1
|
Zhang XL, Li DF, Fleming J, Wang LW, Zhou Y, Wang DC, Zhang XE, Bi LJ. Core component EccB1 of the Mycobacterium tuberculosis type VII secretion system is a periplasmic ATPase. FASEB J 2015; 29:4804-14. [PMID: 26396239 DOI: 10.1096/fj.15-270843] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/27/2015] [Indexed: 11/11/2022]
Abstract
Pathogenic mycobacteria transport virulence factors across their complex cell wall via a type VII secretion system (T7SS)/early secreted antigenic target-6 of kDa secretion system (ESX). ESX conserved component (Ecc) B, a core component of the T7SS architecture, is predicted to be a membrane bound protein, but little is known about its structure and function. Here, we characterize EccB1, showing that it is an ATPase with no sequence or structural homology to other ATPases located in the cell envelope of Mycobacterium tuberculosis H37Rv. We obtained the crystal structure of an EccB1-ΔN72 truncated transmembrane helix and performed modeling and ATP docking studies, showing that EccB1 likely exists as a hexamer. Sequence alignment and ATPase activity determination of EccB1 homologues indicated the presence of 3 conserved motifs in the N- and C-terminals of EccB1-ΔN72 that assemble together between 2 membrane proximal domains of the EccB1-ΔN72 monomer. Models of the EccB1 hexamer show that 2 of the conserved motifs are involved in ATPase activity and form an ATP binding pocket located on the surface of 2 adjacent molecules. Our results suggest that EccB may act as the energy provider in the transport of T7SS virulence factors and may be involved in the formation of a channel across the mycomembrane.
Collapse
Affiliation(s)
- Xiao-Li Zhang
- *State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; National Laboratory of Biomacromolecules and Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and Graduate School, Chinese Academy of Sciences, Beijing, China
| | - De-Feng Li
- *State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; National Laboratory of Biomacromolecules and Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Joy Fleming
- *State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; National Laboratory of Biomacromolecules and Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Li-Wei Wang
- *State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; National Laboratory of Biomacromolecules and Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhou
- *State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; National Laboratory of Biomacromolecules and Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Da-Cheng Wang
- *State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; National Laboratory of Biomacromolecules and Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Xian-En Zhang
- *State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; National Laboratory of Biomacromolecules and Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Li-Jun Bi
- *State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; National Laboratory of Biomacromolecules and Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and Graduate School, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
The integrity of the periplasmic domain of the VirA sensor kinase is critical for optimal coordination of the virulence signal response in Agrobacterium tumefaciens. J Bacteriol 2011; 193:1436-48. [PMID: 21216996 DOI: 10.1128/jb.01227-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The plant pathogen Agrobacterium tumefaciens responds to three main signals at the plant-bacterium interface: phenolics, such as acetosyringone (AS), monosaccharides, and acidic pH (∼5.5). These signals are transduced via the chromosomally encoded sugar binding protein ChvE and the Ti plasmid-encoded VirA/VirG two-component regulatory system, resulting in the transcriptional activation of the Ti plasmid virulence genes. Here, we present genetic and physical evidence that the periplasmic domain of VirA dimerizes independently of other parts of the protein, and we examine the effects of several engineered mutations in the periplasmic and transmembrane regions of VirA on vir-inducing capacity as indicated by AS sensitivity and maximal level of vir-inducing activity at saturating AS levels. The data indicate that helix-breaking mutations throughout the periplasmic domain of VirA or mutations that reposition the second transmembrane domain (TM2) of VirA relieve the periplasmic domain's repressive effects on the maximal activity of this kinase in response to phenolics, effects normally relieved only when ChvE, sugars, and low pH are also present. Such relief, however, does not sensitize VirA to low concentrations of phenolics, the other major effect of the ChvE-sugar and low pH signals. We further demonstrate that amino acid residues in a small Trg-like motif in the periplasmic domain of VirA are crucial for transmission of the ChvE-sugar signal to the cytoplasmic domain. These experiments provide evidence that small perturbations in the periplasmic domain of VirA can uncouple sugar-mediated changes in AS sensitivity from the sugar-mediated effects on maximal activity.
