1
|
Šiková M, Wiedermannová J, Převorovský M, Barvík I, Sudzinová P, Kofroňová O, Benada O, Šanderová H, Condon C, Krásný L. The torpedo effect in Bacillus subtilis: RNase J1 resolves stalled transcription complexes. EMBO J 2020; 39:e102500. [PMID: 31840842 PMCID: PMC6996504 DOI: 10.15252/embj.2019102500] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022] Open
Abstract
RNase J1 is the major 5'-to-3' bacterial exoribonuclease. We demonstrate that in its absence, RNA polymerases (RNAPs) are redistributed on DNA, with increased RNAP occupancy on some genes without a parallel increase in transcriptional output. This suggests that some of these RNAPs represent stalled, non-transcribing complexes. We show that RNase J1 is able to resolve these stalled RNAP complexes by a "torpedo" mechanism, whereby RNase J1 degrades the nascent RNA and causes the transcription complex to disassemble upon collision with RNAP. A heterologous enzyme, yeast Xrn1 (5'-to-3' exonuclease), is less efficient than RNase J1 in resolving stalled Bacillus subtilis RNAP, suggesting that the effect is RNase-specific. Our results thus reveal a novel general principle, whereby an RNase can participate in genome-wide surveillance of stalled RNAP complexes, preventing potentially deleterious transcription-replication collisions.
Collapse
Affiliation(s)
- Michaela Šiková
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Jana Wiedermannová
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Martin Převorovský
- Department of Cell BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Ivan Barvík
- Division of Biomolecular PhysicsInstitute of PhysicsCharles UniversityPrague 2Czech Republic
| | - Petra Sudzinová
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Olga Kofroňová
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Oldřich Benada
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Hana Šanderová
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Ciarán Condon
- UMR8261CNRSUniversité de ParisInstitut de Biologie Physico‐ChimiqueParisFrance
| | - Libor Krásný
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| |
Collapse
|
2
|
Helmann JD. Where to begin? Sigma factors and the selectivity of transcription initiation in bacteria. Mol Microbiol 2019; 112:335-347. [PMID: 31119812 DOI: 10.1111/mmi.14309] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription is the fundamental process that enables the expression of genetic information. DNA-directed RNA polymerase (RNAP) uses one strand of the DNA duplex as template to produce complementary RNA molecules that serve in translation (rRNA, tRNA), protein synthesis (mRNA) and regulation (sRNA). Although the RNAP core is catalytically competent for RNA synthesis, the selectivity of transcription initiation requires a sigma (σ) factor for promoter recognition and opening. Expression of alternative σ factors provides a powerful mechanism to control the expression of discrete sets of genes (a σ regulon) in response to specific nutritional, developmental or stress-related signals. Here, I review the key insights that led to the original discovery of σ factor 50 years ago and the subsequent discovery of alternative σ factors as a ubiquitous mechanism of bacterial gene regulation. These studies form a prelude to the more recent, genomics-enabled insights into the vast diversity of σ factors in bacteria.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
3
|
Ramaniuk O, Černý M, Krásný L, Vohradský J. Kinetic modelling and meta-analysis of the B. subtilis SigA regulatory network during spore germination and outgrowth. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017. [PMID: 28648455 DOI: 10.1016/j.bbagrm.2017.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study describes the meta-analysis and kinetic modelling of gene expression control by sigma factor SigA of Bacillus subtilis during germination and outgrowth based on microarray data from 14 time points. The analysis computationally models the direct interaction among SigA, SigA-controlled sigma factor genes (sigM, sigH, sigD, sigX), and their target genes. Of the >800 known genes in the SigA regulon, as extracted from databases, 311 genes were analysed, and 190 were confirmed by the kinetic model as being controlled by SigA. For the remaining genes, alternative regulators satisfying kinetic constraints were suggested. The kinetic analysis suggested another 214 genes as potential SigA targets. The modelling was able to (i) create a particular SigA-controlled gene expression network that is active under the conditions for which the expression time series was obtained, and where SigA is the dominant regulator, (ii) suggest new potential SigA target genes, and (iii) find other possible regulators of a given gene or suggest a new mechanism of its control by identifying a matching profile of unknown regulator(s). Selected predicted regulatory interactions were experimentally tested, thus validating the model.
Collapse
Affiliation(s)
- O Ramaniuk
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology CAS, v.v.i., Videnska 1083, 14220 Prague, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Víničná 5, CZ-12843 Prague 2, Czech Republic.
| | - M Černý
- Laboratory of Bioinformatics, Institute of Microbiology CAS, v.v.i., Videnska 1083, 14220 Prague, Czech Republic.
| | - L Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology CAS, v.v.i., Videnska 1083, 14220 Prague, Czech Republic.
| | - J Vohradský
- Laboratory of Bioinformatics, Institute of Microbiology CAS, v.v.i., Videnska 1083, 14220 Prague, Czech Republic.
| |
Collapse
|
4
|
Fan B, Li YL, Mariappan A, Becker A, Wu XQ, Borriss R. New SigD-regulated genes identified in the rhizobacterium Bacillus amyloliquefaciens FZB42. Biol Open 2016; 5:1776-1783. [PMID: 27797724 PMCID: PMC5200910 DOI: 10.1242/bio.021501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alternative sigma factor D is known to be involved in at least three biological processes in Bacilli: flagellin synthesis, methyl-accepting chemotaxis and autolysin synthesis. Although many Bacillus genes have been identified as SigD regulon, the list may be not be complete. With microarray-based systemic screening, we found a set of genes downregulated in the sigD knockout mutant of the plant growth-promoting rhizobacterium B. amyloliquefaciens subsp. plantarum FZB42. Eight genes (appA, blsA, dhaS, spoVG, yqgA, RBAM_004640, RBAM_018080 and ytk) were further confirmed by quantitative PCR and/or northern blot to be controlled by SigD at the transcriptional level. These genes are hitherto not reported to be controlled by SigD. Among them, four genes are of unknown function and two genes (RBAM_004640 and RBAM_018080), absent in the model strain B. subtilis 168, are unique to B. amyloliquefaciens stains. The eight genes are involved in sporulation, biofilm formation, metabolite transport and several other functions. These findings extend our knowledge of the regulatory network governed by SigD in Bacillus and will further help to decipher the roles of the genes.
