1
|
Assessment of transient expression strategies to sialylate recombinant proteins in N. benthamiana. J Biotechnol 2023; 365:48-53. [PMID: 36805356 DOI: 10.1016/j.jbiotec.2023.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
There is a demand for increasing the current manufacturing capacities for recombinant protein-based drugs. Novel expression systems such as plants are being explored as faster, more flexible, and possibly cheaper platforms. Many of these therapeutic proteins are glycosylated and require terminal sialylation to attain full biological activity. In planta protein sialylation has been achieved by the introduction of an entire mammalian biosynthetic pathway in Nicotiana benthamiana, comprising the coordinated expression of the genes for (i) biosynthesis, (ii) activation, (iii) transport, and (iv) transfer of Neu5Ac to terminal galactose. Here we address technical issues that can compromise the efficacy of protein sialylation and how they can be overcome. We used the same reporter protein to compared three strategies to transiently deliver the sialylation pathway-genes evaluating efficacy, heterogeneity and batch-to-batch consistency. In addition, we assess the ability of the single-step method to sialylated additional recombinant proteins with different complexity and number of glycosylation sites. Finally, we show that efficient protein sialylation can be up-scaled for large-scale production of sialylated proteins in plants.
Collapse
|
2
|
Aliu E, Lee K, Wang K. CRISPR RNA-guided integrase enables high-efficiency targeted genome engineering in Agrobacterium tumefaciens. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1916-1927. [PMID: 35690588 PMCID: PMC9491456 DOI: 10.1111/pbi.13872] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Agrobacterium tumefaciens, the causal agent of plant crown gall disease, has been widely used to genetically transform many plant species. The inter-kingdom gene transfer capability made Agrobacterium an essential tool and model system to study the mechanism of exporting and integrating a segment of bacterial DNA into the plant genome. However, many biological processes such as Agrobacterium-host recognition and interaction are still elusive. To accelerate the understanding of this important plant pathogen and further improve its capacity in plant genetic engineering, we adopted a CRISPR RNA-guided integrase system for Agrobacterium genome engineering. In this work, we demonstrate that INsertion of Transposable Elements by Guide RNA-Assisted TargEting (INTEGRATE) can efficiently generate DNA insertions to enable targeted gene knockouts. In addition, in conjunction with Cre-loxP recombination system, we achieved precise deletions of large DNA fragments. This work provides new genetic engineering strategies for Agrobacterium species and their gene functional analyses.
Collapse
Affiliation(s)
- Ephraim Aliu
- Department of AgronomyIowa State UniversityAmesIowaUSA
- Crop Bioengineering CenterIowa State UniversityAmesIowaUSA
- Interdepartmental Plant Biology MajorIowa State UniversityAmesIowaUSA
| | - Keunsub Lee
- Department of AgronomyIowa State UniversityAmesIowaUSA
- Crop Bioengineering CenterIowa State UniversityAmesIowaUSA
| | - Kan Wang
- Department of AgronomyIowa State UniversityAmesIowaUSA
- Crop Bioengineering CenterIowa State UniversityAmesIowaUSA
| |
Collapse
|
3
|
Abstract
Agrobacterium spp. are important plant pathogens that are the causative agents of crown gall or hairy root disease. Their unique infection strategy depends on the delivery of part of their DNA to plant cells. Thanks to this capacity, these phytopathogens became a powerful and indispensable tool for plant genetic engineering and agricultural biotechnology. Although Agrobacterium spp. are standard tools for plant molecular biologists, current laboratory strains have remained unchanged for decades and functional gene analysis of Agrobacterium has been hampered by time-consuming mutation strategies. Here, we developed clustered regularly interspaced short palindromic repeats (CRISPR)-mediated base editing to enable the efficient introduction of targeted point mutations into the genomes of both Agrobacterium tumefaciens and Agrobacterium rhizogenes As an example, we generated EHA105 strains with loss-of-function mutations in recA, which were fully functional for maize (Zea mays) transformation and confirmed the importance of RolB and RolC for hairy root development by A. rhizogenes K599. Our method is highly effective in 9 of 10 colonies after transformation, with edits in at least 80% of the cells. The genomes of EHA105 and K599 were resequenced, and genome-wide off-target analysis was applied to investigate the edited strains after curing of the base editor plasmid. The off-targets present were characteristic of Cas9-independent off-targeting and point to TC motifs as activity hotspots of the cytidine deaminase used. We anticipate that CRISPR-mediated base editing is the start of "engineering the engineer," leading to improved Agrobacterium strains for more efficient plant transformation and gene editing.
Collapse
|
4
|
De Saeger J, Park J, Chung HS, Hernalsteens JP, Van Lijsebettens M, Inzé D, Van Montagu M, Depuydt S. Agrobacterium strains and strain improvement: Present and outlook. Biotechnol Adv 2020; 53:107677. [PMID: 33290822 DOI: 10.1016/j.biotechadv.2020.107677] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/03/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
Almost 40 years ago the first transgenic plant was generated through Agrobacterium tumefaciens-mediated transformation, which, until now, remains the method of choice for gene delivery into plants. Ever since, optimized Agrobacterium strains have been developed with additional (genetic) modifications that were mostly aimed at enhancing the transformation efficiency, although an optimized strain also exists that reduces unwanted plasmid recombination. As a result, a collection of very useful strains has been created to transform a wide variety of plant species, but has also led to a confusing Agrobacterium strain nomenclature. The latter is often misleading for choosing the best-suited strain for one's transformation purposes. To overcome this issue, we provide a complete overview of the strain classification. We also indicate different strain modifications and their purposes, as well as the obtained results with regard to the transformation process sensu largo. Furthermore, we propose additional improvements of the Agrobacterium-mediated transformation process and consider several worthwhile modifications, for instance, by circumventing a defense response in planta. In this regard, we will discuss pattern-triggered immunity, pathogen-associated molecular pattern detection, hormone homeostasis and signaling, and reactive oxygen species in relationship to Agrobacterium transformation. We will also explore alterations that increase agrobacterial transformation efficiency, reduce plasmid recombination, and improve biocontainment. Finally, we recommend the use of a modular system to best utilize the available knowledge for successful plant transformation.
Collapse
Affiliation(s)
- Jonas De Saeger
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jihae Park
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Marine Sciences, Incheon National University, Incheon 406-840, South Korea
| | - Hoo Sun Chung
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|
5
|
Cervantes L, Miranda-Sánchez F, Torres Tejerizo G, Romero D, Brom S. Plasmid pSfr64a and the symbiotic plasmid pSfr64b of Sinorhizobium fredii GR64 control each other's conjugative transfer through quorum-sensing elements. Plasmid 2019; 106:102443. [PMID: 31689451 DOI: 10.1016/j.plasmid.2019.102443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/29/2019] [Accepted: 09/17/2019] [Indexed: 11/27/2022]
Abstract
Rhizobia are nitrogen-fixing symbionts of plants. Their genomes frequently contain large plasmids, some of which are able to perform conjugative transfer. Plasmid pSfr64a from Sinorhizobium fredii GR64 is a conjugative plasmid, whose transfer is regulated by quorum sensing genes encoded by itself (traR64a, traI64a), in the symbiotic plasmid pSfr64b (traR64b, traI64b), and in the chromosome (ngrI). Also, transfer of pSfr64b requires quorum sensing elements encoded in this plasmid (traR64b, traI64b), in pSfr64a (traR64a), and in the chromosome (ngrI). These results demonstrate that pSfr64a and the symbiotic plasmid depend on each other for conjugative transfer. Plasmid pSfr64a from S. fredii GR64 is unable to transfer from the genomic background of Rhizobium etli CFN42. Our results show that the relaxase of pRet42a is able to process the oriT of pSfr64a, and viceversa, underlining their functional similarity and suggesting that in addition to the external signals, the "cytoplasmic environment" may pose a barrier to plasmid dissemination, even if the plasmids are functional in other aspects.
Collapse
Affiliation(s)
- Laura Cervantes
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Fabiola Miranda-Sánchez
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gonzalo Torres Tejerizo
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico; Instituto de Biotecnología y Biología Molecular (IBBM) - CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
| |
Collapse
|
6
|
Barton IS, Platt TG, Rusch DB, Fuqua C. Destabilization of the Tumor-Inducing Plasmid from an Octopine-Type Agrobacterium tumefaciens Lineage Drives a Large Deletion in the Co-resident At Megaplasmid. G3 (BETHESDA, MD.) 2019; 9:3489-3500. [PMID: 31451548 PMCID: PMC6778807 DOI: 10.1534/g3.119.400554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/22/2019] [Indexed: 11/28/2022]
Abstract
Bacteria with multi-replicon genome organizations, including members of the family Rhizobiaceae, often carry a variety of niche-associated functions on large plasmids. While evidence exists for cross-replicon interactions and co-evolution between replicons in many of these systems, remarkable strain-to-strain variation is also observed for extrachromosomal elements, suggesting increased genetic plasticity. Here, we show that curing of the tumor-inducing virulence plasmid (pTi) of an octopine-type Agrobacterium tumefaciens lineage leads to a large deletion in the co-resident At megaplasmid (pAt). The deletion event is mediated by a repetitive IS-element, IS66, and results in a variety of environment-dependent fitness consequences, including loss of independent conjugal transfer of the plasmid. Interestingly, a related and otherwise wild-type A. tumefaciens strain is missing exactly the same large pAt segment as the pAt deletion derivatives, suggesting a similar event over its natural history. Overall, the findings presented here uncover a novel genetic interaction between the two large plasmids of A. tumefaciens and provide evidence for cross-replicon integration and co-evolution of these plasmids.