Collapse
|
3
|
Lin YH, Gao R, Binns AN, Lynn DG. Capturing the VirA/VirG TCS of Agrobacterium tumefaciens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:161-77. [PMID: 18792688 DOI: 10.1007/978-0-387-78885-2_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two-component systems (TCS) regulate pathogenic commitment in many interactions and provide an opportunity for unique therapeutic intervention. The VirA/VirG TCS of Agrobacterium tumefaciens mediates inter-kingdom gene transfer in the development of host tumors and sets in motion the events that underlie the great success of this multi-host plant pathogen. Significant proof for the feasibility of interventions has now emerged with the discovery of a natural product that effectively "blinds" the pathogen to the host via inhibition of VirA/VirG signal transduction. Moreover, the emerging studies on the mechanism of signal perception have revealed general sites suitable for intervention of TCS signaling. Given the extensive functional homology, it should now be possible to transfer the models discovered for VirA/VirG broadly to other pathogenic interactions.
Collapse
Affiliation(s)
- Yi-Han Lin
- Center for Fundamental and Applied Molecular Evolution, Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
4
|
Nair GR, Liu Z, Binns AN. Reexamining the role of the accessory plasmid pAtC58 in the virulence of Agrobacterium tumefaciens strain C58. PLANT PHYSIOLOGY 2003; 133:989-99. [PMID: 14551325 PMCID: PMC281596 DOI: 10.1104/pp.103.030262] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 08/07/2003] [Accepted: 08/22/2003] [Indexed: 05/22/2023]
Abstract
Isogenic strains of Agrobacterium tumefaciens carrying pTiC58, pAtC58, or both were constructed and assayed semiquantitatively and quantitatively for virulence and vir gene expression to study the effect of the large 542-kb accessory plasmid, pAtC58, on virulence. Earlier studies indicate that the att (attachment) genes of A. tumefaciens are crucial in the ability of this soil phytopathogen to infect susceptible host plants. Mutations in many att genes, notably attR and attD, rendered the strain avirulent. These genes are located on pAtC58. Previous work also has shown that derivatives of the wild-type strain C58 cured of pAtC58 are virulent as determined by qualitative virulence assays and, hence, pAtC58 was described as nonessential for virulence. We show here that the absence of pAtC58 in pTiC58-containing strains results in reduced virulence but that disruption of the attR gene does not result in avirulence or a reduction in virulence. Our studies indicate that pAtC58 has a positive effect on vir gene induction as revealed by immunoblot analysis of Vir proteins and expression of a PvirB::lacZ fusion.
Collapse
Affiliation(s)
- Gauri R Nair
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | | | |
Collapse
|
5
|
Lohrke SM, Yang H, Jin S. Reconstitution of acetosyringone-mediated Agrobacterium tumefaciens virulence gene expression in the heterologous host Escherichia coli. J Bacteriol 2001; 183:3704-11. [PMID: 11371534 PMCID: PMC95247 DOI: 10.1128/jb.183.12.3704-3711.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to utilize Escherichia coli as a heterologous system in which to study the regulation of Agrobacterium tumefaciens virulence genes and the mechanism of transfer DNA (T-DNA) transfer would provide an important tool to our understanding and manipulation of these processes. We have previously reported that the rpoA gene encoding the alpha subunit of RNA polymerase is required for the expression of lacZ gene under the control of virB promoter (virBp::lacZ) in E. coli containing a constitutively active virG gene [virG(Con)]. Here we show that an RpoA hybrid containing the N-terminal 247 residues from E. coli and the C-terminal 89 residues from A. tumefaciens was able to significantly express virBp::lacZ in E. coli in a VirG(Con)-dependent manner. Utilization of lac promoter-driven virA and virG in combination with the A. tumefaciens rpoA construct resulted in significant inducer-mediated expression of the virBp::lacZ fusion, and the level of virBp::lacZ expression was positively correlated to the copy number of the rpoA construct. This expression was dependent on VirA, VirG, temperature, and, to a lesser extent, pH, which is similar to what is observed in A. tumefaciens. Furthermore, the effect of sugars on vir gene expression was observed only in the presence of the chvE gene, suggesting that the glucose-binding protein of E. coli, a homologue of ChvE, does not interact with the VirA molecule. We also evaluated other phenolic compounds in induction assays and observed significant expression with syringealdehyde, a low level of expression with acetovanillone, and no expression with hydroxyacetophenone, similar to what occurs in A. tumefaciens strain A348 from which the virA clone was derived. These data support the notion that VirA directly senses the phenolic inducer. However, the overall level of expression of the vir genes in E. coli is less than what is observed in A. tumefaciens, suggesting that additional gene(s) from A. tumefaciens may be required for the full expression of virulence genes in E. coli.
