, and P3) for these transcripts. 3'-End mapping of these transcripts identified three prominent termination sites at the end of the sin gene. These termination sites are localized on two hairpin structures previously identified from the DNA sequence. The most abundant transcript, RNAIII, coded only for the sin gene, while the polycistronic transcripts RNAII and RNAI coded for the sin gene and ORF1 that precedes the sin gene. S1 mapping and translational lacZ fusion studies indicated that ORF1 and the sin gene are regulated differently. ORF1 expression is under developmental control, increasing at the end of vegetative growth, and requires functional spo0A and spo0H gene products. The sin gene is expressed at an almost constant and relatively low level throughout growth and remains largely unaffected by spo0A and spo0H mutations.
Collapse
Affiliation(s)
- N K Gaur
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | | | |
Collapse
|
35
|
Nicholson WL, Chambliss GH. Effect of decoyinine on the regulation of alpha-amylase synthesis in Bacillus subtilis. J Bacteriol 1987; 169:5867-9. [PMID: 3119574 PMCID: PMC214190 DOI: 10.1128/jb.169.12.5867-5869.1987] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Decoyinine, an inhibitor of GMP synthetase, allows sporulation in Bacillus subtilis to initiate and proceed under otherwise catabolite-repressing conditions. The effect of decoyinine on alpha-amylase synthesis in B. subtilis, an event which exhibits regulatory features resembling sporulation initiation, was examined. Decoyinine did not overcome catabolite repression of alpha-amylase synthesis in a wild-type strain of B. subtilis but did cause premature and enhanced synthesis in a mutant strain specifically blocked in catabolite repression of alpha-amylase synthesis. Decoyinine had no effect on alpha-amylase enzymatic activity. Thus, it appears that the catabolite control mechanisms governing alpha-amylase synthesis and sporulation in B. subtilis differ in their responses to decoyinine and hence must consist at least partially of separate components.
Collapse
Affiliation(s)
- W L Nicholson
- Laboratory of Genetics, University of Wisconsin, Madison 53706
| | | |
Collapse
|
36
|
Wang LF, Doi RH. Developmental expression of three proteins from the first gene of the RNA polymerase sigma 43 operon of Bacillus subtilis. J Bacteriol 1987; 169:4190-5. [PMID: 3040682 PMCID: PMC213728 DOI: 10.1128/jb.169.9.4190-4195.1987] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The first gene of the Bacillus subtilis RNA polymerase sigma 43 operon, P23, has a protein-coding capacity of 23,000 daltons. Sequence analysis revealed three potential translational initiation sites within the same reading frame, which could encode proteins of 23,000 (P23), 19,000 (P19), and 9,000 (P9) daltons, respectively. An internal promoter (P3), which is expressed only during the sporulation stage, is located between the second and the third translational start sites. By protein fusion to the Escherichia coli beta-galactosidase gene, we showed that all three translational initiation sites of the P23 gene are used in vivo in both E. coli and B. subtilis, and regulation for differential expression of the three proteins during the development of B. subtilis is coupled to the transcriptional promoter switching mechanism. The physiological function of these multiple gene products is unknown and is currently under investigation.
Collapse
|
37
|
Perego M, Hoch JA. Isolation and sequence of the spo0E gene: its role in initiation of sporulation in Bacillus subtilis. Mol Microbiol 1987; 1:125-32. [PMID: 2838724 DOI: 10.1111/j.1365-2958.1987.tb00536.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The pleiotropic stage 0 sporulation locus spo0E was isolated and sequenced. The spo0E gene was found to code for a protein of 9791 molecular weight. Two spo0E mutations were identified by sequence analysis and were found to give rise to nonsense codons within the gene. The results indicated that it is the lack of the spo0E gene product that is responsible for the sporulation-defective phenotype. The DNA fragment containing the spo0E locus was inhibitory to sporulation when present on a multicopy plasmid. Since DNA fragments containing only the upstream region of the gene were also inhibitory, this effect was not due to over-production of the spo0E gene product. Coupling the transcription of the spo0E gene to beta-galactosidase in an integrative plasmid vector revealed that active transcription of this gene begins at the end of exponential growth and continues through the early part of sporulation. Studies of the regulation of this gene have allowed the generation of a hypothesis to explain the interactions of those five stage 0 genes involved in the activation of sporulation-specific transcription.
Collapse
Affiliation(s)
- M Perego
- Division of Cellular Biology, Research Insititute of Scripps Clinic, La Jolla, CA 92037
| | | |
Collapse
|
38
|
Abstract
A set of competence (com) mutants of Bacillus subtilis was constructed by using Tn917lacZ as a mutagen. In about half of the mutants, the promoterless lacZ element on the transposon was placed under control of putative com promoters. Expression of the mutant com genes was studied by using the beta-galactosidase tag. Two of the mutant genes (those represented by com-124 and com-138) were expressed early in the growth cycle in all of the media tested and were not dependent on the spo0A or spo0H product for expression. The remaining mutants, which represented a minimum of four additional genes, expressed beta-galactosidase in stationary phase during the period in which competence developed. We conclude that expression of com genes is probably regulated transcriptionally and in a growth stage-specific manner. Expression of these genes was also dependent on growth in competence medium and, like competence development, required the presence of glucose and was dependent on the spo0H products. The dependence on the spo0A gene product was partially bypassed by the abrB703 mutation. These effects were qualitatively equivalent to those on competence development. The latter was dependent on spo0A and spo0H, and the spo0A dependency was partially suppressed by abrB703. Several of the mutants were still capable of resolution into light and heavy buoyant density cell fractions when grown in competence medium. All of these expressed beta-galactosidase to a greater extent in the light fraction, showing that expression of these com genes was cell type specific. Development of competence was not markedly affected by mutations in spo0B, spo0E, spo0F, spo0J, or sigB, the structural gene of sigma 37.
Collapse
|