Collapse
Affiliation(s)
- Ian S Barton
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Thomas G Platt
- Division of Biology, Kansas State University, Manhattan, KS 66506, and
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
7
|
Pasin F, Menzel W, Daròs J. Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1010-1026. [PMID: 30677208 PMCID: PMC6523588 DOI: 10.1111/pbi.13084] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/09/2018] [Accepted: 01/15/2019] [Indexed: 05/12/2023]
Abstract
Recent metagenomic studies have provided an unprecedented wealth of data, which are revolutionizing our understanding of virus diversity. A redrawn landscape highlights viruses as active players in the phytobiome, and surveys have uncovered their positive roles in environmental stress tolerance of plants. Viral infectious clones are key tools for functional characterization of known and newly identified viruses. Knowledge of viruses and their components has been instrumental for the development of modern plant molecular biology and biotechnology. In this review, we provide extensive guidelines built on current synthetic biology advances that streamline infectious clone assembly, thus lessening a major technical constraint of plant virology. The focus is on generation of infectious clones in binary T-DNA vectors, which are delivered efficiently to plants by Agrobacterium. We then summarize recent applications of plant viruses and explore emerging trends in microbiology, bacterial and human virology that, once translated to plant virology, could lead to the development of virus-based gene therapies for ad hoc engineering of plant traits. The systematic characterization of plant virus roles in the phytobiome and next-generation virus-based tools will be indispensable landmarks in the synthetic biology roadmap to better crops.
Collapse
Affiliation(s)
- Fabio Pasin
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Wulf Menzel
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de València)ValenciaSpain
| |
Collapse
|
8
|
Castilho A, Beihammer G, Pfeiffer C, Göritzer K, Montero‐Morales L, Vavra U, Maresch D, Grünwald‐Gruber C, Altmann F, Steinkellner H, Strasser R. An oligosaccharyltransferase from Leishmania major increases the N-glycan occupancy on recombinant glycoproteins produced in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1700-1709. [PMID: 29479800 PMCID: PMC6131413 DOI: 10.1111/pbi.12906] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/15/2017] [Accepted: 02/06/2018] [Indexed: 05/19/2023]
Abstract
N-glycosylation is critical for recombinant glycoprotein production as it influences the heterogeneity of products and affects their biological function. In most eukaryotes, the oligosaccharyltransferase is the central-protein complex facilitating the N-glycosylation of proteins in the lumen of the endoplasmic reticulum (ER). Not all potential N-glycosylation sites are recognized in vivo and the site occupancy can vary in different expression systems, resulting in underglycosylation of recombinant glycoproteins. To overcome this limitation in plants, we expressed LmSTT3D, a single-subunit oligosaccharyltransferase from the protozoan Leishmania major transiently in Nicotiana benthamiana, a well-established production platform for recombinant proteins. A fluorescent protein-tagged LmSTT3D variant was predominately found in the ER and co-located with plant oligosaccharyltransferase subunits. Co-expression of LmSTT3D with immunoglobulins and other recombinant human glycoproteins resulted in a substantially increased N-glycosylation site occupancy on all N-glycosylation sites except those that were already more than 90% occupied. Our results show that the heterologous expression of LmSTT3D is a versatile tool to increase N-glycosylation efficiency in plants.
Collapse
Affiliation(s)
- Alexandra Castilho
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Gernot Beihammer
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Christina Pfeiffer
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Kathrin Göritzer
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Laura Montero‐Morales
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Daniel Maresch
- Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Friedrich Altmann
- Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Richard Strasser
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
9
|
Abstract
This chapter presents a historical overview of the development and changes in scientific approaches to classifying members of the Agrobacterium genus. We also describe the changes in the inference of evolutionary relationships among Agrobacterium biovars and Agrobacterium strains from using the 16S rRNA marker to recA genes and to the use of multilocus sequence analysis (MLSA). Further, the impacts of the genomic era enabling low cost and rapid whole genome sequencing on Agrobacterium phylogeny are reviewed with a focus on the use of new and sophisticated bioinformatics approaches to refine phylogenetic inferences. An updated genome-based phylogeny of ninety-seven Agrobacterium tumefaciens complex isolates representing ten known genomic species is presented, providing additional support to the monophyly of the Agrobacterium clade. Additional taxon sampling within Agrobacterium genomovar G3 indicates potential exceptions to interpretation of the concept of bacterial genomics species as ecological species because the genomovar G3 genomic cluster, which initially includes clinical strains, now also includes plant-associated and cave isolates.
Collapse
Affiliation(s)
- Han Ming Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA.
| |
Collapse
|
10
|
Liu Y, Miao J, Traore S, Kong D, Liu Y, Zhang X, Nimchuk ZL, Liu Z, Zhao B. SacB-SacR Gene Cassette As the Negative Selection Marker to Suppress Agrobacterium Overgrowth in Agrobacterium-Mediated Plant Transformation. Front Mol Biosci 2016; 3:70. [PMID: 27833912 PMCID: PMC5080373 DOI: 10.3389/fmolb.2016.00070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
Agrobacterium overgrowth is a common problem in Agrobacterium-mediated plant transformation. To suppress the Agrobacterium overgrowth, various antibiotics have been used during plant tissue culture steps. The antibiotics are expensive and may adversely affect plant cell differentiation and reduce plant transformation efficiency. The SacB-SacR proteins are toxic to most Agrobacterium tumefaciens strains when they are grown on culture medium supplemented with sucrose. Therefore, SacB-SacR genes can be used as negative selection markers to suppress the overgrowth of A. tumefaciens in the plant tissue culture process. We generated a mutant A. tumefaciens strain GV2260 (recA-SacB/R) that has the SacB-SacR cassette inserted into the bacterial genome at the recA gene locus. The mutant Agrobacterium strain is sensitive to sucrose but maintains its ability to transform plant cells in both transient and stable transformation assays. We demonstrated that the mutant strain GV2260 (recA-SacB/R) can be inhibited by sucrose that reduces the overgrowth of Agrobacterium and therefore improves the plant transformation efficiency. We employed GV2260 (recA-SacB/R) to generate stable transgenic N. benthamiana plants expressing a CRISPR-Cas9 for knocking out a WRKY transcription factor.
Collapse
Affiliation(s)
- Yiming Liu
- Department of Crop and Soil Environmental Science, Virginia TechBlacksburg, VA, USA; Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Ministry of AgricultureDanzhou, China
| | - Jiamin Miao
- Department of Horticulture, Virginia Tech Blacksburg, VA, USA
| | - Sy Traore
- Department of Horticulture, Virginia Tech Blacksburg, VA, USA
| | - Danyu Kong
- Department of Horticulture, Virginia Tech Blacksburg, VA, USA
| | - Yi Liu
- Department of Horticulture, Virginia Tech Blacksburg, VA, USA
| | - Xunzhong Zhang
- Department of Crop and Soil Environmental Science, Virginia Tech Blacksburg, VA, USA
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Zongrang Liu
- USDA-ARS-Appalachian Fruit Research Station Kearneysville, WV, USA
| | - Bingyu Zhao
- Department of Horticulture, Virginia Tech Blacksburg, VA, USA
| |
Collapse
|
11
|
López-Fuentes E, Torres-Tejerizo G, Cervantes L, Brom S. Genes encoding conserved hypothetical proteins localized in the conjugative transfer region of plasmid pRet42a from Rhizobium etli CFN42 participate in modulating transfer and affect conjugation from different donors. Front Microbiol 2015; 5:793. [PMID: 25642223 PMCID: PMC4294206 DOI: 10.3389/fmicb.2014.00793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/23/2014] [Indexed: 11/13/2022] Open
Abstract
Among sequenced genomes, it is common to find a high proportion of genes encoding proteins that cannot be assigned a known function. In bacterial genomes, genes related to a similar function are often located in contiguous regions. The presence of genes encoding conserved hypothetical proteins (chp) in such a region may suggest that they are related to that particular function. Plasmid pRet42a from Rhizobium etli CFN42 is a conjugative plasmid containing a segment of approximately 30 Kb encoding genes involved in conjugative transfer. In addition to genes responsible for Dtr (DNA transfer and replication), Mpf (Mating pair formation) and regulation, it has two chp-encoding genes (RHE_PA00163 and RHE_PA00164) and a transcriptional regulator (RHE_PA00165). RHE_PA00163 encodes an uncharacterized protein conserved in bacteria that presents a COG4634 conserved domain, and RHE_PA00164 encodes an uncharacterized conserved protein with a DUF433 domain of unknown function. RHE_PA00165 presents a HTH_XRE domain, characteristic of DNA-binding proteins belonging to the xenobiotic response element family of transcriptional regulators. Interestingly, genes similar to these are also present in transfer regions of plasmids from other bacteria. To determine if these genes participate in conjugative transfer, we mutagenized them and analyzed their conjugative phenotype. A mutant in RHE_PA00163 showed a slight (10 times) but reproducible increase in transfer frequency from Rhizobium donors, while mutants in RHE_PA00164 and RHE_PA00165 lost their ability to transfer the plasmid from some Agrobacterium donors. Our results indicate that the chp-encoding genes located among conjugation genes are indeed related to this function. However, the participation of RHE_PA00164 and RHE_PA00165 is only revealed under very specific circumstances, and is not perceived when the plasmid is transferred from the original host. RHE_PA00163 seems to be a fine-tuning modulator for conjugative transfer.
Collapse
Affiliation(s)
- Eunice López-Fuentes
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Gonzalo Torres-Tejerizo
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Laura Cervantes
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| |
Collapse
|
12
|
Alonso JM, Stepanova AN. Arabidopsis transformation with large bacterial artificial chromosomes. Methods Mol Biol 2014; 1062:271-83. [PMID: 24057372 DOI: 10.1007/978-1-62703-580-4_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The study of a gene's function requires, in many cases, the ability to reintroduce the gene of interest or its modified version back into the organism of choice. One potential caveat of this approach is that not only the coding region but also the regulatory sequences of a gene should be included in the corresponding transgenic construct. Even in species with well-annotated genomes, such as Arabidopsis, it is nearly impossible to predict which sequences are responsible for the proper expression of a gene. One way to circumvent this problem is to utilize a large fragment of genomic DNA that contains the coding region of the gene of interest and at least 5-10 kb of flanking genomic sequences. To facilitate these types of experiments, libraries harboring large genomic DNA fragments in binary vectors have been constructed for Arabidopsis and several other plant species. Working with these large clones, however, requires some special precautions. In this chapter, we describe the experimental procedures and extra cautionary measures involved in the identification of the clone containing the gene of interest, its transfer from E. coli to Agrobacterium, and the generation, verification, and analysis of the corresponding transgenic plants.