Collapse
Affiliation(s)
- Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.,Institut für Biologie/Bakteriengenetik, Humboldt Universität zu Berlin, Chausseestrasse 117, Berlin D-10115, Germany
| | - Yu-Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Aruljothi Mariappan
- Institut für Biologie/Bakteriengenetik, Humboldt Universität zu Berlin, Chausseestrasse 117, Berlin D-10115, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology, Marburg an der Lahn, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Rainer Borriss
- Institut für Biologie/Bakteriengenetik, Humboldt Universität zu Berlin, Chausseestrasse 117, Berlin D-10115, Germany .,Fachgebiet Phytomedizin, Albrecht Daniel Thaer Institut für Agrar- und Gartenbauwissenschaften, Lebenswissenschaftliche Fakultät, Humboldt Universität zu Berlin, Berlin 14195, Germany
| |
Collapse
|
5
|
|
6
|
Seredick SD, Turner BM, Spiegelman GB. Assay of transcription modulation by SpoOA of Bacillus subtilis. Methods Enzymol 2004; 370:312-23. [PMID: 14712656 DOI: 10.1016/s0076-6879(03)70028-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Steve D Seredick
- Department of Microbiology and Immunology, University of British Columbia, 6174 University Boulevard, Vancouver, British Columbia V6T 123, Canada
| | | | | |
Collapse
|
7
|
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
8
|
Liao CT, Wen YD, Wang WH, Chang BY. Identification and characterization of a stress-responsive promoter in the macromolecular synthesis operon of Bacillus subtilis. Mol Microbiol 1999; 33:377-88. [PMID: 10411753 DOI: 10.1046/j.1365-2958.1999.01480.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus subtilis DB1005 is a temperature-sensitive (Ts) sigA mutant. Induction of sigmaA has been observed exclusively in this mutant harbouring extra copies of the plasmid-borne Ts sigA gene transcriptionally controlled by the P1P2 promoters of the B. subtilis macromolecular synthesis (MMS; rpoD or sigA) operon. Investigation of the mechanisms leading to the induction has allowed us to identify a sigmaB-type promoter, P7, in the MMS operon for the first time. Therefore, at least seven promoters in total are responsible for the regulation of the B. subtilis MMS operon, including the four known sigmaA- and sigmaH-type promoters, as well as two incompletely defined promoters. The P7 promoter was activated in B. subtilis after the imposition of heat, ethanol and salt stresses, indicating that the MMS operon of B. subtilis is subjected to the control of general stress. The significant heat induction of P7 in B. subtilis DB1005 harbouring a plasmid-borne Ts sigA gene can be explained by a model of competition between sigmaA and sigmaB for core binding; very probably, the sigmaB factor binds more efficiently to core RNA polymerase under heat shock. This mechanism may provide a means for the expression of the B. subtilis MMS operon when sigmaA becomes defective in core binding.
Collapse
Affiliation(s)
- C T Liao
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | | | | | | |
Collapse
|
9
|
Millikan DS, Felbeck H, Stein JL. Identification and characterization of a flagellin gene from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Appl Environ Microbiol 1999; 65:3129-33. [PMID: 10388713 PMCID: PMC91466 DOI: 10.1128/aem.65.7.3129-3133.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial endosymbionts of the hydrothermal vent tubeworm Riftia pachyptila play a key role in providing their host with fixed carbon. Results of prior research suggest that the symbionts are selected from an environmental bacterial population, although a free-living form has been neither cultured from nor identified in the hydrothermal vent environment. To begin to assess the free-living potential of the symbiont, we cloned and characterized a flagellin gene from a symbiont fosmid library. The symbiont fliC gene has a high degree of homology with other bacterial flagellin genes in the amino- and carboxy-terminal regions, while the central region was found to be nonconserved. A sequence that was homologous to that of a consensus sigma28 RNA polymerase recognition site lay upstream of the proposed translational start site. The symbiont protein was expressed in Escherichia coli, and flagella were observed by electron microscopy. A 30,000-Mr protein subunit was identified in whole-cell extracts by Western blot analysis. These results provide the first direct evidence of a motile free-living stage of a chemoautotrophic symbiont and support the hypothesis that the symbiont of R. pachyptila is acquired with each new host generation.
Collapse
Affiliation(s)
- D S Millikan
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA
| | | | | |
Collapse
|
10
|
Lord M, Barillà D, Yudkin MD. Replacement of vegetative sigmaA by sporulation-specific sigmaF as a component of the RNA polymerase holoenzyme in sporulating Bacillus subtilis. J Bacteriol 1999; 181:2346-50. [PMID: 10197994 PMCID: PMC93656 DOI: 10.1128/jb.181.8.2346-2350.1999] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soon after asymmetric septation in sporulating Bacillus subtilis cells, sigmaF is liberated in the prespore from inhibition by SpoIIAB. To initiate transcription from its cognate promoters, sigmaF must compete with sigmaA, the housekeeping sigma factor in the predivisional cell, for binding to core RNA polymerase (E). To estimate the relative affinity of E for sigmaA and sigmaF, we made separate mixtures of E with each of the two sigma factors, allowed reconstitution of the holoenzyme, and measured the concentration of free E remaining in each mixture. The affinity of E for sigmaF was found to be about 25-fold lower than that for sigmaA. We used quantitative Western blotting to estimate the concentrations of E, sigmaA, and sigmaF in sporulating cells. The cellular concentrations of E and sigmaA were both about 7.5 microM, and neither changed significantly during the first 3 h of sporulation. The concentration of sigmaF was extremely low at the beginning of sporulation, but it rose rapidly to a peak after about 2 h. At its peak, the concentration of sigmaF was some twofold higher than that of sigmaA. This difference in concentration cannot adequately account for the replacement of sigmaA holoenzyme by sigmaF holoenzyme in the prespore, and it seems that some further mechanism-perhaps the synthesis or activation of an anti-sigmaA factor-must be responsible for this replacement.
