1
|
Hassell DS, Steingesser MG, Denney AS, Johnson CR, McMurray MA. Chemical rescue of mutant proteins in living Saccharomyces cerevisiae cells by naturally occurring small molecules. G3-GENES GENOMES GENETICS 2021; 11:6323229. [PMID: 34544143 PMCID: PMC8496222 DOI: 10.1093/g3journal/jkab252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/29/2021] [Indexed: 11/14/2022]
Abstract
Intracellular proteins function in a complex milieu wherein small molecules influence protein folding and act as essential cofactors for enzymatic reactions. Thus protein function depends not only on amino acid sequence but also on the concentrations of such molecules, which are subject to wide variation between organisms, metabolic states, and environmental conditions. We previously found evidence that exogenous guanidine reverses the phenotypes of specific budding yeast septin mutants by binding to a WT septin at the former site of an Arg side chain that was lost during fungal evolution. Here, we used a combination of targeted and unbiased approaches to look for other cases of "chemical rescue" by naturally occurring small molecules. We report in vivo rescue of hundreds of Saccharomyces cerevisiae mutants representing a variety of genes, including likely examples of Arg or Lys side chain replacement by the guanidinium ion. Failed rescue of targeted mutants highlight features required for rescue, as well as key differences between the in vitro and in vivo environments. Some non-Arg mutants rescued by guanidine likely result from "off-target" effects on specific cellular processes in WT cells. Molecules isosteric to guanidine and known to influence protein folding had a range of effects, from essentially none for urea, to rescue of a few mutants by DMSO. Strikingly, the osmolyte trimethylamine-N-oxide rescued ∼20% of the mutants we tested, likely reflecting combinations of direct and indirect effects on mutant protein function. Our findings illustrate the potential of natural small molecules as therapeutic interventions and drivers of evolution.
Collapse
Affiliation(s)
- Daniel S Hassell
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Marc G Steingesser
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ashley S Denney
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Courtney R Johnson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
In Silico Analysis of β-Galactosidases Primary and Secondary Structure in relation to Temperature Adaptation. JOURNAL OF AMINO ACIDS 2014; 2014:475839. [PMID: 24790757 PMCID: PMC3982409 DOI: 10.1155/2014/475839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/06/2014] [Indexed: 11/18/2022]
Abstract
β -D-Galactosidases (EC 3.2.1.23) hydrolyze the terminal nonreducing β -D-galactose residues in β -D-galactosides and are ubiquitously present in all life forms including extremophiles. Eighteen microbial β -galactosidase protein sequences, six each from psychrophilic, mesophilic, and thermophilic microbes, were analyzed. Primary structure reveals alanine, glycine, serine, and arginine to be higher in psychrophilic β -galactosidases whereas valine, glutamine, glutamic acid, phenylalanine, threonine, and tyrosine are found to be statistically preferred by thermophilic β -galactosidases. Cold active β -galactosidase has a strong preference towards tiny and small amino acids, whereas high temperature inhabitants had higher content of basic and aromatic amino acids. Thermophilic β -galactosidases have higher percentage of α -helix region responsible for temperature tolerance while cold loving β -galactosidases had higher percentage of sheet and coil region. Secondary structure analysis revealed that charged and aromatic amino acids were significant for sheet region of thermophiles. Alanine was found to be significant and high in the helix region of psychrophiles and valine counters in thermophilic β -galactosidase. Coil region of cold active β -galactosidase has higher content of tiny amino acids which explains their high catalytic efficiency over their counterparts from thermal habitat. The present study has revealed the preference or prevalence of certain amino acids in primary and secondary structure of psychrophilic, mesophilic, and thermophilic β -galactosidase.
Collapse
|
3
|
O'Donnell MM, Forde BM, Neville B, Ross PR, O'Toole PW. Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations. Microb Cell Fact 2011; 10 Suppl 1:S12. [PMID: 21995520 PMCID: PMC3231919 DOI: 10.1186/1475-2859-10-s1-s12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Lactobacillus ruminis is a poorly characterized member of the Lactobacillus salivarius clade that is part of the intestinal microbiota of pigs, humans and other mammals. Its variable abundance in human and animals may be linked to historical changes over time and geographical differences in dietary intake of complex carbohydrates. RESULTS In this study, we investigated the ability of nine L. ruminis strains of human and bovine origin to utilize fifty carbohydrates including simple sugars, oligosaccharides, and prebiotic polysaccharides. The growth patterns were compared with metabolic pathways predicted by annotation of a high quality draft genome sequence of ATCC 25644 (human isolate) and the complete genome of ATCC 27782 (bovine isolate). All of the strains tested utilized prebiotics including fructooligosaccharides (FOS), soybean-oligosaccharides (SOS) and 1,3:1,4-β-D-gluco-oligosaccharides to varying degrees. Six strains isolated from humans utilized FOS-enriched inulin, as well as FOS. In contrast, three strains isolated from cows grew poorly in FOS-supplemented medium. In general, carbohydrate utilisation patterns were strain-dependent and also varied depending on the degree of polymerisation or complexity of structure. Six putative operons were identified in the genome of the human isolate ATCC 25644 for the transport and utilisation of the prebiotics FOS, galacto-oligosaccharides (GOS), SOS, and 1,3:1,4-β-D-Gluco-oligosaccharides. One of these comprised a novel FOS utilisation operon with predicted capacity to degrade chicory-derived FOS. However, only three of these operons were identified in the ATCC 27782 genome that might account for the utilisation of only SOS and 1,3:1,4-β-D-Gluco-oligosaccharides. CONCLUSIONS This study has provided definitive genome-based evidence to support the fermentation patterns of nine strains of Lactobacillus ruminis, and has linked it to gene distribution patterns in strains from different sources. Furthermore, the study has identified prebiotic carbohydrates with the potential to promote L. ruminis growth in vivo.
Collapse
|
4
|
Dugdale ML, Dymianiw DL, Minhas BK, D'Angelo I, Huber RE. Role of Met-542 as a guide for the conformational changes of Phe-601 that occur during the reaction of β-galactosidase (Escherichia coli). Biochem Cell Biol 2011; 88:861-9. [PMID: 20921997 DOI: 10.1139/o10-009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Met-542 residue of β-galactosidase is important for the enzyme's activity because it acts as a guide for the movement of the benzyl side chain of Phe-601 between two stable positions. This movement occurs in concert with an important conformational change (open vs. closed) of an active site loop (residues 794-803). Phe-601 and Arg-599, which interact with each other via the π electrons of Phe-601 and the guanidium cation of Arg-599, move out of their normal positions and become disordered when Met-542 is replaced by an Ala residue because of the loss of the guide. Since the backbone carbonyl of Phe-601 is a ligand for Na(+), the Na(+) also moves out of its normal position and becomes disordered; the Na(+) binds about 120 times more poorly. In turn, two other Na(+) ligands, Asn-604 and Asp-201, become disordered. A substrate analog (IPTG) restored Arg-599, Phe-601, and Na(+) to their normal open-loop positions, whereas a transition state analog d-galactonolactone) restored them to their normal closed-loop positions. These compounds also restored order to Phe-601, Asn-604, Asp-201, and Na(+). Binding energy was, however, necessary to restore structure and order. The K(s) values of oNPG and pNPG and the competitive K(i) values of substrate analogs were 90-250 times higher than with native enzyme, whereas the competitive K(i) values of transition state analogs were ~3.5-10 times higher. Because of this, the E•S energy level is raised more than the E•transition state energy level and less activation energy is needed for galactosylation. The galactosylation rates (k₂) of M542A-β-galactosidase therefore increase. However, the rate of degalactosylation (k₃) decreased because the E•transition state complex is less stable.
Collapse
Affiliation(s)
- Megan L Dugdale
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | | | | | | |
Collapse
|
5
|
Maischberger T, Leitner E, Nitisinprasert S, Juajun O, Yamabhai M, Nguyen TH, Haltrich D. Beta-galactosidase from Lactobacillus pentosus: purification, characterization and formation of galacto-oligosaccharides. Biotechnol J 2010; 5:838-47. [PMID: 20669255 DOI: 10.1002/biot.201000126] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel heterodimeric beta-galactosidase with a molecular mass of 105 kDa was purified from crude cell extracts of the soil isolate Lactobacillus pentosus KUB-ST10-1 using ammonium sulphate fractionation followed by hydrophobic interaction and affinity chromatography. The electrophoretically homogenous enzyme has a specific activity of 97 U(oNPG)/mg protein. The K(m), k(cat) and k(cat)/K(m) values for lactose and o-nitrophenyl-beta-D-galactopyranoside (oNPG) were 38 mM, 20 s(-1), 530 M(-1).s(-1) and 1.67 mM, 540 s(-1), 325 000 M(-1).s(-1), respectively. The temperature optimum of beta-galactosidase activity was 60-65 degrees C for a 10-min assay, which is considerably higher than the values reported for other lactobacillal beta-galactosidases. Mg(2+) ions enhanced both activity and stability significantly. L. pentosus beta-galactosidase was used for the production of prebiotic galacto-oligosaccharides (GOS) from lactose. A maximum yield of 31% GOS of total sugars was obtained at 78% lactose conversion. The enzyme showed a strong preference for the formation of beta-(1-->3) and beta-(1-->6) linkages, and the main transgalactosylation products identified were the disaccharides beta-D-Galp-(1-->6)-D-Glc, beta-D-Galp-(1-->3)-D-Glc, beta-D-Galp-(1-->6)-D-Gal, beta-D-Galp-(1-->3)-D-Gal, and the trisaccharides beta-D-Galp-(1-->3)-D-Lac, beta-D-Galp-(1-->6)-D-Lac.