Collapse
Affiliation(s)
- Jose M Alonso
- Department of Genetics, North Caroline State University, Raleigh, NC, USA
| | | |
Collapse
|
13
|
Torres Tejerizo G, Pistorio M, Althabegoiti MJ, Cervantes L, Wibberg D, Schlüter A, Pühler A, Lagares A, Romero D, Brom S. Rhizobial plasmid pLPU83a is able to switch between different transfer machineries depending on its genomic background. FEMS Microbiol Ecol 2014; 88:565-78. [PMID: 24646299 DOI: 10.1111/1574-6941.12325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/20/2014] [Accepted: 03/07/2014] [Indexed: 12/01/2022] Open
Abstract
Plasmids have played a major role in bacterial evolution, mainly by their capacity to perform horizontal gene transfer (HGT). Their conjugative transfer (CT) properties are usually described in terms of the plasmid itself. In this work, we analyzed structural and functional aspects of the CT of pLPU83a, an accessory replicon from Rhizobium sp. LPU83, able to transfer from its parental strain, from Ensifer meliloti, or from Rhizobium etli. pLPU83a contains a complete set of transfer genes, featuring a particular organization, shared with only two other rhizobial plasmids. These plasmids contain a TraR quorum-sensing (QS) transcriptional regulator, but lack an acyl-homoserine lactone (AHL) synthase gene. We also determined that the ability of pLPU83a to transfer from R. etli CFN42 genomic background was mainly achieved through mobilization, employing the machinery of the endogenous plasmid pRetCFN42a, falling under control of the QS regulators from pRetCFN42a. In contrast, from its native or from the E. meliloti background, pLPU83a utilized its own machinery for conjugation, requiring the plasmid-encoded traR. Activation of TraR seemed to be AHL independent. The results obtained indicate that the CT phenotype of a plasmid is dictated not only by the genes it carries, but by their interaction with its genomic context.
Collapse
Affiliation(s)
- Gonzalo Torres Tejerizo
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México; Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Characterization of IntA, a bidirectional site-specific recombinase required for conjugative transfer of the symbiotic plasmid of Rhizobium etli CFN42. J Bacteriol 2013; 195:4668-77. [PMID: 23935046 DOI: 10.1128/jb.00714-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Site-specific recombination occurs at short specific sequences, mediated by the cognate recombinases. IntA is a recombinase from Rhizobium etli CFN42 and belongs to the tyrosine recombinase family. It allows cointegration of plasmid p42a and the symbiotic plasmid via site-specific recombination between attachment regions (attA and attD) located in each replicon. Cointegration is needed for conjugative transfer of the symbiotic plasmid. To characterize this system, two plasmids harboring the corresponding attachment sites and intA were constructed. Introduction of these plasmids into R. etli revealed IntA-dependent recombination events occurring at high frequency. Interestingly, IntA promotes not only integration, but also excision events, albeit at a lower frequency. Thus, R. etli IntA appears to be a bidirectional recombinase. IntA was purified and used to set up electrophoretic mobility shift assays with linear fragments containing attA and attD. IntA-dependent retarded complexes were observed only with fragments containing either attA or attD. Specific retarded complexes, as well as normal in vivo recombination abilities, were seen even in derivatives harboring only a minimal attachment region (comprising the 5-bp central region flanked by 9- to 11-bp inverted repeats). DNase I-footprinting assays with IntA revealed specific protection of these zones. Mutations that disrupt the integrity of the 9- to 11-bp inverted repeats abolish both specific binding and recombination ability, while mutations in the 5-bp central region severely reduce both binding and recombination. These results show that IntA is a bidirectional recombinase that binds to att regions without requiring neighboring sequences as enhancers of recombination.
Collapse
|
15
|
Genetic characterization of a novel rhizobial plasmid conjugation system in Rhizobium leguminosarum bv. viciae strain VF39SM. J Bacteriol 2012; 195:328-39. [PMID: 23144250 DOI: 10.1128/jb.01234-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium leguminosarum strain VF39SM contains two plasmids that have previously been shown to be self-transmissible by conjugation. One of these plasmids, pRleVF39b, is shown in this study to carry a set of plasmid transfer genes that differs significantly from conjugation systems previously studied in the rhizobia but is similar to an uncharacterized set of genes found in R. leguminosarum bv. trifolii strain WSM2304. The entire sequence of the transfer region on pRleVF39b was determined as part of a genome sequencing project, and the roles of the various genes were examined by mutagenesis. The transfer region contains a complete set of mating pair formation (Mpf) genes, a traG gene, and a relaxase gene, traA, all of which appear to be necessary for plasmid transfer. Experimental evidence suggested the presence of two putative origins of transfer within the gene cluster. A regulatory gene, trbR, was identified in the region between traA and traG and was mutated. TrbR was shown to function as a repressor of both trb gene expression and plasmid transfer.
Collapse
|
16
|
Pinto UM, Flores-Mireles AL, Costa ED, Winans SC. RepC protein of the octopine-type Ti plasmid binds to the probable origin of replication within repC and functions only in cis. Mol Microbiol 2011; 81:1593-606. [PMID: 21883520 DOI: 10.1111/j.1365-2958.2011.07789.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Vegetative replication and partitioning of many plasmids and some chromosomes of alphaproteobacteria are directed by their repABC operons. RepA and RepB proteins direct the partitioning of replicons to daughter cells, while RepC proteins are replication initiators, although they do not resemble any characterized replication initiation protein. Here we show that the replication origin of an Agrobacterium tumefaciens Ti plasmid resides fully within its repC gene. Purified RepC bound to a site within repC with moderate affinity, high specificity and with twofold cooperativity. The binding site was localized to an AT-rich region that contains a large number of GANTC sites, which have been implicated in replication regulation in related organisms. A fragment of RepC containing residues 26-158 was sufficient to bind DNA, although with limited sequence specificity. This portion of RepC is predicted to have structural homology to members of the MarR family of transcription factors. Overexpression of RepC in A. tumefaciens caused large increases in copy number in cis but did not change the copy number of plasmids containing the same oriV sequence in trans, confirming other observations that RepC functions only in cis.
Collapse
Affiliation(s)
- Uelinton M Pinto
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
17
|
Frequent mutations within the genomic magnetosome island of Magnetospirillum gryphiswaldense are mediated by RecA. J Bacteriol 2011; 193:5328-34. [PMID: 21821768 DOI: 10.1128/jb.05491-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes for magnetosome formation in magnetotactic bacteria are clustered in large genomic magnetosome islands (MAI). Spontaneous deletions and rearrangements were frequently observed within these regions upon metabolic stress. This instability was speculated to be due to RecA-dependent homologous recombination between the numerous sequence repeats present within the MAI. Here we show that a RecA-deficient strain of Magnetospirillum gryphiswaldense (IK-1) no longer exhibits genetic instability of magnetosome formation. Strain IK-1 displayed higher sensitivity to oxygen and UV irradiation. Furthermore, the lack of RecA abolished allelic exchange in the mutant. Cells of strain IK-1 displayed a slightly altered (i.e., more elongated) morphology, whereas the absence of RecA did not affect the ability to synthesize wild-type-like magnetosomes. Our data provide evidence that the observed genetic instability of magnetosome formation in the wild type is due predominantly to RecA-mediated recombination. In addition, increased genetic stability could make strain IK-1 a useful tool for the expression of genes and further genetic engineering, as well as for biotechnological production of bacterial magnetosomes.
Collapse
|
18
|
Cervantes L, Bustos P, Girard L, Santamaría RI, Dávila G, Vinuesa P, Romero D, Brom S. The conjugative plasmid of a bean-nodulating Sinorhizobium fredii strain is assembled from sequences of two Rhizobium plasmids and the chromosome of a Sinorhizobium strain. BMC Microbiol 2011; 11:149. [PMID: 21702991 PMCID: PMC3224233 DOI: 10.1186/1471-2180-11-149] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/25/2011] [Indexed: 11/10/2022] Open
Abstract
Background Bean-nodulating Rhizobium etli originated in Mesoamerica, while soybean-nodulating Sinorhizobium fredii evolved in East Asia. S. fredii strains, such as GR64, have been isolated from bean nodules in Spain, suggesting the occurrence of conjugative transfer events between introduced and native strains. In R. etli CFN42, transfer of the symbiotic plasmid (pRet42d) requires cointegration with the endogenous self-transmissible plasmid pRet42a. Aiming at further understanding the generation of diversity among bean nodulating strains, we analyzed the plasmids of S. fredii GR64: pSfr64a and pSfr64b (symbiotic plasmid). Results The conjugative transfer of the plasmids of strain GR64 was analyzed. Plasmid pSfr64a was self-transmissible, and required for transfer of the symbiotic plasmid. We sequenced pSfr64a, finding 166 ORFs. pSfr64a showed three large segments of different evolutionary origins; the first one presented 38 ORFs that were highly similar to genes located on the chromosome of Sinorhizobium strain NGR234; the second one harbored 51 ORFs with highest similarity to genes from pRet42d, including the replication, but not the symbiosis genes. Accordingly, pSfr64a was incompatible with the R. etli CFN42 symbiotic plasmid, but did not contribute to symbiosis. The third segment contained 36 ORFs with highest similarity to genes localized on pRet42a, 20 of them involved in conjugative transfer. Plasmid pRet42a was unable to substitute pSfr64a for induction of pSym transfer, and its own transfer was significantly diminished in GR64 background. The symbiotic plasmid pSfr64b was found to differ from typical R. etli symbiotic plasmids. Conclusions S. fredii GR64 contains a chimeric transmissible plasmid, with segments from two R. etli plasmids and a S. fredii chromosome, and a symbiotic plasmid different from the one usually found in R. etli bv phaseoli. We infer that these plasmids originated through the transfer of a symbiotic-conjugative-plasmid cointegrate from R. etli to a S. fredii strain, and at least two recombination events among the R. etli plasmids and the S. fredii genome. As in R. etli CFN42, the S. fredii GR64 transmissible plasmid is required for the conjugative transfer of the symbiotic plasmid. In spite of the similarity in the conjugation related genes, the transfer process of these plasmids shows a host-specific behaviour.
