1
|
Robazza A, Raya i Garcia A, Baleeiro FCF, Kleinsteuber S, Neumann A. Acetate Shock Loads Enhance CO Uptake Rates of Anaerobic Microbiomes. Microb Biotechnol 2024; 17:e70063. [PMID: 39651844 PMCID: PMC11626651 DOI: 10.1111/1751-7915.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Pyrolysis of lignocellulosic biomass commonly produces syngas, a mixture of gases such as CO, CO2 and H2, as well as an aqueous solution generally rich in organic acids such as acetate. In this study, we evaluated the impact of increasing acetate shock loads during syngas co-fermentation with anaerobic microbiomes at different pH levels (6.7 and 5.5) and temperatures (37°C and 55°C) by assessing substrates consumption, metabolites production and microbial community composition. The anaerobic microbiomes revealed to be remarkably resilient and were capable of converting syngas even at high acetate concentrations of up to 64 g/L and pH 5.5. Modifying process parameters and acetate loads resulted in a shift of the product spectrum and microbiota composition. Specifically, a pH of 6.7 promoted methanogens such as Methanosarcina, whereas lowering the pH to 5.5 with lower acetate loads promoted the enrichment of syntrophic acetate oxidisers such as Syntrophaceticus, alongside hydrogenotrophic methanogens. Increasing acetate loads intensified the toxicity of undissociated acetic acid, thereby inhibiting methanogenic activity. Under non-methanogenic conditions, high acetate concentrations suppressed acetogenesis in favour of hydrogenogenesis and the production of various carboxylates, including valerate, with product profiles and production rates being contingent upon temperature. A possible candidate for valerate production was identified in Oscillibacter. Across all tested conditions, acetate supplementation provided additional carbon and energy to the mixed cultures and consistently increased carboxydotrophic conversion rates up to about 20-fold observed at pH 5.5, 55°C and 48 g/L acetate compared to control experiments. Species of Methanobacterium, Methanosarcina and Methanothermobacter may have been involved in CO biomethanation. Under non-methanogenic conditions, the bacterial species responsible for CO conversion remain unclear. These results offer promise for integrating process streams, such as syngas and wastewater, as substrates for mixed culture fermentation allowing for enhanced resource circularity, mitigation of environmental impacts and decreased dependence on fossil fuels.
Collapse
Affiliation(s)
- Alberto Robazza
- Institute of Process Engineering in Life Sciences 2: Electro BiotechnologyKarlsruhe Institute of Technology – KITKarlsruheGermany
| | - Ada Raya i Garcia
- Institute of Process Engineering in Life Sciences 2: Electro BiotechnologyKarlsruhe Institute of Technology – KITKarlsruheGermany
| | - Flávio C. F. Baleeiro
- Department of Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Sabine Kleinsteuber
- Department of Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Anke Neumann
- Institute of Process Engineering in Life Sciences 2: Electro BiotechnologyKarlsruhe Institute of Technology – KITKarlsruheGermany
| |
Collapse
|
2
|
Trischler R, Rustler SM, Poehlein A, Daniel R, Breitenbach M, Helfrich EJN, Müller V. 3-Hydroxypropionate production from myo-inositol by the gut acetogen Blautia schinkii. Environ Microbiol 2024; 26:e16692. [PMID: 39206693 DOI: 10.1111/1462-2920.16692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Species of the genus Blautia are not only abundant in the human gut but also contribute to human well-being. Our study demonstrates that the gut acetogen Blautia schinkii can grow on myo-inositol. We identified the pathway of myo-inositol degradation through a combination of physiological and biochemical studies, genome-wide expression profiling and homology searches. Initially, myo-inositol is oxidized to 2-keto-myo-inositol. This compound is then metabolized by a series of enzymes - a dehydratase, hydrolase, isomerase and kinase - to form 2-deoxy-5-keto-d-gluconic acid 6-phosphate. This intermediate is split by an aldolase into malonate semialdehyde and dihydroxyacetone phosphate, which is an intermediate of the Embden-Meyerhof-Parnas pathway. This pathway leads to the production of pyruvate and, subsequently, acetate. Concurrently, malonate semialdehyde is reduced to 3-hydroxypropionate (3-HP). The genes responsible for myo-inositol degradation are clustered on the genome, except for the gene encoding the aldolase. We identified the putative aldolase Fba_3 and 3-HP dehydrogenase Adh1 encoding genes bioinformatically and verified them biochemically using enzyme assays with heterologously produced and purified protein. The major fermentation end products were 3-HP and acetate, produced in similar amounts. The production of the unusual fermentation end product 3-HP is significant not only for human health but also for the potential bioindustrial production of this highly desired compound.
Collapse
Affiliation(s)
- Raphael Trischler
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Stefanie M Rustler
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Anja Poehlein
- Georg August University Göttingen, Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Göttingen, Germany
| | - Rolf Daniel
- Georg August University Göttingen, Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Göttingen, Germany
| | - Milena Breitenbach
- Institute for Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany
| | - Eric J N Helfrich
- Institute for Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
3
|
Moon J, Poehlein A, Daniel R, Müller V. Redirecting electron flow in Acetobacterium woodii enables growth on CO and improves growth on formate. Nat Commun 2024; 15:5424. [PMID: 38926344 PMCID: PMC11208171 DOI: 10.1038/s41467-024-49680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Anaerobic, acetogenic bacteria are well known for their ability to convert various one-carbon compounds, promising feedstocks for a future, sustainable biotechnology, to products such as acetate and biofuels. The model acetogen Acetobacterium woodii can grow on CO2, formate or methanol, but not on carbon monoxide, an important industrial waste product. Since hydrogenases are targets of CO inhibition, here, we genetically delete the two [FeFe] hydrogenases HydA2 and HydBA in A. woodii. We show that the ∆hydBA/hydA2 mutant indeed grows on CO and produces acetate, but only after a long adaptation period. SNP analyzes of CO-adapted cells reveal a mutation in the HycB2 subunit of the HydA2/HydB2/HydB3/Fdh-containing hydrogen-dependent CO2 reductase (HDCR). We observe an increase in ferredoxin-dependent CO2 reduction and vice versa by the HDCR in the absence of the HydA2 module and speculate that this is caused by the mutation in HycB2. In addition, the CO-adapted ∆hydBA/hydA2 mutant growing on formate has a final biomass twice of that of the wild type.
Collapse
Affiliation(s)
- Jimyung Moon
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, Germany
| | - Anja Poehlein
- Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg August University, Grisebachstr. 8, Göttingen, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg August University, Grisebachstr. 8, Göttingen, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, Germany.
| |
Collapse
|
4
|
Baum C, Zeldes B, Poehlein A, Daniel R, Müller V, Basen M. The energy-converting hydrogenase Ech2 is important for the growth of the thermophilic acetogen Thermoanaerobacter kivui on ferredoxin-dependent substrates. Microbiol Spectr 2024; 12:e0338023. [PMID: 38385688 PMCID: PMC10986591 DOI: 10.1128/spectrum.03380-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Thermoanaerobacter kivui is the thermophilic acetogenic bacterium with the highest temperature optimum (66°C) and with high growth rates on hydrogen (H2) plus carbon dioxide (CO2). The bioenergetic model suggests that its redox and energy metabolism depends on energy-converting hydrogenases (Ech). Its genome encodes two Echs, Ech1 and Ech2, as sole coupling sites for energy conservation during growth on H2 + CO2. During growth on other substrates, its redox activity, the (proton-gradient-coupled) oxidation of H2 may be essential to provide reduced ferredoxin (Fd) to the cell. While Ech activity has been demonstrated biochemically, the physiological function of both Ech's is unclear. Toward that, we deleted the complete gene cluster encoding Ech2. Surprisingly, the ech2 mutant grew as fast as the wild type on sugar substrates and H2 + CO2. Hence, Ech1 may be the essential enzyme for energy conservation, and either Ech1 or another enzyme may substitute for H2-dependent Fd reduction during growth on sugar substrates, putatively the H2-dependent CO2 reductase (HDCR). Growth on pyruvate and CO, substrates that are oxidized by Fd-dependent enzymes, was significantly impaired, but to a different extent. While ∆ech2 grew well on pyruvate after four transfers, ∆ech2 did not adapt to CO. Cell suspensions of ∆ech2 converted pyruvate to acetate, but no acetate was produced from CO. We analyzed the genome of five T. kivui strains adapted to CO. Strikingly, all strains carried mutations in the hycB3 subunit of HDCR. These mutations are obviously essential for the growth on CO but may inhibit its ability to utilize Fd as substrate. IMPORTANCE Acetogens thrive by converting H2+CO2 to acetate. Under environmental conditions, this allows for only very little energy to be conserved (∆G'<-20 kJ mol-1). CO2 serves as a terminal electron acceptor in the ancient Wood-Ljungdahl pathway (WLP). Since the WLP is ATP neutral, energy conservation during growth on H2 + CO2 is dependent on the redox metabolism. Two types of acetogens can be distinguished, Rnf- and Ech-type. The function of both membrane-bound enzyme complexes is twofold-energy conversion and redox balancing. Ech couples the Fd-dependent reduction of protons to H2 to the formation of a proton gradient in the thermophilic bacterium Thermoanaerobacter kivui. This bacterium may be utilized in gas fermentation at high temperatures, due to very high conversion rates and the availability of genetic tools. The physiological function of an Ech hydrogenase in T. kivui was studied to contribute an understanding of its energy and redox metabolism, a prerequisite for future industrial applications.