Collapse
Affiliation(s)
- Thomas Maischberger
- BOKU University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
6
|
Effect of Size, Quaternary Structure and Translational Error on the Static and Dynamic Heterogeneity of β-Galactosidase and Measurement of Electrophoretic Dynamic Heterogeneity. Protein J 2010; 29:398-406. [DOI: 10.1007/s10930-010-9266-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Rhimi M, Boisson A, Dejob M, Boudebouze S, Maguin E, Haser R, Aghajari N. Efficient bioconversion of lactose in milk and whey: immobilization and biochemical characterization of a beta-galactosidase from the dairy Streptococcus thermophilus LMD9 strain. Res Microbiol 2010; 161:515-25. [PMID: 20472057 DOI: 10.1016/j.resmic.2010.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
The gene encoding beta-galactosidase from dairy Streptococcus thermophilus strain LMD9 was cloned, sequenced and expressed in Escherichia coli. The recombinant enzyme was purified and showed high specific activity of 464 U/mg. This protein displays a homotetrameric arrangement composed of four 118 kDa monomers. Monitoring of the activity showed that this enzyme was optimally active at a wide range of temperatures (25-40 degrees C) and at pH from 6.5 to 7.5. Immobilization of the recombinant E. coli in alginate beads clearly enhanced the enzyme activity at various temperatures, including 4 and 50 degrees C, and at pH values from 4.0 to 8.5. Stability studies indicated that this biocatalyst has high stability within a broad range of temperatures and pH. This stability was improved not only by addition of 1 mM of Mn(2+) and 1.2 mM Mg(2+), but essentially through immobilization. The remarkable bioconversion rates of lactose in milk and whey at different temperatures revealed the attractive catalytic efficiency of this enzyme, thus promoting its use for lactose hydrolysis in milk and other dairy products.
Collapse
Affiliation(s)
- Moez Rhimi
- Laboratoire de BioCristallographie, Institut de Biologie et Chimie des Protéines, UMR 5086-CNRS/Université de Lyon, IFR128 BioSciences Gerland - Lyon Sud, 7 Passage du Vercors, F-69367 Lyon cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Maischberger T, Mierau I, Peterbauer CK, Hugenholtz J, Haltrich D. High-level expression of Lactobacillus beta-galactosidases in Lactococcus lactis using the food-grade, nisin-controlled expression system NICE. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:2279-2287. [PMID: 20092320 DOI: 10.1021/jf902895g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this work the overlapping genes (lacL and lacM) encoding heterodimeric beta-galactosidases from Lactobacillus reuteri , Lb. acidophilus , Lb. sakei , and Lb. plantarum were cloned into two different nisin-controlled expression (NICE) vectors and expressed using Lactococcus lactis NZ9000 and NZ3900 as hosts. The lacL gene, encoding the large subunit of the beta-galactosidases, was fused translationally downstream of the nisin-inducible promoter nisA. Chloramphenicol was employed as selection marker for the standard system using L. lactis NZ9000, whereas lactose utilization based on the complementation of the lacF gene was used as a dominant selection marker for the food-grade system employing L. lactis NZ3900. Comparison of the standard and the food-grade expression system, differing only in their selection markers, gave considerable differences in volumetric beta-galactosidase activity, ranging from 1.17 to 14 kU/L of fermentation broth, depending on both the origin of the lacLM genes and the selection marker used. The occurrence of codons less frequently used by L. lactis especially at the beginning of the lacL gene could be an explanation for the significant differences between the expression levels of lacLM from different origins, while plasmid stability might cause the difference obtained when employing the different selection markers.
Collapse
|
9
|
Rhimi M, Aghajari N, Jaouadi B, Juy M, Boudebbouze S, Maguin E, Haser R, Bejar S. Exploring the acidotolerance of beta-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose bioconversion. Res Microbiol 2009; 160:775-84. [PMID: 19786095 DOI: 10.1016/j.resmic.2009.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/01/2009] [Accepted: 09/03/2009] [Indexed: 02/08/2023]
Abstract
The LacZ gene encoding beta-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 (L. bulgaricus) was cloned, sequenced and expressed in Escherichia coli, followed by purification and characterization of the protein. The recombinant enzyme was shown to be a homotetramer and could be distinguished from homologues by its relatively low and broad optimal temperature range, from 35 to 50 degrees C, coupled with an optimal pH of 5.0-5.5. Remarkably, the E491A mutant showed the same optimal temperature, but displayed an optimal pH at 6.5-7.0. Whilst these beta-galactosidases are inhibited by Cu(2+) they require only 1mM Mn(2+) and 1mM Co(2+) for optimal activity and thermostability. The wild-type enzyme was remarkably stable at acid pH values when compared to mutant E491A. Kinetic studies demonstrated that the E491A mutation affected catalysis rather than enzyme affinity. Furthermore, the wild-type protein efficiently cleaved lactose extracted from whey; however, in milk the E491A mutant showed the highest lactose bioconversion rate. Thus, these enzymes are interesting at the industrial level for hydrolysis of lactose extracted from whey or milk, and thus could contribute to overcoming the lactose intolerance problem generated by milk products.
Collapse
Affiliation(s)
- Moez Rhimi
- Laboratoire d'Enzymes et de Métabolites des Procaryotes, Centre de Biotechnologie de Sfax, Route de Sidi Mansour Km 6 BP, 3038 Sfax, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Growth of lactic acid bacteria and bifidobacteria on lactose and lactose-related mono-, di- and trisaccharides and correlation with distribution ofβ–galactosidase and phospho-β–galactosidase. J DAIRY RES 2009. [DOI: 10.1017/s0022029900027904] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummarySpectrophotometric assays ofβ–galactosidase (EC 3.2.1.23) and phospho-β–galactosidase (EC 3.2.1.85) activity were used to survey the lactose utilization pathways of lactic acid bacteria and bifidobacteria.β–Galactosidase activity was found in all six genera represented (Lactococcus, Streptococcus, Leuconostoc, Lactobacillus, PediococcusandBifidobacterium) while phospho-β–galactosidase was restricted to the lactococci, twoLactobacillusand twoLeuconostocspecies. A number of strains ofLactococcus lactis, Lactobacillus caseiandLeuconostocspp. contained both enzymes. Enzyme activities varied when cells were grown on different sugars, but in general were low or absent for cells grown on glucose compared with lactose. Two lactose-related compounds, lactulose and galactosyl lactose, believed to be specific growth factors for bifidobacteria, supported growth amongst a wide range of lactic acid bacteria in addition to bifidobacteria. Growth on galactosyl lactose was restricted to some but not all strains containingβ–galactosidase, implying that the presence ofβ–galactosidase is insufficient by itself to ensure utilization of galactosyl lactose. DNA fragments that encoded theLactococcus lactissubsp.cremorisphospho-β–galactosidase gene or theβ–galactosidase genes ofStreptococcus salivariussubsp.thermophilusorLactobacillus delbrueckiisubsp.bulgaricuswere isolated and used as probes in DNA-DNA hybridizations. Little or no hybridization was detected between these probes and plasmid or genomic DNA isolated from heterologous species, despite the presence of the corresponding enzyme activity in the strains probed.