Collapse
Affiliation(s)
- Laura Cervantes
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av, Universidad 1001, Cuernavaca, Morelos, CP 62240, México
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Orozco-Mosqueda MDC, Altamirano-Hernandez J, Farias-Rodriguez R, Valencia-Cantero E, Santoyo G. Homologous recombination and dynamics of rhizobial genomes. Res Microbiol 2009; 160:733-41. [DOI: 10.1016/j.resmic.2009.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 09/17/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
20
|
Chai Y, Winans SC. RepB protein of an Agrobacterium tumefaciens Ti plasmid binds to two adjacent sites between repA and repB for plasmid partitioning and autorepression. Mol Microbiol 2006; 58:1114-29. [PMID: 16262794 DOI: 10.1111/j.1365-2958.2005.04886.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasmids of Agrobacterium tumefaciens replicate using the products of the repABC operon, which are highly conserved among plasmids and some chromosomes of the alpha-Proteobacteria. The products of repA and repB direct plasmid partitioning, while the repC gene encodes a replication initiator protein. The transcription of the repABC operon of tumour inducing (Ti) plasmids is both negatively autoregulated by the RepA and RepB proteins, and positively regulated by TraR. In the present study, we have identified a fourth gene (repD) in the repABC operon of an octopine-type Ti plasmid. repD is 78 codons in length, and maps between repA and repB genes. A repD-lacZ protein fusion demonstrated that repD is strongly expressed. Two identical binding sites for the RepB protein were found within the repD coding sequence, and these sites are required for plasmid stability and for maximal repression of repABC transcription. RepA protein enhances the binding of RepB at these binding sites, just as RepB increases the affinity of RepA for binding sites at the repABC P4 promoter. We propose that RepA and RepB form complexes that bind both sites, possibly causing a loop that is important for repression of the repABC operon. Binding at one or both sites may also be required for accurate plasmid partitioning.
Collapse
Affiliation(s)
- Yunrong Chai
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
21
|
Cascales E, Atmakuri K, Liu Z, Binns AN, Christie PJ. Agrobacterium tumefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein. Mol Microbiol 2005; 58:565-79. [PMID: 16194240 PMCID: PMC2749481 DOI: 10.1111/j.1365-2958.2005.04852.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Agrobacterium tumefaciens uses a type IV secretion (T4S) system composed of VirB proteins and VirD4 to deliver oncogenic DNA (T-DNA) and protein substrates to susceptible plant cells during the course of infection. Here, by use of the Transfer DNA ImmunoPrecipitation (TrIP) assay, we present evidence that the mobilizable plasmid RSF1010 (IncQ) follows the same translocation pathway through the VirB/D4 secretion channel as described previously for the T-DNA. The RSF1010 transfer intermediate and the Osa protein of plasmid pSa (IncW), related in sequence to the FiwA fertility inhibition factor of plasmid RP1 (IncPalpha), render A. tumefaciens host cells nearly avirulent. By use of a semi-quantitative TrIP assay, we show that both of these 'oncogenic suppressor factors' inhibit binding of T-DNA to the VirD4 substrate receptor. Both factors also inhibit binding of the VirE2 protein substrate to VirD4, as shown by coimmunoprecipitation and bimolecular fluorescence complementation assays. Osa fused to the green fluorescent protein (GFP) also blocks T-DNA and VirE2 binding to VirD4, and Osa-GFP colocalizes with VirD4 at A. tumefaciens cell poles. RSF1010 and Osa interfere specifically with VirD4 receptor function and not with VirB channel activity, as shown by (i) TrIP and (ii) a genetic screen for effects of the oncogenic suppressors on pCloDF13 translocation through a chimeric secretion channel composed of the pCloDF13-encoded MobB receptor and VirB channel subunits. Our findings establish that a competing plasmid substrate and a plasmid fertility inhibition factor act on a common target, the T4S receptor, to inhibit docking of DNA and protein substrates to the translocation apparatus.
Collapse
Affiliation(s)
- Eric Cascales
- Department of Microbiology and Molecular Genetics, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| | - Krishnamohan Atmakuri
- Department of Microbiology and Molecular Genetics, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| | - Zhenying Liu
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Andrew N. Binns
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas-Houston, Medical School, Houston, TX 77030, USA
- For correspondence. E-mail ; Tel. (+1) 713 500 5440; Fax (+1) 713 500 5499
| |
Collapse
|
22
|
van der Vossen EAG, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S. The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:208-22. [PMID: 16212601 DOI: 10.1111/j.1365-313x.2005.02527.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The necessity to develop potato and tomato crops that possess durable resistance against the oomycete pathogen Phytophthora infestans is increasing as more virulent, crop-specialized and pesticide resistant strains of the pathogen are rapidly emerging. Here, we describe the positional cloning of the Solanum bulbocastanum-derived Rpi-blb2 gene, which even when present in a potato background confers broad-spectrum late blight resistance. The Rpi-blb2 locus was initially mapped in several tetraploid backcross populations, derived from highly resistant complex interspecific hybrids designated ABPT (an acronym of the four Solanum species involved:S. acaule, S. bulbocastanum, S. phureja and S. tuberosum), to the same region on chromosome 6 as the Mi-1 gene from tomato, which confers resistance to nematodes, aphids and white flies. Due to suppression of recombination in the tetraploid material, fine mapping was carried out in a diploid intraspecific S. bulbocastanum F1 population. Bacterial artificial chromosome (BAC) libraries, generated from a diploid ABPT-derived clone and from the resistant S. bulbocastanum parent clone, were screened with markers linked to resistance in order to generate a physical map of the Rpi-blb2 locus. Molecular analyses of both ABPT- and S. bulbocastanum-derived BAC clones spanning the Rpi-blb2 locus showed it to harbor at least 15 Mi-1 gene homologs (MiGHs). Of these, five were genetically determined to be candidates for Rpi-blb2. Complementation analyses showed that one ABPT- and one S. bulbocastanum-derived MiGH were able to complement the susceptible phenotype in both S. tuberosum and tomato. Sequence analyses of both genes showed them to be identical. The Rpi-blb2 protein shares 82% sequence identity to the Mi-1 protein. Significant expansion of the Rpi-blb2 locus compared to the Mi-1 locus indicates that intrachromosomal recombination or unequal crossing over has played an important role in the evolution of the Rpi-blb2 locus. The contrasting evolutionary dynamics of the Rpi-blb2/Mi-1 loci in the two related genomes may reflect the opposite evolutionary potentials of the interacting pathogens.
Collapse
|
23
|
Chai Y, Winans SC. A small antisense RNA downregulates expression of an essential replicase protein of anAgrobacterium tumefaciensTi plasmid. Mol Microbiol 2005; 56:1574-85. [PMID: 15916607 DOI: 10.1111/j.1365-2958.2005.04636.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Tumour-inducing (Ti) plasmids of Agrobacterium tumefaciens replicate via the products of the repABC genes, which are highly conserved among plasmids of the alpha-Proteobacteria. RepA and RepB direct stable partitioning of daughter plasmids, while the RepC directs replicative DNA synthesis. We have identified a new gene (repE) within the repB-repC intergenic region of an octopine-type Ti plasmid. This gene encodes a small, non-translated RNA that is transcribed in the direction opposite to the repABC mRNA. Increased expression of repE blocked plasmid replication of a repABC-dependent miniplasmid, while decreased repE expression increased plasmid copy number. Direct RNA measurements and repC-lacZ fusions demonstrated that RepE inhibits the expression of RepC at the transcriptional level and possibly also at the translational level. Based on our experimental results and an RNA folding algorithm, we predict that RepE binding to the repABC mRNA would promote termination of the repABC transcript near the start codon of repC. Sequence analysis suggests that this phenomenon may be widespread among plasmids of this family.
Collapse
Affiliation(s)
- Yunrong Chai
- Department of Microbiology, Ithaca, NY 14853, USA
| | | |
Collapse
|
24
|
Wise AA, Voinov L, Binns AN. Intersubunit complementation of sugar signal transduction in VirA heterodimers and posttranslational regulation of VirA activity in Agrobacterium tumefaciens. J Bacteriol 2005; 187:213-23. [PMID: 15601705 PMCID: PMC538830 DOI: 10.1128/jb.187.1.213-223.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The VirA/VirG two-component regulatory system of Agrobacterium tumefaciens regulates expression of the virulence (vir) genes that control the infection process leading to crown gall tumor disease on susceptible plants. VirA, a membrane-bound homodimer, initiates vir gene induction by communicating the presence of molecular signals found at the site of a plant wound through phosphorylation of VirG. Inducing signals include phenols, monosaccharides, and acidic pH. While sugars are not essential for gene induction, their presence greatly increases vir gene expression when levels of the essential phenolic signal are low. Reception of the sugar signal depends on a direct interaction between ChvE, a sugar-binding protein, and VirA. Here we show that the sugar signal received in the periplasmic region of one subunit within a VirA heterodimer can enhance the kinase function of the second subunit. However, sugar enhancement of vir gene expression was vector dependent. virA alleles expressed from pSa-derived vectors inhibited signal transduction by endogenous VirA. Inhibition was conditional, depending on the induction medium and the virA allele tested. Moreover, constitutive expression of virG overcame the inhibitory effect of some but not all virA alleles, suggesting that there may be more than one inhibitory mechanism.
