1
|
Martien JI, Trujillo EA, Jacobson TB, Tatli M, Hebert AS, Stevenson DM, Coon JJ, Amador-Noguez D. Metabolic Remodeling during Nitrogen Fixation in Zymomonas mobilis. mSystems 2021; 6:e0098721. [PMID: 34783580 PMCID: PMC8594446 DOI: 10.1128/msystems.00987-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Zymomonas mobilis is an ethanologenic bacterium currently being developed for production of advanced biofuels. Recent studies have shown that Z. mobilis can fix dinitrogen gas (N2) as a sole nitrogen source. During N2 fixation, Z. mobilis exhibits increased biomass-specific rates of ethanol production. In order to better understand the physiology of Z. mobilis during N2 fixation and during changes in ammonium (NH4+) availability, we performed liquid chromatography-mass spectrometry (LC-MS)-based targeted metabolomics and shotgun proteomics under three regimes of nitrogen availability: continuous N2 fixation, gradual NH4+ depletion, and acute NH4+ addition to N2-fixing cells. We report dynamic changes in abundance of proteins and metabolites related to nitrogen fixation, motility, ammonium assimilation, amino acid biosynthesis, nucleotide biosynthesis, isoprenoid biosynthesis, and Entner-Doudoroff (ED) glycolysis, providing insight into the regulatory mechanisms that control these processes in Z. mobilis. Our analysis identified potential physiological mechanisms that may contribute to increased specific ethanol production during N2 fixation, including decreased activity of biosynthetic pathways, increased protein abundance of alcohol dehydrogenase (ADHI), and increased thermodynamic favorability of the ED pathway. Of particular relevance to advanced biofuel production, we found that intermediates in the methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis were depleted during N2 fixation, coinciding with decreased protein abundance of deoxyxylulose 5-phosphate synthase (DXS), the first enzyme in the pathway. This implies that DXS protein abundance serves as a native control point in regulating MEP pathway activity in Z. mobilis. The results of this study will inform metabolic engineering to further develop Z. mobilis as a platform organism for biofuel production. IMPORTANCE Biofuels and bioproducts have the potential to serve as environmentally sustainable replacements for petroleum-derived fuels and commodity molecules. Advanced fuels such as higher alcohols and isoprenoids are more suitable gasoline replacements than bioethanol. Developing microbial systems to generate advanced biofuels requires metabolic engineering to reroute carbon away from ethanol and other native products and toward desired pathways, such as the MEP pathway for isoprenoid biosynthesis. However, rational engineering of microbial metabolism relies on understanding metabolic control points, in terms of both enzyme activity and thermodynamic favorability. In Z. mobilis, the factors that control glycolytic rates, ethanol production, and isoprenoid production are still not fully understood. In this study, we performed metabolomic, proteomic, and thermodynamic analysis of Z. mobilis during N2 fixation. This analysis identified key changes in metabolite levels, enzyme abundance, and glycolytic thermodynamic favorability that occurred during changes in NH4+ availability, helping to inform future efforts in metabolic engineering.
Collapse
Affiliation(s)
- Julia I. Martien
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Edna A. Trujillo
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Tyler B. Jacobson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Mehmet Tatli
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Alexander S. Hebert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - David M. Stevenson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Joshua J. Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Burén S, Jiménez-Vicente E, Echavarri-Erasun C, Rubio LM. Biosynthesis of Nitrogenase Cofactors. Chem Rev 2020; 120:4921-4968. [PMID: 31975585 PMCID: PMC7318056 DOI: 10.1021/acs.chemrev.9b00489] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 12/30/2022]
Abstract
Nitrogenase harbors three distinct metal prosthetic groups that are required for its activity. The simplest one is a [4Fe-4S] cluster located at the Fe protein nitrogenase component. The MoFe protein component carries an [8Fe-7S] group called P-cluster and a [7Fe-9S-C-Mo-R-homocitrate] group called FeMo-co. Formation of nitrogenase metalloclusters requires the participation of the structural nitrogenase components and many accessory proteins, and occurs both in situ, for the P-cluster, and in external assembly sites for FeMo-co. The biosynthesis of FeMo-co is performed stepwise and involves molecular scaffolds, metallochaperones, radical chemistry, and novel and unique biosynthetic intermediates. This review provides a critical overview of discoveries on nitrogenase cofactor structure, function, and activity over the last four decades.