Collapse
Affiliation(s)
- Christoph Baum
- Microbiology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Benjamin Zeldes
- Microbiology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Mirko Basen
- Microbiology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Trischler R, Poehlein A, Daniel R, Müller V. Ethanologenesis from glycerol by the gut acetogen Blautia schinkii. Environ Microbiol 2023; 25:3577-3591. [PMID: 37807918 DOI: 10.1111/1462-2920.16517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
The human gut is an anoxic environment that harbours a multitude of microorganisms that not only contribute to food digestion. The microbiome is also involved in malfunctions such as diseases, inflammation processes or development of obesity, but it is also involved in processes that increase the human well-being. Both, the good and the bad, are mediated by fermentation end products of bacterial metabolism, among others. However, despite a steadily growing knowledge of 'who lives out there', little in known of 'what do they do out there'. The genus Blautia is commonly found in the gut and associated with human well-being, but the exploration of their metabolic potential has just started. We demonstrate that B. schinkii grows on glycerol by producing acetate and ethanol. Transcriptome studies and biochemical analyses revealed a glycerol dehydrogenase and dihydroxyacetone kinase that funnel the substrate into glycolysis. Consequently, cells also grew on dihydroxyacetone. Cells could be adapted to grow at high (up to 1.5 M) glycerol concentrations but then only ethanol was formed. Ethanol production from glycerol is not only of relevance for the human host but also for potential bioindustrial production of bioethanol from waste glycerol.
Collapse
Affiliation(s)
- Raphael Trischler
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - A Poehlein
- Georg August University Göttingen, Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Göttingen, Germany
| | - R Daniel
- Georg August University Göttingen, Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Göttingen, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
6
|
Moon J, Schubert A, Poehlein A, Daniel R, Müller V. A new metabolic trait in an acetogen: Mixed acid fermentation of fructose in a methylene-tetrahydrofolate reductase mutant of Acetobacterium woodii. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:339-351. [PMID: 37150590 PMCID: PMC10472528 DOI: 10.1111/1758-2229.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023]
Abstract
To inactivate the Wood-Ljungdahl pathway in the acetogenic model bacterium Acetobacterium woodii, the genes metVF encoding two of the subunits of the methylene-tetrahydrofolate reductase were deleted. As expected, the mutant did not grow on C1 compounds and also not on lactate, ethanol or butanediol. In contrast to a mutant in which the first enzyme of the pathway (hydrogen-dependent CO2 reductase) had been genetically deleted, cells were able to grow on fructose, albeit with lower rates and yields than the wild-type. Growth was restored by addition of an external electron sink, glycine betaine + CO2 or caffeate. Resting cells pre-grown on fructose plus an external electron acceptor fermented fructose to two acetate and four hydrogen, that is, performed hydrogenogenesis. Cells pre-grown under fermentative conditions on fructose alone redirected carbon and electrons to form lactate, formate, ethanol as well as hydrogen. Apparently, growth on fructose alone induced enzymes for mixed acid fermentation (MAF). Transcriptome analyses revealed enzymes potentially involved in MAF and a quantitative model for MAF from fructose in A. woodii is presented.
Collapse
Affiliation(s)
- Jimyung Moon
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurtGermany
| | - Anja Schubert
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurtGermany
| | - Anja Poehlein
- Göttingen Genomics Laboratory, Institute for Microbiology and GeneticsGeorg August UniversityGöttingenGermany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute for Microbiology and GeneticsGeorg August UniversityGöttingenGermany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurtGermany
| |
Collapse
|
7
|
Moon J, Waschinger LM, Müller V. Lactate formation from fructose or C1 compounds in the acetogen Acetobacterium woodii by metabolic engineering. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12637-7. [PMID: 37417977 PMCID: PMC10390620 DOI: 10.1007/s00253-023-12637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
Anaerobic, acetogenic bacteria are promising biocatalysts for a sustainable bioeconomy since they capture and convert carbon dioxide to acetic acid. Hydrogen is an intermediate in acetate formation from organic as well as C1 substrates. Here, we analyzed mutants of the model acetogen Acetobacterium woodii in which either one of the two hydrogenases or both together were genetically deleted. In resting cells of the double mutant, hydrogen formation from fructose was completely abolished and carbon was redirected largely to lactate. The lactate/fructose and lactate/acetate ratios were 1.24 and 2.76, respectively. We then tested for lactate formation from methyl groups (derived from glycine betaine) and carbon monoxide. Indeed, also under these conditions lactate and acetate were formed in equimolar amounts with a lactate/acetate ratio of 1.13. When the electron-bifurcating lactate dehydrogenase/ETF complex was genetically deleted, lactate formation was completely abolished. These experiments demonstrate the capability of A. woodii to produce lactate from fructose but also from promising C1 substrates, methyl groups and carbon monoxide. This adds an important milestone towards generation of a value chain leading from CO2 to value-added compounds. KEY POINTS: • Resting cells of the ΔhydBA/hdcr mutant of Acetobacterium woodii produced lactate from fructose or methyl groups + CO • Lactate formation from methyl groups + CO was completely abolished after deletion of lctBCD • Metabolic engineering of a homoacetogen to lactate formation gives a potential for industrial applications.
Collapse
Affiliation(s)
- Jimyung Moon
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, D-60438, Frankfurt, Germany
| | - Lara M Waschinger
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, D-60438, Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, D-60438, Frankfurt, Germany.
| |
Collapse
|
8
|
Suda K, Sakamoto S, Iguchi A, Tamaki H. Novel quantitative method for individual isotopomer of organic acids from 13C tracer experiments determines carbon flow in acetogenesis. Talanta 2023; 257:124328. [PMID: 36801560 DOI: 10.1016/j.talanta.2023.124328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/04/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Anaerobic microbial acetogenesis is ubiquitous on Earth, and thus plays an important role in the global carbon cycle. The mechanism of carbon fixation in acetogens has attracted great interest from various studies for combatting climate change, and even for studying ancient metabolic pathways. Here, we developed a new, simple method for investigating carbon flows in the metabolic reaction of acetogen by conveniently and accurately determining the relative abundance of individual acetate- and/or formate-isotopomers formed in 13C labeling experiments. We measured the underivatized analyte by gas chromatography-mass spectrometry (GC-MS) coupled with a direct aqueous sample injection technique. The individual abundance of analyte isotopomers was calculated by the mass spectrum analysis using the least-squares approach. The validity of the method was demonstrated by determining known mixtures of unlabeled and 13C-labeled analytes. The developed method was applied to study the carbon fixation mechanism of the well-known acetogen Acetobacterium woodii grown on methanol and bicarbonate. We provided a quantitative reaction model for methanol metabolism of A. woodii, which indicated that methanol was not the sole carbon precursor of the acetate methyl group and that 20-22% of the methyl group was formed from CO2. In contrast, the carboxyl group of acetate appeared to form exclusively by CO2 fixation. Thus, our simple method, without laborious analytical procedures, has broad utility for the study of biochemical and chemical processes related to acetogenesis on Earth.
Collapse
Affiliation(s)
- Konomi Suda
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan.
| | - Sachiko Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| |
Collapse
|
9
|
Moon J, Schubert A, Waschinger LM, Müller V. Reprogramming the metabolism of an acetogenic bacterium to homoformatogenesis. THE ISME JOURNAL 2023:10.1038/s41396-023-01411-2. [PMID: 37061584 DOI: 10.1038/s41396-023-01411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
Methyl groups are abundant in anoxic environments and their utilization as carbon and energy sources by microorganisms involves oxidation of the methyl groups to CO2, followed by transfer of the electrons to an acceptor. In acetogenic bacteria, the electron acceptor is CO2 that is reduced to enzyme bound carbon monoxide, the precursor of the carboxyl group in acetate. Here, we describe the generation of a mutant of the acetogen Acetobacterium woodii in which the last step in methyl group oxidation, formate oxidation to CO2 catalyzed by the HDCR enzyme, has been genetically deleted. The mutant grew on glycine betaine as methyl group donor, and in contrast to the wild type, formed formate alongside acetate, in a 1:2 ratio, demonstrating that methyl group oxidation stopped at the level of formate and reduced electron carriers were reoxidized by CO2 reduction to acetate. In the presence of the alternative electron acceptor caffeate, CO2 was no longer reduced to acetate, formate was the only product and all the carbon went to formate. Apparently, acetogenesis was not required to sustain formatogenic growth. This is the first demonstration of a genetic reprogramming of an acetogen into a formatogen that grows by homoformatogenesis from methyl groups. Formate production from methyl groups is not only of biotechnological interest but also for the mechanism of electron transfer in syntrophic interactions in anoxic environments.
Collapse
Affiliation(s)
- Jimyung Moon
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Anja Schubert
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Lara M Waschinger
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany.
| |
Collapse
|
10
|
Katsyv A, Kumar A, Saura P, Pöverlein MC, Freibert SA, T Stripp S, Jain S, Gamiz-Hernandez AP, Kaila VRI, Müller V, Schuller JM. Molecular Basis of the Electron Bifurcation Mechanism in the [FeFe]-Hydrogenase Complex HydABC. J Am Chem Soc 2023; 145:5696-5709. [PMID: 36811855 PMCID: PMC10021017 DOI: 10.1021/jacs.2c11683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Electron bifurcation is a fundamental energy coupling mechanism widespread in microorganisms that thrive under anoxic conditions. These organisms employ hydrogen to reduce CO2, but the molecular mechanisms have remained enigmatic. The key enzyme responsible for powering these thermodynamically challenging reactions is the electron-bifurcating [FeFe]-hydrogenase HydABC that reduces low-potential ferredoxins (Fd) by oxidizing hydrogen gas (H2). By combining single-particle cryo-electron microscopy (cryoEM) under catalytic turnover conditions with site-directed mutagenesis experiments, functional studies, infrared spectroscopy, and molecular simulations, we show that HydABC from the acetogenic bacteria Acetobacterium woodii and Thermoanaerobacter kivui employ a single flavin mononucleotide (FMN) cofactor to establish electron transfer pathways to the NAD(P)+ and Fd reduction sites by a mechanism that is fundamentally different from classical flavin-based electron bifurcation enzymes. By modulation of the NAD(P)+ binding affinity via reduction of a nearby iron-sulfur cluster, HydABC switches between the exergonic NAD(P)+ reduction and endergonic Fd reduction modes. Our combined findings suggest that the conformational dynamics establish a redox-driven kinetic gate that prevents the backflow of the electrons from the Fd reduction branch toward the FMN site, providing a basis for understanding general mechanistic principles of electron-bifurcating hydrogenases.