Collapse
|
11
|
Characterization of the Streptococcus pneumoniae BgaC protein as a novel surface beta-galactosidase with specific hydrolysis activity for the Galbeta1-3GlcNAc moiety of oligosaccharides. J Bacteriol 2009; 191:3011-23. [PMID: 19270088 DOI: 10.1128/jb.01601-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is a causative agent of high morbidity and mortality. Although sugar moieties have been recognized as ligands for initial contact with the host, only a few exoglycosidases have been reported to occur in S. pneumoniae. In this study, a putative beta-galactosidase, encoded by the bgaC gene of S. pneumoniae, was characterized for its enzymatic activity and virulence. The recombinant BgaC protein, expressed and purified from Escherichia coli, was found to have a highly regiospecific and sugar-specific hydrolysis activity for the Galbeta1-3-GlcNAc moiety of oligosaccharides. Interestingly, the BgaC hydrolysis activity was localized at the cell surface of S. pneumoniae, indicating that BgaC is expressed as a surface protein although it does not have a typical signal sequence or membrane anchorage motif. The surface localization of BgaC was further supported by immunofluorescence microscopy analysis using an antibody raised against BgaC and by a reassociation assay with fluorescein isothiocyanate-labeled BgaC. Although the bgaC deletion mutation did not significantly attenuate the virulence of S. pneumoniae in vivo, the bgaC mutant strain showed relatively low numbers of viable cells compared to the wild type after 24 h of infection in vivo, whereas the mutant showed higher colonization levels at 6 and 24 h postinfection in vivo. Our data strongly indicate for the first time that S. pneumoniae bgaC encodes a surface beta-galactosidase with high substrate specificity that is significantly associated with the infection activity of pneumococci.
Collapse
|
12
|
Wang C, Zhang CW, Liu HC, Yu Q, Pei XF. Non-fusion and fusion expression of beta-galactosidase from Lactobacillus bulgaricus in Lactococcus lactis. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2008; 21:389-397. [PMID: 19133612 DOI: 10.1016/s0895-3988(08)60059-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE To construct four recombinant Lactococcus lactis strains exhibiting high beta-galactosidase activity in fusion or non-fusion ways, and to study the influence factors for their protein expression and secretion. METHODS The gene fragments encoding beta-galactosidase from two strains of Lactobacillus bulgaricus, wch9901 isolated from yogurt and 1.1480 purchased from the Chinese Academy of Sciences, were amplified and inserted into lactococcal expression vector pMG36e. For fusion expression, the open reading frame of the beta-galactosidase gene was amplified, while for non-fusion expression, the open reading frame of the beta-galactosidase gene was amplified with its native Shine-Dalgarno sequence upstream. The start codon of the beta-galactosidase gene partially overlapped with the stop codon of vector origin open reading frame. Then, the recombinant plasmids were transformed into Escherichia coli DH5 alpha and Lactococcus lactis subsp. lactis MG1363 and confirmed by determining beta-galactosidase activities. RESULTS The non-fusion expression plasmids showed a significantly higher beta-galactosidase activity in transformed strains than the fusion expression plasmids. The highest enzyme activity was observed in Lactococcus lactis transformed with the non-fusion expression plasmids which were inserted into the beta-galactosidase gene from Lactobacillus bulgaricus wch9901. The beta-galactosidase activity was 2.75 times as high as that of the native counterpart. In addition, beta-galactosidase expressed by recombinant plasmids in Lactococcus lactis could be secreted into the culture medium. The highest secretion rate (27.1%) was observed when the culture medium contained 20 g/L of lactose. CONCLUSION Different properties of the native bacteria may have some effects on the protein expression of recombinant plasmids. Non-fusion expression shows a higher enzyme activity in host bacteria. There may be a host-related weak secretion signal peptide gene within the structure gene of Lb. bulgaricus beta-galactosidase, and its translation product may introduce the enzyme secretion out of cells in special hosts.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Medical Technology, West China School of Public Health, Sichuan University, Chengdu 610041, Sichuan, China.
| | | | | | | | | |
Collapse
|
13
|
Xu J, McRae MAA, Harron S, Rob B, Huber RE. A study of the relationships of interactions between Asp-201, Na+or K+, and galactosyl C6 hydroxyl and their effects on binding and reactivity of β-galactosidase. Biochem Cell Biol 2004; 82:275-84. [PMID: 15060622 DOI: 10.1139/o04-004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interactions between Na+(and K+) and Asp-201 of β-galactosidase were studied. Analysis of the changes in Kmand Vmaxshowed that the Kdfor Na+of wild type β-galactosidase (0.36 ± 0.09 mM) was about 10× lower than for K+(3.9 ± 0.6 mM). The difference is probably because of the size and other physical properties of the ions and the binding pocket. Decreases of Kmas functions of Na+and K+for oNPG and pNPG and decreases of the Kiof both shallow and deep mode inhibitors were similar, whereas the Kmand Kiof substrates and inhibitors without C6 hydroxyls remained constant. Thus, Na+and K+are important for binding galactosyl moieties via the C6 hydroxyl throughout catalysis. Na+and K+had lesser effects on the Vmax. The Vmaxof pNPF and pNPA (substrates that lack a C6 hydroxyl) did not change upon addition of Na+or K+, showing that the catalytic effects are also mediated via the C6 hydroxyl. Arrhenius plots indicated that Na+, but not K+, caused k3(degalactosylation) to increase. Na+also caused the k2(galactosylation) with oNPG, but not with pNPG, to increase. In contrast, K+caused the k2values with both oNPG and pNPG to increase. Na+and K+mainly altered the entropies of activation of k2and k3with only small effects on the enthalpies of activation. This strongly suggests that only the positioning of the substrate, transition states, and covalent intermediate are altered by Na+and K+. Further evidence that positioning is important was that substitution of Asp-201 with a Glu caused the Kmand Kivalues to increase significantly. In addition, the Kdvalues for Na+or K+were 5 to 8 fold higher. The negative charge of Asp-201 was shown to be vital for Na+and K+binding. Large amounts of Na+or K+had no effect on the very large Kmand Kivalues of D201N-β-galactosidase and the Vmaxvalues changed minimally and in a linear rather than hyperbolic way. D201F-β-galactosidase, with a very bulky hydrophobic side chain in place of Asp, essentially obliterated all binding and catalysis.Key words: β-galactosidase, sodium, potassium, binding, aspartic acid.
Collapse
Affiliation(s)
- Julia Xu
- Division of Biochemistry, University of Calfgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
14
|
Roth NJ, Penner RM, Huber RE. Beta-galactosidases (Escherichia coli) with double substitutions show that Tyr-503 acts independently of Glu-461 but cooperatively with Glu-537. JOURNAL OF PROTEIN CHEMISTRY 2003; 22:663-8. [PMID: 14714733 DOI: 10.1023/b:jopc.0000008731.16884.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Beta-galactosidases with single substitutions for Tyr-503, Glu-461, and Glu-537 and with double substitutions for Tyr-503 and either Glu-461 or Glu-537 were constructed. Control experiments showed that the very low kcat values obtained for the double-substituted enzymes were not a result of contamination, reversion, or nonactive site activity catalyzed on the surface of the proteins. Circular dichroism studies showed that the structures of the enzymes were intact. E461Q/Y503F-beta-galactosidase was inactivated in an "additive" manner. This indicated that Glu-461 and Tyr-503 act independently in catalysis. Because these residues are at opposite sides of the active site and act in different steps, this is expected. E537D/Y503F-beta-galactosidase was only inactivated a few-fold more than the most inactive of its two single-substituted constituent beta-galactosidases. This showed that Glu-537 and Tyr-503 interact cooperatively on the same step. This correlates well with the proposed role of Tyr-503 as an acid catalyst for the breakage of the covalent bond between Glu-537 and galactose.
Collapse
Affiliation(s)
- Nathan J Roth
- Division of Biochemistry, Faculty of Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | |
Collapse
|
15
|
Lapierre L, Mollet B, Germond JE. Regulation and adaptive evolution of lactose operon expression in Lactobacillus delbrueckii. J Bacteriol 2002; 184:928-35. [PMID: 11807052 PMCID: PMC134810 DOI: 10.1128/jb.184.4.928-935.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis are both used in the dairy industry as homofermentative lactic acid bacteria in the production of fermented milk products. After selective pressure for the fast fermentation of milk in the manufacture of yogurts, L. delbrueckii subsp. bulgaricus loses its ability to regulate lac operon expression. A series of mutations led to the constitutive expression of the lac genes. A complex of insertion sequence (IS) elements (ISL4 inside ISL5), inserted at the border of the lac promoter, induced the loss of the palindromic structure of one of the operators likely involved in the binding of regulatory factors. A lac repressor gene was discovered downstream of the beta-galactosidase gene of L. delbrueckii subsp. lactis and was shown to be inactivated by several mutations in L. delbrueckii subsp. bulgaricus. Regulatory mechanisms of the lac gene expression of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis were compared by heterologous expression in Lactococcus lactis of the two lac promoters in front of a reporter gene (beta-glucuronidase) in the presence or absence of the lac repressor gene. Insertion of the complex of IS elements in the lac promoter of L. delbrueckii subsp. bulgaricus increased the promoter's activity but did not prevent repressor binding; rather, it increased the affinity of the repressor for the promoter. Inactivation of the lac repressor by mutations was then necessary to induce the constitutive expression of the lac genes in L. delbrueckii subsp. bulgaricus.