Collapse
Affiliation(s)
- Stefan Burén
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Emilio Jiménez-Vicente
- Department
of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061, United States
| | - Carlos Echavarri-Erasun
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Luis M. Rubio
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
3
|
The role of rhizobial (NifV) and plant (FEN1) homocitrate synthases in Aeschynomene/photosynthetic Bradyrhizobium symbiosis. Sci Rep 2017; 7:448. [PMID: 28348373 PMCID: PMC5428708 DOI: 10.1038/s41598-017-00559-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/03/2017] [Indexed: 11/29/2022] Open
Abstract
In the most studied rhizobium-legume interactions, the host plant supplies the symbiont with homocitrate, an essential co-factor of the nitrogenase enzyme complex, via the expression of a nodule-specific homocitrate synthase FEN1. Photosynthetic bradyrhizobia interacting with Nod factor (NF) dependent and NF-independent Aeschynomene legumes are able to synthesize homocitrate themselves as they contain a nifV gene encoding a homocitrate synthase. Here, we show that in the model strain ORS285, nifV is required for free-living and symbiotic dinitrogen fixation with NF-independent Aeschynomene species. In contrast, in symbiosis with NF-dependent Aeschynomene species, the nifV requirement for efficient nitrogen fixation was found to be host plant dependent. Interestingly, orthologs of FEN1 were found in both NF-dependent and NF-independent Aeschynomene species. However, a high nodule specific induction of FEN1 expression was only observed in A. afraspera, a host plant in which nifV is not required for symbiotic dinitrogen fixation. These data indicate that efficient symbiotic nitrogen fixation in many of the tested Aeschynomene species requires rhizobial homocitrate synthesis. Considering that more than 10% of the fully sequenced rhizobium strains do contain a nifV gene, the Aeschynomene/photosynthetic Bradyrhizobium interaction is likely not the only rhizobium/legume symbiosis where rhizobial nifV expression is required.
Collapse
|
4
|
Wang L, Zhang L, Liu Z, Zhao D, Liu X, Zhang B, Xie J, Hong Y, Li P, Chen S, Dixon R, Li J. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. PLoS Genet 2013; 9:e1003865. [PMID: 24146630 PMCID: PMC3798268 DOI: 10.1371/journal.pgen.1003865] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/21/2013] [Indexed: 11/23/2022] Open
Abstract
Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ70 (σA)-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes. Biological nitrogen fixation plays an essential role in the nitrogen cycle, sustaining agricultural productivity by providing a source of fixed nitrogen for plants and ultimately animals. The enzyme nitrogenase that catalyses the reduction of atmospheric dinitrogen to ammonia contains one of the most complex heterometal cofactors found in biology. Biosynthesis of nitrogenase and provision of support for its activity requires a large number of nitrogen fixation (nif) genes, which vary according to the physiological lifestyle of the host organism. In this study, we identified a nif cluster with reduced genetic complexity, consisting of nine genes organized as a single operon in the genome of Paenibacillus sp. WLY78. When transferred to Escherichia coli, the Paenibacllus nif cluster enables synthesis of catalytically active nitrogenase, which is competent to reduce both acetylene and dinitrogen as substrates of the enzyme. Environmental regulation of nif gene expression in Paenibacillus, in response to either oxygen or fixed nitrogen, is circumvented when the nif operon is expressed from its native promoter in E. coli, suggesting that nif transcription in Paenibacillus is negatively regulated in response to these effectors.