Collapse
Affiliation(s)
- M Lord
- Microbiology Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
11
|
Deora R, Misra TK. Characterization of the primary sigma factor of Staphylococcus aureus. J Biol Chem 1996; 271:21828-34. [PMID: 8702982 DOI: 10.1074/jbc.271.36.21828] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
RNA polymerase (RNAP) isolated from Staphylococcus aureus is deficient in sigma factor and is poorly active in transcription assays. Based on amino acid sequence homology of the Bacillus subtilis vegetative sigma factor sigmaA and the predicted product of the chromosomally located plaC gene of S. aureus, it was hypothesized that plaC could encode the vegetative sigma factor. We cloned plaC under a T7 promoter and overexpressed it in Escherichia coli strain BL21(DE3)pLysE. The overproduced protein, present in inclusion bodies, was solubilized with guanidine hydrochloride, renatured, and purified by DEAE-Sephacel and Sephadex G-75 chromatography. The purified protein, designated sigmaSA, cross-reacted with the B. subtilis anti-sigmaA antibody. E. coli core RNAP, reconstituted with sigmaSA, initiated promoter-specific transcription from the S. aureus promoters hla, sea, and sec and from the E. coli promoters rpoH P1, rpoH P4, and ColE1 RNA-1, which are recognized by the E. coli sigma70. sigmaSA, when added to the purified RNAP from S. aureus, stimulated transcriptional activity of the RNAP up to 72-fold. As determined by primer extension studies, the 5'-ends of the sigmaSA-initiated mRNAs synthesized in vitro from the agr P2 and sea promoters are in general agreement with the 5'-ends of the cellular RNAs. Disruption of the plaC gene on the S. aureus chromosome was lethal. We conclude that plaC encodes the primary sigma factor in S. aureus.
Collapse
Affiliation(s)
- R Deora
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | |
Collapse
|
12
|
Caramori T, Barilla D, Nessi C, Sacchi L, Galizzi A. Role of FlgM in sigma D-dependent gene expression in Bacillus subtilis. J Bacteriol 1996; 178:3113-8. [PMID: 8655488 PMCID: PMC178060 DOI: 10.1128/jb.178.11.3113-3118.1996] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The alternative sigma factor sigma D directs transcription of a number of genes involved in chemotaxis, motility, and autolysis in Bacillus subtilis (sigmaD regulon). The activity of SigD is probably in contrast to that of FlgM, which acts as an antisigma factor and is responsible for the coupling of late flagellar gene expression to the assembly of the hook-basal body complex. We have characterized the effects of an in-frame deletion mutation of flgM. By transcriptional fusions to lacZ, we have shown that in FlgM-depleted strains there is a 10-fold increase in transcription from three different sigmaD-dependent promoters, i.e., Phag, PmotAB, and PfliDST. The number of flagellar filaments was only slightly increased by the flgM mutation. Overexpression of FlgM from a multicopy plasmid under control of the isopropyl-beta-D-thiogalactopyranoside-inducible spac promoter drastically reduced the level of transcription from the hag promoter. On the basis of these results, we conclude that, as in Salmonella typhimurium, FlgM inhibits the activity of SigD, but an additional element is involved in determining the number of flagellar filaments.
Collapse
Affiliation(s)
- T Caramori
- Dipartimento di Genetica e Microbiologia "A. Buzzati-Traverso", Universita degli Studi, Pavia, Italy
| | | | | | | | | |
Collapse
|
13
|
Bangsborg JM, Hindersson P, Shand G, Høiby N. The Legionella micdadei flagellin: expression in Escherichia coli K 12 and DNA sequence of the gene. APMIS 1995; 103:869-77. [PMID: 8562027 DOI: 10.1111/j.1699-0463.1995.tb01446.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To study the structure and function of the Legionella flagellum, we screened a genomic L. micdadei library in Escherichia coli for expression of the flagellin (Fla) subunit. One recombinant clone, JM105 (pHI5588), producing a truncated Fla protein of 40.5 kDa was identified. The plasmid pHI5588 carried a L. micdadei DNA insert of 5 kb, containing ca 95% of the fla gene. The complete DNA sequence of the L. micdadei fla gene was obtained by combining sequence data from pHI5588 with results using a polymerase chain reaction-based system for genome walking (vectorette PCR). The L. micdadei fla gene shared a high degree of homology with other flagellin genes in the amino- and carboxy termini, whereas the central region was found to be nonconserved. The fla sequence will facilitate the cloning of Fla proteins from other Legionella species and the study of flagella in the pathogenesis of Legionnaires' disease.
Collapse
Affiliation(s)
- J M Bangsborg
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
14
|
Nuijten PJ, Márquez-Magaña L, van der Zeijst BA. Analysis of flagellin gene expression in flagellar phase variants of Campylobacter jejuni 81116. Antonie Van Leeuwenhoek 1995; 67:377-83. [PMID: 7574555 DOI: 10.1007/bf00872938] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Flagella production in Campylobacter jejuni 81116 is subject to phase variation; the bacterium is able to switch its flagellum synthesis, and thereby its motility, on and off. Under standard laboratory growth conditions flagellar phase variants can be maintained as stable, pure cultures. We found conditions that efficiently induced a phase shift in vitro. The flaA gene but not the flaB gene is subject to the on and off switch. Minor amounts of FlaB are still present in aflagellate cells. We previously showed that flagellin gene expression in phase variants was regulated at the transcriptional level. Here, sequence data prove that abolishment of flaA transcription is not caused by DNA rearrangements or mutations within the flagellin locus. Since flaA is preceded by a typical sigma 28 promoter a C. jejuni sigma 28 homolog could play a role in regulation of flaA gene expression but such a gene or protein could not be detected. However, in vitro transcription could be detected using sigma 28-holoenzyme preparations from Bacillus subtilis. Possible regulatory mechanisms that may control flagellar phase variation in Campylobacter are discussed.