Collapse
Affiliation(s)
- Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main 60438, Germany
| | - Anuj Kumar
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main 60438, Germany.,SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg 35032, Germany
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Maximilian C Pöverlein
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Sven A Freibert
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-University of Marburg, Marburg 35032, Germany.,Core Facility "Protein Biochemistry and Spectroscopy", Marburg 35032, Germany
| | - Sven T Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin 14195, Germany
| | - Surbhi Jain
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main 60438, Germany
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main 60438, Germany
| | - Jan M Schuller
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg 35032, Germany
| |
Collapse
|
11
|
Trischler R, Roth J, Sorbara MT, Schlegel X, Müller V. A functional Wood-Ljungdahl pathway devoid of a formate dehydrogenase in the gut acetogens Blautia wexlerae, Blautia luti and beyond. Environ Microbiol 2022; 24:3111-3123. [PMID: 35466558 DOI: 10.1111/1462-2920.16029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
Abstract
Species of the genus Blautia are typical inhabitants of the human gut and considered as beneficial gut microbes. However, their role in the gut microbiome and their metabolic features are poorly understood. Blautia schinkii was described as an acetogenic bacterium, characterized by a functional Wood-Ljungdahl pathway (WLP) of acetogenesis from H2 + CO2 . Here we report that two relatives, Blautia luti and Blautia wexlerae do not grow on H2 + CO2 . Inspection of the genome sequence revealed all genes of the WLP except genes encoding a formate dehydrogenase and an electron-bifurcating hydrogenase. Enzyme assays confirmed this prediction. Accordingly, resting cells neither converted H2 + CO2 nor H2 + HCOOH + CO2 to acetate. Carbon monoxide is an intermediate of the WLP and substrate for many acetogens. B. luti and B. wexlerae had an active CO dehydrogenase and resting cells performed acetogenesis from HCOOH + CO2 + CO, demonstrating a functional WLP. Bioinformatic analyses revealed that many Blautia strains as well as other gut acetogens lack formate dehydrogenases and hydrogenases. Thus, the use of formate instead of H2 + CO2 as an interspecies hydrogen and electron carrier seems to be more common in the gut microbiome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Raphael Trischler
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Jennifer Roth
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Matthew T Sorbara
- Department Molecular and Cellular Biology, University of Guelph, Ontario, N1G 2W1, Canada
| | - Xenia Schlegel
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| |
Collapse
|
12
|
Litty D, Kremp F, Müller V. One substrate, many fates: different ways of methanol utilization in the acetogen Acetobacterium woodii. Environ Microbiol 2022; 24:3124-3133. [PMID: 35416389 DOI: 10.1111/1462-2920.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/28/2022]
Abstract
Acetogenic bacteria such as Acetobacterium woodii use the Wood-Ljungdahl pathway (WLP) for fixation of CO2 and energy conservation. This pathway enables conversion of diverse substrates to the main product of acetogenesis, acetate. Methyl group containing substrates such as methanol or methylated compounds, derived from pectin, are abundant in the environment and a source for CO2 . Methyl groups enter the WLP at the level of methyltetrahydrofolic acid (methyl-THF). For methyl transfer from methanol to THF a substrate specific methyltransferase system is required. In this study, we used genetic methods to identify mtaBC2A (Awo_c22760- Awo_c22740) as the methanol specific methyltransferase system of A. woodii. After methyl transfer, methyl-THF serves as carbon and/or electron- source and the respiratory Rnf complex is required for redox homeostasis if methanol+CO2 is the substrate. Resting cells fed with methanol+CO2 , indeed converted methanol to acetate in a 4:3 stoichiometry. When methanol was fed in combination with other electron sources such as H2 + CO2 or CO, methanol was converted Rnf-independently and the methyl group was condensed with CO to build acetate. When fed in combination with alternative electron sinks such as caffeate methanol was oxidized only and resulting electrons were used for non-acetogenic growth. These different pathways for the conversion of methyl-group containing substrates enable acetogens to adapt to various ecological niches and to syntrophic communities. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dennis Litty
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Florian Kremp
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| |
Collapse
|
13
|
Biosynthesis of butyrate from methanol and carbon monoxide by recombinant Acetobacterium woodii. Int Microbiol 2022; 25:551-560. [PMID: 35179672 PMCID: PMC9307552 DOI: 10.1007/s10123-022-00234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 10/27/2022]
Abstract
Methanol is one of the most widely produced organic substrates from syngas and can serve as a bio-feedstock to cultivate acetogenic bacteria which allows a major contribution to reducing greenhouse gas. Acetobacterium woodii is one of the very few acetogens that can utilize methanol to produce acetate as sole product. Since A. woodii is genetically tractable, it is an interesting candidate to introduce recombinant pathways for production of bio-commodities from methanol. In this study, we introduced the butyrate production operon from a related acetogen, Eubacterium callanderi KIST612, into A. woodii and show a stable production of butyrate from methanol. This study also reveals how butyrate production by recombinant A. woodii strains can be enhanced with addition of electrons in the form of carbon monoxide. Our results not only show a stable expression system of non-native enzymes in A. woodii but also increase in the product spectrum of A. woodii to compounds with higher economic value.
Collapse
|
14
|
Moon J, Müller V. Physiology and genetics of ethanologenesis in the acetogenic bacterium Acetobacterium woodii. Environ Microbiol 2021; 23:6953-6964. [PMID: 34448343 DOI: 10.1111/1462-2920.15739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/22/2021] [Indexed: 11/28/2022]
Abstract
The acetogenic model bacterium Acetobacterium woodii is well-known to produce acetate by homoacetogenesis from sugars, but under certain conditions minor amounts of ethanol are produced in addition. Here, we have aimed to identify physiological conditions that increase electron and carbon flow towards ethanol production. Ethanol was only produced from fructose but not from H2 + CO2 , formate, pyruvate, lactate or alanine. In the absence of Na+ , the Wood-Ljungdahl pathway (WLP) of acetate formation is not functional. Therefore, the ethanol yield increased to 0.42 mol/mol (ethanol/fructose) with an ethanol/acetate ratio of 0.28 mol/mol. The presence of bicarbonate/CO2 stimulated electron and carbon flow through the WLP and led to less ethanol produced. Of the 11 potential alcohol dehydrogenase genes, the most upregulated during ethanologenesis was adh4. A deletion of adh4 led to an increase in ethanol production by 100% to a yield of 0.79 mol/mol (ethanol/fructose); this correlated with an increase in transcript abundance of adh6. In sum, our studies revealed low Na+ and bicarbonate/CO2 as factors that trigger ethanol formation and that a deletion of adh4 drastically increased ethanol formation in A. woodii.
Collapse
Affiliation(s)
- Jimyung Moon
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, D-60438, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, D-60438, Germany
| |
Collapse
|
15
|
Moon J, Dönig J, Kramer S, Poehlein A, Daniel R, Müller V. Formate metabolism in the acetogenic bacterium Acetobacterium woodii. Environ Microbiol 2021; 23:4214-4227. [PMID: 33989450 DOI: 10.1111/1462-2920.15598] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Acetogenic bacteria are already established as biocatalysts for production of high-value compounds from C1 substrates such as H2 + CO2 or CO. However, little is known about the physiology, biochemistry and bioenergetics of acetogenesis from formate, an interesting feedstock for biorefineries. Here, we analysed formate metabolism in the model acetogen Acetobacterium woodii. Cells grew optimally on 200 mM formate to an optical density of 0.6. Formate was exclusively converted to acetate (and CO2 ) with a ratio of 4.4:1. Transcriptome analyses revealed genes/enzymes involved in formate metabolism. Strikingly, A. woodii has two genes potentially encoding a formyl-THF synthetase, fhs1 and fhs2. fhs2 forms an operon with a gene encoding a potential formate transporter, fdhC. Deletion of fhs2/fdhC led to a reduced growth rate, formate consumption and optical densities. Acetogenesis from H2 + CO2 was accompanied by transient formate production; strikingly, formate reutilization was completely abolished in the Δfhs2/fdhC mutant. Take together, our studies gave the first detailed insights into the formatotrophic lifestyle of A. woodii.