Collapse
Affiliation(s)
- Liying Wang
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Lihong Zhang
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- College of Life Science, Shanxi Normal University, Linfen, P. R. China
| | - Zhangzhi Liu
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Dehua Zhao
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Xiaomeng Liu
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Bo Zhang
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Jianbo Xie
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Yuanyuan Hong
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Pengfei Li
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- * E-mail: (SC); (RD)
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- * E-mail: (SC); (RD)
| | - Jilun Li
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
5
|
Terpolilli JJ, Hood GA, Poole PS. What determines the efficiency of N(2)-fixing Rhizobium-legume symbioses? Adv Microb Physiol 2012; 60:325-89. [PMID: 22633062 DOI: 10.1016/b978-0-12-398264-3.00005-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biological nitrogen fixation is vital to nutrient cycling in the biosphere and is the major route by which atmospheric dinitrogen (N(2)) is reduced to ammonia. The largest single contribution to biological N(2) fixation is carried out by rhizobia, which include a large group of both alpha and beta-proteobacteria, almost exclusively in association with legumes. Rhizobia must compete to infect roots of legumes and initiate a signaling dialog with host plants that leads to nodule formation. The most common form of infection involves the growth of rhizobia down infection threads which are laid down by the host plant. Legumes form either indeterminate or determinate types of nodules, with these groups differing widely in nodule morphology and often in the developmental program by which rhizobia form N(2) fixing bacteroids. In particular, indeterminate legumes from the inverted repeat-lacking clade (IRLC) (e.g., peas, vetch, alfalfa, medics) produce a cocktail of antimicrobial peptides which cause endoreduplication of the bacterial genome and force rhizobia into a nongrowing state. Bacteroids often become dependent on the plant for provision of key cofactors, such as homocitrate needed for nitrogenase activity or for branched chain amino acids. This has led to the suggestion that bacteroids at least from the IRLC can be considered as ammoniaplasts, where they are effectively facultative plant organelles. A low O(2) tension is critical both to induction of genes needed for N(2) fixation and to the subsequent exchange of nutrient between plants and bacteroids. To achieve high rates of N(2) fixation, the legume host and Rhizobium must be closely matched not only for infection, but for optimum development, nutrient exchange, and N(2) fixation. In this review, we consider the multiple steps of selection and bacteroid development and how these alter the overall efficiency of N(2) fixation.
Collapse
Affiliation(s)
- Jason J Terpolilli
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | |
Collapse
|
6
|
Yokota K, Hayashi M. Function and evolution of nodulation genes in legumes. Cell Mol Life Sci 2011; 68:1341-51. [PMID: 21380559 PMCID: PMC11114672 DOI: 10.1007/s00018-011-0651-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Root nodule (RN) symbiosis has a unique feature in which symbiotic bacteria fix atmospheric nitrogen. The symbiosis is established with a limited species of land plants, including legumes. How RN symbiosis evolved is still a mystery, but recent findings on legumes genes that are necessary for RN symbiosis may give us a clue.
Collapse
Affiliation(s)
- Keisuke Yokota
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan.
| | | |
Collapse
|
7
|
Abstract
The iron-molybdenum cofactor (FeMo-co), located at the active site of the molybdenum nitrogenase, is one of the most complex metal cofactors known to date. During the past several years, an intensive effort has been made to purify the proteins involved in FeMo-co synthesis and incorporation into nitrogenase. This effort is starting to provide insights into the structures of the FeMo-co biosynthetic intermediates and into the biochemical details of FeMo-co synthesis.
Collapse
Affiliation(s)
- Luis M Rubio
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
8
|
Abstract
The iron-molybdenum cofactor (FeMo-co), located at the active site of the molybdenum nitrogenase, is one of the most complex metal cofactors known to date. During the past several years, an intensive effort has been made to purify the proteins involved in FeMo-co synthesis and incorporation into nitrogenase. This effort is starting to provide insights into the structures of the FeMo-co biosynthetic intermediates and into the biochemical details of FeMo-co synthesis.