Collapse
Affiliation(s)
- P J Nuijten
- Department of Bacteriology, School of Veterinary Medicine, University of Utrecht, The Netherlands
| | | | | |
Collapse
|
15
|
Liu X, Matsumura P. An alternative sigma factor controls transcription of flagellar class-III operons in Escherichia coli: gene sequence, overproduction, purification and characterization. Gene 1995; 164:81-4. [PMID: 7590326 DOI: 10.1016/0378-1119(95)00480-t] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Based on the studies of the FliA protein in Bacillus subtilis (Bs) and Salmonella typhimurium (St), the Escherichia coli (Ec) fliA gene has been proposed to encode a flagellar-specific sigma factor, sigma 28. In this study, the complete nucleotide (nt) sequence of Ec fliA was determined. The fliA coding region consists of 717 nt starting with a GTG start codon and ending with a TAA stop codon. The gene product is predicted to be 239 amino acids (26,435 Da). Sequence comparison between Ec FliA and the sigma 28 of St revealed 93.7% identity. Gene fliA was amplified by the polymerase chain reaction, subcloned into expression vector pT7-7, and overexpressed. The overproduced 28-kDa FliA protein, recognized by the St anti-sigma 28 antibody, was purified to homogeneity. The purified protein was able to initiate transcription from the tar promoter in the presence of RNP core enzyme. We conclude that FliA functions as an alternative sigma factor sigma 28 which is specific for flagellar operons in Ec.
Collapse
Affiliation(s)
- X Liu
- Department of Microbiology and Immunology, University of Illinois at Chicago 60612-7344, USA
| | | |
Collapse
|
16
|
Fredrick K, Caramori T, Chen YF, Galizzi A, Helmann JD. Promoter architecture in the flagellar regulon of Bacillus subtilis: high-level expression of flagellin by the sigma D RNA polymerase requires an upstream promoter element. Proc Natl Acad Sci U S A 1995; 92:2582-6. [PMID: 7708689 PMCID: PMC42262 DOI: 10.1073/pnas.92.7.2582] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Flagellin is one of the most abundant proteins in motile bacteria, yet its expression requires a low abundance sigma factor (sigma 28). We show that transcription from the Bacillus subtilis flagellin promoter is stimulated 20-fold by an upstream A+T-rich region [upstream promoter (UP) element] both in vivo and in vitro. This UP element is contacted by sigma 28 holoenzyme bound at the flagellin promoter and binds the isolated alpha 2 subassembly of RNA polymerase. The UP element increases the affinity of RNA polymerase for the flagellin promoter and stimulates transcription when initiation is limited by the rate of RNA polymerase binding. Comparison with other promoters in the flagellar regulon reveals a bipartite architecture: the -35 and -10 elements confer specificity for sigma 28, while promoter strength is determined largely by upstream DNA sequences.
Collapse
Affiliation(s)
- K Fredrick
- Section of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
The specificity of DNA-dependent RNA polymerase for target promotes is largely due to the replaceable sigma subunit that it carries. Multiple sigma proteins, each conferring a unique promoter preference on RNA polymerase, are likely to be present in all bacteria; however, their abundance and diversity have been best characterized in Bacillus subtilis, the bacterium in which multiple sigma factors were first discovered. The 10 sigma factors thus far identified in B. subtilis directly contribute to the bacterium's ability to control gene expression. These proteins are not merely necessary for the expression of those operons whose promoters they recognize; in many instances, their appearance within the cell is sufficient to activate these operons. This review describes the discovery of each of the known B. subtilis sigma factors, their characteristics, the regulons they direct, and the complex restrictions placed on their synthesis and activities. These controls include the anticipated transcriptional regulation that modulates the expression of the sigma factor structural genes but, in the case of several of the B. subtilis sigma factors, go beyond this, adding novel posttranslational restraints on sigma factor activity. Two of the sigma factors (sigma E and sigma K) are, for example, synthesized as inactive precursor proteins. Their activities are kept in check by "pro-protein" sequences which are cleaved from the precursor molecules in response to intercellular cues. Other sigma factors (sigma B, sigma F, and sigma G) are inhibited by "anti-sigma factor" proteins that sequester them into complexes which block their ability to form RNA polymerase holoenzymes. The anti-sigma factors are, in turn, opposed by additional proteins which participate in the sigma factors' release. The devices used to control sigma factor activity in B, subtilis may prove to be as widespread as multiple sigma factors themselves, providing ways of coupling sigma factor activation to environmental or physiological signals that cannot be readily joined to other regulatory mechanisms.
Collapse
Affiliation(s)
- W G Haldenwang
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| |
Collapse
|
18
|
Mirel DB, Lauer P, Chamberlin MJ. Identification of flagellar synthesis regulatory and structural genes in a sigma D-dependent operon of Bacillus subtilis. J Bacteriol 1994; 176:4492-500. [PMID: 8045879 PMCID: PMC196267 DOI: 10.1128/jb.176.15.4492-4500.1994] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The sigma D form of RNA polymerase from Bacillus subtilis has been shown previously to direct the synthesis of several transcription units bearing genes for flagellin, motility proteins, and autolysins. In this report, we describe an operon of genes transcribed from the sigma D-dependent promoter PD-1. We have identified three complete open reading frames and one partial one downstream of this promoter; immediately upstream is the previously identified comF locus. The PD-1 operon encodes the presumptive B. subtilis homologs of two Salmonella typhimurium late flagellar genes, flgM and flgK. Also present in this operon are two genes of unknown function, orf139 and orf160, whose products show similarities to the eukaryotic cytoskeletal proteins myosin and vimentin, respectively. orf139 and orf160 may encode proteins that form extended alpha-helical secondary structures and coiled-coil quaternary structures which may be filamentous components of the gram-positive bacterial flagellum. We have characterized the B. subtilis flgM gene further by constructing an in-frame deletion mutation, flgM delta 80, and creating strains of B. subtilis in which this allele has replaced the wild-type copy. By primer extension analysis of cellular RNA, we have shown that the flgM delta 80 mutation relieves the block to transcription of two other sigma D-dependent operons imposed by an unlinked mutation in a gene directing early flagellar synthesis. We conclude that, as in the case of S. typhimurium, early flagellar synthesis in B. subtilis is coupled to late flagellar synthesis through repression of sigma D-dependent transcription by the flgM gene product.