Collapse
Affiliation(s)
- Jimyung Moon
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, D-60438, Germany
| | - Judith Dönig
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, D-60438, Germany
| | - Sina Kramer
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, D-60438, Germany
| | - Anja Poehlein
- Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg August University, Grisebachstr. 8, Göttingen, D-37077, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg August University, Grisebachstr. 8, Göttingen, D-37077, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, D-60438, Germany
| |
Collapse
|
16
|
Trifunović D, Moon J, Poehlein A, Daniel R, Müller V. Growth of the acetogenic bacterium Acetobacterium woodii on glycerol and dihydroxyacetone. Environ Microbiol 2021; 23:2648-2658. [PMID: 33817956 DOI: 10.1111/1462-2920.15503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/03/2021] [Indexed: 11/28/2022]
Abstract
More than 2 million tons of glycerol are produced during industrial processes each year and, therefore, glycerol is an inexpensive feedstock to produce biocommodities by bacterial fermentation. Acetogenic bacteria are interesting production platforms and there have been few reports in the literature on glycerol utilization by this ecophysiologically important group of strictly anaerobic bacteria. Here, we show that the model acetogen Acetobacterium woodii DSM1030 is able to grow on glycerol, but contrary to expectations, only for 2-3 transfers. Transcriptome analysis revealed the expression of the pdu operon encoding a propanediol dehydratase along with genes encoding bacterial microcompartments. Deletion of pduAB led to a stable growth of A. woodii on glycerol, consistent with the hypothesis that the propanediol dehydratase also acts on glycerol leading to a toxic end-product. Glycerol is oxidized to acetate and the reducing equivalents are reoxidized by reducing CO2 in the Wood-Ljungdahl pathway, leading to an additional acetate. The possible oxidation product of glycerol, dihydroxyacetone (DHA), also served as carbon and energy source for A. woodii and growth was stably maintained on that compound. DHA oxidation was also coupled to CO2 reduction. Based on transcriptome data and enzymatic analysis we present the first metabolic and bioenergetic schemes for glycerol and DHA utilization in A. woodii.
Collapse
Affiliation(s)
- Dragan Trifunović
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, Frankfurt, 60438, Germany
| | - Jimyung Moon
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, Frankfurt, 60438, Germany
| | - Anja Poehlein
- Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg August University, Grisebachstr. 8, Göttingen, D-37077, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg August University, Grisebachstr. 8, Göttingen, D-37077, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, Frankfurt, 60438, Germany
| |
Collapse
|
17
|
Wiechmann A, Trifunović D, Klein S, Müller V. Homologous production, one-step purification, and proof of Na + transport by the Rnf complex from Acetobacterium woodii, a model for acetogenic conversion of C1 substrates to biofuels. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:208. [PMID: 33342435 PMCID: PMC7751120 DOI: 10.1186/s13068-020-01851-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/04/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Capture and storage of the energy carrier hydrogen as well as of the greenhouse gas carbon dioxide are two major problems that mankind faces currently. Chemical catalysts have been developed, but only recently a group of anaerobic bacteria that convert hydrogen and carbon dioxide to acetate, formate, or biofuels such as ethanol has come into focus, the acetogenic bacteria. These biocatalysts produce the liquid organic hydrogen carrier formic acid from H2 + CO2 or even carbon monoxide with highest rates ever reported. The autotrophic, hydrogen-oxidizing, and CO2-reducing acetogens have in common a specialized metabolism to catalyze CO2 reduction, the Wood-Ljungdahl pathway (WLP). The WLP does not yield net ATP, but is hooked up to a membrane-bound respiratory chain that enables ATP synthesis coupled to CO2 fixation. The nature of the respiratory enzyme has been an enigma since the discovery of these bacteria and has been unraveled in this study. RESULTS We have produced a His-tagged variant of the ferredoxin:NAD oxidoreductase (Rnf complex) from the model acetogen Acetobacterium woodii, solubilized the enzyme from the cytoplasmic membrane, and purified it by Ni2+-NTA affinity chromatography. The enzyme was incorporated into artificial liposomes and catalyzed Na+ transport coupled to ferredoxin-dependent NAD reduction. Our results using the purified enzyme do not only verify that the Rnf complex from A. woodii is Na+-dependent, they also demonstrate for the first time that this membrane-embedded molecular engine creates a Na+ gradient across the membrane of A. woodii which can be used for ATP synthesis. DISCUSSION We present a protocol for homologous production and purification for an Rnf complex. The enzyme catalyzed electron-transfer driven Na+ export and, thus, our studies provided the long-awaited biochemical proof that the Rnf complex is a respiratory enzyme.
Collapse
Affiliation(s)
- Anja Wiechmann
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Dragan Trifunović
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Sophie Klein
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Volker Müller
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Chowdhury NP, Moon J, Müller V. Adh4, an alcohol dehydrogenase controls alcohol formation within bacterial microcompartments in the acetogenic bacterium Acetobacterium woodii. Environ Microbiol 2020; 23:499-511. [PMID: 33283462 DOI: 10.1111/1462-2920.15340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 01/23/2023]
Abstract
Acetobacterium woodii utilizes the Wood-Ljungdahl pathway for reductive synthesis of acetate from carbon dioxide. However, A. woodii can also perform non-acetogenic growth on 1,2-propanediol (1,2-PD) where instead of acetate, equal amounts of propionate and propanol are produced as metabolic end products. Metabolism of 1,2-PD occurs via encapsulated metabolic enzymes within large proteinaceous bodies called bacterial microcompartments. While the genome of A. woodii harbours 11 genes encoding putative alcohol dehydrogenases, the BMC-encapsulated propanol-generating alcohol dehydrogenase remains unidentified. Here, we show that Adh4 of A. woodii is the alcohol dehydrogenase required for propanol/ethanol formation within these microcompartments. It catalyses the NADH-dependent reduction of propionaldehyde or acetaldehyde to propanol or ethanol and primarily functions to recycle NADH within the BMC. Removal of adh4 gene from the A. woodii genome resulted in slow growth on 1,2-PD and the mutant displayed reduced propanol and enhanced propionate formation as a metabolic end product. In sum, the data suggest that Adh4 is responsible for propanol formation within the BMC and is involved in redox balancing in the acetogen, A. woodii.
Collapse
Affiliation(s)
- Nilanjan Pal Chowdhury
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Frankfurt, Germany
| | - Jimyung Moon
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Frankfurt, Germany
| |
Collapse
|
19
|
Schwarz FM, Ciurus S, Jain S, Baum C, Wiechmann A, Basen M, Müller V. Revealing formate production from carbon monoxide in wild type and mutants of Rnf- and Ech-containing acetogens, Acetobacterium woodii and Thermoanaerobacter kivui. Microb Biotechnol 2020; 13:2044-2056. [PMID: 32959527 PMCID: PMC7533326 DOI: 10.1111/1751-7915.13663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 01/18/2023] Open
Abstract
Acetogenic bacteria have gained much attraction in recent years as they can produce different biofuels and biochemicals from H2 plus CO2 or even CO alone, therefore opening a promising alternative route for the production of biofuels from renewable sources compared to existing sugar-based routes. However, CO metabolism still raises questions concerning the biochemistry and bioenergetics in many acetogens. In this study, we focused on the two acetogenic bacteria Acetobacterium woodii and Thermoanaerobacter kivui which, so far, are the only identified acetogens harbouring a H2 -dependent CO2 reductase and furthermore belong to different classes of 'Rnf'- and 'Ech-acetogens'. Both strains catalysed the conversion of CO into the bulk chemical acetate and formate. Formate production was stimulated by uncoupling the energy metabolism from the Wood-Ljungdahl pathway, and specific rates of 1.44 and 1.34 mmol g-1 h-1 for A. woodii ∆rnf and T. kivui wild type were reached. The demonstrated CO-based formate production rates are, to the best of our knowledge, among the highest rates ever reported. Using mutants of ∆hdcr, ∆cooS, ∆hydBA, ∆rnf and ∆ech2 with deficiencies in key enzyme activities of the central metabolism enabled us to postulate two different CO utilization pathways in these two model organisms.
Collapse
Affiliation(s)
- Fabian M. Schwarz
- Molecular Microbiology and BioenergeticsInstitute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Sarah Ciurus
- Molecular Microbiology and BioenergeticsInstitute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Surbhi Jain
- Molecular Microbiology and BioenergeticsInstitute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Christoph Baum
- MicrobiologyInstitute of Biological SciencesUniversity RostockRostockGermany
| | - Anja Wiechmann
- Molecular Microbiology and BioenergeticsInstitute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Mirko Basen
- MicrobiologyInstitute of Biological SciencesUniversity RostockRostockGermany
| | - Volker Müller
- Molecular Microbiology and BioenergeticsInstitute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| |
Collapse
|
20
|
Chowdhury NP, Alberti L, Linder M, Müller V. Exploring Bacterial Microcompartments in the Acetogenic Bacterium Acetobacterium woodii. Front Microbiol 2020; 11:593467. [PMID: 33178174 PMCID: PMC7593272 DOI: 10.3389/fmicb.2020.593467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
The strictly anaerobic acetogenic bacterium Acetobacterium woodii is metabolically diverse and grows on variety of substrates which includes H2 + CO2, sugars, alcohols and diols. It is unique in producing bacterial microcompartments (BMC) during growth on different substrates such as 1,2-propanediol, 2,3-butanediol, ethanol or fructose. In this study, we analyzed the genetic organization and expression of the BMC genes within the A. woodii genome, the previously described 18 gene pdu cluster as well as four other cluster potentially encoding one or two shell proteins. Expression analysis of respective gene clusters revealed that the pdu gene cluster is highly expressed during growth on 1,2-PD, 2,3-BD, ethanol and ethylene glycol. The promoter region upstream of the pduA gene was identified and used to establish a reporter gene assay based on chloramphenicol acetyl transferase as a reporter protein. The reporter gene assay confirmed the qPCR data and demonstrated that 1,2-PD is superior over ethanol and ethylene glycol as inducer. BMCs were enriched from cells grown on 2,3- BD and 1,2-PD and shown to have typical structure in electron micrographs. Biochemical analyses revealed several of the protein encoded by the pdu cluster to be part of the isolated BMCs. These data demonstrate a very unique situation in A. woodii in which apparently one BMC gene cluster in expressed during growth on different substrates.