Collapse
Affiliation(s)
- Luis M Rubio
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
9
|
Effects of disruption of homocitrate synthase genes on Nostoc sp. strain PCC 7120 photobiological hydrogen production and nitrogenase. Appl Environ Microbiol 2007; 73:7562-70. [PMID: 17933939 DOI: 10.1128/aem.01160-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the case of nitrogenase-based photobiological hydrogen production systems of cyanobacteria, the inactivation of uptake hydrogenase (Hup) leads to significant increases in hydrogen production activity. However, the high-level-activity stage of the Hup mutants lasts only a few tens of hours under air, a circumstance which seems to be caused by sufficient amounts of combined nitrogen supplied by active nitrogenase. The catalytic FeMo cofactor of nitrogenase binds homocitrate, which is required for efficient nitrogen fixation. It was reported previously that the nitrogenase from the homocitrate synthase gene (nifV) disruption mutant of Klebsiella pneumoniae shows decreased nitrogen fixation activity and increased hydrogen production activity under N2. The cyanobacterium Nostoc sp. strain PCC 7120 has two homocitrate synthase genes, nifV1 and nifV2, and with the delta hupL variant of Nostoc sp. strain PCC 7120 as the parental strain, we have constructed two single mutants, the delta hupL delta nifV1 strain (with the hupL and nifV1 genes disrupted) and the delta hupL delta nifV2 strain, and a double mutant, the delta hupL delta nifV1 delta nifV2 strain. Diazotrophic growth rates of the two nifV single mutants and the double mutant were decreased moderately and severely, respectively, compared with the rates of the parent delta hupL strain. The hydrogen production activity of the delta hupL delta nifV1 mutant was sustained at higher levels than the activity of the parent delta hupL strain after about 2 days of combined-nitrogen step down, and the activity in the culture of the former became higher than that in the culture of the latter. The presence of N2 gas inhibited hydrogen production in the delta hupL delta nifV1 delta nifV2 mutant less strongly than in the parent delta hupL strain and the delta hupL delta nifV1 and delta hupL delta nifV2 mutants. The alteration of homocitrate synthase activity can be a useful strategy for improving sustained photobiological hydrogen production in cyanobacteria.
Collapse
|
10
|
Sicking C, Brusch M, Lindackers A, Riedel KU, Schubert B, Isakovic N, Krall C, Klipp W, Drepper T, Schneider K, Masepohl B. Identification of two new genes involved in diazotrophic growth via the alternative Fe-only nitrogenase in the phototrophic purple bacterium Rhodobacter capsulatus. J Bacteriol 2005; 187:92-8. [PMID: 15601692 PMCID: PMC538833 DOI: 10.1128/jb.187.1.92-98.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth of Rhodobacter capsulatus with molecular dinitrogen as the sole N source via the alternative Fe-only nitrogenase requires all seven gene products of the anfHDGK-1-2-3 operon. In contrast to mutant strains carrying lesions in the structural genes of nitrogenase (anfH, anfD, anfG, and anfK), strains defective for either anf1, anf2, or anf3 are still able to reduce the artificial substrate acetylene, although with diminished activity. To obtain further information on the role of Anf1, we screened an R. capsulatus genomic library designed for use in yeast two-hybrid studies with Anf1 as bait. Two genes, which we propose to call ranR and ranT (for genes related to alternative nitrogenase), coding for products that interact with Anf1 were identified. A ranR mutant exhibited a phenotype similar to that of an anf1 mutant strain (no growth with N2 in the absence of molybdenum, but significant reduction of acetylene via the Fe-only nitrogenase), whereas a ranT mutant retained the ability to grow diazotrophically, but growth was clearly delayed compared to the parental strain. In contrast to the situation for anf1, expression of neither ranR nor ranT was regulated by ammonium or molybdenum. A putative role for Anf1, RanR, and RanT in the acquisition and/or processing of iron in connection with the Fe-only nitrogenase system is discussed.
Collapse
Affiliation(s)
- Christa Sicking
- Ruhr-Universität Bochum, Fakultät für Biologie, Lehrstuhl für Biologie der Mikroorganismen, D-44780 Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zheng L, White RH, Dean DR. Purification of the Azotobacter vinelandii nifV-encoded homocitrate synthase. J Bacteriol 1997; 179:5963-6. [PMID: 9294461 PMCID: PMC179493 DOI: 10.1128/jb.179.18.5963-5966.1997] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nifV gene product (NifV) from Azotobacter vinelandii was recombinantly expressed at high levels in Escherichia coli and purified. NifV is a homodimer that catalyzes the condensation of acetyl coenzyme A (acetyl-CoA) and alpha-ketoglutarate. Although alpha-ketoglutarate supports the highest level of activity, NifV will also catalyze the condensation of acetyl-CoA and certain other keto acids. E. coli cells in which a high level of nifV expression is induced excrete homocitrate into the growth medium.