Collapse
Affiliation(s)
- Luciane Lapierre
- Nestlé Research Center, Nestlé, Ltd., CH-1000 Lausanne 26, Switzerland
| | | | | |
Collapse
|
16
|
Huber RE, Hlede IY, Roth NJ, McKenzie KC, Ghumman KK. His-391 of beta-galactosidase (Escherichia coli) promotes catalyses by strong interactions with the transition state. Biochem Cell Biol 2001; 79:183-93. [PMID: 11310566 DOI: 10.1139/o00-101] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
His-391 of beta-galactosidase (Escherichia coli) was substituted by Phe, Glu, and Lys. Homogeneous preparations of the substituted enzymes were essentially inactive unless very rapid purifications were performed, and the assays were done immediately. The inactive enzymes were tetrameric, just like wild-type beta-galactosidase and their fluorescence spectra were identical to the fluorescence spectrum of wild-type enzyme. Analyses of two of the substituted enzymes that were very rapidly purified to homogeneity and rapidly assayed while they were still active (at only a few substrate concentrations so that the data could be rapidly obtained), showed that the kinetic values were very similar to the values obtained with the same enzymes that were only partially purified. This showed that the kinetics were not affected by the degree of purity and allowed kinetic analyses with partially purified enzymes so that large numbers of points could be used for accuracy. The data showed that His-391 is a very important residue. It interacts strongly with the transition state and promotes catalysis by stabilizing the transition state. Activation energy differences (deltadelta G(S) double dagger), as determined by differences in the kcat/Km values, indicated that substitutions for His-391 caused very large destabilizations (22.8-35.9 kJ/mol) of the transition state. The importance of His-391 for transition state stabilization was confirmed by studies that showed that transition state analogs are very poor inhibitors of the substituted enzymes, while inhibition by substrate analogs was only affected in a small way by substituting for His-391. The poor stabilities of the transition states caused significant decreases of the rates of the glycolytic cleavage steps (galactosylation, k2). Degalactosylation (k3) was not decreased to the same extent.
Collapse
Affiliation(s)
- R E Huber
- Division of Biochemistry, Faculty of Science, University of Calgary, AB, Canada.
| | | | | | | | | |
Collapse
|
17
|
Hung MN, Xia Z, Hu NT, Lee BH. Molecular and biochemical analysis of two beta-galactosidases from Bifidobacterium infantis HL96. Appl Environ Microbiol 2001; 67:4256-63. [PMID: 11526031 PMCID: PMC93155 DOI: 10.1128/aem.67.9.4256-4263.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two genes encoding beta-galactosidase isoenzymes, beta-galI and beta-galIII, from Bifidobacterium infantis HL96 were revealed on 3.6- and 2.4-kb DNA fragments, respectively, by nucleotide sequence analysis of the two fragments. beta-galI (3,069 bp) encodes a 1,022-amino-acid (aa) polypeptide with a predicted molecular mass of 113 kDa. A putative ribosome binding site and a promoter sequence were recognized at the 5' flanking region of beta-galI. Further upstream a partial sequence of an open reading frame revealed a putative lactose permease gene transcribing divergently from beta-galI. The beta-galIII gene (2,076 bp) encodes a 691-aa polypeptide with a calculated molecular mass of 76 kDa. A rho-independent transcription terminator-like sequence was found 25 bp downstream of the termination codon. The amino acid sequences of beta-GalI and beta-GalIII are homologous to those found in the LacZ and the LacG families, respectively. The acid-base, nucleophilic, and substrate recognition sites conserved in the LacZ family were found in beta-GalI, and a possible acid-base site proposed for the LacG family was located in beta-GalIII, which featured a glutamate at residue 160. The coding regions of the beta-galI and beta-galIII genes were each cloned downstream of a T7 promoter for overexpression in Escherichia coli. The molecular masses of the overexpressed proteins, as estimated by polyacrylamide gel electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, agree with their predicted molecular weights. beta-GalI and beta-GalIII were specific for beta-D-anomer-linked galactoside substrates. Both are more active in response to ONPG (o-nitrophenyl-beta-D-galactopyranoside) than in response to lactose, particularly beta-GalIII. The galacto-oligosaccharide yield in the reaction catalyzed by beta-GalI at 37 degrees C in 20% (wt/vol) lactose solution was 130 mg/ml, which is more than six times higher than the maximum yield obtained with beta-GalIII. The structure of the major trisaccharide produced by beta-GalI catalysis was characterized as O-beta-D-galactopyranosyl-(1-3)-O-beta-D-galactopyranosyl-(1-4)-D-glucopyranose (3'-galactosyl-lactose).
Collapse
Affiliation(s)
- M N Hung
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | | | | | | |
Collapse
|
18
|
Vaughan EE, van den Bogaard PT, Catzeddu P, Kuipers OP, de Vos WM. Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus. J Bacteriol 2001; 183:1184-94. [PMID: 11157930 PMCID: PMC94991 DOI: 10.1128/jb.183.4.1184-1194.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2000] [Accepted: 11/16/2000] [Indexed: 11/20/2022] Open
Abstract
Streptococcus thermophilus strain CNRZ 302 is unable to ferment galactose, neither that generated intracellularly by lactose hydrolysis nor the free sugar. Nevertheless, sequence analysis and complementation studies with Escherichia coli demonstrated that strain CNRZ 302 contained structurally intact genes for the Leloir pathway enzymes. These were organized into an operon in the order galKTE, which was preceded by a divergently transcribed regulator gene, galR, and followed by a galM gene and the lactose operon lacSZ. Results of Northern blot analysis showed that the structural gal genes were transcribed weakly, and only in medium containing lactose, by strain CNRZ 302. However, in a spontaneous galactose-fermenting mutant, designated NZ302G, the galKTE genes were well expressed in cells grown on lactose or galactose. In both CNRZ 302 and the Gal(+) mutant NZ302G, the transcription of the galR gene was induced by growth on lactose. Disruption of galR indicated that it functioned as a transcriptional activator of both the gal and lac operons while negatively regulating its own expression. Sequence analysis of the gal promoter regions of NZ302G and nine other independently isolated Gal(+) mutants of CNRZ 302 revealed mutations at three positions in the galK promoter region, which included substitutions at positions -9 and -15 as well as a single-base-pair insertion at position -37 with respect to the main transcription initiation point. Galactokinase activity measurements and analysis of gusA reporter gene fusions in strains containing the mutated promoters suggested that they were gal promoter-up mutations. We propose that poor expression of the gal genes in the galactose-negative S. thermophilus CNRZ 302 is caused by naturally occurring mutations in the galK promoter.
Collapse
Affiliation(s)
- E E Vaughan
- Wageningen Centre for Food Sciences, NIZO Food Research, 6718 ZB Ede, The Netherlands.
| | | | | | | | | |
Collapse
|
19
|
Penner RM, Roth NJ, Rob B, Lay H, Huber RE. Tyr-503 of beta-galactosidase (Escherichia coli) plays an important role in degalactosylation. Biochem Cell Biol 1999; 77:229-36. [PMID: 10505794 DOI: 10.1139/o99-042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Substitutions for Tyr-503 of beta-galactosidase caused large decreases of the activity. Both the galactosylation (k2) and degalactosylation (k3) rates were decreased. Substitutions by residues without transferable protons, caused k3 to decrease much more than k2 while substitutions with residues having transferable protons, caused approximately equal decreases of k2 and k3. Several lines of evidence showed this. The Km values of the substituted enzymes were much smaller than those for the wild type if the substituted amino acid residues did not have transferable protons; this was not the case when the substituted residues had transferable protons. Inhibition studies showed that the Km values were not small because of small Ks values but were small because of relatively small k3 values (compared with the k2 values). The conclusion that the k3 values are small relative to k2 upon substitution with residues without transferable protons is also based upon other studies: studies indicating that the reaction rates were similar with different substrates, studies in the presence of alcohol acceptors, studies showing that the rate of inactivation by 2,4-dinitrophenyl-2-deoxy-2-F-beta-D-galactopyranoside decreased much less than the rate of reactivation; studies on burst kinetics, and pH studies. The data suggest that Tyr-503 may be important for the degalactosylation reaction because of its ability to transfer protons and thereby facilitate cleavage of the transient covalent bond between galactose and Glu-537.
