1
|
Zhang K, Li X, Wang Z, Li G, Ma B, Chen H, Li N, Yang H, Wang Y, Liu B. Systemic Expression, Purification, and Initial Structural Characterization of Bacteriophage T4 Proteins Without Known Structure Homologs. Front Microbiol 2021; 12:674415. [PMID: 33927712 PMCID: PMC8076793 DOI: 10.3389/fmicb.2021.674415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteriophage T4 of Escherichia coli is one of the most studied phages. Research into it has led to numerous contributions to phage biology and biochemistry. Coding about 300 gene products, this double-stranded DNA virus is the best-understood model in phage study and modern genomics and proteomics. Ranging from viral RNA polymerase, commonly found in phages, to thymidylate synthase, whose mRNA requires eukaryotic-like self-splicing, its gene products provide a pool of fine examples for phage research. However, there are still up to 130 gene products that remain poorly characterized despite being one of the most-studied model phages. With the recent advancement of cryo-electron microscopy, we have a glimpse of the virion and the structural proteins that present in the final assembly. Unfortunately, proteins participating in other stages of phage development are absent. Here, we report our systemic analysis on 22 of these structurally uncharacterized proteins, of which none has a known homologous structure due to the low sequence homology to published structures and does not belong to the category of viral structural protein. Using NMR spectroscopy and cryo-EM, we provided a set of preliminary structural information for some of these proteins including NMR backbone assignment for Cef. Our findings pave the way for structural determination for the phage proteins, whose sequences are mainly conserved among phages. While this work provides the foundation for structural determinations of proteins like Gp57B, Cef, Y04L, and Mrh, other in vitro studies would also benefit from the high yield expression of these proteins.
Collapse
Affiliation(s)
- Kaining Zhang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaojiao Li
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhihao Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Guanglin Li
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Biyun Ma
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huan Chen
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huaiyu Yang
- Department of Chemical Engineering, University of Loughborough, Leicestershire, United Kingdom
| | - Yawen Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bing Liu
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Stoskiene G, Truncaite L, Zajanckauskaite A, Nivinskas R. Middle promoters constitute the most abundant and diverse class of promoters in bacteriophage T4. Mol Microbiol 2007; 64:421-34. [PMID: 17371501 DOI: 10.1111/j.1365-2958.2007.05659.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The temporally regulated transcription program of bacteriophage T4 relies upon the sequential utilization of three classes of promoters: early, middle and late. Here we show that middle promoters constitute perhaps the largest and the most diverse class of T4 promoters. In addition to 45 T4 middle promoters known to date, we mapped 13 new promoters, 10 of which deviate from the consensus MotA box, with some of them having no obvious match to it. So, 30 promoters of 58 identified now deviate from the consensus sequence deduced previously. In spite of the differences in their sequences, the in vivo activities of these T4 middle promoters were demonstrated to be dependent on both activators, MotA and AsiA. Traditionally, the MotA box was restricted to a 9 bp sequence with the highly conserved motif TGCTT. New logo based on the sequences of currently known middle promoters supports the conclusion that the consensus MotA box is comprised of 10 bp with the highly conserved central motif GCT. However, some apparently good matches to the consensus of middle promoters do not produce transcripts either in vivo or in vitro, indicating that the consensus sequence alone does not fully define a middle promoter.
Collapse
Affiliation(s)
- Giedre Stoskiene
- Department of Gene Engineering, Institute of Biochemistry, Mokslininku 12, 08662 Vilnius, Lithuania
| | | | | | | |
Collapse
|
3
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Parker MM, Belisle M, Belfort M. Intron homing with limited exon homology. Illegitimate double-strand-break repair in intron acquisition by phage t4. Genetics 1999; 153:1513-23. [PMID: 10581262 PMCID: PMC1460845 DOI: 10.1093/genetics/153.4.1513] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The td intron of bacteriophage T4 encodes a DNA endonuclease that initiates intron homing to cognate intronless alleles by a double-strand-break (DSB) repair process. A genetic assay was developed to analyze the relationship between exon homology and homing efficiency. Because models predict exonucleolytic processing of the cleaved recipient leading to homologous strand invasion of the donor allele, the assay was performed in wild-type and exonuclease-deficient (rnh or dexA) phage. Efficient homing was supported by exon lengths of 50 bp or greater, whereas more limited exon lengths led to a precipitous decline in homing levels. However, extensive homology in one exon still supported elevated homing levels when the other exon was completely absent. Analysis of these "one-sided" events revealed recombination junctions at ectopic sites of microhomology and implicated nucleolytic degradation in illegitimate DSB repair in T4. Interestingly, homing efficiency with extremely limiting exon homology was greatly elevated in phage deficient in the 3'-5' exonuclease, DexA, suggesting that the length of 3' tails is a major determinant of the efficiency of DSB repair. Together, these results suggest that illegitimate DSB repair may provide a means by which introns can invade ectopic sites.