Collapse
Affiliation(s)
- Arlene A Wise
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.
| | | | | |
Collapse
|
25
|
Brom S, Girard L, Tun-Garrido C, García-de los Santos A, Bustos P, González V, Romero D. Transfer of the symbiotic plasmid of Rhizobium etli CFN42 requires cointegration with p42a, which may be mediated by site-specific recombination. J Bacteriol 2004; 186:7538-48. [PMID: 15516565 PMCID: PMC524903 DOI: 10.1128/jb.186.22.7538-7548.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid p42a from Rhizobium etli CFN42 is self-transmissible and indispensable for conjugative transfer of the symbiotic plasmid (pSym). Most pSym transconjugants also inherit p42a. pSym transconjugants that lack p42a always contain recombinant pSyms, which we designated RpSyms*. RpSyms* do not contain some pSym segments and instead have p42a sequences, including the replication and transfer regions. These novel recombinant plasmids are compatible with wild-type pSym, incompatible with p42a, and self-transmissible. The symbiotic features of derivatives simultaneously containing a wild-type pSym and an RpSym* were analyzed. Structural analysis of 10 RpSyms* showed that 7 shared one of the two pSym-p42a junctions. Sequencing of this common junction revealed a 53-bp region that was 90% identical in pSym and p42a, including a 5-bp central region flanked by 9- to 11-bp inverted repeats reminiscent of bacterial and phage attachment sites. A gene encoding an integrase-like protein (intA) was localized downstream of the attachment site on p42a. Mutation or the absence of intA abolished pSym transfer from a recA mutant donor. Complementation with the wild-type intA gene restored transfer of pSym. We propose that pSym-p42a cointegration is required for pSym transfer; cointegration may be achieved either through homologous recombination among large reiterated sequences or through IntA-mediated site-specific recombination between the attachment sites. Cointegrates formed through the site-specific system but resolved through RecA-dependent recombination or vice versa generate RpSyms*. A site-specific recombination system for plasmid cointegration is a novel feature of these large plasmids and implies that there is unique regulation which affects the distribution of pSym in nature due to the role of the cointegrate in conjugative transfer.
Collapse
Affiliation(s)
- Susana Brom
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación sobre Fijación de Nitrógeno, UNAM, Cuernavaca, Morelos, Mexico.
| | | | | | | | | | | | | |
Collapse
|
26
|
Lee LY, Gelvin SB. Osa protein constitutes a strong oncogenic suppression system that can block vir-dependent transfer of IncQ plasmids between Agrobacterium cells and the establishment of IncQ plasmids in plant cells. J Bacteriol 2004; 186:7254-61. [PMID: 15489437 PMCID: PMC523227 DOI: 10.1128/jb.186.21.7254-7261.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 08/02/2004] [Indexed: 11/20/2022] Open
Abstract
The osa (oncogenic suppressive activity) gene of the IncW group plasmid pSa is sufficient to suppress tumorigenesis by Agrobacterium tumefaciens. osa confers oncogenic suppression by inhibiting VirE2 protein export. This result is similar, but not identical, to that of oncogenic suppression by the IncQ plasmid RSF1010. We conducted a series of experiments to compare oncogenic suppression by these two systems. Agrobacterium strains harboring plasmids containing osa are more able to effect oncogenic suppression than are similar strains containing various RSF1010 derivatives. When osa is present within a donor Agrobacterium strain that also carries a derivative of RSF1010, the transfer of RSF1010 derivatives to recipient bacteria and their establishment in plants are blocked. Oncogenic suppression is still effected when the osa gene is integrated into the Agrobacterium chromosome, suggesting that it is the osa gene product that is active in suppression and that suppression does not require a protein-nucleic acid intermediate like that described for IncQ plasmids. Extracellular complementation experiments with tobacco leaf disks indicated that Osa blocks stable transfer of RSF1010 to plant cells by inhibiting transfer of VirE2, which is essential for the transfer of RSF1010 into plant cells, and not by inhibiting the actual transfer of RSF1010 itself. Our results suggest that Osa and RSF1010 cause oncogenic suppression by using different mechanisms.
Collapse
Affiliation(s)
- Lan-Ying Lee
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | |
Collapse
|
27
|
Brencic A, Xia Q, Winans SC. VirA of Agrobacterium tumefaciens is an intradimer transphosphorylase and can actively block vir gene expression in the absence of phenolic signals. Mol Microbiol 2004; 52:1349-62. [PMID: 15165238 DOI: 10.1111/j.1365-2958.2004.04057.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The VirA-VirG two-component system regulates the 30-gene vir regulon in response to host-released chemical signals. VirA is a homodimeric membrane-spanning histidine protein kinase. Here, we show that mutations in two essential VirA residues, His-474 and Gly-657, can be complemented by the formation of mixed heterodimers, indicating that each subunit of a VirA dimer transphosphorylates the opposite subunit. VirA contains a receiver domain that inhibits kinase activity. We use the forced heterodimer system to show that the two receiver domains of a VirA dimer act independently and that each inhibits the phosphoacceptor subdomain of the opposite subunit. We also demonstrate that merodiploid strains co-expressing constitutive VirA mutants and wild-type VirA show levels of vir gene expression far lower than haploid strains expressing just the constitutive alleles. The fact that wild-type VirA can actively block vir gene expression in the absence of phenolic signals suggests that it might have a phospho-VirG phosphatase activity. The receiver domain of VirA is essential for this activity, whereas residues H474 and G657 of the kinase domain are not required. Merodiploid strains co-expressing a constitutive VirA allele and an allele that is kinase inactive but proficient in the inhibitory activity show strongly inducible vir gene expression, indicating that the inhibitory activity is modulated by environmental signals.
Collapse
Affiliation(s)
- Anja Brencic
- Department of Microbiology, 360A Wing Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
28
|
Brencic A, Eberhard A, Winans SC. Signal quenching, detoxification and mineralization of vir gene-inducing phenolics by the VirH2 protein of Agrobacterium tumefaciens. Mol Microbiol 2004; 51:1103-15. [PMID: 14763983 DOI: 10.1046/j.1365-2958.2003.03887.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plant tumorigenesis by Agrobacterium tumefaciens requires approximately 20 Vir proteins, transcription of which is induced by a family of phenolic compounds released from plant wound sites. One Vir protein, VirH2, plays a role in the metabolism of at least one phenolic inducer inasmuch as it converts ferulic acid, a potent vir gene inducer, to the non-inducer caffeate by O-demethylation of a methoxyl group. Here, we tested VirH2-dependent O-demethylation of 16 other vir-inducing phenolics, and detected this activity for each compound. However, O-demethylation rates differed enormously, with the strongest vir gene inducers such as acetosyringone being demethylated extremely slowly. Compounds containing two methoxyl groups were demethylated at both positions. In general, phenolic inducers were more toxic than their demethylated counterparts. A virH2 mutant was more sensitive than the wild type to growth inhibition by virtually all phenolic inducers tested, indicating that VirH2 detoxifies these compounds. VirH2 also played a role in mineralization of some phenolics. It converted vanillate to protocatechuate, which was then mineralized via the beta-ketoadipate pathway. Vanillyl alcohol and vanillin were also mineralized after being oxidized to vanillate. All three compounds served as sole sources of carbon, whereas the remaining 13 compounds did not.
Collapse
Affiliation(s)
- Anja Brencic
- Department of Microbiology, Cornell University, Wing Hall, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
29
|
Wagner B, Fuchs H, Adhami F, Ma Y, Scheiner O, Breiteneder H. Plant virus expression systems for transient production of recombinant allergens in Nicotiana benthamiana. Methods 2004; 32:227-34. [PMID: 14962756 DOI: 10.1016/j.ymeth.2003.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2003] [Indexed: 11/15/2022] Open
Abstract
In recent years, several studies have demonstrated the use of autonomously replicating plant viruses as vehicles to express a variety of therapeutic molecules of pharmaceutical interest. Plant virus vectors for expression of heterologous proteins in plants represent an attractive biotechnological tool to complement the conventional production of recombinant proteins in bacterial, fungal, or mammalian cells. Virus vectors are advantageous when high levels of gene expression are desired within a short time, although the instability of the foreign genes in the viral genome may present problems. Similar levels of foreign protein production in transgenic plants often are unattainable, in some cases because of the toxicity of the foreign protein. Now virus-based vectors are for the first time investigated as a means of producing recombinant allergens in plants. Several plant virus vectors have been developed for the expression of foreign proteins. Here, we describe the utilization of tobacco mosaic virus- and potato virus X-based vectors for the transient expression of plant allergens in Nicotiana benthamiana plants. One approach involves the inoculation of tobacco plants with infectious RNA transcribed in vitro from a cDNA copy of the recombinant viral genome. Another approach utilizes the transfection of whole plants from wounds inoculated with Agrobacterium tumefaciens containing cDNA copies of recombinant plus-sense RNA viruses.
Collapse
Affiliation(s)
- Birgit Wagner
- Department of Pathophysiology, University of Vienna, General Hospital Vienna, EBO-3Q, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
30
|
Strasser R, Altmann F, Glössl J, Steinkellner H. Unaltered complex N-glycan profiles in Nicotiana benthamiana despite drastic reduction of beta1,2- N -acetylglucosaminyltransferase I activity. Glycoconj J 2004; 21:275-82. [PMID: 15486460 DOI: 10.1023/b:glyc.0000045099.29038.04] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
UDP-GlcNAc:alpha3-D-mannoside beta1,2- N -acetylglucosaminyltransferase I (GnTI; EC 2.4.1.101) is a Golgi-resident glycosyltransferase that is essential for the processing of oligomannose to hybrid and complex N-glycans in higher eukaryotes. The cDNA of Nicotiana tabacum GnTI has been cloned and characterised previously. To assess the influence of GnTI expression levels on the formation of complex N-glycans we used posttranscriptional gene silencing to knock down the expression of GnTI in the tobacco related species Nicotiana benthamiana. 143 independent transgenic plants containing GnTI constructs in either sense or antisense orientation were generated. 23 lines were selected for measurement of GnTI activity and 10 lines thereof showed a reduction of more than 85% in in vitro assays as compared to wildtype plants. GnTI reduction was stably inherited and did not interfere with the viability of the transformants. Noteworthy one line, 34S/2, exhibited a residual GnTI activity below the detection limit. beta1,2- N -acetylglucosaminyltransferase II (GnTII), an enzyme which acts further downstream in the N-glycosylation pathway, as well as other control enzymes (alpha-mannosidase, beta- N -acetylglucosaminidase) were not affected indicating the specific downregulation of GnTI. Remarkably, immunoblots and mass spectrometric N-glycan profiling revealed no significant changes of the total N-glycan comparable to wildtype plants.