Collapse
Affiliation(s)
- R M Penner
- Division of Biochemistry, Faculty of Science, University of Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
20
|
Inohara-Ochiai M, Nakayama T, Nakao M, Fujita T, Ueda T, Ashikari T, Nishino T, Shibano Y. Unique primary structure of a thermostable multimetal beta-galactosidase from Saccharopolyspora rectivirgula. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1388:77-83. [PMID: 9774708 DOI: 10.1016/s0167-4838(98)00187-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The gene of the monomeric multimetal beta-galactosidase of Saccharopolyspora rectivirgula was cloned and sequenced. Although the enzyme could be assigned as a member of beta-galactosidases belonging to the glycosyl hydrolase family 2, it has unusual structural features for beta-galactosidase of this family; it contained a unique sequence which consists of approximately 200 amino acid residues with no similarity to known proteins. This 200-residue sequence exists as if it is inserted into a sequence homologous to the active-site domain of the Escherichia coli lacZ enzyme.
Collapse
Affiliation(s)
- M Inohara-Ochiai
- Suntory Research Center, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Lactobacilli play a substantial role in food biotechnology and influence our quality of life by their fermentative and probiotic properties. Despite their obvious importance in fermentation ecology and biotechnology only recent years have brought some insight into the genetics of lactobacilli. These genetic investigations allow the elucidation of traits determinative for competitiveness and ecology and thus product safety and quality. They have concentrated only on a small selection of lactobacilli whereas others are hardly touched or remained recalcitrant to genetic analysis and manipulation. The knowledge gained on the biochemistry, physiology, ecology and especially genetics is a prerequisite for the deliberate application and improved handling of lactobacilli in traditional and novel applications. In this review, the achievements in the genetics of lactobacilli are described including detection systems, genetic elements, host vector systems, gene cloning and expression and risk assessment of genetically engineered lactobacilli.
Collapse
Affiliation(s)
- R F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising-Weihenstephan, Germany
| | | |
Collapse
|
22
|
Anderson TJ, MacInnes JI. Expression and phylogenetic relationships of a novel lacZ homologue from Actinobacillus pleuropneumoniae. FEMS Microbiol Lett 1997; 152:117-23. [PMID: 9228778 DOI: 10.1111/j.1574-6968.1997.tb10417.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To learn more about the genetics and physiology of the important swine pathogen, Actinobacillus pleuropneumoniae, we cloned the lacZ gene by complementation of an Escherichia coli delta lac mutant. The A. pleuropneumoniae lacZ gene has an open reading frame of 3015 bp which could encode a protein with a predicted molecular mass of 117022. The deduced protein shares 26.8-34.8% identity with beta-galactosidases from both Gram-positive and Gram-negative bacteria. Sequences with homology to seven regions commonly found in beta-galactosidases are present and amino acids corresponding to active site residues Tyr-503 and Glu-537 in E. coli LacZ are also conserved; however, there is a leucine in the place of Gly-794, a residue which has been implicated in substrate recognition. The sequences flanking the A. pleuropneumoniae lacZ gene do not share homology with known transport or regulatory genes nor do they share homology with cAMP receptor protein (CRP) or LacI binding sites. Low levels of beta-galactosidase activity could be detected when the protein was expressed from a multicopy plasmid in E. coli delta lac and when it was measured in A. pleuropneumoniae. The level of activity was not markedly reduced in the presence of glucose. Although the A. pleuropneumoniae LacZ shares some features with other beta-galactosidases, its constitutive expression and an unusual active site residue suggest that it may have a unique function.
Collapse
Affiliation(s)
- T J Anderson
- Department of Pathobiology, University of Guelph, Ont., Canada
| | | |
Collapse
|
23
|
Zhang JH, Dawes G, Stemmer WP. Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc Natl Acad Sci U S A 1997; 94:4504-9. [PMID: 9114019 PMCID: PMC20752 DOI: 10.1073/pnas.94.9.4504] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An efficient beta-fucosidase was evolved by DNA shuffling from the Escherichia coli lacZ beta-galactosidase. Seven rounds of DNA shuffling and colony screening on chromogenic fucose substrates were performed, using 10,000 colonies per round. Compared with native beta-galactosidase, the evolved enzyme purified from cells from the final round showed a 1,000-fold increased substrate specificity for o-nitrophenyl fucopyranoside versus o-nitrophenyl galactopyranoside and a 300-fold increased substrate specificity for p-nitrophenyl fucopyranoside versus p-nitrophenyl galactopyranoside. The evolved cell line showed a 66-fold increase in p-nitrophenyl fucosidase specific activity. The evolved fucosidase has a 10- to 20-fold increased kcat/Km for the fucose substrates compared with the native enzyme. The DNA sequence of the evolved fucosidase gene showed 13 base changes, resulting in six amino acid changes from the native enzyme. This effort shows that the library size that is required to obtain significant enhancements in specificity and activity by reiterative DNA shuffling and screening, even for an enzyme of 109 kDa, is within range of existing high-throughput technology. Reiterative generation of libraries and stepwise accumulation of improvements based on addition of beneficial mutations appears to be a promising alternative to rational design.
Collapse
Affiliation(s)
- J H Zhang
- Maxygen, Inc., 3410 Central Expressway, Santa Clara, CA 95051, USA
| | | | | |
Collapse
|
24
|
Huber RE, Roth NJ, Bahl H. Quaternary structure, Mg2+ interactions, and some kinetic properties of the beta-galactosidase from Thermoanaerobacterium thermosulfurigenes EM1. JOURNAL OF PROTEIN CHEMISTRY 1996; 15:621-9. [PMID: 8968953 DOI: 10.1007/bf01886744] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The beta-galactosidase from Thermoanaerobacterium thermosulfurigenes EM1 was found to be a dimer with a monomer molecular weight of about 85,000. It lacks the alpha-peptide and an important alpha-helix that are both needed for dimer-dimer interaction and there is no homology in other important dimer-dimer interaction areas. These differences in structure probably account for the dimeric (rather than tetrameric) structure. Only 0.19 Mg2+ bound per monomer and Mg2+ had only small effects on the activity and heat stability. The absence of residues equivalent to Glu-416 and His-418 (two of the three ligands to Mg2+ in the beta-galactosidase from Escherichia coli) probably accounts for the low level of Mg2+ binding and the consequent lack of response to Mg2+. Both Na+ and K+ also had no effect on the activity. The enzyme activity with o-nitrophenyl-beta-D-galactopyanoside (ONPG) was very similar to that with p-nitrophenyl-beta-D-beta-D-galactopyranoside (PNPG) and the ONPG pH profile was very similar to the PNPG pH profile. These differences are in contrast to the E.coli beta-galactosidase, which dramatically discriminates between these two substrates. The lack of discrimination by the T. thermosulfurigenes beta-galactosidase could be due to the absence of the sequence equivalent to residues 910-1023 of the E. coli beta-galactosidase. Trp-999 is probably of the most importance. Trp-999 of the E. coli beta-galactosidase is important for aglycone binding and ONPG and PNPG differ only in their aglycones. The suggestion that the aglycone site of the T. thermosulfurigenes beta-galactosidase is different was strengthened by competitive inhibition studies. Compared to E. coli beta-galactosidase, D-galactonolactone was a very good inhibitor of the T. thermosulfurigenes enzyme, while L-ribose inhibited poorly. These are transition-state analogs and the results indicate that T. thermosulfurigenes beta-galactosidase binds the transition state differently than does E. coli beta-galactosidase. Methanol and glucose were good acceptors of galactose, and allolactose was formed when glucose was the acceptor. Allolactose could not, however, be detected by TLC when lactose was the substrate. The differences noted may be due to the thermophilic nature of T. thermosulfurigenes.
Collapse
Affiliation(s)
- R E Huber
- Division of Biochemistry, Faculty of Science, University of Calgary, Canada.
| | | | | |
Collapse
|
25
|
Abstract
Lactic acid bacteria are characterized by a relatively simple sugar fermentation pathway that, by definition, results in the formation of lactic acid. The extensive knowledge of traditional pathways and the accumulating genetic information on these and novel ones, allows for the rerouting of metabolic processes in lactic acid bacteria by physiological approaches, genetic methods, or a combination of these two. This review will discuss past and present examples and future possibilities of metabolic engineering of lactic acid bacteria for the production of important compounds, including lactic and other acids, flavor compounds, and exopolysaccharides.