Collapse
Affiliation(s)
- D B Mirel
- Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
19
|
Chen L, Helmann JD. The Bacillus subtilis sigma D-dependent operon encoding the flagellar proteins FliD, FliS, and FliT. J Bacteriol 1994; 176:3093-101. [PMID: 8195064 PMCID: PMC205476 DOI: 10.1128/jb.176.11.3093-3101.1994] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
During a genetic screen to identify metalloregulated loci in Bacillus subtilis, we isolated a Tn917-lacZ insertion in the second gene of an operon downstream of the flagellin (hag) gene. Sequence analysis indicates that this gene encodes a homolog of the enteric flagellar filament cap protein FliD. The fliD gene is followed by homologs of the fliS and fliT genes. Transcription of the fliD-lacZ fusion is sigma D dependent, with peak expression at the end of logarithmic-phase growth. Like other sigma D-dependent genes, expression of fliD-lacZ is greatly reduced by mutations in genes essential for assembly and function of the basal body and hook complex (class II functions). These results suggest that B. subtilis flagellar genes are organized in a hierarchy of gene expression similar to that found in enteric bacteria with hag and fliD as class III genes. Expression from the fliD operon promoter, but not the hag promoter, is repressed by iron, which suggests that the target of metalloregulation is the promoter rather than the sigma D protein.
Collapse
Affiliation(s)
- L Chen
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
20
|
Fredrick KL, Helmann JD. Dual chemotaxis signaling pathways in Bacillus subtilis: a sigma D-dependent gene encodes a novel protein with both CheW and CheY homologous domains. J Bacteriol 1994; 176:2727-35. [PMID: 8169223 PMCID: PMC205414 DOI: 10.1128/jb.176.9.2727-2735.1994] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The alternative sigma factor, sigma D, activates the expression of genes required for chemotaxis and motility in Bacillus subtilis, including those encoding flagellin, hook-associated proteins, and the motor proteins. The sigma D protein is encoded in a large operon which also encodes the structural proteins for the basal body and homologs of the enteric CheW, CheY, CheA, and CheB chemotaxis proteins. We report the identification and molecular characterization of a novel chemotaxis gene, cheV. The predicted CheV gene product contains an amino-terminal CheW homologous domain linked to a response regulator domain of the CheY family, suggesting that either or both of these functions are duplicated. Transcription of cheV initiates from a sigma D-dependent promoter element both in vivo and in vitro, and expression of a cheV-lacZ fusion is completely dependent on sigD. Expression is repressed by nonpolar mutations in structural genes for the basal body, fliM or fliP, indicating that cheV belongs to class III in the B. subtilis flagellar hierarchy. The cheV locus is monocistronic and is located at 123 degrees on the B. subtilis genetic map near the previously defined cheX locus. A cheV mutant strain is motile but impaired in chemotaxis on swarm plates. Surprisingly, an insertion in the CheW homologous domain leads to a more severe defect than an insertion in the CheY homologous domain. The presence of dual pathways for chemotactic signal transduction is consistent with the residual signaling observed in previous studies of cheW mutants (D. W. Hanlon, L. Márques-Magaña, P. B. Carpenter, M. J. Chamberlin, and G. W. Ordal, J. Biol. Chem. 267:12055-12060, 1992).
Collapse
Affiliation(s)
- K L Fredrick
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
21
|
Márquez-Magaña LM, Chamberlin MJ. Characterization of the sigD transcription unit of Bacillus subtilis. J Bacteriol 1994; 176:2427-34. [PMID: 8157612 PMCID: PMC205368 DOI: 10.1128/jb.176.8.2427-2434.1994] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The sigma D factor of Bacillus subtilis is required for the transcription of the flagellin and motility genes as well as for wild-type chemotaxis. Southern blot and sequence analyses demonstrate that the structural gene for sigma D, sigD, is located immediately downstream of a region of DNA originally identified as the chemotaxis (che) locus and now renamed the fla/che region. In fact, sigD appears to be part of a very large operon (> 26 kb) containing genes which encode structural proteins that form the hook-basal body complex as well as regulatory proteins required for chemotaxis. Transposon insertions up to 24 kb upstream of sigD, within several of the genes for the hook-basal body components, give rise to only a moderate decrease in sigD expression. The transposon insertions, however, block sigma D activity as demonstrated by the lack of flagellin expression in strains bearing these insertions. These effects appear to arise from two types of regulation. In cis the transposon insertions appear to introduce a partial block to transcription of sigD from upstream promoter elements; in trans they disrupt genes whose gene products are required for sigma D activity. It appears that sigD transcription is initiated, at least in part, by a promoter many kilobases upstream of its translation start site and that transcription of the flagellin gene by sigma D is dependent on the formation of a functional hook-basal body complex. The possibility that sigD is part of the fla/che operon was further tested by the integration of an insertion plasmid, containing strong transcription terminators, 1.6 and 24 kb upstream of the sigD gene. In both cases, the introduction of the terminators resulted in a greater decrease of sigD expression than was caused by the plasmid sequences alone. These results indicate that wild-type transcription of sigD is dependent on promoter sequences > 24kb upstream of its structural gene and that the entire fla/che region forms a single operon.