Collapse
Affiliation(s)
- Nilanjan Pal Chowdhury
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Lydia Alberti
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Mark Linder
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
21
|
Moon J, Jain S, Müller V, Basen M. Homoacetogenic Conversion of Mannitol by the Thermophilic Acetogenic Bacterium Thermoanaerobacter kivui Requires External CO 2. Front Microbiol 2020; 11:571736. [PMID: 33042077 PMCID: PMC7522397 DOI: 10.3389/fmicb.2020.571736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/24/2020] [Indexed: 01/12/2023] Open
Abstract
Acetogenic microorganisms utilize organic substrates such as sugars in addition to hydrogen (H2) + carbon dioxide (CO2). Recently, we reported that the thermophilic acetogenic microorganism Thermoanaerobacter kivui is among the few acetogens that utilize the sugar alcohol mannitol, dependent on a gene cluster encoding mannitol uptake, phosphorylation and oxidation of mannitol-1-phosphate to fructose-6-phosphate. Here, we studied mannitol metabolism with resting cells of T. kivui; and found that mannitol was "fermented" in a homoacetogenic manner, i.e., acetate was the sole product if HCO3 - was present. We found an acetate:mannitol ratio higher than 3, indicating the requirement of external CO2, and the involvement of the WLP as terminal electron accepting pathway. In the absence of CO2 (or bicarbonate, HCO3 -), however, the cells still converted mannitol to acetate, but slowly and with stoichiometric amounts of H2 formed in addition, resulting in a "mixed" fermentation. This showed that-in addition to the WLP-the cells used an additional electron sink-protons, making up for the "missing" CO2 as electron sink. Growth was 2.5-fold slower in the absence of external CO2, while the addition of formate completely restored the growth rate. A model for mannitol metabolism is presented, involving the major three hydrogenases, to explain how [H] make their way from glycolysis into the products acetate or acetate + H2.
Collapse
Affiliation(s)
- Jimyung Moon
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Surbhi Jain
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Mirko Basen
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
22
|
It does not always take two to tango: "Syntrophy" via hydrogen cycling in one bacterial cell. ISME JOURNAL 2020; 14:1561-1570. [PMID: 32203116 PMCID: PMC7242416 DOI: 10.1038/s41396-020-0627-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 11/10/2022]
Abstract
Interspecies hydrogen transfer in anoxic ecosystems is essential for the complete microbial breakdown of organic matter to methane. Acetogenic bacteria are key players in anaerobic food webs and have been considered as prime candidates for hydrogen cycling. We have tested this hypothesis by mutational analysis of the hydrogenase in the model acetogen Acetobacterium woodii. Hydrogenase-deletion mutants no longer grew on H2 + CO2 or organic substrates such as fructose, lactate, or ethanol. Heterotrophic growth could be restored by addition of molecular hydrogen to the culture, indicating that hydrogen is an intermediate in heterotrophic growth. Indeed, hydrogen production from fructose was detected in a stirred-tank reactor. The mutant grew well on organic substrates plus caffeate, an alternative electron acceptor that does not require molecular hydrogen but NADH as reductant. These data are consistent with the notion that molecular hydrogen is produced from organic substrates and then used as reductant for CO2 reduction. Surprisingly, hydrogen cycling in A. woodii is different from the known modes of interspecies or intraspecies hydrogen cycling. Our data are consistent with a novel type of hydrogen cycling that connects an oxidative and reductive metabolic module in one bacterial cell, “intracellular syntrophy.”
Collapse
|
23
|
Trifunović D, Berghaus N, Müller V. Growth of the acetogenic bacterium Acetobacterium woodii by dismutation of acetaldehyde to acetate and ethanol. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:58-62. [PMID: 31715654 DOI: 10.1111/1758-2229.12811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Acetogenic bacteria are a group of strictly anaerobic bacteria that may have been first life forms on Earth since they employ an ancient pathway for CO2 fixation into acetyl-CoA that is coupled to the synthesis of ATP, the Wood-Ljungdahl pathway. Electrons for CO2 reduction are derived from oxidation of H2 or CO and thus, these bacteria can grow lithotrophically on gases present on early Earth. Among the organic molecules present on early Earth is acetaldehyde, a highly volatile C2 compound. Here, we demonstrate that the acetogenic model bacterium Acetobacterium woodii grows on acetaldehyde. Acetaldehyde is dismutated to ethanol and acetyl-CoA, most likely by the bifunctional alcohol dehydrogenase AdhE. Acetyl-CoA is converted to acetate by two subsequent enzymes, phosphotransacetylase and acetate kinase, accompanied by the synthesis of ATP by substrate-level phosphorylation. Apparently, growth on acetaldehyde does not employ the Wood-Ljungdahl pathway. Our finding opens the possibility of a simple and ancient metabolic pathway with only three enzymes that allows for biomass (acetyl-CoA) and ATP formation on early Earth.
Collapse
Affiliation(s)
- Dragan Trifunović
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Natalie Berghaus
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| |
Collapse
|
24
|
Renewable methanol and formate as microbial feedstocks. Curr Opin Biotechnol 2019; 62:168-180. [PMID: 31733545 DOI: 10.1016/j.copbio.2019.10.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
Methanol and formate are attractive microbial feedstocks as they can be sustainably produced from CO2 and renewable energy, are completely miscible, and are easy to store and transport. Here, we provide a biochemical perspective on microbial growth and bioproduction using these compounds. We show that anaerobic growth of acetogens on methanol and formate is more efficient than on H2/CO2 or CO. We analyze the aerobic C1 assimilation pathways and suggest that new-to-nature routes could outperform their natural counterparts. We further discuss practical bioprocessing aspects related to growth on methanol and formate, including feedstock toxicity. While challenges in realizing sustainable production from methanol and formate still exist, the utilization of these feedstocks paves the way towards a truly circular carbon economy.
Collapse
|
25
|
Dönig J, Müller V. Alanine, a Novel Growth Substrate for the Acetogenic Bacterium Acetobacterium woodii. Appl Environ Microbiol 2018; 84:e02023-18. [PMID: 30242008 PMCID: PMC6238063 DOI: 10.1128/aem.02023-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/16/2018] [Indexed: 11/20/2022] Open
Abstract
Acetogenic bacteria are an ecophysiologically important group of strictly anaerobic bacteria that grow lithotrophically on H2 plus CO2 or on CO or heterotrophically on different substrates such as sugars, alcohols, aldehydes, or acids. Amino acids are rarely used. Here, we describe that the model acetogen Acetobacterium woodii can use alanine as the sole carbon and energy source, which is in contrast to the description of the type strain. The alanine degradation genes have been identified and characterized. A key to alanine degradation is an alanine dehydrogenase which has been characterized biochemically. The resulting pyruvate is further degraded to acetate by the known pathways involving the Wood-Ljungdahl pathway. Our studies culminate in a metabolic and bioenergetic scheme for alanine-dependent acetogenesis in A. woodiiIMPORTANCE Peptides and amino acids are widespread in nature, but there are only a few reports that demonstrated use of amino acids as carbon and energy sources by acetogenic bacteria, a central and important group in the anaerobic food web. Our finding that A. woodii can perform alanine oxidation coupled to reduction of carbon dioxide not only increases the number of substrates that can be used by this model acetogen but also raises the possibility that other acetogens may also be able to use alanine. Indeed, the alanine genes are also present in at least two more acetogens, for which growth on alanine has not been reported so far. Alanine may be a promising substrate for industrial fermentations, since acid formation goes along with the production of a base (NH3) and pH regulation is a minor issue.
Collapse
Affiliation(s)
- Judith Dönig
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
26
|
Kremp F, Poehlein A, Daniel R, Müller V. Methanol metabolism in the acetogenic bacterium Acetobacterium woodii. Environ Microbiol 2018; 20:4369-4384. [PMID: 30003650 DOI: 10.1111/1462-2920.14356] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/07/2018] [Indexed: 11/29/2022]
Abstract
Methanol derived from plant tissue is ubiquitous in anaerobic sediments and a good substrate for anaerobes growing on C1 compounds such as methanogens and acetogens. In contrast to methanogens little is known about the physiology, biochemistry and bioenergetics of methanol utilization in acetogenic bacteria. To fill this gap, we have used the model acetogen Acetobacterium woodii to study methanol metabolism using physiological and biochemical experiments paired with molecular studies and transcriptome analysis. These studies identified the genes and enzymes involved in acetogenesis from methanol and the redox carriers involved. We will present the first comprehensive model for carbon and electron flow from methanol in an acetogen and the bioenergetics of acetogenesis from methanol.