Collapse
Affiliation(s)
- S M Lohrke
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
6
|
Kalogeraki VS, Winans SC. Wound-released chemical signals may elicit multiple responses from an Agrobacterium tumefaciens strain containing an octopine-type Ti plasmid. J Bacteriol 1998; 180:5660-7. [PMID: 9791116 PMCID: PMC107625 DOI: 10.1128/jb.180.21.5660-5667.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/1998] [Accepted: 08/25/1998] [Indexed: 11/20/2022] Open
Abstract
The vir regions of octopine-type and nopaline-type Ti plasmids direct the transfer of oncogenic T-DNA from Agrobacterium tumefaciens to the nuclei of host plant cells. Previous studies indicate that at least two genetic loci at the left ends of these two vir regions are sufficiently conserved to form heteroduplexes visible in the electron microscope. To initiate an investigation of these genetic loci, we determined the DNA sequences of these regions of both Ti plasmids and identified both conserved loci. One of these is the 2.5-kb virH locus, which was previously identified on the octopine-type Ti plasmid but thought to be absent from the nopaline-type Ti plasmid. The virH operon contains two genes that resemble P-450-type monooxygenases. The other locus encodes a 0.5-kb gene designated virK. In addition, we identified other potential genes in this region that are not conserved between these two plasmids. To determine (i) whether these genes are members of the vir regulon and, (ii) whether they are required for tumorigenesis, we used a genetic technique to disrupt each gene and simultaneously fuse its promoter to lacZ. Expression of these genes was also measured by nuclease S1 protection assays. virK and two nonconserved genes, designated virL and virM, were strongly induced by the vir gene inducer acetosyringone. Disruptions of virH, virK, virL, or virM did not affect tumorigenesis of Kalanchöe diagramontiana leaves or carrot disks, suggesting that they may play an entirely different role during pathogenesis.
Collapse
Affiliation(s)
- V S Kalogeraki
- Section of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
7
|
Bohne J, Yim A, Binns AN. The Ti plasmid increases the efficiency of Agrobacterium tumefaciens as a recipient in virB-mediated conjugal transfer of an IncQ plasmid. Proc Natl Acad Sci U S A 1998; 95:7057-62. [PMID: 9618538 PMCID: PMC22737 DOI: 10.1073/pnas.95.12.7057] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The T-DNA transfer apparatus of Agrobacterium tumefaciens mediates the delivery of the T-DNA into plant cells, the transfer of the IncQ plasmid RSF1010 into plant cells, and the conjugal transfer of RSF1010 between Agrobacteria. We show in this report that the Agrobacterium-to-Agrobacterium conjugal transfer efficiencies of RSF1010 increase dramatically if the recipient strain, as well as the donor strain, carries a wild-type Ti plasmid and is capable of vir gene expression. Investigation of possible mechanisms that could account for this increased efficiency revealed that the VirB proteins encoded by the Ti plasmid were required. Although, with the exception of VirB1, all of the proteins that form the putative T-DNA transfer apparatus (VirB1-11, VirD4) are required for an Agrobacterium strain to serve as an RSF1010 donor, expression of only a subset of these proteins is required for the increase in conjugal transfer mediated by the recipient. Specifically, VirB5, 6, 11, and VirD4 are essential donor components but are dispensable for the increased recipient capacity. Defined point mutations in virB9 affected donor and recipient capacities to the same relative extent, suggesting that similar functions of VirB9 are important in both of these contexts.