Collapse
Affiliation(s)
- L Zheng
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0346, USA
| | | | | |
Collapse
|
12
|
Affiliation(s)
- Barbara K. Burgess
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92717-3900, and Nitrogen Fixation Laboratory, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, U.K
| | | |
Collapse
|
13
|
Demadis KD, Malinak SM, Coucouvanis D. Catalytic Reduction of Hydrazine to Ammonia with MoFe(3)S(4)-Polycarboxylate Clusters. Possible Relevance Regarding the Function of the Molybdenum-Coordinated Homocitrate in Nitrogenase. Inorg Chem 1996; 35:4038-4046. [PMID: 11666602 DOI: 10.1021/ic960098b] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic function of the previously synthesized and characterized [(L)MoFe(3)S(4)Cl(3)](2)(-)(,3)(-) clusters (L = tetrachlorocatecholate, citrate, citramalate, methyliminodiacetate, nitrilotriacetate, thiodiglycolate) and of the [MoFe(3)S(4)Cl(3)(thiolactate)](2)(4)(-) and [(MoFe(3)S(4)Cl(4))(2)(&mgr;-oxalate)](4)(-) clusters in the reduction of N(2)H(4) to NH(3) is reported. In the catalytic reduction, which is carried out at ambient temperature and pressure, cobaltocene and 2,6-lutidinium chloride are supplied externally as electron and proton sources, respectively. In experiments where the N(2)H(4) to the [(L)MoFe(3)S(4)Cl(3)](n)()(-) catalyst ratio is 100:1, and over a period of 30 min, the reduction proceeds to 92% completion for L = citrate, 66% completion for L = citramalate, and 34% completion for L = tetrachlorocatecholate. The [Fe(4)S(4)Cl(4)](2)(-) cluster is totally inactive and gives only background ammonia measurements. Inhibition studies with PEt(3) and CO as inhibitors show a dramatic decrease in the catalytic efficiency. These results are consistent with results obtained previously in our laboratory and strongly suggest that N(2)H(4) activation and reduction occur at the Mo site of the [(L)MoFe(3)S(4)Cl(3)](2)(-)(, 3)(-) clusters. A possible pathway for the N(2)H(4) reduction on a single metal site (Mo) and a possible role for the carboxylate ligand are proposed. The possibility that the Mo-bound polycarboxylate ligand acts as a proton delivery "shuttle" during hydrazine reduction is considered.
Collapse
|
14
|
Allen RM, Chatterjee R, Madden MS, Ludden PW, Shah VK. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Crit Rev Biotechnol 1994; 14:225-49. [PMID: 7954845 DOI: 10.3109/07388554409079834] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The iron-molybdenum cofactor (FeMo-co) of nitrogenase is a unique molybdenum-containing prosthetic group that has been proposed to form an integral part of the active site of dinitrogenase. In Klebsiella pneumoniae, at least six nif (nitrogen fixation) gene products are required for the biosynthesis of FeMo-co, including NIFB, NIFNE, NIFH, NIFQ, and NIFV. An in vitro system for the synthesis of FeMo-co, which requires MgATP, molybdate, homocitrate, and at least the products of nifN, E, B, and H, has provided an enzymatic assay for the purification of many of the gene products required for FeMo-co biosynthesis. Although the structure of the cofactor has been solved recently, much about the biosynthetic pathway remains unknown. This article reviews what is known about the various components required for FeMo-co biosynthesis.
Collapse
Affiliation(s)
- R M Allen
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison
| | | | | | | | | |
Collapse
|
15
|
Huang HQ, Kofford M, Simpson FB, Watt GD. Purification, composition, charge, and molecular weight of the FeMo cofactor from Azotobacter vinelandii nitrogenase. J Inorg Biochem 1993; 52:59-75. [PMID: 8228979 DOI: 10.1016/0162-0134(93)85623-g] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A procedure has been developed for purifying NMF and NMF/DMF solutions of the FeMo cofactor (FeMoco) derived from the molybdenum iron protein of nitrogenase. This procedure consists of anaerobic chromatography of FeMoco solutions on two consecutive anaerobic molecular sizing columns followed by electrophoretic migration through a third sizing column. FeMoco prepared by this procedure is homogeneous as evidenced by chromatographic, electrophoretic, and compositional criteria. The minimal elemental composition was found to be MoFe6S6 using chemical colorimetric, inductively coupled plasma (ICP), and proton induced x-ray emission (PIXE) analytical procedures. Molecular weight measurements of NMF and DMF solutions of FeMoco using calibrated columns containing various molecular sizing matrices gave values of 1395 +/- 130 daltons for the molecular weight of FeMoco. The measured MW of FeMoco is about twice the value expected from the minimal stoichiometry, suggesting that FeMoco may exist as Mo2Fe12S12 in NMF and DMF solutions. The charge of FeMoco in its EPR silent state was determined to be 2- per Mo by passing NMF solutions of FeMoco containing excess salts of Na+, K+, Rb+, and Mg2+ through long columns equilibrated with pure NMF and then measuring the M/Mo ratio of the emerging FeMoco. Decomposition of purified FeMoco by acid or O2-exposure followed by exhaustive methylation or silanation of the resulting mixture failed to yield any methylated or silanated homocitric acid as measured by tandem gas chromatography-mass spectrometry (GC-MS) analysis. The GC-MS procedure applied to standard homocitric acid samples and various controls readily detects methylated homocitric acid at the sub-nanomole level. We conclude that the minimum molecular formula for active oxidized (EPR silent) FeMoco in NMF and in NMF-DMF mixtures is [Mo2Fe12S12]4-, but that other small organic anions such as NMF- may be present.