Collapse
Affiliation(s)
- L M Márquez-Magaña
- Division of Biochemsitry and Molecular Biology, University of California, Berkeley 94720
| | | |
Collapse
|
22
|
Ahn KS, Malo MS, Smith MT, Wake RG. Autoregulation of the gene encoding the replication terminator protein of Bacillus subtilis. Gene 1993; 132:7-13. [PMID: 8406044 DOI: 10.1016/0378-1119(93)90508-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
One of two putative sigma A promoters identified previously in the region immediately upstream from the rtp gene (encoding the replication terminator protein) [Smith and Wake, J. Bacteriol. 170 (1988) 4083-4090] has been shown by transcription start point (tsp) mapping to be the functional rtp promoter. In these tsp mapping experiments, it was observed that the level of mRNA from this promoter, Prtp, was increased by a factor of 30 in the absence of the replication terminator protein (RTP), consistent with the autoregulation of rtp at the level of transcription. In vitro transcription from Prtp by sigma A RNA polymerase has been shown to be specifically repressed by RTP. A Prtp-spoVG-lacZ fusion was inserted into the chromosome of a strain in which RTP production was inducible by IPTG. Addition of IPTG to cultures of the new strain lowered beta Gal production by a factor of at least four. It is concluded that rtp is autoregulated in vivo at the level of transcription.
Collapse
Affiliation(s)
- K S Ahn
- Department of Biochemistry, University of Sydney, NSW, Australia
| | | | | | | |
Collapse
|
23
|
Chen YF, Helmann JD. Restoration of motility to an Escherichia coli fliA flagellar mutant by a Bacillus subtilis sigma factor. Proc Natl Acad Sci U S A 1992; 89:5123-7. [PMID: 1594620 PMCID: PMC49241 DOI: 10.1073/pnas.89.11.5123] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The activation of additional promoter sites by production of an alternative sigma subunit for RNA polymerase is a common strategy for the coordinate regulation of gene expression. Many alternative sigma factors control genes for specialized, and often narrowly distributed, functions. For example, most of the alternative sigma factors in Bacillus subtilis control genes necessary for endospore formation. In contrast, the B. subtilis sigma D protein controls the expression of genes important for flagellar-based motility and chemotaxis, a form of locomotion very broadly distributed in the eubacteria. A homologous sigma factor, sigma F, controls a similar group of motility genes in the enteric bacteria. The conservation of both promoter specificity and genetic function in these two regulons allowed us to test the ability of a B. subtilis sigma factor to function within an Escherichia coli host. We demonstrate that expression of the B. subtilis sigD gene restores motility to an E. coli strain mutant in the fliA locus encoding the sigma F factor. This result suggests that the B. subtilis sigma D protein can bind to the E. coli core RNA polymerase to direct transcription initiation from at least four of the late operon promoters, thereby leading to the synthesis of flagellin, motor, and hook-associated proteins. Conversely, expression of sigma D protein in a normally chemotactic strain of E. coli (fliA+) leads to a hyperflagellated, nonchemotactic phenotype.
Collapse
Affiliation(s)
- Y F Chen
- Section of Microbiology, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
24
|
Abstract
Synthesis of bacterial flagella and the accompanying array of chemotaxis receptors and transducers represents a major commitment of energy and resources for a growing bacterial cell and is subject to numerous levels of regulation. Genes for flagellar and chemotaxis proteins are expressed in a complex transcriptional cascade. This regulatory hierarchy acts to ensure that the highly expressed filament structural protein, flagellin, is synthesized only after a prerequisite set of structural proteins has been expressed and properly assembled. Recent evidence suggests that many bacteria utilize an alternative sigma (sigma) subunit, similar in specificity to the Bacillus subtilis sigma 28 protein, to direct transcription of flagellin, chemotaxis and motility genes. In Caulobacter crescentus and Campylobacter spp., both a sigma 54-like factor and a sigma 28-like factor participate in the transcription of flagellar and chemotaxis genes. Conversely, a sigma 28-like factor controls non-motility functions in at least one non-flagellated organism.
Collapse
Affiliation(s)
- J D Helmann
- Division of Biological Sciences, Cornell University, Ithaca, New York 14853
| |
Collapse
|
25
|
Malik S, Hisatake K, Sumimoto H, Horikoshi M, Roeder RG. Sequence of general transcription factor TFIIB and relationships to other initiation factors. Proc Natl Acad Sci U S A 1991; 88:9553-7. [PMID: 1946368 PMCID: PMC52756 DOI: 10.1073/pnas.88.21.9553] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcription factor TFIIB is a ubiquitous factor required for transcription initiation by RNA polymerase II. Previous studies have suggested that TFIIB serves as a bridge between the "TATA"-binding factor (TFIID) and RNA polymerase II during preinitiation complex assembly and, more recently, that TFIIB can be a target of acidic activators. We have purified TFIIB to homogeneity, shown that activity resides in a 33-kDa polypeptide, and obtained cDNAs encoding functional TFIIB. TFIIB contains a region with amino acid sequence similarity to a highly conserved region of prokaryotic sigma factors. This is consistent with analogous functions for these factors in promoter recognition by RNA polymerases and with similar findings for TFIID, TFIIE, and TFIIF/RAP30. Like TFIID, TFIIB contains both a large imperfect repeat that could contribute an element of symmetry to the folded protein and clusters of basic residues that could interact with acidic activator domains. These findings argue for a common origin of TFIIB, TFIID, and other general transcription factors and for the evolutionary segregation of complementary functions.