Collapse
Affiliation(s)
- Florian Kremp
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Anja Poehlein
- Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg August University, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg August University, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| |
Collapse
|
27
|
The Rnf Complex Is an Energy-Coupled Transhydrogenase Essential To Reversibly Link Cellular NADH and Ferredoxin Pools in the Acetogen Acetobacterium woodii. J Bacteriol 2018; 200:JB.00357-18. [PMID: 30126940 DOI: 10.1128/jb.00357-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/13/2018] [Indexed: 11/20/2022] Open
Abstract
The Rnf complex is a respiratory enzyme that catalyzes the oxidation of reduced ferredoxin to the reduction of NAD+, and the negative free energy change of this reaction is used to generate a transmembrane ion gradient. In one class of anaerobic acetogenic bacteria, the Rnf complex is believed to be essential for energy conservation and autotrophic growth. We describe here a methodology for markerless mutagenesis in the model bacterium of this class, Acetobacterium woodii, which enabled us to delete the rnf genes and to test their in vivo role. The rnf mutant did not grow on H2 plus CO2, nor did it produce acetate or ATP from H2 plus CO2, and ferredoxin:NAD+ oxidoreductase activity and Na+ translocation were also completely lost, supporting the hypothesis that the Rnf complex is the only respiratory enzyme in this metabolism. Unexpectedly, the mutant also did not grow on low-energy substrates, such as ethanol or lactate. Oxidation of these substrates is not coupled to the reduction of ferredoxin but only of NAD+, and we speculated that the growth phenotype is caused by a loss of reduced ferredoxin, indispensable for biosynthesis and CO2 reduction. The electron-bifurcating hydrogenase of A. woodii reduces ferredoxin, and indeed, the addition of H2 to the cultures restored growth on ethanol and lactate. This is consistent with the hypothesis that endergonic reduction of ferredoxin with NADH is driven by reverse electron transport catalyzed by the Rnf complex, which renders the Rnf complex essential also for growth on low-energy substrates.IMPORTANCE Ferredoxin and NAD+ are key electron carriers in anaerobic bacteria, but energetically, they are not equivalent, since the redox potential of ferredoxin is lower than that of the NADH/NAD+ couple. We describe by mutant studies in Acetobacterium woodii that the main function of Rnf is to energetically link cellular pools of ferredoxin and NAD+ When ferredoxin is greater than NADH, exergonic electron flow from ferredoxin to NAD+ generates a chemiosmotic potential. This is essential for energy conservation during autotrophic growth. When NADH is greater than ferredoxin, Rnf works in reverse. This reaction is essential for growth on low-energy substrates to provide reduced ferredoxin, indispensable for biosynthesis and CO2 reduction. Our studies put a new perspective on the cellular function of the membrane-bound ion-translocating Rnf complex widespread in bacteria.
Collapse
|
28
|
Lechtenfeld M, Heine J, Sameith J, Kremp F, Müller V. Glycine betaine metabolism in the acetogenic bacteriumAcetobacterium woodii. Environ Microbiol 2018; 20:4512-4525. [DOI: 10.1111/1462-2920.14389] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Mats Lechtenfeld
- Department of Molecular Microbiology & BioenergeticsInstitute of Molecular Biosciences, Johann Wolfgang Goethe University Max‐von‐Laue Str. 9, D‐60438 Frankfurt Germany
| | - Julia Heine
- Department of Molecular Microbiology & BioenergeticsInstitute of Molecular Biosciences, Johann Wolfgang Goethe University Max‐von‐Laue Str. 9, D‐60438 Frankfurt Germany
| | - Janin Sameith
- Department of Molecular Microbiology & BioenergeticsInstitute of Molecular Biosciences, Johann Wolfgang Goethe University Max‐von‐Laue Str. 9, D‐60438 Frankfurt Germany
| | - Florian Kremp
- Department of Molecular Microbiology & BioenergeticsInstitute of Molecular Biosciences, Johann Wolfgang Goethe University Max‐von‐Laue Str. 9, D‐60438 Frankfurt Germany
| | - Volker Müller
- Department of Molecular Microbiology & BioenergeticsInstitute of Molecular Biosciences, Johann Wolfgang Goethe University Max‐von‐Laue Str. 9, D‐60438 Frankfurt Germany
| |
Collapse
|
29
|
Mayer A, Weuster-Botz D. Reaction engineering analysis of the autotrophic energy metabolism of Clostridium aceticum. FEMS Microbiol Lett 2018; 364:4562590. [PMID: 29069379 DOI: 10.1093/femsle/fnx219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/17/2017] [Indexed: 11/13/2022] Open
Abstract
Acetogenesis with CO2:H2 or CO via the reductive acetyl-CoA pathway does not provide any net ATP formation in homoacetogenic bacteria. Autotrophic energy conservation is coupled to the generation of chemiosmotic H+ or Na+ gradients across the cytoplasm membrane using either a ferredoxin:NAD+ oxidoreductase (Rnf), a ferredoxin:H+ oxidoreductase (Ech) or substrate-level phosphorylation via cytochromes. The first isolated acetogenic bacterium Clostridium aceticum shows both cytochromes and Rnf complex, putting it into an outstanding position. Autotrophic batch processes with continuous gas supply were performed in fully controlled stirred-tank bioreactors to elucidate energy metabolism of C. aceticum. Varying the initial Na+ concentration in the medium showed sodium-dependent growth of C. aceticum with a growth optimum between 60 and 90 mM Na+. The addition of the Na+-selective ionophore ETH2120 or the protonophore CCCP or the H+/cation-antiporter monensin revealed that an H+ gradient is used as primary energy conservation mechanism, which strengthens the exceptional position of C. aceticum as acetogenic bacterium showing an H+-dependent energy conservation mechanism as well as Na+-dependent growth.
Collapse
|
30
|
Molecular basis of the flavin-based electron-bifurcating caffeyl-CoA reductase reaction. FEBS Lett 2018; 592:332-342. [DOI: 10.1002/1873-3468.12971] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 11/07/2022]
|
31
|
Bengelsdorf FR, Beck MH, Erz C, Hoffmeister S, Karl MM, Riegler P, Wirth S, Poehlein A, Weuster-Botz D, Dürre P. Bacterial Anaerobic Synthesis Gas (Syngas) and CO 2+H 2 Fermentation. ADVANCES IN APPLIED MICROBIOLOGY 2018; 103:143-221. [PMID: 29914657 DOI: 10.1016/bs.aambs.2018.01.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Anaerobic bacterial gas fermentation gains broad interest in various scientific, social, and industrial fields. This microbial process is carried out by a specific group of bacterial strains called acetogens. All these strains employ the Wood-Ljungdahl pathway but they belong to different taxonomic groups. Here we provide an overview of the metabolism of acetogens and naturally occurring products. Characteristics of 61 strains were summarized and selected acetogens described in detail. Acetobacterium woodii, Clostridium ljungdahlii, and Moorella thermoacetica serve as model organisms. Results of approaches such as genome-scale modeling, proteomics, and transcriptomics are discussed. Metabolic engineering of acetogens can be used to expand the product portfolio to platform chemicals and to study different aspects of cell physiology. Moreover, the fermentation of gases requires specific reactor configurations and the development of the respective technology, which can be used for an industrial application. Even though the overall process will have a positive effect on climate, since waste and greenhouse gases could be converted into commodity chemicals, some legislative barriers exist, which hamper successful exploitation of this technology.
Collapse
Affiliation(s)
- Frank R Bengelsdorf
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany.
| | - Matthias H Beck
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Catarina Erz
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Sabrina Hoffmeister
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Michael M Karl
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Peter Riegler
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Steffen Wirth
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| | - Dirk Weuster-Botz
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|
32
|
De Tissera S, Köpke M, Simpson SD, Humphreys C, Minton NP, Dürre P. Syngas Biorefinery and Syngas Utilization. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017. [DOI: 10.1007/10_2017_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
|
34
|
Schuchmann K, Vonck J, Müller V. A bacterial hydrogen-dependent CO2 reductase forms filamentous structures. FEBS J 2016; 283:1311-22. [PMID: 26833643 DOI: 10.1111/febs.13670] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/16/2016] [Accepted: 01/25/2016] [Indexed: 12/01/2022]
Abstract
Interconversion of CO2 and formic acid is an important reaction in bacteria. A novel enzyme complex that directly utilizes molecular hydrogen as electron donor for the reversible reduction of CO2 has recently been identified in the Wood-Ljungdahl pathway of an acetogenic bacterium. This pathway is utilized for carbon fixation as well as energy conservation. Here we describe the further characterization of the quaternary structure of this enzyme complex and the unexpected behavior of this enzyme in polymerizing into filamentous structures. Polymerization of metabolic enzymes into similar structures has been observed only in rare cases but the increasing number of examples point towards a more general characteristic of enzyme functioning. Polymerization of the purified enzyme into ordered filaments of more than 0.1 μm in length was only dependent on the presence of divalent cations. Polymerization was a reversible process and connected to the enzymatic activity of the oxygen-sensitive enzyme with the filamentous form being the most active state.
Collapse
Affiliation(s)
- Kai Schuchmann
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Ethylene Glycol Metabolism in the Acetogen Acetobacterium woodii. J Bacteriol 2016; 198:1058-65. [PMID: 26787767 DOI: 10.1128/jb.00942-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/12/2016] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED The acetogenic bacterium Acetobacterium woodii is able to grow by the oxidation of diols, such as 1,2-propanediol, 2,3-butanediol, or ethylene glycol. Recent analyses demonstrated fundamentally different ways for oxidation of 1,2-propanediol and 2,3-butanediol. Here, we analyzed the metabolism of ethylene glycol. Our data demonstrate that ethylene glycol is dehydrated to acetaldehyde, which is then disproportionated to ethanol and acetyl coenzyme A (acetyl-CoA). The latter is further converted to acetate, and this pathway is coupled to ATP formation by substrate-level phosphorylation. Apparently, the product ethanol is in part further oxidized and the reducing equivalents are recycled by reduction of CO2 to acetate in the Wood-Ljungdahl pathway. Biochemical data as well as the results of protein synthesis analysis are consistent with the hypothesis that the propane diol dehydratase (PduCDE) and CoA-dependent propionaldehyde dehydrogenase (PduP) proteins, encoded by the pdu gene cluster, also catalyze ethylene glycol dehydration to acetaldehyde and its CoA-dependent oxidation to acetyl-CoA. Moreover, genes encoding bacterial microcompartments as part of the pdu gene cluster are also expressed during growth on ethylene glycol, arguing for a dual function of the Pdu microcompartment system. IMPORTANCE Acetogenic bacteria are characterized by their ability to use CO2 as a terminal electron acceptor by a specific pathway, the Wood-Ljungdahl pathway, enabling in most acetogens chemolithoautotrophic growth with H2 and CO2. However, acetogens are very versatile and can use a wide variety of different substrates for growth. Here we report on the elucidation of the pathway for utilization of ethylene glycol by the model acetogen Acetobacterium woodii. This diol is degraded by dehydration to acetaldehyde followed by a disproportionation to acetate and ethanol. We present evidence that this pathway is catalyzed by the same enzyme system recently described for the utilization of 1,2-propanediol. The enzymes for ethylene glycol utilization seem to be encapsulated in protein compartments, known as bacterial microcompartments.