Collapse
Affiliation(s)
- H Q Huang
- Department of Biology, Xiamen University, PRC
| | | | | | | |
Collapse
|
16
|
Rodríguez-Quiñones F, Bosch R, Imperial J. Expression of the nifBfdxNnifOQ region of Azotobacter vinelandii and its role in nitrogenase activity. J Bacteriol 1993; 175:2926-35. [PMID: 8491713 PMCID: PMC204610 DOI: 10.1128/jb.175.10.2926-2935.1993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nifBQ transcriptional unit of Azotobacter vinelandii has been previously shown to be required for activity of the three nitrogenase systems, Mo nitrogenase, V nitrogenase, and Fe nitrogenase, present in this organism. We studied regulation of expression and the role of the nifBQ region by means of translational beta-galactosidase fusions to each of the five open reading frames: nifB, orf2 (fdxN), orf3 (nifO), nifQ, and orf5. Expression of the first three open reading frames was observed under all three diazotrophic conditions; expression of orf5 was never observed. Genes nifB and fdxN were expressed at similar levels. With Mo, expression of nifO and nifQ was approximately 20- and approximately 400-fold lower than that of fdxN, respectively. Without Mo, expression of nifB dropped three- to fourfold and that of nifQ dropped to the detection limit. However, expression of nifO increased threefold. The products of nifB, fdxN, nifO, and nifQ have been visualized in A. vinelandii as beta-galactosidase fusion proteins with the expected molecular masses. The NifB- fusion lacked activity for any of the three nitrogenase systems and showed an iron-molybdenum cofactor-deficient phenotype in the presence of Mo. The FdxN- mutation resulted in reduced nitrogenase activities, especially when V was present. Dinitrogenase activity in extracts was similarly affected, suggesting a role of FdxN in iron-molybdenum cofactor synthesis. The NifO(-)-producing mutation did not affect any of the nitrogenases under standard diazotrophic conditions. The NifQ(-)-producing mutation resulted in an increased (approximately 1,000-fold) Mo requirement for Mo nitrogenase activity, a phenotype already observed with Klebsiella pneumoniae. No effect of the NifQ(-)-producing mutation on V or Fe nitrogenase was found; this is consistent with its very low expression under those conditions. Mutations in orf5 had no effect on nitrogenase activity.