Collapse
Affiliation(s)
- Richard Strasser
- Institut für Angewandte Genetik und Zellbiologie, Department für Angewandte Planzenwissenschaften und Pflanzenbiotechnologie, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Wien, Austria.
| | | | | | | |
Collapse
|
31
|
van der Vossen E, Sikkema A, Hekkert BTL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:867-82. [PMID: 14675451 DOI: 10.1046/j.1365-313x.2003.01934.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Late blight, caused by the oomycete pathogen Phytophthora infestans, is the most devastating disease for potato cultivation. Here, we describe the positional cloning of the Rpi-blb1 gene from the wild potato species Solanum bulbocastanum known for its high levels of resistance to late blight. The Rpi-blb1 locus, which confers full resistance to complex isolates of P. infestans and for which race specificity has not yet been demonstrated, was mapped in an intraspecific S. bulbocastanum population on chromosome 8, 0.3 cM from marker CT88. Molecular analysis of a bacterial artificial chromosome (BAC) clone spanning the Rpi-blb1 locus identified a cluster of four candidate resistance gene analogues of the coiled coil, nucleotide-binding site, leucine-rich repeat (CC-NBS-LRR) class of plant resistance (R) genes. One of these candidate genes, designated the Rpi-blb1 gene, was able to complement the susceptible phenotype in a S. tuberosum and tomato background, demonstrating the potential of interspecific transfer of broad-spectrum late blight resistance to cultivated Solanaceae from sexually incompatible host species. Paired comparisons of synonymous and non-synonymous nucleotide substitutions between different regions of Rpi-blb1 paralogues revealed high levels of synonymous divergence, also in the LRR region. Although amino acid diversity between Rpi-blb1 homologues is centred on the putative solvent exposed residues of the LRRs, the majority of nucleotide differences in this region have not resulted in an amino acid change, suggesting conservation of function. These data suggest that Rpi-blb1 is relatively old and may be subject to balancing selection.
Collapse
Affiliation(s)
- Edwin van der Vossen
- Plant Research International BV, PO Box 16, 6700 AA Wageningen, the Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glössl J, Luschnig C, Adam G. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem 2003; 278:47905-14. [PMID: 12970342 DOI: 10.1074/jbc.m307552200] [Citation(s) in RCA: 379] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant pathogenic fungi of the genus Fusarium cause agriculturally important diseases of small grain cereals and maize. Trichothecenes are a class of mycotoxins produced by different Fusarium species that inhibit eukaryotic protein biosynthesis and presumably interfere with the expression of genes induced during the defense response of the plants. One of its members, deoxynivalenol, most likely acts as a virulence factor during fungal pathogenesis and frequently accumulates in grain to levels posing a threat to human and animal health. We report the isolation and characterization of a gene from Arabidopsis thaliana encoding a UDP-glycosyltransferase that is able to detoxify deoxynivalenol. The enzyme, previously assigned the identifier UGT73C5, catalyzes the transfer of glucose from UDP-glucose to the hydroxyl group at carbon 3 of deoxynivalenol. Using a wheat germ extract-coupled transcription/translation system we have shown that this enzymatic reaction inactivates the mycotoxin. This deoxynivalenol-glucosyltransferase (DOGT1) was also found to detoxify the acetylated derivative 15-acetyl-deoxynivalenol, whereas no protective activity was observed against the structurally similar nivalenol. Expression of the glucosyltransferase is developmentally regulated and induced by deoxynivalenol as well as salicylic acid, ethylene, and jasmonic acid. Constitutive overexpression in Arabidopsis leads to enhanced tolerance against deoxynivalenol.
Collapse
Affiliation(s)
- Brigitte Poppenberger
- Center of Applied Genetics, BOKU - University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Peart JR, Cook G, Feys BJ, Parker JE, Baulcombe DC. An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:569-79. [PMID: 11874570 DOI: 10.1046/j.1365-313x.2002.029005569.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, EDS1 is essential for disease resistance conferred by a structural subset of resistance (R) proteins containing a nucleotide-binding site, leucine-rich-repeats and amino-terminal similarity to animal Toll and Interleukin-1 (so-called TIR-NBS-LRR proteins). EDS1 is not required by NBS-LRR proteins that possess an amino-terminal coiled-coil motif (CC-NBS-LRR proteins). Using virus-induced gene silencing (VIGS) of a Nicotiana benthaminana EDS1 orthologue, we investigated the role of EDS1 in resistance specified by structurally distinct R genes in transgenic N. benthamiana. Resistance against tobacco mosaic virus mediated by tobacco N, a TIR-NBS-LRR protein, was EDS1-dependent. Two other R proteins, Pto (a protein kinase), and Rx (a CC-NBS-LRR protein) recognizing, respectively, a bacterial and viral pathogen did not require EDS1. These data, together with the finding that expression of N. benthamiana and Arabidopsis EDS1 mRNAs are similarly regulated, lead us to conclude that recruitment of EDS1 by TIR-NBS-LRR proteins is evolutionarily conserved between dicotyledenous plant species in resistance against bacterial, oomycete and viral pathogens. We further demonstrate that VIGS is a useful approach to dissect resistance signaling pathways in a genetically intractable plant species.
Collapse
Affiliation(s)
- Jack R Peart
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | | | |
Collapse
|
34
|
Luo ZQ, Farrand SK. The Agrobacterium tumefaciens rnd homolog is required for TraR-mediated quorum-dependent activation of Ti plasmid tra gene expression. J Bacteriol 2001; 183:3919-30. [PMID: 11395455 PMCID: PMC95274 DOI: 10.1128/jb.183.13.3919-3930.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2001] [Accepted: 04/09/2001] [Indexed: 11/20/2022] Open
Abstract
Conjugal transfer of Agrobacterium tumefaciens Ti plasmids is regulated by quorum sensing via TraR and its cognate autoinducer, N-(3-oxo-octanoyl)-L-homoserine lactone. We isolated four Tn5-induced mutants of A. tumefaciens C58 deficient in TraR-mediated activation of tra genes on pTiC58DeltaaccR. These mutations also affected the growth of the bacterium but had no detectable influence on the expression of two tester gene systems that are not regulated by quorum sensing. In all four mutants Tn5 was inserted in a chromosomal open reading frame (ORF) coding for a product showing high similarity to RNase D, coded for by rnd of Escherichia coli, an RNase known to be involved in tRNA processing. The wild-type allele of the rnd homolog cloned from C58 restored the two phenotypes to each mutant. Several ORFs, including a homolog of cya2, surround A. tumefaciens rnd, but none of these genes exerted a detectable effect on the expression of the tra reporter. In the mutant, traR was expressed from the Ti plasmid at a level about twofold lower than that in NT1. The expression of tra, but not the growth rate, was partially restored by increasing the copy number of traR or by disrupting traM, a Ti plasmid gene coding for an antiactivator specific for TraR. The mutation in rnd also slightly reduced expression of two tested vir genes but had no detectable effect on tumor induction by this mutant. Our data suggest that the defect in tra gene induction in the mutants results from lowered levels of TraR. In turn, production of sufficient amounts of TraR apparently is sensitive to a cellular function requiring RNase D.
Collapse
Affiliation(s)
- Z Q Luo
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
35
|
Luo ZQ, Clemente TE, Farrand SK. Construction of a derivative of Agrobacterium tumefaciens C58 that does not mutate to tetracycline resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:98-103. [PMID: 11194879 DOI: 10.1094/mpmi.2001.14.1.98] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Agrobacterium tumefaciens C58 mutates to tetracycline resistance at high frequency, complicating the use of many broad-host-range cloning and binary vectors that code for resistance to this antibiotic as the selection marker. Such mutations are associated with a resistant gene unit, tetC58, that is present in the genome of this strain. By deleting the tetC58 locus, we constructed NTL4, a derivative of C58 that no longer mutates to tetracycline resistance. The deletion had no detectable effect on genetic or physiological traits of NTL4 or on the ability of this strain to transform plants.
Collapse
Affiliation(s)
- Z Q Luo
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 61801, USA
| | | | | |
Collapse
|
36
|
Shibata D, Liu YG. Agrobacterium-mediated plant transformation with large DNA fragments. TRENDS IN PLANT SCIENCE 2000; 5:354-7. [PMID: 10908881 DOI: 10.1016/s1360-1385(00)01689-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- D Shibata
- Kazusa DNA Research Institute, Yana 1532-3, Kisarazu, Chiba 292-0812, Japan.
| | | |
Collapse
|
37
|
Campbell AM, Tok JB, Zhang J, Wang Y, Stein M, Lynn DG, Binns AN. Xenognosin sensing in virulence: is there a phenol receptor in Agrobacterium tumefaciens? CHEMISTRY & BIOLOGY 2000; 7:65-76. [PMID: 10662683 DOI: 10.1016/s1074-5521(00)00065-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The mechanisms of signal perception and transmission in the 'two-component' autokinase transmitters/response regulators are poorly understood, especially considering the vast number of such systems now known. Virulence induction from the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens represents one of the best understood systems with regard to the chemistry of the activating signal, and yet the existing data does not support a receptor-mediated perception event for the xenognostic phenols. RESULTS Here we provide the first conclusive evidence that a specific receptor must be involved in xenognostic phenol perception, detail structural requirements of the xenognosins necessary for perception by this receptor, and develop a genetic strategy that demonstrates critical components of the phenol recognition system are not encoded on the Ti plasmid. CONCLUSIONS Although the basic elements of the two-component system required for phenol-mediated induction of virulence gene expression are encoded on the Ti plasmid, they are dependent on the chromosomal background for even the very first stage of signal perception. This discovery suggests a curious evolutionary history, and also provides functional insight into the mechanisms of two-component signal detection and transmission in general.