Collapse
Affiliation(s)
- J Bohne
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
8
|
Bélanger C, Loubens I, Nester EW, Dion P. Variable efficiency of a Ti plasmid-encoded VirA protein in different agrobacterial hosts. J Bacteriol 1997; 179:2305-13. [PMID: 9079917 PMCID: PMC178968 DOI: 10.1128/jb.179.7.2305-2313.1997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The transconjugant CB100, harboring the Ti plasmid from the Agrobacterium tumefaciens biovar 2 strain D10B/87 in the chromosomal background of the biovar 1 strain C58, was defective in vir gene induction. This defect was corrected in the presence of virA from pTiA6. Based on this complementation result and an analysis of the induction requirements of the transconjugant CB100 and its parent strains, it was hypothesized that the defective vir gene induction in CB100 was related to a dysfunctional interaction between the pTi-encoded D10B/87 VirA and the chromosome-encoded C58 ChvE. To verify this hypothesis, D10B/87 and C58 virA were compared, and conclusions from this first set of analyses were then corroborated by comparing D10B/87 and C58 chvE. Whereas only a few nucleotide differences were identified in the promoters and 5' ends of the coding regions of D10B/87 and C58 virA, analysis of hybrid virA genes showed that these differences collectively accounted for the poor vir gene induction of strain CB100. In contrast with the sequence similarity of the VirA proteins, extensive divergence was seen between the chromosome-encoded D10B/87 and C58 ChvE. Although D10B/87 chvE introduced in trans had little effect on vir gene induction of CB100, it enhanced the induction response of a strain CB100 derivative in which the chromosomal C58 chvE had been inactivated by marker exchange. These results suggest that chromosomal backgrounds provided by different strains of A. tumefaciens are not equivalent for VirA function. Following conjugative transfer of certain Ti plasmids to a new agrobacterial host, evolution of the newly introduced virA, or coevolution of chvE and virA, may lead to optimization of ChvE-VirA interaction and vir gene induction levels.
Collapse
Affiliation(s)
- C Bélanger
- Recherche en Sciences de la Vie et de la Santé, Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | |
Collapse
|
9
|
Heath JD, Boulton MI, Raineri DM, Doty SL, Mushegian AR, Charles TC, Davies JW, Nester EW. Discrete regions of the sensor protein virA determine the strain-specific ability of Agrobacterium to agroinfect maize. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:221-7. [PMID: 9057328 DOI: 10.1094/mpmi.1997.10.2.221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The ability of Agrobacterium strains to infect transformation-recalcitrant maize plants has been shown to be determined mainly by the virA locus, implicating vir gene induction as the major factor influencing maize infection. In this report, we further explore the roles of vir induction-associated bacterial factors in maize infection using the technique of agroinfection. The Ti plasmid and virA source are shown to be important in determining the ability of a strain to infect maize, and the monosaccharide binding protein ChvE is absolutely required for maize agroinfection. The linker domain of VirAC58 from an agroinfection-competent strain, C58, is sufficient to convert VirAA6 of a nonagroinfecting strain, A348,to agroinfection competence. The periplasmic domain of VirAC58 is also able to confer a moderate level of agroinfection competence to VirAA6. In addition, the VirAA6 protein from A348 is agroinfection competent when removed from its cognate Ti plasmid background and placed in a pTiC58 background. The presence of a pTiA6-encoded, VirAA6-specific inhibitor is hypothesized and examined.
Collapse
Affiliation(s)
- J D Heath
- University of Washington, Department of Microbiology, Seattle 98195-7242, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Rashkova S, Spudich GM, Christie PJ. Characterization of membrane and protein interaction determinants of the Agrobacterium tumefaciens VirB11 ATPase. J Bacteriol 1997; 179:583-91. [PMID: 9006008 PMCID: PMC178735 DOI: 10.1128/jb.179.3.583-591.1997] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The VirB11 ATPase is a putative component of the transport machinery responsible for directing the export of nucleoprotein particles (T complexes) across the Agrobacterium tumefaciens envelope to susceptible plant cells. Fractionation and membrane treatment studies showed that approximately 30% of VirB11 partitioned as soluble protein, whereas the remaining protein was only partially solubilized with urea from cytoplasmic membranes of wild-type strain A348 as well as a Ti-plasmidless strain expressing virB11 from an IncP replicon. Mutations in virB11 affecting protein function were mapped near the amino terminus (Q6L, P13L, and E25G), just upstream of a region encoding a Walker A nucleotide-binding site (F154H;L155M), and within the Walker A motif (P170L, K175Q, and delta GKT174-176). The K175Q and delta GKT174-176 mutant proteins partitioned almost exclusively with the cytoplasmic membrane, suggesting that an activity associated with nucleotide binding could modulate the affinity of VirB11 for the cytoplasmic membrane. The virB11F154H;L155M allele was transdominant over wild-type virB11 in a merodiploid assay, providing strong evidence that at least one form of VirB11 functions as a homo- or heteromultimer. An allele with a deletion of the first half of the gene, virB11 delta1-156, was transdominant in a merodiploid assay, indicating that the C-terminal half of VirB11 contains a protein interaction domain. Products of both virB11 delta1-156 and virB11 delta158-343, which synthesizes the N-terminal half of VirB11, associated tightly with the A. tumefaciens membrane, suggesting that both halves of VirB11 contain membrane interaction determinants.