Collapse
Affiliation(s)
- F Rodríguez-Quiñones
- Institut d'Estudis Avançats, Consejo Superior de Investigaciones Cientificas, Universitat de les Illes Balears, Ctra. de Valldemossa, Palma de Mallorca, Spain
| | | | | |
Collapse
|
17
|
Masepohl B, Angermüller S, Hennecke S, Hübner P, Moreno-Vivian C, Klipp W. Nucleotide sequence and genetic analysis of the Rhodobacter capsulatus ORF6-nifUI SVW gene region: possible role of NifW in homocitrate processing. MOLECULAR & GENERAL GENETICS : MGG 1993; 238:369-82. [PMID: 8492805 DOI: 10.1007/bf00291996] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DNA sequence analysis of a 3494-bp HindIII-BclI fragment of the Rhodobacter capsulatus nif region A revealed genes that are homologous to ORF6, nifU, nifS, nifV and nifW from Azotobacter vinelandii and Klebsiella pneumoniae. R. capsulatus nifU, which is present in two copies, encodes a novel type of NifU protein. The deduced amino acid sequences of NifUI and NifUII share homology only with the C-terminal domain of NifU from A. vinelandii and K. pneumoniae. In contrast to nifA and nifB, which are almost perfectly duplicated, the predicted amino acid sequences of the two NifU proteins showed only 39% sequence identity. Expression of the ORF6-nifUISVW operon, which is preceded by a putative sigma 54-dependent promoter, required the function of NifA and the nif-specific rpoN gene product encoded by nifR4. Analysis of defined insertion and deletion mutants demonstrated that only nifS was absolutely essential for nitrogen fixation in R. capsulatus. Strains carrying mutations in nifV were capable of very slow diazotrophic growth, whereas ORF6, nifUI and nifW mutants as well as a nifUI/nifUII double mutant exhibited a Nif+ phenotype. Interestingly, R. capsulatus nifV mutants were able to reduce acetylene not only to ethylene but also to ethane under conditions preventing the expression of the alternative nitrogenase system. Homocitrate added to the growth medium repressed ethane formation and cured the NifV phenotype in R. capsulatus. Higher concentrations of homocitrate were necessary to complement the NifV phenotype of a polar nifV mutant (NifV-NifW-), indicating a possible role of NifW either in homocitrate transport or in the incorporation of this compound into the iron-molybdenum cofactor of nitrogenase.
Collapse
Affiliation(s)
- B Masepohl
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Sellmann D. Röntgenstrukturanalyse von FeMo-Nitrogenase der enzymatischen ist das Problem der enzymatischen N2-Fixierung gelöst? Angew Chem Int Ed Engl 1993. [DOI: 10.1002/ange.19931050108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Willison JC. Biochemical genetics revisited: the use of mutants to study carbon and nitrogen metabolism in the photosynthetic bacteria. FEMS Microbiol Rev 1993; 10:1-38. [PMID: 8431308 DOI: 10.1111/j.1574-6968.1993.tb05862.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The biochemical genetics approach is defined as the use of mutants, in comparative studies with the wild-type, to obtain information about biochemical and physiological processes in complex metabolic systems. This approach has been used extensively, for example in studies on the bioenergetics of the photosynthetic bacteria, but has been applied less frequently to studies of intermediary carbon and nitrogen metabolism in phototrophic organisms. Several important processes in photosynthetic bacteria--the regulation of nitrogenase synthesis and activity, the control of intracellular redox balance during photoheterotrophic growth, and chemotaxis--have been shown to involve metabolism. However, current understanding of carbon and nitrogen metabolism in these organisms is insufficient to allow a complete understanding of these phenomena. The purpose of the present review is to give an overview of carbon and nitrogen metabolism in the photosynthetic bacteria, with particular emphasis on work carried out with mutants, and to indicate areas in which the biochemical genetics approach could be applied successfully. In particular, it will be argued that, in the case of Rhodobacter capsulatus and Rb. sphaeroides, two species which are fast-growing, possess a versatile metabolism, and have been extensively studied genetically, it should be possible to obtain a complete, integrated description of carbon and nitrogen metabolism, and to undertake a qualitative and quantitative analysis of the flow of carbon and reducing equivalents during photoheterotrophic growth. This would require a systematic biochemical genetic study employing techniques such as HPLC, NMR, and mass spectrometry, which are briefly discussed. The review is concerned mainly with Rb. capsulatus and Rb. sphaeroides, since most studies with mutants have been carried out with these organisms. However, where possible, a comparison is made with other species of purple non-sulphur bacteria and with purple and green sulphur bacteria, and recent literature relevant to these organisms has been cited.