Collapse
Affiliation(s)
- A M Campbell
- Plant Sciences Institute, University of Pennsylvania, Philadelphia, PA 19104-1018, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Luo ZQ, Farrand SK. Cloning and characterization of a tetracycline resistance determinant present in Agrobacterium tumefaciens C58. J Bacteriol 1999; 181:618-26. [PMID: 9882678 PMCID: PMC93418 DOI: 10.1128/jb.181.2.618-626.1999] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/1998] [Accepted: 11/07/1998] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens C58 and its derivatives give rise to spontaneous mutants resistant to tetracycline at a high frequency. We observed that a mutation affecting a tRNA processing function significantly affected the emergence of such mutants, suggesting that C58 contained a positively acting gene conferring resistance to tetracycline. A cosmid clone conferring resistance to tetracycline in Escherichia coli and Agrobacterium was isolated from a genomic bank of one such mutant. Subcloning, transposon mutagenesis, and DNA sequence analysis revealed that this DNA fragment contained two divergently transcribed genes, tetA and tetR, encoding products that were very similar to proteins of the Tet(A) class of tetracycline resistance systems. In the clone from this mutant, tetR was disrupted by an IS426. The homologous region from wild-type NT1 contained an intact tetR gene and did not confer resistance to tetracycline. Hybridization analysis showed that of 22 members of the genus Agrobacterium surveyed, only strains C58 and T37 contained the tet determinant. Moreover, only these two strains mutated to resistance to this antibiotic. Unlike other Tet(A) systems, neither tetracycline nor a series of its derivatives induced the expression of this tet gene unit. Other polycyclic compounds, including many of plant origin, also did not induce this tet gene system. The divergent promoter region of this tet system contained a single inverted repeat element identical to one such operator repeat in the promoter region of the tet determinant from the IncP1alpha R plasmid RP4. TetR repressor proteins from the Agrobacterium tet system and from RP4 interacted with the heterologous operators. While the repressive effect of the TetR protein from strain C58 (TetRC58) on the tetA gene from strain RP4 (tetARP4) was not relieved by tetracycline, repression of tetAC58 by TetRRP4 was lifted by this antibiotic.
Collapse
Affiliation(s)
- Z Q Luo
- Departments of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
39
|
Li PL, Everhart DM, Farrand SK. Genetic and sequence analysis of the pTiC58 trb locus, encoding a mating-pair formation system related to members of the type IV secretion family. J Bacteriol 1998; 180:6164-72. [PMID: 9829924 PMCID: PMC107700 DOI: 10.1128/jb.180.23.6164-6172.1998] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/1998] [Accepted: 09/17/1998] [Indexed: 11/20/2022] Open
Abstract
Conjugal transfer of pTiC58 requires two regions, tra which contains the oriT and several genes involved in DNA processing and a region of undefined size and function that is located at the 2-o'clock position of the plasmid. Using transposon mutagenesis with Tn3HoHo1 and a binary transfer system, we delimited this second region, called trb, to an 11-kb interval between the loci for vegetative replication and nopaline catabolism. DNA sequence analysis of this region identified 13 significant open reading frames (ORFs) spanning 11,003 bp. The first, encoding traI, already has been described and is responsible for the synthesis of Agrobacterium autoinducer (AAI) (I. Hwang, P.-L. Li, L. Zhang, K. R. Piper, D. M. Cook, M. E. Tate, and S. K. Farrand, Proc. Natl. Acad. Sci. USA 91:4639-4643, 1994). Translation products of the next 11 ORFs showed similarities to those of trbB, -C, -D, -E, -J, -K, -L, -F, -G, -H, and -I of the trb region of the octopine-type Ti plasmid pTi15955 and of the tra2 core region of RP4. In RP4, these genes encode mating-pair formation functions and are essential for the conjugal transfer of the IncP plasmid. Each of the trb gene homologues is oriented counterclockwise on the Ti plasmid. Expression of these genes, as measured by using the lacZ fusions formed by Tn3HoHo1, required the traI promoter and the transcriptional activator TraR along with its coinducer, AAI. While related to that of RP4, the trb system of pTiC58 did not allow propagation of the trb-specific bacteriophages PRD1, PRR1, and Pf3. The products of several trb genes of the Ti plasmid are similar to those of other loci that encode DNA transfer or protein secretion systems, all of which are members of the type IV secretion family.
Collapse
Affiliation(s)
- P L Li
- Departments of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
40
|
Bohne J, Yim A, Binns AN. The Ti plasmid increases the efficiency of Agrobacterium tumefaciens as a recipient in virB-mediated conjugal transfer of an IncQ plasmid. Proc Natl Acad Sci U S A 1998; 95:7057-62. [PMID: 9618538 PMCID: PMC22737 DOI: 10.1073/pnas.95.12.7057] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The T-DNA transfer apparatus of Agrobacterium tumefaciens mediates the delivery of the T-DNA into plant cells, the transfer of the IncQ plasmid RSF1010 into plant cells, and the conjugal transfer of RSF1010 between Agrobacteria. We show in this report that the Agrobacterium-to-Agrobacterium conjugal transfer efficiencies of RSF1010 increase dramatically if the recipient strain, as well as the donor strain, carries a wild-type Ti plasmid and is capable of vir gene expression. Investigation of possible mechanisms that could account for this increased efficiency revealed that the VirB proteins encoded by the Ti plasmid were required. Although, with the exception of VirB1, all of the proteins that form the putative T-DNA transfer apparatus (VirB1-11, VirD4) are required for an Agrobacterium strain to serve as an RSF1010 donor, expression of only a subset of these proteins is required for the increase in conjugal transfer mediated by the recipient. Specifically, VirB5, 6, 11, and VirD4 are essential donor components but are dispensable for the increased recipient capacity. Defined point mutations in virB9 affected donor and recipient capacities to the same relative extent, suggesting that similar functions of VirB9 are important in both of these contexts.
Collapse
Affiliation(s)
- J Bohne
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
41
|
Abstract
A binary-BAC (BIBAC) vector suitable for Agrobacterium-mediated plant transformation with high-molecular-weight DNA was constructed. A BIBAC vector is based on the bacterial artificial chromosome (BAC) library vector and is also a binary vector for Agrobacterium-mediated plant transformation. The BIBAC vector has the minimal origin region of the Escherichia coli F plasmid and the minimal origin of replication of the Agrobacterium rhizogenes Ri plasmid, and thus replicates as a single-copy plasmid in both E. coli and in A. tumefaciens. The T-DNA of the BIBAC vector can be transferred into the plant nuclear genome. As examples, a 30-kb yeast genomic DNA fragment and a 150-kb human genomic DNA fragment were inserted into the BIBAC vector; these constructs were maintained in both E. coli and A. tumefaciens. In order to increase the efficiency of transfer of unusually large BIBAC T-DNAs, helper plasmids that carry additional copies of A. tumefaciens virulence genes virG and virE were constructed. These helper plasmids are compatible with, and can be present in addition to, the BIBAC vector in the A. tumefaciens host. This report details the components of the BIBAC system, providing information essential to the general understanding and the application of this new technology.
Collapse
Affiliation(s)
- C M Hamilton
- Plant Science Center, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
42
|
Cho K, Fuqua C, Winans SC. Transcriptional regulation and locations of Agrobacterium tumefaciens genes required for complete catabolism of octopine. J Bacteriol 1997; 179:1-8. [PMID: 8981973 PMCID: PMC178654 DOI: 10.1128/jb.179.1.1-8.1997] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
By screening for octopine-inducible gene expression, we previously identified all the genes required for utilization of octopine as a source of carbon, nitrogen, and energy. They are (i) octopine oxidase, which converts octopine to arginine and pyruvate and is encoded by the ooxAB operon, (ii) arginase, which converts arginine to ornithine and urea and is encoded by arcA, (iii) ornithine cyclodeaminase, which converts ornithine to proline and ammonia and is encoded by the homologous arcB and ocd genes, and (iv) proline dehydrogenase, which converts proline to glutamate and is encoded by putA. Here we describe the regulation and localization of each of these genes. The ooxA-ooxB-ocd operon was previously shown to reside on the Ti plasmid and to be directly inducible by octopine. The arcAB operon is directly inducible by arginine, while it is induced by octopine only in strains that can convert octopine to arginine. Ornithine may also be a direct inducer of arcAB. putA is directly inducible by proline, while induction by octopine and by arginine (and probably by ornithine) requires their conversion to proline. Genetic studies indicate that arcAB and putA are localized on a conjugal genetic element. This element can be transferred to other Agrobacterium tumefaciens strains by a mechanism that does not require recA-dependent homologous recombination. Transfer of this genetic element from A. tumefaciens R10 requires at least one tra gene found on its Ti plasmid, indicating that this element is not self-transmissible but is mobilizable by the Ti plasmid. The DNA containing the arcAB and putA genes comigrates with a 243-kb linear molecular weight standard on field inversion electrophoretic gels.