Collapse
Affiliation(s)
- S Rashkova
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, 77030, USA
| | | | | |
Collapse
|
11
|
Dang TA, Christie PJ. The VirB4 ATPase of Agrobacterium tumefaciens is a cytoplasmic membrane protein exposed at the periplasmic surface. J Bacteriol 1997; 179:453-62. [PMID: 8990298 PMCID: PMC178716 DOI: 10.1128/jb.179.2.453-462.1997] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The VirB4 ATPase of Agrobacterium tumefaciens, a putative component of the T-complex transport apparatus, associates with the cytoplasmic membrane independently of other products of the Ti plasmid. VirB4 was resistant to extraction from membranes of wild-type strain A348 or a Ti-plasmidless strain expressing virB4 from an IncP replicon. To evaluate the membrane topology of VirB4, a nested deletion method was used to generate a high frequency of random fusions between virB4 and 'phoA, which encodes a periplasmically active alkaline phosphatase (AP) deleted of its signal sequence. VirB4::PhoA hybrid proteins exhibiting AP activity in Escherichia coli and A. tumefaciens had junction sites that mapped to two regions, between residues 58 and 84 (region 1) and between residues 450 and 514 (region 2). Conversely, VirB4::beta-galactosidase hybrid proteins with junction sites mapping to regions 1 and 2 exhibited low beta-galactosidase activities and hybrid proteins with junction sites elsewhere exhibited high beta-galactosidase activities. Enzymatically active VirB5::PhoA hybrid proteins had junction sites that were distributed throughout the length of the protein. Proteinase K treatment of A. tumefaciens spheroplasts resulted in the disappearance of the 87-kDa VirB4 protein and the concomitant appearance of two immunoreactive species of approximately 35 and approximately 45 kDa. Taken together, our data support a model in which VirB4 is topologically configured as an integral cytoplasmic membrane protein with two periplasmic domains.
Collapse
Affiliation(s)
- T A Dang
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, 77030, USA
| | | |
Collapse
|
12
|
Lee YW, Jin S, Sim WS, Nester EW. The sensing of plant signal molecules by Agrobacterium: genetic evidence for direct recognition of phenolic inducers by the VirA protein. Gene 1996; 179:83-8. [PMID: 8955632 DOI: 10.1016/s0378-1119(96)00328-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The virulence (vir) genes of Agrobacterium tumefaciens are induced by low-molecular-weight phenolic compounds and monosaccharides through a two-component regulatory system consisting of the VirA and VirG proteins. Although it is clear that the monosaccharides require binding to a periplasmic binding protein before they can interact with the sensor VirA protein, it is not certain whether the phenolic compounds also interact with a binding protein or directly interact with the sensor protein. To shed light on this question, we tested the vir-inducing abilities of several different phenolic compounds using two wild-type strains of A. tumefaciens, KU12 and A6. We found that several compounds such as 4-hydroxyacetophone and p-coumaric acid induced the vir of KU12, but not A6. On the other hand, acetosyringone and several other phenolic compounds induced the vir of A6, but not KU12. By transferring different Ti plasmids into isogenic chromosomal backgrounds, we showed that the phenolic sensing determinant is associated with the Ti plasmid. Subcloning of the Ti plasmid indicated that the virA locus determines which phenolic compounds can function as vir inducers. These results suggest that VirA directly senses the phenolic compounds for vir activation.
Collapse
Affiliation(s)
- Y W Lee
- Department of Microbiology, University of Washington, Seattle 98195-7242, USA
| | | | | | | |
Collapse
|
13
|
Chang CH, Zhu J, Winans SC. Pleiotropic phenotypes caused by genetic ablation of the receiver module of the Agrobacterium tumefaciens VirA protein. J Bacteriol 1996; 178:4710-6. [PMID: 8755904 PMCID: PMC178243 DOI: 10.1128/jb.178.15.4710-4716.1996] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The VirA protein of Agrobacterium tumefaciens is a transmembrane sensory kinase that phosphorylates the VirG response regulator in response to chemical signals released from plant wound sites. VirA contains both a two-component kinase module and, at its carboxyl terminus, a receiver module. We previously provided evidence that this receiver module inhibited the activity of the kinase module and that inhibition might be neutralized by phosphorylation. In this report, we provide additional evidence for this model by showing that overexpressing the receiver module in trans can restore low-level basal activity to a VirA mutant protein lacking the receiver module. We also show that ablation of the receiver module restores activity to the inactive VirA (delta324-413) mutant, which has a deletion within a region designated the linker module. This indicates that deletion of the linker module does not denature the kinase module, but rather locks the kinase into a phenotypically inactive conformation, and that this inactivity requires the receiver module. These data provide genetic evidence that the kinase and receiver modules of VirA attain their native conformations autonomously. The receiver module also restricts the variety of phenolic compounds that have stimulatory activity, since removal of this module causes otherwise nonstimulatory phenolic compounds such as 4-hydroxyacetophenone to stimulate vir gene expression.