Collapse
Affiliation(s)
- W M de Vos
- Department of Biophysical Chemistry, NIZO, Ede, The Netherlands
| |
Collapse
|
26
|
Roth NJ, Huber RE. The beta-galactosidase (Escherichia coli) reaction is partly facilitated by interactions of His-540 with the C6 hydroxyl of galactose. J Biol Chem 1996; 271:14296-301. [PMID: 8662937 DOI: 10.1074/jbc.271.24.14296] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
beta-Galactosidases with substitutions for His-540 were only poorly reactive with galactosyl substrates. However, the activity with substrates that were like galactose but did not have a C6 hydroxyl group was not decreased much as a result of such substitutions. The loss of transition state stabilization for galactosyl substrates as a result of substitution was between -15.4 and -22.8 kJ/mol but only between +0.34 and -6.5 for substrates that were identical to galactose but lacked the C6 hydroxyl. These findings indicate that an important function of His-540 is to aid in the stabilization of the transition state by forming a stable interaction with the C6 hydroxyl group. This suggestion was strengthened by the results of competitive inhibition studies showing that L-arabinolactone (a transition state analog inhibitor of beta-galactosidase without a C6 hydroxymethyl group) was bound as well by the substituted enzymes as by wild type, whereas transition state analog inhibitors that contain C6 hydroxyls (L-ribose and D-galactonolactone) were bound much more poorly by the substituted enzymes than by the wild type enzyme. Substrate analog inhibitor studies showed that His-540 was also important for binding interactions with the C6 hydroxyl group of the ground (substrate) state. The activation by Mg2+ was the same for the substituted enzymes as for the wild type, and equilibrium dialysis showed that H540F-beta-galactosidase bound Mg2+ as well as did normal beta-galactosidase. The k2 and Ks values seem to have the same pH interactions as wild type enzyme, whereas the k3 interactions are affected differently by pH in the substituted enzymes than in the wild type enzyme. The rate of the "degalactosylation" reaction was affected more by substitutions for His-540 than was the rate of the "galactosylation" reaction. All three substituted beta-galactosidases were less stable to heat than was wild type, but H540N-beta-galactosidase was somewhat more stable than the other two substituted enzymes. There were some differences in activity and inhibitory properties that resulted from the different substitutions.
Collapse
Affiliation(s)
- N J Roth
- Division of Biochemistry, Faculty of Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
27
|
Griffin HG, MacCormick CA, Gasson MJ. Cloning, DNA sequence, and regulation of expression of a gene encoding beta-galactosidase from Lactococcus lactis. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1996; 6:337-46. [PMID: 8988372 DOI: 10.3109/10425179609047572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The beta-galactosidase from Escherichia coli is one of the most important enzymes in molecular biology. Here we report the cloning and sequencing of a gene encoding beta-galactosidase from Lactococcus lactis and compare the predicted amino acid sequence to that from other organisms. The beta-galactosidase from L. lactis was found to be a protein of 996 residues with 68.7% similarity to the E. coli enzyme and 65.8% similarity to the enzyme from Klebsiella pneumoniae. The lactococcal beta-galactosidase has lower similarity (approx 55%) to the enzymes from other lactic acid bacteria and no significant similarity to the beta-galactosidase enzymes from Agrobacterium radiobacter, Bacillus stearothermophilus, or Clostridium thermosulfurogenes. Expression of the lacZ gene from L. lactis was found to be higher when cells were grown in medium containing lactose than when grown in glucose, and expression was higher when cells were grown at 30 degrees C than at 35 degrees C.
Collapse
Affiliation(s)
- H G Griffin
- Institute of Food Research, Colney, Norwich, UK.
| | | | | |
Collapse
|
28
|
Expression of a ?-galactosidase gene from Lactobacillus sake in Escherichia coli. Biotechnol Lett 1995. [DOI: 10.1007/bf00130352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Gutshall KR, Trimbur DE, Kasmir JJ, Brenchley JE. Analysis of a novel gene and beta-galactosidase isozyme from a psychrotrophic Arthrobacter isolate. J Bacteriol 1995; 177:1981-8. [PMID: 7721689 PMCID: PMC176839 DOI: 10.1128/jb.177.8.1981-1988.1995] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have characterized a new psychrotrophic Arthrobacter isolate which produces beta-galactosidase isozymes. When DNA from this isolate was transformed into an Escherichia coli host, we obtained three different fragments, designated 12, 14, and 15, each encoding a different beta-galactosidase isozyme. The beta-galactosidase produced from fragment 12 was of special interest because the protein subunit was smaller (about 71 versus 116 kDa) than those typically encoded by the lacZ family. The isozyme encoded by fragment 12 was purified, and its activity and thermostability were examined. Although the enzyme is highly specific towards beta-D-galactoside substrates, its levels in the isolate do not increase in cells grown with lactose. Nucleotide sequence determination showed that the gene encoding isozyme 12 is not similar to the other members of the lacZ family but has regions similar to beta-galactosidase isozymes from Bacillus stearothermophilus and B. circulans. Addition of the isozyme 12 sequence to the database made it possible to examine these enzymes as possible members of a new, separate family. Our analysis of this new family showed some conserved amino acids corresponding to the lacZ acid-base catalytic region but no homology with the nucleophilic region. On the basis of these comparisons, we designated this a new lacG family.
Collapse
Affiliation(s)
- K R Gutshall
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, USA
| | | | | | | |
Collapse
|
30
|
Henrich B, Binishofer B, Bläsi U. Primary structure and functional analysis of the lysis genes of Lactobacillus gasseri bacteriophage phi adh. J Bacteriol 1995; 177:723-32. [PMID: 7836307 PMCID: PMC176649 DOI: 10.1128/jb.177.3.723-732.1995] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The lysis genes of the Lactobacillus gasseri bacteriophage phi adh were isolated by complementation of a lambda Sam mutation in Escherichia coli. Nucleotide sequencing of a 1,735-bp DNA fragment revealed two adjacent coding regions of 342 bp (hol) and 951 bp (lys) in the same reading frame which appear to belong to a common transcriptional unit. Proteins corresponding to the predicted gene products, holin (12.9 kDa) and lysin (34.7 kDa), were identified by in vitro and in vivo expression of the cloned genes. The phi adh holin is a membrane-bound protein with structural similarity to lysis proteins of other phage, known to be required for the transit of murein hydrolases through the cytoplasmic membrane. The phi adh lysin shows homology with mureinolytic enzymes encoded by the Lactobacillus bulgaricus phage mv4, the Streptococcus pneumoniae phage Cp-1, Cp-7, and Cp-9, and the Lactococcus lactis phage phi LC3. Significant homology with the N termini of known muramidases suggests that phi adh lysin acts by a similar catalytic mechanism. In E. coli, the phi adh lysin seems to be associated with the total membrane fraction, from which it can be extracted with lauryl sarcosinate. Either one of the phi adh lysis proteins provoked lysis of E. coli when expressed along with holins or lysins of phage lambda or Bacillus subtilis phage phi 29. Concomitant expression of the combined holin and lysin functions of phi adh in E. coli, however, did not result in efficient cell lysis.
Collapse
Affiliation(s)
- B Henrich
- Abteilung Mikrobiologie, Universität Kaiserslautern, Germany
| | | | | |
Collapse
|
31
|
|
32
|
|
33
|
Trimbur DE, Gutshall KR, Prema P, Brenchley JE. Characterization of a psychrotrophic Arthrobacter gene and its cold-active beta-galactosidase. Appl Environ Microbiol 1994; 60:4544-52. [PMID: 7811090 PMCID: PMC202017 DOI: 10.1128/aem.60.12.4544-4552.1994] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Enzymes with high specific activities at low temperatures have potential uses for chemical conversions when low temperatures are required, as in the food industry. Psychrotrophic microorganisms which grow at low temperatures may be a valuable source of cold-active enzymes that have higher activities at low temperatures than enzymes found for mesophilic microorganisms. To find cold-active beta-galactosidases, we isolated and characterized several psychrotrophic microorganisms. One isolate, B7, is an Arthrobacter strain which produces beta-galactosidase when grown in lactose minimal media. Extracts have a specific activity at 30 degrees C of 2 U/mg with o-nitrophenyl-beta-D-galactopyranoside as a substrate. Two isozymes were detected when extracts were subjected to electrophoresis in a nondenaturing polyacrylamide gel and stained for activity with 5-bromo-4-chloro-indolyl-beta-D-galactopyranoside (X-Gal). When chromosomal DNA was prepared and transformed into Escherichia coli, three different genes encoding beta-galactosidase activity were obtained. We have subcloned and sequenced one of these beta-galactosidase genes from the Arthrobacter isolate B7. On the basis of amino acid sequence alignment, the gene was found to have probable catalytic sites homologous to those from the E. coli lacZ gene. The gene encoded a protein of 1,016 amino acids with a predicted molecular mass of 111 kDa. The enzyme was purified and characterized. The beta-galactosidase from isolate B7 has kinetic properties similar to those of the E. coli lacZ beta-galactosidase but has a temperature optimum 20 degrees C lower than that of the E. coli enzyme.