Collapse
Affiliation(s)
- K Cho
- Section of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
43
|
Singer JT, Ma C, Boettcher KJ. Overcoming a defect in generalized recombination in the marine fish pathogen Vibrio anguillarum 775: construction of a recA mutant by marker exchange. Appl Environ Microbiol 1996; 62:3727-31. [PMID: 8837428 PMCID: PMC168180 DOI: 10.1128/aem.62.10.3727-3731.1996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A defect in generalized recombination has prevented the use of marker exchange for the construction of specific chromosomal mutations in the marine fish pathogen Vibrio anguillarum 775. Through the use of large segments of homologous DNA, we were successful in overcoming this defect and used marker exchange to construct a recA mutant of V. anguillarum H775-3. A recombinant cosmid carrying the recA gene of V. anguillarum 775 in the center of a 25-kb cloned DNA insert was isolated by complementation of methyl methanesulfonate (MMS) sensitivity in Escherichia coli HB101. The recA gene was inactivated by inserting a kanamycin resistance gene into recA, and the mutant gene was subsequently introduced into V. anguillarum H775-3 by conjugal mobilization. Isolation of recombinants between cosmid-borne recA::kan sequences and chromosomal DNA was facilitated by the introduction of an incompatible plasmid, and Southern hybridization was used to verify the presence of recA::kan in the chromosomal DNA of the recA mutant. V. anguillarum carrying recA::kan was considerably more sensitive to UV radiation and to MMS than was its parent, and near wild-type levels of resistance to MMS and UV light were restored by introduction of cloned recA genes from both E. coli and V. anguillarum. These results indicate that recA is required for DNA repair in V. anguillarum and demonstrate the utility of this modified marker exchange technique for the construction of mutations in this economically important fish pathogen.
Collapse
Affiliation(s)
- J T Singer
- Department of Biochemistry, Microbiology and Molecular Biology, University of Maine, Orono 04469-5735, USA.
| | | | | |
Collapse
|
44
|
Hamilton CM, Frary A, Lewis C, Tanksley SD. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci U S A 1996; 93:9975-9. [PMID: 8790442 PMCID: PMC38540 DOI: 10.1073/pnas.93.18.9975] [Citation(s) in RCA: 216] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In conjunction with an enhanced system for Agrobacterium-mediated plant transformation, a new binary bacterial artificial chromosome (BIBAC) vector has been developed that is capable of transferring at least 150 kb of foreign DNA into a plant nuclear genome. The transferred DNA appears to be intact in the majority of transformed tobacco plants analyzed and is faithfully inherited in the progeny. The ability to introduce high molecular weight DNA into plant chromosomes should accelerate gene identification and genetic engineering of plants and may lead to new approaches in studies of genome organization.
Collapse
Affiliation(s)
- C M Hamilton
- Plant Science Center, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
45
|
Fullner KJ, Nester EW. Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J Bacteriol 1996; 178:1498-504. [PMID: 8626274 PMCID: PMC177831 DOI: 10.1128/jb.178.6.1498-1504.1996] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Early studies on Agrobacterium tumefaciens showed that development of tumors on plants following infection by A. tumefaciens was optimal at temperatures around 22 degrees C and did not occur at temperatures above 29 degrees C. To assess whether this inability to induce tumors is due to a defect in the T-DNA transfer machinery, mobilization of an incompatibility group Q (IncQ) plasmid by the T-DNA transfer machinery of A. tumefaciens was tested at various temperatures. Optimal transfer occurred when matings were performed at 19 degrees C, and transfer was not seen when matings were incubated above 28 degrees C. Transfer of the IncQ plasmid was dependent upon induction of the virB and virD operons by acetosyringone but was not dependent upon induction of the tra genes by octopine. However, alterations in the level of vir gene induction could not account for the decrease in transfer with increasing temperature. A. tumefaciens did successfully mobilize IncQ plasmids at higher temperatures when alternative transfer machineries were provided. Thus, the defect in transfer at high temperature is apparently in the T-DNA transfer machinery itself. As these data correlate with earlier tumorigenesis studies, we propose that tumor suppression at higher temperatures results from a T-DNA transfer machinery which does not function properly.
Collapse
Affiliation(s)
- K J Fullner
- Department of Microbiology, University of Washington, Seattle 98195-7242, USA
| | | |
Collapse
|
46
|
Grkovic S, Mahanty HK. Investigation of a phage resistant Serratia entomophila strain (BC4B), establishment of generalised transduction and construction of S. entomophila RecA mutants. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:323-8. [PMID: 8602147 DOI: 10.1007/bf02174390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A recA clone was isolated from a cosmid library of Serratia entomophila constructed in the Escherichia coli strain HB101. Subcloning and transposon mutagenesis were used to identify a 1.36 kb fragment containing the recA gene. A cloned recA mutation, generated by transposon mutagenesis and the replacement of a portion of the recA gene with an antibiotic resistance cassette, was introduced into the chromosome via a marker exchange technique. The recA strains created were deficient in DNA repair, homologous recombination and both the spontaneous and UV induction of prophages. S. entomophila recA strains showed continued pathogenicity towards the New Zealand grass grub, Costelytra zealandica. Simple procedures for further construction of S. entomophila recA strains have been demonstrated.
Collapse
Affiliation(s)
- S Grkovic
- Department of Plant and Microbial Sciences, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
47
|
Kalogeraki VS, Winans SC. The octopine-type Ti plasmid pTiA6 of Agrobacterium tumefaciens contains a gene homologous to the chromosomal virulence gene acvB. J Bacteriol 1995; 177:892-7. [PMID: 7860597 PMCID: PMC176680 DOI: 10.1128/jb.177.4.892-897.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Although the majority of genes required for the transfer of T-DNA from Agrobacterium tumefaciens to plant nuclei are located on the Ti plasmid, some chromosomal genes, including the recently described acvB gene, are also required. We show that AcvB shows 50% identity with the product of an open reading frame, designated virJ, that is found between the virA and virB genes in the octopine-type Ti plasmid pTiA6. This reading frame is not found in the nopaline-type Ti plasmid pTiC58. acvB is required for tumorigenesis by a strain carrying a nopaline-type Ti plasmid, and virJ complements this nontumorigenic phenotype, indicating that the products of these genes have similar functions. A virJ-phoA fusion expressed enzymatically active alkaline phosphatase, indicating that VirJ is at least partially exported. virJ is induced in a VirA/VirG-dependent fashion by the vir gene inducer acetosyringone. Primer extension analysis and subcloning of the virJ-phoA fusion indicate that the acetosyringone-inducible promoter lies directly upstream of the virJ structural gene. Although the roles of the two homologous genes in tumorigenesis remain to be elucidated, strains lacking acvB and virJ (i) are proficient for induction of the vir regulon, (ii) are able to transfer their Ti plasmids by conjugation, and (iii) are resistant to plant wound extracts. Finally, mutations in these genes cannot be complemented extracellularly.
Collapse
Affiliation(s)
- V S Kalogeraki
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
48
|
Fullner KJ, Stephens KM, Nester EW. An essential virulence protein of Agrobacterium tumefaciens, VirB4, requires an intact mononucleotide binding domain to function in transfer of T-DNA. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:704-15. [PMID: 7830718 DOI: 10.1007/bf00297277] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The 11 gene products of the Agrobacterium tumefaciens virB operon, together with the VirD4 protein, are proposed to form a membrane complex which mediates the transfer of T-DNA to plant cells. This study examined one putative component of that complex, VirB4. A deletion of the virB4 gene on the Ti plasmid pTiA6NC was constructed by replacing the virB4 gene with the kanamycin resistance-conferring nptII gene. The virB4 gene was found to be necessary for virulence on plants and for the transfer of IncQ plasmids to recipient cells of A. tumefaciens. Genetic complementation of the deletion strain by the virB4 gene under control of the virB promoter confirmed that the deletion was nonpolar on downstream virB genes. Genetic complementation was also achieved with the virB4 gene placed under control of the lac promoter, even though synthesis of the VirB4 protein from this promoter is far below wild-type levels. Having shown a role for the VirB4 protein in DNA transfer, lysine-439, found within the conserved mononucleotide binding domain of VirB4, was changed to a glutamic acid, methionine, or arginine by oligonucleotide-directed mutagenesis. virB4 genes bearing these mutations were unable to complement the virB4 deletion for either virulence or for IncQ transfer, showing that an intact mononucleotide binding site is necessary for the function of VirB4 in DNA transfer. The necessity of the VirB4 protein with an intact mononucleotide binding site for extracellular complementation of virE2 mutants was also shown. In merodiploid studies, lysine-439 mutations present in trans decreased IncQ plasmid transfer frequencies, suggesting that VirB4 functions within a complex to facilitate DNA transfer.
Collapse
Affiliation(s)
- K J Fullner
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
49
|
Stroeher UH, Lech AJ, Manning PA. Gene sequence of recA+ and construction of recA mutants of Vibrio cholerae. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:295-302. [PMID: 8058040 DOI: 10.1007/bf00285457] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The recA+ gene of Vibrio cholerae O1 has been cloned, its nucleotide sequence determined and the product characterized. A deletion mutation was constructed in the recA gene and mutants showed the typical sensitivity to UV and to DNA-damaging agents, as well as an inability to mediate homologous DNA recombination. The chromosomal recA deletion mutants in V. cholerae do not show altered virulence in the infant mouse cholera model and are thus ideal strains for use in complementation studies.
Collapse
Affiliation(s)
- U H Stroeher
- Department of Microbiology and Immunology, University of Adelaide, Australia
| | | | | |
Collapse
|
50
|
Doty SL, Chang M, Nester EW. The chromosomal virulence gene, chvE, of Agrobacterium tumefaciens is regulated by a LysR family member. J Bacteriol 1993; 175:7880-6. [PMID: 8253677 PMCID: PMC206966 DOI: 10.1128/jb.175.24.7880-7886.1993] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Certain plant phenolic compounds and monosaccharides induce the transcription of virulence (vir) genes of Agrobacterium tumefaciens through the VirA-VirG two-component regulatory system. The product of the chromosomal virulence gene chvE is homologous to galactose-binding protein of Escherichia coli and is required for vir gene induction by sugars. Adjacent to, but divergent in transcription from, chvE is an open reading frame, now termed gbpR (galactose-binding protein regulator), that is homologous to the LysR family of transcriptional regulators. chvE::lacZ expression was induced by L-arabinose, D-galactose, and D-fucose when gbpR was present. In the absence of inducer, GbpR repressed chvE::lacZ expression. In addition, GbpR negatively regulated its own expression.
Collapse
Affiliation(s)
- S L Doty
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | |
Collapse
|