Collapse
Affiliation(s)
- J C Willison
- Département de Biologie Moléculaire et Structurale, Centre d'Etudes Nucléaires de Grenoble, France
| |
Collapse
|
20
|
Sellmann D. X-ray Structure Analysis of FeMo Nitrogenase?Is the Problem of N2 Fixation Solved? ACTA ACUST UNITED AC 1993. [DOI: 10.1002/anie.199300641] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Madden MS, Paustian TD, Ludden PW, Shah VK. Effects of homocitrate, homocitrate lactone, and fluorohomocitrate on nitrogenase in NifV- mutants of Azotobacter vinelandii. J Bacteriol 1991; 173:5403-5. [PMID: 1885520 PMCID: PMC208251 DOI: 10.1128/jb.173.17.5403-5405.1991] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Azotobacter vinelandii DJ71, which contains a mutation in the nifV gene, was derepressed for nitrogenase in the presence of homocitrate. When dinitrogenase was isolated from this culture, it was found to be identical to the wild-type dinitrogenase. However, when the same NifV- strain was derepressed in the presence of erythrofluorohomocitrate, a homocitrate analog which produces a nitrogenase with wild-type properties in vitro, the isolated dinitrogenase was characteristic of the NifV- enzyme. These data show that homocitrate, but not fluorohomocitrate, is utilized by NifV- mutant cells. Fluorohomocitrate does not inhibit the uptake of homocitrate because the wild-type phenotype resulted when both compounds were added to the medium during nitrogenase derepression. Homocitrate lactone failed to cure the NifV- phenotype.
Collapse
Affiliation(s)
- M S Madden
- Department of Biochemistry, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
22
|
Jacobson MR, Cash VL, Weiss MC, Laird NF, Newton WE, Dean DR. Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. MOLECULAR & GENERAL GENETICS : MGG 1989; 219:49-57. [PMID: 2615765 DOI: 10.1007/bf00261156] [Citation(s) in RCA: 250] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Azotobacter vinelandii genes contained within the major nif-cluster and designated orf6, nifU, nifS, nifV, orf7, orf8, nifW, nifZ, nifM, and orf9 are organized into at least two overlapping transcriptional units. Nitrogenase derepressed crude extracts of Azotobacter vinelandii mutant strains having individual deletions located within nifU, nifS, nifV, nifW, nifZ, or nifM were examined for nitrogenase component protein activities. The results of these experiments indicated that, in A. vinelandii, the nifU, nifS and nifM gene products are required for the full activation or the catalytic stability of the nitrogenase Fe protein. Deletion of the nifV gene resulted in lower MoFe protein activity, probably resulting from the accumulation of an altered FeMo-cofactor. The nifW and nifZ gene products were required for the full activation or catalytic stability of the MoFe protein. Deletion of nifZ alone or nifM alone did not appear to affect FeMo-cofactor biosynthesis. However, deletion of both nifZ and nifM eleminated either FeMo-cofactor biosynthesis or the insertion of FeMo-cofactor into the apo-MoFe protein. Other genes contained within the nifUSVWZM gene cluster (orf6, orf7, orf8, and orf9) were not required for Mo-dependent diazotrophic growth.
Collapse
Affiliation(s)
- M R Jacobson
- Department of Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | | | | | | | | | | |
Collapse
|
23
|
Liang J, Burris RH. N2O reduction and HD formation by nitrogenase from a nifV mutant of Klebsiella pneumoniae. J Bacteriol 1989; 171:3176-80. [PMID: 2656643 PMCID: PMC210033 DOI: 10.1128/jb.171.6.3176-3180.1989] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dinitrogenase from a nifV mutant of Klebsiella pneumoniae contains an altered form of iron-molybdenum cofactor (FeMoco) that lacks a biologically active homocitric acid molecule. Change in the composition of FeMoco led to substantial variation in the kinetics of nitrogenase action. The KmS of the mutant enzyme for N2 and N2O were 0.244 and 0.175 atm (24,714 and 17,726 kPa), respectively. The km for N2 was higher and the Km for N2O was lower than that for the wild-type enzyme. The mutant enzyme was ineffective in N2 fixation, in N2O reduction, and in HD formation, as indicated by the low Vmax of these reactions with saturating levels of substrate and under conditions of saturating electron flux. These observations provide further support for the concept that N2, N2O, and D2 interact with the same form of dinitrogenase. H2 evolution by the mutant enzyme is only partially inhibited by CO. Observation that different numbers of electrons are stored in CO-inhibited than in noninhibited dinitrogenase before H2 is released suggests that the mutant enzyme has more sites responsible for H2 evolution than the wild-type enzyme, whose H2 evolution is not inhibited by CO.
Collapse
Affiliation(s)
- J Liang
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | |
Collapse
|