Collapse
Affiliation(s)
- D E Trimbur
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park
| | | | | | | |
Collapse
|
34
|
Hemme D, Gaier W, Winters DA, Foucaud C, Vogel RF. Expression of Lactobacillus casei ATCC 393 beta-galactosidase encoded by plasmid pLZ15 in Lactococcus lactis CNRZ 1123. Lett Appl Microbiol 1994; 19:345-8. [PMID: 7765447 DOI: 10.1111/j.1472-765x.1994.tb00471.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lactococcus lactis subsp. lactis CNRZ 1123, a Lac- derivative of CNRZ 1122 was transformed by electroporation with the Lactobacillus casei ATCC 393 plasmid pLZ15, which bears a beta-galactosidase gene. The transformants expressed a constitutive beta-galactosidase activity at a higher level than in Lact. casei, and in the cell-free extract two additional protein bands were detected by SDS-PAGE which could correspond to lactose metabolism enzymes. Both plasmid and beta-gal activity were stable in Lactococcus after 100 generations in glucose-containing medium.
Collapse
Affiliation(s)
- D Hemme
- Universität Hohenheim, Institut für Lebensmitteltechnologie, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
35
|
Abstract
Lactose utilization is the primary function of lactic acid bacteria used in industrial dairy fermentations. The mechanism by which lactose is transported determines largely the pathway for the hydrolysis of the internalized disaccharide and the fate of the glucose and galactose moieties. Biochemical and genetic studies have indicated that lactose can be transported via phosphotransferase systems, transport systems dependent on ATP binding cassette proteins, or secondary transport systems including proton symport and lactose-galactose antiport systems. The genetic determinants for the group translocation and secondary transport systems have been identified in lactic acid bacteria and are reviewed here. In many cases the lactose genes are organized into operons or operon-like structures with a modular organization, in which the genes encoding lactose transport are tightly linked to those for lactose hydrolysis. In addition, in some cases the genes involved in the galactose metabolism are linked to or co-transcribed with the lactose genes, suggesting a common evolutionary pathway. The lactose genes show characteristic configurations and very high sequence identity in some phylogenetically distant lactic acid bacteria such as Leuconostoc and Lactobacillus or Lactococcus and Lactobacillus. The significance of these results for the adaptation of lactic acid bacteria to the industrial milk environment in which lactose is the sole energy source is discussed.
Collapse
Affiliation(s)
- W M de Vos
- Department of Biophysical Chemistry, NIZO, Ede, The Netherlands
| | | |
Collapse
|
36
|
Moore JB, Markiewicz P, Miller JH. Identification and sequencing of the Thermotoga maritima lacZ gene, part of a divergently transcribed operon. Gene 1994; 147:101-6. [PMID: 8088532 DOI: 10.1016/0378-1119(94)90046-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The lacZ gene encoding a beta-galactosidase (beta Gal) from the hyperthermophile Thermotoga maritima was cloned on an 11-kb fragment by complementation of an Escherichia coli lacZ deletion stain. The nucleotide sequence of the structural gene and two other ORFs found within a 6317-bp region were determined. The deduced amino acid (aa) sequence of the Tt. maritima beta Gal predicts a 1037-aa polypeptide with a calculated M(r) of 122,312. The translated sequence is 30% similar to nine other beta Gal sequences from bacteria and one yeast. Alignment of the Tt. maritima beta Gal with these other sequences reveals that the residues responsible for Mg2+ binding, catalysis and substrate recognition are conserved in the thermophilic enzyme. Sequence analysis also revealed the presence of a divergently transcribed operon containing at least two other genes 5' to lacZ. These ORFs encode proteins homologous to a second family of beta Gal found in Bacillus species and to an ATP-dependent family of bacterial oligopeptide transport proteins.
Collapse
Affiliation(s)
- J B Moore
- Department of Microbiology and Molecular Genetics, University of California Los Angeles 90024
| | | | | |
Collapse
|
37
|
Jacobson RH, Zhang XJ, DuBose RF, Matthews BW. Three-dimensional structure of beta-galactosidase from E. coli. Nature 1994; 369:761-6. [PMID: 8008071 DOI: 10.1038/369761a0] [Citation(s) in RCA: 467] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The beta-galactosidase from Escherichia coli was instrumental in the development of the operon model, and today is one of the most commonly used enzymes in molecular biology. Here we report the structure of this protein and show that it is a tetramer with 222-point symmetry. The 1,023-amino-acid polypeptide chain folds into five sequential domains, with an extended segment at the amino terminus. The participation of this amino-terminal segment in a subunit interface, coupled with the observation that each active site is made up of elements from two different subunits, provides a structural rationale for the phenomenon of alpha-complementation. The structure represents the longest polypeptide chain for which an atomic structure has been determined. Our results show that it is possible successfully to study non-viral protein crystals with unit cell dimensions in excess of 500 A and with relative molecular masses in the region of 2,000K per asymmetric unit. Non-crystallographic symmetry averaging proved to be a very powerful tool in the structure determination, as has been shown in other contexts.
Collapse
Affiliation(s)
- R H Jacobson
- Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene 97403
| | | | | | | |
Collapse
|
38
|
Fanning S, Leahy M, Sheehan D. Nucleotide and deduced amino acid sequences of Rhizobium meliloti 102F34 lacZ gene: comparison with prokaryotic beta-galactosidases and human beta-glucuronidase. Gene 1994; 141:91-6. [PMID: 8163182 DOI: 10.1016/0378-1119(94)90133-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nucleotide (nt) sequence of a 2.57-kb Sau3A fragment carrying the Rhizobium meliloti beta-galactosidase (beta Gal)-encoding gene (RmlacZ) was determined. An open reading frame (ORF) of 2.26 kb was identified which encoded a 755-amino-acid (aa) polypeptide with a calculated molecular mass of 84,141 Da, in fair agreement with the value of 88 kDa determined by SDS-PAGE. The deduced N-terminal aa sequence was confirmed by direct sequencing of electrophoretically purified R. meliloti beta Gal. The size of the native R. meliloti beta Gal was approx. 174 kDa. Similarities were found between the aa sequence of the R. meliloti beta Gal and those from Clostridium thermosulfurogenes EM1 and Agrobacterium radiobacter, as well as human beta-glucuronidase (beta Glu). Comparisons with beta Gal from Escherichia coli, Klebsiella pneumoniae, Lactobacillus bulgaricus and Kluyveromyces lactis found only weak similarities; however, the putative active site residues appear to be conserved. The RmlacZ sequence is flanked by two partially sequenced ORFs, which show aa sequence and organisational similarities to the previously reported lac operon in A. radiobacter.
Collapse
Affiliation(s)
- S Fanning
- Medical Sciences Department, Regional Technical College, Bishopstown, Cork, Ireland
| | | | | |
Collapse
|
39
|
Yoast S, Adams RM, Mainzer SE, Moon K, Palombella AL, Schmidt BF. Generation and Characterization of Environmentally Sensitive Variants of the beta-Galactosidase from Lactobacillus delbrueckii subsp. bulgaricus. Appl Environ Microbiol 1994; 60:1221-6. [PMID: 16349230 PMCID: PMC201462 DOI: 10.1128/aem.60.4.1221-1226.1994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A method is described for generating and screening variants of the beta-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus sensitive to several environmental stresses, with potential application in the food industry. Chemical mutagenesis with hydroxylamine or methoxylamine was performed on the beta-galactosidase gene carried on an Escherichia coli expression vector. Mutants sensitive to cold, heat, low pH, low magnesium concentration, and the presence of urea were isolated by screening for reduced color development on beta-galactosidase indicator plates. The mutations responsible for three variant beta-galactosidases were localized, and the base substitutions were determined by DNA sequencing. The amino acid alterations associated with one low-pH-sensitive (pHs) and two urea-sensitive (Us) variants correspond to P584L (pHs1), G400S/R479Q (Us26), and G167E/E168K/E363K/V492M (Us17), respectively. Mutant pHs1 is also heat, cold, low magnesium, and urea sensitive; Us26 is also cold sensitive; and Us17 is also low-pH sensitive.
Collapse
Affiliation(s)
- S Yoast
- Genencor International, Inc., South San Francisco, California 94080
| | | | | | | | | | | |
Collapse
|
40
|
Huber RE, Gupta MN, Khare SK. The active site and mechanism of the beta-galactosidase from Escherichia coli. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:309-18. [PMID: 8187928 DOI: 10.1016/0020-711x(94)90051-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- R E Huber
- Division of Biochemistry, Faculty of Science, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
41
|
Adams R, Yoast S, Mainzer S, Moon K, Palombella A, Estell D, Power S, Schmidt B. Characterization of two cold-sensitive mutants of the beta-galactosidase from Lactobacillus delbruckii subsp. bulgaricus. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37512-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Abstract
In the discovery of some general principles of energy transduction, lactic acid bacteria have played an important role. In this review, the energy transducing processes of lactic acid bacteria are discussed with the emphasis on the major developments of the past 5 years. This work not only includes the biochemistry of the enzymes and the bioenergetics of the processes, but also the genetics of the genes encoding the energy transducing proteins. The progress in the area of carbohydrate transport and metabolism is presented first. Sugar translocation involving ATP-driven transport, ion-linked cotransport, heterologous exchange and group translocation are discussed. The coupling of precursor uptake to product product excretion and the linkage of antiport mechanisms to the deiminase pathways of lactic acid bacteria is dealt with in the second section. The third topic relates to metabolic energy conservation by chemiosmotic processes. There is increasing evidence that precursor/product exchange in combination with precursor decarboxylation allows bacteria to generate additional metabolic energy. In the final section transport of nutrients and ions as well as mechanisms to excrete undesirable (toxic) compounds from the cells are discussed.