Collapse
Affiliation(s)
- S Malik
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, NY 10021
| | | | | | | | | |
Collapse
|
26
|
Kalman S, Duncan ML, Thomas SM, Price CW. Similar organization of the sigB and spoIIA operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase. J Bacteriol 1990; 172:5575-85. [PMID: 2170324 PMCID: PMC526868 DOI: 10.1128/jb.172.10.5575-5585.1990] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacillus subtilis sigma-B is an alternate sigma factor implicated in controlling stationary-phase gene expression. We characterized the genetic organization and regulation of the region containing the sigma-B structural gene (sigB) to learn which metabolic signals and protein factors govern sigma-B function. sigB lay in an operon with four open reading frames (orfs) in the order orfV-orfW-sigB-orfX, and lacZ gene fusions showed that all four frames were translated in vivo. Experiments with primer extension, S1 nuclease mapping, and lacZ transcriptional fusions found that sigB operon transcription initiated early in stationary phase from a site 32 nucleotides upstream of orfV and terminated 34 nucleotides downstream of orfX. Fusion expression was abolished in a strain carrying an in-frame deletion in sigB, suggesting that sigma-B positively regulated its own synthesis, and deletions in the sigB promoter region showed that sequences identical to the sigma-B-dependent ctc promoter were essential for promoter activity. Fusion expression was greatly enhanced in a strain carrying an insertion mutation in orfX, suggesting that the 22-kilodalton (kDa) orfX product was a negative effector of sigma-B expression or activity. Notably, the genetic organization of the sigB operon was strikingly similar to that of the B. subtilis spoIIA operon, which has the gene order spoIIAA-spoIIAB-spoIIAC, with spoIIAC encoding the sporulation-essential sigma-F. The predicted sequence of the 12-kDa orfV product was 32% identical to that of the 13-kDa SpoIIAA protein, and the 18-kDa orfW product was 27% identical to the 16-kDa SpoIIAB protein. On the basis of this clear evolutionary conservation, we speculate these protein pairs regulate their respective sigma factors by a similar molecular mechanism and that the spoIIA and sigB operons might control divergent branches of stationary-phase gene expression.
Collapse
Affiliation(s)
- S Kalman
- Department of Food Science and Technology, University of California, Davis 95616
| | | | | | | |
Collapse
|
27
|
Márquez LM, Helmann JD, Ferrari E, Parker HM, Ordal GW, Chamberlin MJ. Studies of sigma D-dependent functions in Bacillus subtilis. J Bacteriol 1990; 172:3435-43. [PMID: 2111808 PMCID: PMC209155 DOI: 10.1128/jb.172.6.3435-3443.1990] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gene expression in Bacillus subtilis can be controlled by alternative forms of RNA polymerase programmed by distinct sigma factors. One such factor, sigma D (sigma 28), is expressed during vegetative growth and has been implicated in the transcription of a regulon of genes expressed during exponential growth and the early stationary phase. We have studied several functions related to flagellar synthesis and chemotaxis in B. subtilis strains in which sigma D is missing or is present at reduced levels. Previous studies showed that a null mutant, which contains a disrupted copy of the sigma D structural gene (sigD), fails to synthesize flagellin and grows as long filaments. We now show that these defects are accompanied by the lack of synthesis of the methyl-accepting chemotaxis proteins and a substantial decrease in two autolysin activities implicated in cell separation. A strain containing an insertion upstream of the sigD gene that reduces the level of sigma D protein grew as short chains and was flagellated but was impaired in chemotaxis and/or motility. This reduced level of sigma D expression suggests that the sigD gene may be part of an operon. A strain containing an insertion downstream of the sigD gene expressed nearly wild-type levels of sigma D protein but was also impaired in chemotaxis and/or motility, suggesting that genes downstream of sigD may also be involved in these functions. Genetic experiments demonstrate that sigD is allelic to the flaB locus, which was initially isolated as a locus affecting flagellin expression (G. F. Grant and M. I. Simon, J. Bacteriol. 99:116-124, 1969).
Collapse
Affiliation(s)
- L M Márquez
- Department of Biochemistry, University of California, Berkeley 94720
| | | | | | | | | | | |
Collapse
|
28
|
Mirel DB, Chamberlin MJ. The Bacillus subtilis flagellin gene (hag) is transcribed by the sigma 28 form of RNA polymerase. J Bacteriol 1989; 171:3095-101. [PMID: 2498284 PMCID: PMC210020 DOI: 10.1128/jb.171.6.3095-3101.1989] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Bacillus subtilis gene hag, which codes for the flagellin structural protein, was identified by DNA sequence analysis in a collection of DNA fragments bearing in vitro promoters for the sigma 28 form of RNA polymerase. The hag gene and adjacent regions of the B. subtilis chromosome were restriction mapped, and the nucleotide sequence was determined. The hag gene was transcribed at all stages of growth from a single promoter that had sequences in the promoter recognition region characteristic of the consensus sequence for the sigma 28 holoenzyme. Transcription of hag was eliminated by insertion mutations that blocked synthesis of the sigma 28 protein. These findings provide strong support for the previous proposal that the sigma 28 form of RNA polymerase controls transcription of a regulon specifying flagellar, chemotaxis, and motility functions in B. subtilis (J. D. Helmann and M. J. Chamberlin, Proc. Natl. Acad. Sci. USA 84:6422-6424, 1987). The steady-state levels of hag mRNA increased during exponential growth and peaked as the B. subtilis cells entered the stationary phase. The transcript levels then decreased to zero within 4 h after the onset of sporulation. Hence, sigma 28 RNA polymerase function is temporally regulated.
Collapse
Affiliation(s)
- D B Mirel
- Department of Biochemistry, University of California, Berkeley 94720
| | | |
Collapse
|
29
|
Abstract
The methyl-accepting chemotactic-signal transducers of the enteric bacteria are transmembrane proteins that consist of a periplasmic receptor domain and a cytoplasmic signaling domain. To study their evolution, transducer genes from Enterobacter aerogenes and Klebsiella pneumoniae were compared with transducer genes from Escherichia coli and Salmonella typhimurium. There are at least two functional transducer genes in the nonmotile species K. pneumoniae, one of which complements the defect in serine taxis of an E. coli tsr mutant. The tse (taxis to serine) gene of E. aerogenes also complements an E. coli tsr mutant; the tas (taxis to aspartate) gene of E. aerogenes complements the defect in aspartate taxis, but not the defect in maltose taxis, of an E. coli tar mutant. The sequence was determined for 5 kilobases of E. aerogenes DNA containing a 3' fragment of the cheA gene, cheW, tse, tas, and a 5' fragment of the cheR gene. The tse and tas genes are in one operon, unlike tsr and tar. The cytoplasmic domains of Tse and Tas are very similar to those of E. coli and S. typhimurium transducers. The periplasmic domain of Tse is homologous to that of Tsr, but Tas and Tar are much less similar in this region. However, several short sequences are conserved in the periplasmic domains of Tsr, Tar, Tse, and Tas but not of Tap and Trg, transducers that do not bind amino acids. These conserved regions include residues implicated in amino-acid binding.