Collapse
Affiliation(s)
- C H Chang
- Section of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
14
|
Natural genetic engineering of plant cells: the molecular biology of crown gall and hairy root disease. World J Microbiol Biotechnol 1996; 12:327-51. [DOI: 10.1007/bf00340209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/07/1996] [Accepted: 02/10/1996] [Indexed: 11/26/2022]
|
15
|
Fernandez D, Dang TA, Spudich GM, Zhou XR, Berger BR, Christie PJ. The Agrobacterium tumefaciens virB7 gene product, a proposed component of the T-complex transport apparatus, is a membrane-associated lipoprotein exposed at the periplasmic surface. J Bacteriol 1996; 178:3156-67. [PMID: 8655494 PMCID: PMC178066 DOI: 10.1128/jb.178.11.3156-3167.1996] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Agrobacterium tumefaciens virB7 gene product contains a typical signal sequence ending with a consensus signal peptidase II cleavage site characteristic of bacterial lipoproteins. VirB7 was shown to be processed as a lipoprotein by (i) in vivo labeling of native VirB7 and a VirB7::PhoA fusion with [3H]palmitic acid and (ii) inhibition of VirB7 processing by globomycin, a known inhibitor of signal peptidase II. A VirB7 derivative sustaining a Ser substitution for the invariant Cys-15 residue within the signal peptidase II cleavage site could not be visualized immunologically and failed to complement a delta virB7 mutation, establishing the importance of this putative lipid attachment site for VirB7 maturation and function. VirB7 partitioned predominantly with outer membrane fractions from wild-type A348 cells as well as a delta virB operon derivative transformed with a virB7 expression plasmid. Expression of virB7 fused to phoA, the alkaline phosphatase gene of Escherichia coli, gave rise to high alkaline phosphatase activities in E. coli and A. tumefaciens cells, providing genetic evidence for the export of VirB7 in these hosts. VirB7 was shown to be intrinsically resistant to proteinase K; by contrast, a VirB7::PhoA derivative was degraded by proteinase K treatment of A. tumefaciens spheroplasts and remained intact upon treatment of whole cells. Together, the results of these studies favor a model in which VirB7 is topologically configured as a monotopic protein with its amino terminus anchored predominantly to the outer membrane and with its hydrophilic carboxyl domain located in the periplasmic space. Parallel studies of VirB5, VirB8, VirB9, and VirB10 established that each of these membrane-associated proteins also contains a large periplasmic domain whereas VirB11 resides predominantly or exclusively within the interior of the cell.
Collapse
Affiliation(s)
- D Fernandez
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, 77030, USA
| | | | | | | | | | | |
Collapse
|
16
|
Doty SL, Yu MC, Lundin JI, Heath JD, Nester EW. Mutational analysis of the input domain of the VirA protein of Agrobacterium tumefaciens. J Bacteriol 1996; 178:961-70. [PMID: 8576069 PMCID: PMC177754 DOI: 10.1128/jb.178.4.961-970.1996] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The transmembrane sensor protein VirA activates VirG in response to high levels of acetosyringone (AS). In order to respond to low levels of AS, VirA requires the periplasmic sugar-binding protein ChvE and monosaccharides released from plant wound sites. To better understand how VirA senses these inducers, the C58 virA gene was randomly mutagenized, and 14 mutants defective in vir gene induction and containing mutations which mapped to the input domain of VirA were isolated. Six mutants had single missense mutatiions in three widely separated areas of the periplasmic domain. Eight mutants had mutations in or near an amphipathic helix, TM1, or TM2. Four of the mutations in the periplasmic domain, when introduced into the corresponding A6 virA sequence, caused a specific defect in the vir gene response to glucose. This suggests that most of the periplasmic domain is required for the interaction with, or response to, ChvE. Three of the mutations from outside the periplasmic domain, one from each transmembrane domain and one from the amphiphathic helix, were made in A6 virA. These mutants were defective in the vir gene response to AS. These mutations did not affect the stability or topology of VirA or prevent dimerization; therefore, they may interfere with detection of AS or transmission of the signals to the kinase domain. Characterization of C58 chvE mutants revealed that, unlike A6 VirA, C58 VirA requires ChvE for activation of the vir genes.