Collapse
|
36
|
Brandt K, Müller DB, Hoffmann J, Langer JD, Brutschy B, Morgner N, Müller V. Stoichiometry and deletion analyses of subunits in the heterotrimeric F-ATP synthasecring from the acetogenic bacteriumAcetobacterium woodii. FEBS J 2015; 283:510-20. [DOI: 10.1111/febs.13606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Karsten Brandt
- Molecular Microbiology and Bioenergetics; Institute of Molecular Biosciences; Goethe University Frankfurt am Main; Germany
| | - Daniel B. Müller
- Molecular Microbiology and Bioenergetics; Institute of Molecular Biosciences; Goethe University Frankfurt am Main; Germany
| | - Jan Hoffmann
- Institute for Physical and Theoretical Chemistry; Goethe University Frankfurt am Main; Germany
| | - Julian D. Langer
- Department of Molecular Membrane Biology; Max-Planck-Institute of Biophysics; Frankfurt am Main Germany
| | - Bernd Brutschy
- Institute for Physical and Theoretical Chemistry; Goethe University Frankfurt am Main; Germany
| | - Nina Morgner
- Institute for Physical and Theoretical Chemistry; Goethe University Frankfurt am Main; Germany
| | - Volker Müller
- Molecular Microbiology and Bioenergetics; Institute of Molecular Biosciences; Goethe University Frankfurt am Main; Germany
| |
Collapse
|
37
|
Bertsch J, Siemund AL, Kremp F, Müller V. A novel route for ethanol oxidation in the acetogenic bacterium Acetobacterium woodii: the acetaldehyde/ethanol dehydrogenase pathway. Environ Microbiol 2015; 18:2913-22. [PMID: 26472176 DOI: 10.1111/1462-2920.13082] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ethanol is a common substrate for anaerobic microorganisms despite its high redox potential (E0' etha- nol/acetaldehyde = -190mV), which does not allow for NAD(+) reduction. How this thermodynamic barrier is overcome is largely unknown. The acetogenic bacterium Acetobacterium woodii can also grow on ethanol. The genome harbours 11 genes encoding putative alcohol dehydrogenases, but only one, adhE, was upregulated during growth on ethanol. The bifunctional acetaldehyde/ethanol dehydrogenase (AdhE) was purified from ethanol-grown cells. It catalysed the NAD(+) - and CoA-dependent oxidation of ethanol via acetaldehyde to acetyl-CoA. The enzyme was regulated by free coenzyme A: in the absence of coenzyme A, the Km value for ethanol was shifted from 3.4 to 40 mM. The alcohol dehydrogenase domain could also oxidize 1-propanol and 1-butanol; however, the aldehyde dehydrogenase domain was highly specific for acetaldehyde as substrate. Apparently, the bifunctional AdhE allows for NAD(+) reduction by lowering the concentration of acetaldehyde, which makes the first oxidation reaction thermodynamically feasible.
Collapse
Affiliation(s)
- Johannes Bertsch
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Anna Lena Siemund
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Florian Kremp
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany.
| |
Collapse
|
38
|
The Complete Genome Sequence of Clostridium aceticum: a Missing Link between Rnf- and Cytochrome-Containing Autotrophic Acetogens. mBio 2015; 6:e01168-15. [PMID: 26350967 PMCID: PMC4600107 DOI: 10.1128/mbio.01168-15] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium aceticum was the first isolated autotrophic acetogen, converting CO2 plus H2 or syngas to acetate. Its genome has now been completely sequenced and consists of a 4.2-Mbp chromosome and a small circular plasmid of 5.7 kbp. Sequence analysis revealed major differences from other autotrophic acetogens. C. aceticum contains an Rnf complex for energy conservation (via pumping protons or sodium ions). Such systems have also been found in C. ljungdahlii and Acetobacterium woodii. However, C. aceticum also contains a cytochrome, as does Moorella thermoacetica, which has been proposed to be involved in the generation of a proton gradient. Thus, C. aceticum seems to represent a link between Rnf- and cytochrome-containing autotrophic acetogens. In C. aceticum, however, the cytochrome is probably not involved in an electron transport chain that leads to proton translocation, as no genes for quinone biosynthesis are present in the genome. Autotrophic acetogenic bacteria are receiving more and more industrial focus, as CO2 plus H2 as well as syngas are interesting new substrates for biotechnological processes. They are both cheap and abundant, and their use, if it results in sustainable products, also leads to reduction of greenhouse gases. Clostridium aceticum can use both gas mixtures, is phylogenetically not closely related to the commonly used species, and may thus become an even more attractive workhorse. In addition, its energy metabolism, which is characterized here, and the ability to synthesize cytochromes might offer new targets for improving the ATP yield by metabolic engineering and thus allow use of C. aceticum for production of compounds by pathways that currently present challenges for energy-limited acetogens.
Collapse
|
39
|
Ramió-Pujol S, Ganigué R, Bañeras L, Colprim J. How can alcohol production be improved in carboxydotrophic clostridia? Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
40
|
CO Metabolism in the Acetogen Acetobacterium woodii. Appl Environ Microbiol 2015; 81:5949-56. [PMID: 26092462 DOI: 10.1128/aem.01772-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/17/2015] [Indexed: 01/07/2023] Open
Abstract
The Wood-Ljungdahl pathway allows acetogenic bacteria to grow on a number of one-carbon substrates, such as carbon dioxide, formate, methyl groups, or even carbon monoxide. Since carbon monoxide alone or in combination with hydrogen and carbon dioxide (synthesis gas) is an increasingly important feedstock for third-generation biotechnology, we studied CO metabolism in the model acetogen Acetobacterium woodii. When cells grew on H2-CO2, addition of 5 to 15% CO led to higher final optical densities, indicating the utilization of CO as a cosubstrate. However, the growth rate was decreased by the presence of small amounts of CO, which correlated with an inhibition of H2 consumption. Experiments with resting cells revealed that the degree of inhibition of H2 consumption was a function of the CO concentration. Since the hydrogen-dependent CO2 reductase (HDCR) of A. woodii is known to be very sensitive to CO, we speculated that cells may be more tolerant toward CO when growing on formate, the product of the HDCR reaction. Indeed, addition of up to 25% CO did not influence growth rates on formate, while the final optical densities and the production of acetate increased. Higher concentrations (75 and 100%) led to a slight inhibition of growth and to decreasing rates of formate and CO consumption. Experiments with resting cells revealed that the HDCR is a site of CO inhibition. In contrast, A. woodii was not able to grow on CO as a sole carbon and energy source, and growth on fructose-CO or methanol-CO was not observed.
Collapse
|
41
|
2,3-Butanediol Metabolism in the Acetogen Acetobacterium woodii. Appl Environ Microbiol 2015; 81:4711-9. [PMID: 25934628 DOI: 10.1128/aem.00960-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/28/2015] [Indexed: 11/20/2022] Open
Abstract
The acetogenic bacterium Acetobacterium woodii is able to reduce CO2 to acetate via the Wood-Ljungdahl pathway. Only recently we demonstrated that degradation of 1,2-propanediol by A. woodii was not dependent on acetogenesis, but that it is disproportionated to propanol and propionate. Here, we analyzed the metabolism of A. woodii on another diol, 2,3-butanediol. Experiments with growing and resting cells, metabolite analysis and enzymatic measurements revealed that 2,3-butanediol is oxidized in an NAD(+)-dependent manner to acetate via the intermediates acetoin, acetaldehyde, and acetyl coenzyme A. Ethanol was not detected as an end product, either in growing cultures or in cell suspensions. Apparently, all reducing equivalents originating from the oxidation of 2,3-butanediol were funneled into the Wood-Ljungdahl pathway to reduce CO2 to another acetate. Thus, the metabolism of 2,3-butanediol requires the Wood-Ljungdahl pathway.
Collapse
|
42
|
Spahn S, Brandt K, Müller V. A low phosphorylation potential in the acetogen Acetobacterium woodii reflects its lifestyle at the thermodynamic edge of life. Arch Microbiol 2015; 197:745-51. [PMID: 25820826 DOI: 10.1007/s00203-015-1107-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/04/2015] [Accepted: 03/17/2015] [Indexed: 11/26/2022]
Abstract
The anaerobic, acetogenic bacterium Acetobacterium woodii grows on hydrogen and carbon dioxide and uses the Wood-Ljungdahl pathway to fix carbon but also to synthesize ATP. The free energy change of acetogenesis from H2 + CO2 allows for synthesis of only a fraction of an ATP under environmental conditions, and A. woodii is clearly a paradigm for microbial life under extreme energy limitation. However, it was unknown how much energy is required to make ATP under these conditions. In the present study, we determined the phosphorylation potential in cells metabolizing three different acetogenic substrates. It accounts to 37.9 ± 1.3 kJ/mol ATP during acetogenesis from fructose, 32.1 ± 0.3 kJ/mol ATP during acetogenesis from H2 + CO2 and 30.2 ± 0.9 kJ/mol ATP during acetogenesis from CO, the lowest phosphorylation potential ever described. The physiological consequences in terms of energy conservation under extreme energy limitation are discussed.