Collapse
Affiliation(s)
- M K Dahl
- Universitaet Konstanz, Department of Biology, Federal Republic of Germany
| | | | | |
Collapse
|
30
|
Arnosti DN, Chamberlin MJ. Secondary sigma factor controls transcription of flagellar and chemotaxis genes in Escherichia coli. Proc Natl Acad Sci U S A 1989; 86:830-4. [PMID: 2644646 PMCID: PMC286571 DOI: 10.1073/pnas.86.3.830] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The genes specifying chemotaxis, motility, and flagellar function in Escherichia coli are coordinately regulated and form a large and complex regulon. Despite the importance of these genes in controlling bacterial behavior, little is known of the molecular mechanisms that regulate their expression. We have identified a minor form of E. coli RNA polymerase that specifically transcribes several E. coli chemotaxis/flagellar genes in vitro and is likely to carry out transcription of these genes in vivo. The enzyme was purified to near homogeneity based on its ability to initiate transcription of the E. coli tar chemotaxis gene at start sites that are used in vivo. Specific tar transcription activity is associated with a polypeptide of apparent 28-kDa molecular mass that remains bound to the E. coli RNA polymerase throughout purification. This peptide behaves as a secondary sigma factor--designated sigma F--because it restores specific tar transcription activity when added to core RNA polymerase. The sigma F holoenzyme also transcribes the E. coli tsr and flaAI genes in vitro as well as several Bacillus subtilis genes that are transcribed specifically by the sigma 28 form of B. subtilis RNA polymerase. The latter holoenzyme is implicated in transcription of flagellar and chemotaxis genes in B. subtilis. Hence E. coli sigma F holoenzyme appears to be analogous to the B. subtilis sigma 28 RNA polymerase, both in its promoter specificity and in the nature of the regulon it controls.
Collapse
Affiliation(s)
- D N Arnosti
- Department of Biochemistry, University of California, Berkeley 94720
| | | |
Collapse
|
31
|
Helmann JD, Wang Y, Mahler I, Walsh CT. Homologous metalloregulatory proteins from both gram-positive and gram-negative bacteria control transcription of mercury resistance operons. J Bacteriol 1989; 171:222-9. [PMID: 2492496 PMCID: PMC209576 DOI: 10.1128/jb.171.1.222-229.1989] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We report the overexpression, purification, and properties of the regulatory protein, MerR, for a chromosomally encoded mercury resistance determinant from Bacillus strain RC607. This protein is similar in sequence to the metalloregulatory proteins encoded by gram-negative resistance determinants found on transposons Tn21 and Tn501 and to a predicted gene product of a Staphylococcus aureus resistance determinant. In vitro DNA-binding and transcription experiments were used to demonstrate those purified Bacillus MerR protein controls transcription from a promoter-operator site similar in sequence to that found in the transposon resistance determinants. The Bacillus MerR protein bound in vitro to its promoter-operator region in both the presence and absence of mercuric ion and functioned as a negative and positive regulator of transcription. The MerR protein bound less tightly to its operator region (ca. 50- to 100-fold) in the presence of mercuric ion; this reduced affinity was largely accounted for by an increased rate of dissociation of the MerR protein from the DNA. Despite this reduced DNA-binding affinity, genetic and biochemical evidence support a model in which the MerR protein-mercuric ion complex is a positive regulator of operon transcription. Although the Bacillus MerR protein bound only weakly to the heterologous Tn501 operator region, the Tn501 and Tn21 MerR proteins bound with high affinity to the Bacillus promoter-operator region and exhibited negative, but not positive, transcriptional control.
Collapse
Affiliation(s)
- J D Helmann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
32
|
Helmann JD, Márquez LM, Chamberlin MJ. Cloning, sequencing, and disruption of the Bacillus subtilis sigma 28 gene. J Bacteriol 1988; 170:1568-74. [PMID: 2832368 PMCID: PMC211003 DOI: 10.1128/jb.170.4.1568-1574.1988] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bacillus subtilis contains multiple forms of RNA polymerase holoenzyme, distinguished by the presence of different specificity determinants known as sigma factors. The sigma 28 factor was initially purified as a unique transcriptional activity in vegetatively growing B. subtilis cells. Purification of the sigma 28 protein has allowed tryptic peptides to be prepared and sequenced. The sequence of one tryptic peptide fragment was used to prepare an oligonucleotide probe specific for the sigma 28 structural gene, and the gene was isolated from a B. subtilis subgenomic library. The complete nucleotide sequence of the sigma 28 gene was determined, and the cloned sigma 28 gene was used to construct a mutant strain which does not express the sigma 28 protein. This strain also failed to synthesize flagellin protein and grew as long filaments. The predicted sigma 28 gene product is a 254-amino-acid polypeptide with a calculated molecular weight of 29,500. The sigma 28 protein sequence was similar to that of other sequenced sigma factors and to the flbB gene product of Escherichia coli. Since the flbB gene product is a positive regulator of flagellar synthesis in E. coli, it is likely that sigma 28 functions to regulate flagellar synthesis in B. subtilis.
Collapse
Affiliation(s)
- J D Helmann
- Department of Biochemistry, University of California, Berkeley 94720
| | | | | |
Collapse
|