Collapse
Affiliation(s)
- B Poolman
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| |
Collapse
|
43
|
Branny P, De La Torre F, Garel JR. Cloning, sequencing, and expression in Escherichia coli of the gene coding for phosphofructokinase in Lactobacillus bulgaricus. J Bacteriol 1993; 175:5344-9. [PMID: 8366023 PMCID: PMC206588 DOI: 10.1128/jb.175.17.5344-5349.1993] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A fragment of 1,185 bp containing the gene coding for phosphofructokinase (ATP:D-fructose-6-phosphate-1-phosphotransferase; EC 2.7.1.11) in Lactobacillus bulgaricus has been cloned, sequenced, and expressed in Escherichia coli. The amino acid sequence of this enzyme was homologous to those of the ATP-dependent phosphofructokinases from E. coli, Thermus thermophilus, Spiroplasma citri, and Bacillus stearothermophilus, suggesting that these enzymes have closely related structures despite their different regulatory properties. The recombinant protein had the same structural and functional properties as did the original enzyme. The 3' end of the 1,185-bp fragment showed the presence of an open reading frame corresponding to the N-terminal amino acid sequence of the pyruvate kinase from L. bulgaricus. This gene organization, the same as that in S. citri (C. Chevalier, C. Saillard, and J. M. Bové, J. Bacteriol. 172:2693-2703, 1990) and B. stearothermophilus (D. Walker, W. N. Chia, and H. Muirhead, J. Mol. Biol. 228:265-276, 1992; H. Sakai and T. Ohta, Eur. J. Biochem. 311:851-859, 1993) but different from that in E. coli (H. W. Hellinga and P. R. Evans, Eur. J. Biochem. 149:363-373, 1985), indicated that the same transcription unit apparently contained the genes for phosphofructokinase and pyruvate kinase, the two key enzymes of glycolysis. The possibility that these genes could be transcribed at the same time suggested that in L. bulgaricus, the coordinated regulation of phosphofructokinase and pyruvate kinase occurs at the levels of both biosynthesis and enzymatic activity.
Collapse
Affiliation(s)
- P Branny
- Laboratoire d'Enzymologie du Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | |
Collapse
|
44
|
Velázquez J, Cansado J, Sieiro C, Calo P, Longo E, Villa T. Improved lysis of wine lactobacilli for high yield isolation and chatacterization of chromosomal DNA. METHODS IN MICROBIOLOGY 1993. [DOI: 10.1016/0167-7012(93)90053-k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Gabelsberger J, Liebl W, Schleifer KH. Cloning and characterization of β-galactoside and β-glucoside hydrolysing enzymes of Thermotoga maritima. FEMS Microbiol Lett 1993. [DOI: 10.1111/j.1574-6968.1993.tb06157.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
46
|
Gallo KA, Knowles JR. Purification, cloning, and cofactor independence of glutamate racemase from Lactobacillus. Biochemistry 1993; 32:3981-90. [PMID: 8385993 DOI: 10.1021/bi00066a019] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Glutamate racemase has been purified more than 12,000-fold from Lactobacillus fermenti. The racemase gene has been cloned using standard hybridization techniques combined with a novel selection for in vivo glutamate racemase activity, and the racemase has been expressed in Escherichia coli as 20-25% of the total soluble cell protein. The cloned gene product is indistinguishable from that purified from Lactobacillus and is a monomer of M(r) 28,300. Both a coupled enzymatic assay and a circular dichroism assay show that the enzyme follows Michaelis-Menten kinetics, with a Km of 0.3 mM and a kcat of 70 s-1 in each reaction direction. Investigations into the cofactor dependence of glutamate racemase indicate that the enzyme employs neither pyridoxal phosphate nor a pyruvoyl group in the labilization of the proton at the stereogenic center of glutamate. Furthermore, the racemase activity is unaffected by the presence of the metal-chelating reagent EDTA. The gene sequence of the racemase is 24% identical to that of aspartate racemase from Streptococcus thermophilus and 30% identical to that of an unidentified open reading frame in the rrnB ribosomal RNA operon of E. coli. Because the two cysteine residues in glutamate racemase and their surrounding regions are well-conserved in both of these sequences, and since glutamate racemase is stabilized by the presence of reduced thiols, these residues are possible candidates for the enzymic bases that deprotonate glutamate at C-2.
Collapse
Affiliation(s)
- K A Gallo
- Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
47
|
Obst M, Hehn R, Vogel RF, Hammes WP. Lactose metabolism inLactobacillus curvatusandLactobacillus sake. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05465.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
48
|
Poch O, L'Hôte H, Dallery V, Debeaux F, Fleer R, Sodoyer R. Sequence of the Kluyveromyces lactis beta-galactosidase: comparison with prokaryotic enzymes and secondary structure analysis. Gene 1992; 118:55-63. [PMID: 1511885 DOI: 10.1016/0378-1119(92)90248-n] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The LAC4 gene encoding the beta-galactosidase (beta Gal) of the yeast, Kluyveromyces lactis, was cloned on a 7.2-kb fragment by complementation of a lacZ-deficient Escherichia coli strain. The nucleotide sequence of the structural gene, with 42 bp and 583 bp of the 5'- and 3'-flanking sequences, respectively, was determined. The deduced amino acid (aa) sequence of the K. lactis beta Gal predicts a 1025-aa polypeptide with a calculated M(r) of 117618 and reveals extended sequence homologies with all the published prokaryotic beta Gal sequences. This suggests that the eukaryotic beta Gal is closely related, evolutionarily and structurally, to the prokaryotic beta Gal's. In addition, sequence similarities were observed between the highly conserved N-terminal two-thirds of the beta Gal and the entire length of the beta-glucuronidase (beta Glu) polypeptides, which suggests that beta Glu is clearly related, structurally and evolutionarily, to the N-terminal two-thirds of the beta Gal. The structural analysis of the beta Gal alignment, performed by mean secondary structure prediction, revealed that most of the invariant residues are located in turn or loop structures. The location of the invariant residues is discussed with respect to their accessibility and their possible involvement in the catalytic process.
Collapse
Affiliation(s)
- O Poch
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
49
|
Ishino Y, Morgenthaler P, Hottinger H, Söll D. Organization and nucleotide sequence of the glutamine synthetase (glnA) gene from Lactobacillus delbrueckii subsp. bulgaricus. Appl Environ Microbiol 1992; 58:3165-9. [PMID: 1359838 PMCID: PMC183065 DOI: 10.1128/aem.58.9.3165-3169.1992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 3.3-kb BamHI fragment of Lactobacillus delbrueckii subsp. bulgaricus DNA was cloned and sequenced. It complements an Escherichia coli glnA deletion strain and hybridizes strongly to a DNA containing the Bacillus subtilis glnA gene. DNA sequence analysis of the L. delbrueckii subsp. bulgaricus DNA showed it to contain the glnA gene encoding class I glutamine synthetase, as judged by extensive homology with other prokaryotic glnA genes. The sequence suggests that the enzyme encoded in this gene is not controlled by adenylylation. Based on a comparison of glutamine synthetase sequences, L. delbrueckii subsp. bulgaricus is much closer to gram-positive eubacteria, especially Clostridium acetobutylicum, than to gram-negative eubacteria and archaebacteria. The fragment contains another open reading frame encoding a protein of unknown function consisting of 306 amino acids (ORF306), which is also present upstream of glnA of Bacillus cereus. In B. cereus, a repressor gene, glnR, is found between the open reading frame and glnA. Two proteins encoded by the L. delbrueckii subsp. bulgaricus gene were identified by the maxicell method; the sizes of these proteins are consistent with those of the open reading frames of ORF306 and glnA. The lack of a glnR gene in the L. delbrueckii subsp. bulgaricus DNA in this position may indicate a gene rearrangement or a different mechanism of glnA gene expression.
Collapse
Affiliation(s)
- Y Ishino
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | | | |
Collapse
|
50
|
Lick S, Teuber M. Construction of a Species-Specific DNA Oligonucleotide Probe for Streptococcus thermophilus on the Basis of a Chromosomal lacZ Gene. Syst Appl Microbiol 1992. [DOI: 10.1016/s0723-2020(11)80222-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|