Collapse
Affiliation(s)
- M M Parker
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health and School of Public Health, State University of New York, Albany, New York 12201-2002, USA
| | | | | |
Collapse
|
5
|
Huang YJ, Parker MM, Belfort M. Role of exonucleolytic degradation in group I intron homing in phage T4. Genetics 1999; 153:1501-12. [PMID: 10581261 PMCID: PMC1460841 DOI: 10.1093/genetics/153.4.1501] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Homing of the phage T4 td intron is initiated by the intron-encoded endonuclease I-TevI, which cleaves the intronless allele 23 and 25 nucleotides upstream of the intron insertion site (IS). The distance between the I-TevI cleavage site (CS) and IS implicates endo- and/or exonuclease activities to resect the DNA segment between the IS and CS. Furthermore, 3' tails must presumably be generated for strand invasion by 5'-3' exonuclease activity. Three experimental approaches were used to probe for phage nucleases involved in homing: a comparative analysis of in vivo homing levels of nuclease-deficient phage, an in vitro assay of nuclease activity and specificity, and a coconversion analysis of flanking exon markers. It was thereby demonstrated that T4 RNase H, a 5'-3' exonuclease, T4 DNA exonuclease A (DexA) and the exonuclease activity of T4 DNA polymerase (43Exo), 3'-5' exonucleases, play a role in intron homing. The absence of these functions impacts not only homing efficiency but also the extent of degradation and flanking marker coconversion. These results underscore the critical importance of the 3' tail in intron homing, and they provide the first direct evidence of a role for 3' single-stranded DNA ends as intermediates in T4 recombination. Also, the involvement of RNase H, DexA, and 43Exo in homing provides a clear example of the harnessing of functions variously involved in phage nucleic acid metabolism for intron propagation.
Collapse
Affiliation(s)
- Y J Huang
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health and School of Public Health, State University of New York, Albany, New York 12201-2002, USA
| | | | | |
Collapse
|
6
|
Moser MJ, Holley WR, Chatterjee A, Mian IS. The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains. Nucleic Acids Res 1997; 25:5110-8. [PMID: 9396823 PMCID: PMC147149 DOI: 10.1093/nar/25.24.5110] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Prior sequence analysis studies have suggested that bacterial ribonuclease (RNase) Ds comprise a complete domain that is found also in Homo sapiens polymyositis-scleroderma overlap syndrome 100 kDa autoantigen and Werner syndrome protein. This RNase D 3'-->5' exoribonuclease domain was predicted to have a structure and mechanism of action similar to the 3'-->5' exodeoxyibonuclease (proofreading) domain of DNA polymerases. Here, hidden Markov model (HMM) and phylogenetic studies have been used to identify and characterise other sequences that may possess this exonuclease domain. Results indicate that it is also present in the RNase T family; Borrelia burgdorferi P93 protein, an immunodominant antigen in Lyme disease; bacteriophage T4 dexA and Escherichia coli exonuclease I, processive 3'-->5' exodeoxyribonucleases that degrade single-stranded DNA; Bacillus subtilis dinG, a probable helicase involved in DNA repair and possibly replication, and peptide synthase 1; Saccharomyces cerevisiae Pab1p-dependent poly(A) nuclease PAN2 subunit, required for shortening mRNA poly(A) tails; Caenorhabditis elegans and Mus musculus CAF1, transcription factor CCR4-associated factor 1; Xenopus laevis XPMC2, prevention of mitotic catastrophe in fission yeast; Drosophila melanogaster egalitarian, oocyte specification and axis determination, and exuperantia, establishment of oocyte polarity; H.sapiens HEM45, expressed in tumour cell lines and uterus and regulated by oestrogen; and 31 open reading frames including one in Methanococcus jannaschii . Examination of a multiple sequence alignment and two three-dimensional structures of proofreading domains has allowed definition of the core sequence, structural and functional elements of this exonuclease domain.
Collapse
Affiliation(s)
- M J Moser
- Life Sciences Division (Mail Stop 29-100), Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|