Collapse
Affiliation(s)
- Sebastian Spahn
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | | | | |
Collapse
|
43
|
Daniell J, Nagaraju S, Burton F, Köpke M, Simpson SD. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 156:293-321. [PMID: 26957126 DOI: 10.1007/10_2015_5005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.
Collapse
Affiliation(s)
- James Daniell
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Shilpa Nagaraju
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | - Freya Burton
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | - Michael Köpke
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | | |
Collapse
|
44
|
Fast AG, Schmidt ED, Jones SW, Tracy BP. Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemicals production. Curr Opin Biotechnol 2014; 33:60-72. [PMID: 25498292 DOI: 10.1016/j.copbio.2014.11.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 01/06/2023]
Abstract
Mass yields of biofuels and chemicals from sugar fermentations are limited by the decarboxylation reactions involved in Embden-Meyerhof-Parnas (EMP) glycolysis. This paper reviews one route to recapture evolved CO2 using the Wood-Ljungdahl carbon fixation pathway (WLP) in a process called anaerobic, non-photosynthetic (ANP) mixotrophic fermentation. In ANP mixotrophic fermentation, the two molecules of CO2 and eight electrons produced from glycolysis are used by the WLP to generate three molecules of acetyl-CoA from glucose, rather than the two molecules that are produced by typical fermentation processes. In this review, we define the bounds of ANP mixotrophy, calculate the potential metabolic advantages, and discuss the viability in a number of host organisms. Additionally, we highlight recent accomplishments in the field, including the recent discovery of electron bifurcation in acetogens, and close with recommendations to realize mixotrophic biofuel and biochemical production.
Collapse
Affiliation(s)
- Alan G Fast
- Molecular Biotechnology Laboratory, Department of Chemical & Biomolecular Engineering, & the Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Ellinor D Schmidt
- Molecular Biotechnology Laboratory, Department of Chemical & Biomolecular Engineering, & the Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Shawn W Jones
- Elcriton, Inc., 15 Reads Way, New Castle, DE 19720, USA
| | - Bryan P Tracy
- Elcriton, Inc., 15 Reads Way, New Castle, DE 19720, USA.
| |
Collapse
|
45
|
Nonacetogenic growth of the acetogen Acetobacterium woodii on 1,2-propanediol. J Bacteriol 2014; 197:382-91. [PMID: 25384483 DOI: 10.1128/jb.02383-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetogenic bacteria can grow by the oxidation of various substrates coupled to the reduction of CO2 in the Wood-Ljungdahl pathway. Here, we show that growth of the acetogen Acetobacterium woodii on 1,2-propanediol (1,2-PD) as the sole carbon and energy source is independent of acetogenesis. Enzymatic measurements and metabolite analysis revealed that 1,2-PD is dehydrated to propionaldehyde, which is further oxidized to propionyl coenzyme A (propionyl-CoA) with concomitant reduction of NAD. NADH is reoxidized by reducing propionaldehyde to propanol. The potential gene cluster coding for the responsible enzymes includes genes coding for shell proteins of bacterial microcompartments. Electron microscopy revealed the presence of microcompartments as well as storage granules in cells grown on 1,2-PD. Gene clusters coding for the 1,2-PD pathway can be found in other acetogens as well, but the distribution shows no relation to the phylogeny of the organisms.
Collapse
|
46
|
Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 2014; 12:809-21. [DOI: 10.1038/nrmicro3365] [Citation(s) in RCA: 505] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Hess V, Schuchmann K, Müller V. The ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J Biol Chem 2013; 288:31496-502. [PMID: 24045950 DOI: 10.1074/jbc.m113.510255] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The anaerobic acetogenic bacterium Acetobacterium woodii has a novel Na(+)-translocating electron transport chain that couples electron transfer from reduced ferredoxin to NAD(+) with the generation of a primary electrochemical Na(+) potential across its cytoplasmic membrane. In previous assays in which Ti(3+) was used to reduce ferredoxin, Na(+) transport was observed, but not a Na(+) dependence of the electron transfer reaction. Here, we describe a new biological reduction system for ferredoxin in which ferredoxin is reduced with CO, catalyzed by the purified acetyl-CoA synthase/CO dehydrogenase from A. woodii. Using CO-reduced ferredoxin, NAD(+) reduction was highly specific and strictly dependent on ferredoxin and occurred at a rate of 50 milliunits/mg of protein. Most important, this assay revealed for the first time a strict Na(+) dependence of this electron transfer reaction. The Km was 0.2 mm. Na(+) could be partly substituted by Li(+). Na(+) dependence was observed at neutral and acidic pH values, indicating the exclusive use of Na(+) as a coupling ion. Electron transport from reduced ferredoxin to NAD(+) was coupled to electrogenic Na(+) transport, indicating the generation of ΔμNa(+). Vice versa, endergonic ferredoxin reduction with NADH as reductant was possible, but only in the presence of ΔμNa(+), and was accompanied by Na(+) efflux out of the vesicles. This is consistent with the hypothesis that Rnf also catalyzes ferredoxin reduction at the expense of an electrochemical Na(+) gradient. The physiological significance of this finding is discussed.
Collapse
Affiliation(s)
- Verena Hess
- From the Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
48
|
Bertsch J, Parthasarathy A, Buckel W, Müller V. An electron-bifurcating caffeyl-CoA reductase. J Biol Chem 2013; 288:11304-11. [PMID: 23479729 DOI: 10.1074/jbc.m112.444919] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A low potential electron carrier ferredoxin (E0' ≈ -500 mV) is used to fuel the only bioenergetic coupling site, a sodium-motive ferredoxin:NAD(+) oxidoreductase (Rnf) in the acetogenic bacterium Acetobacterium woodii. Because ferredoxin reduction with physiological electron donors is highly endergonic, it must be coupled to an exergonic reaction. One candidate is NADH-dependent caffeyl-CoA reduction. We have purified a complex from A. woodii that contains a caffeyl-CoA reductase and an electron transfer flavoprotein. The enzyme contains three subunits encoded by the carCDE genes and is predicted to have, in addition to FAD, two [4Fe-4S] clusters as cofactor, which is consistent with the experimental determination of 4 mol of FAD, 9 mol of iron, and 9 mol of acid-labile sulfur. The enzyme complex catalyzed caffeyl-CoA-dependent oxidation of reduced methyl viologen. With NADH as donor, it catalyzed caffeyl-CoA reduction, but this reaction was highly stimulated by the addition of ferredoxin. Spectroscopic analyses revealed that ferredoxin and caffeyl-CoA were reduced simultaneously, and a stoichiometry of 1.3:1 was determined. Apparently, the caffeyl-CoA reductase-Etf complex of A. woodii uses the novel mechanism of flavin-dependent electron bifurcation to drive the endergonic ferredoxin reduction with NADH as reductant by coupling it to the exergonic NADH-dependent reduction of caffeyl-CoA.
Collapse
Affiliation(s)
- Johannes Bertsch
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe-Universität Frankfurt am Main, 60438 Frankfurt, Germany
| | | | | | | |
Collapse
|
49
|
The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. mBio 2012; 4:e00406-12. [PMID: 23269825 PMCID: PMC3531802 DOI: 10.1128/mbio.00406-12] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It has been predicted that the Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase which contributes to ATP synthesis by an H+-translocating ATPase under both autotrophic and heterotrophic growth conditions. The recent development of methods for genetic manipulation of C. ljungdahlii made it possible to evaluate the possible role of the Rnf complex in energy conservation. Disruption of the C. ljungdahlii rnf operon inhibited autotrophic growth. ATP synthesis, proton gradient, membrane potential, and proton motive force collapsed in the Rnf-deficient mutant with H2 as the electron source and CO2 as the electron acceptor. Heterotrophic growth was hindered in the absence of a functional Rnf complex, as ATP synthesis, proton gradient, and proton motive force were significantly reduced with fructose as the electron donor. Growth of the Rnf-deficient mutant was also inhibited when no source of fixed nitrogen was provided. These results demonstrate that the Rnf complex of C. ljungdahlii is responsible for translocation of protons across the membrane to elicit energy conservation during acetogenesis and is a multifunctional device also implicated in nitrogen fixation. Mechanisms for energy conservation in the acetogen Clostridium ljungdahlii are of interest because of its potential value as a chassis for the production of biocommodities with novel electron donors such as carbon monoxide, syngas, and electrons derived from electrodes. Characterizing the components implicated in the chemiosmotic ATP synthesis during acetogenesis by C. ljungdahlii is a prerequisite for the development of highly productive strains. The Rnf complex has been considered the prime candidate to be the pump responsible for the formation of an ion gradient coupled with ATP synthesis in multiple acetogens. However, experimental evidence for a proton-pumping Rnf complex has been lacking. This study establishes the C. ljungdahlii Rnf complex as a proton-translocating ferredoxin:NAD+ oxidoreductase and demonstrates that C. ljungdahlii has the potential of becoming a model organism to study proton translocation, electron transport, and other functions of the Rnf complex in energy conservation or other processes.
Collapse
|
50
|
Functional production of the Na+ F1FO ATP synthase from Acetobacterium woodii in Escherichia coli requires the native AtpI. J Bioenerg Biomembr 2012; 45:15-23. [DOI: 10.1007/s10863-012-9474-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/16/2012] [Indexed: 10/27/2022]
|