Collapse
Affiliation(s)
- S L Doty
- Department of Microbiology, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
17
|
Lee YW, Jin S, Sim WS, Nester EW. Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 1995; 92:12245-9. [PMID: 8618878 PMCID: PMC40333 DOI: 10.1073/pnas.92.26.12245] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The virulence (vir) genes of Agrobacterium tumefaciens are induced by low-molecular-weight phenolic compounds and monosaccharides through a two-component regulatory system consisting of the VirA and VirG proteins. However, it is not clear how the phenolic compounds are sensed by the VirA/VirG system. We tested the vir-inducing abilities of 15 different phenolic compounds using four wild-type strains of A. tumefaciens--KU12, C58, A6, and Bo542. We analyzed the relationship between structures of the phenolic compounds and levels of vir gene expression in these strains. In strain KU12, vir genes were not induced by phenolic compounds containing 4'-hydroxy, 3'-methoxy, and 5'-methoxy groups, such as acetosyringone, which strongly induced vir genes of the other three strains. On the other hand, vir genes of strain KU12 were induced by phenolic compounds containing only a 4'-hydroxy group, such as 4-hydroxyacetophenone, which did not induce vir genes of the other three strains. The vir genes of strains KU12, A6, and Bo542 were all induced by phenolic compounds containing 4'-hydroxy and 3'-methoxy groups, such as acetovanillone. By transferring different Ti plasmids into isogenic chromosomal backgrounds, we showed that the phenolic-sensing determinant is associated with Ti plasmid. Subcloning of Ti plasmid indicates that the virA locus determines which phenolic compounds can function as vir gene inducers. These results suggest that the VirA protein directly senses the phenolic compounds for vir gene activation.
Collapse
Affiliation(s)
- Y W Lee
- Department of Microbiology, University of Washington, Seattle 98195-7242, USA
| | | | | | | |
Collapse
|
18
|
Kalogeraki VS, Winans SC. The octopine-type Ti plasmid pTiA6 of Agrobacterium tumefaciens contains a gene homologous to the chromosomal virulence gene acvB. J Bacteriol 1995; 177:892-7. [PMID: 7860597 PMCID: PMC176680 DOI: 10.1128/jb.177.4.892-897.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Although the majority of genes required for the transfer of T-DNA from Agrobacterium tumefaciens to plant nuclei are located on the Ti plasmid, some chromosomal genes, including the recently described acvB gene, are also required. We show that AcvB shows 50% identity with the product of an open reading frame, designated virJ, that is found between the virA and virB genes in the octopine-type Ti plasmid pTiA6. This reading frame is not found in the nopaline-type Ti plasmid pTiC58. acvB is required for tumorigenesis by a strain carrying a nopaline-type Ti plasmid, and virJ complements this nontumorigenic phenotype, indicating that the products of these genes have similar functions. A virJ-phoA fusion expressed enzymatically active alkaline phosphatase, indicating that VirJ is at least partially exported. virJ is induced in a VirA/VirG-dependent fashion by the vir gene inducer acetosyringone. Primer extension analysis and subcloning of the virJ-phoA fusion indicate that the acetosyringone-inducible promoter lies directly upstream of the virJ structural gene. Although the roles of the two homologous genes in tumorigenesis remain to be elucidated, strains lacking acvB and virJ (i) are proficient for induction of the vir regulon, (ii) are able to transfer their Ti plasmids by conjugation, and (iii) are resistant to plant wound extracts. Finally, mutations in these genes cannot be complemented extracellularly.
Collapse
Affiliation(s)
- V S Kalogeraki
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
19
|
Inoue K, Kouadio JL, Mosley CS, Bauer CE. Isolation and in vitro phosphorylation of sensory transduction components controlling anaerobic induction of light harvesting and reaction center gene expression in Rhodobacter capsulatus. Biochemistry 1995; 34:391-6. [PMID: 7819230 DOI: 10.1021/bi00002a002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Anaerobic induction of light harvesting and reaction center gene expression involves two transacting factors termed RegA and RegB. Sequence and mutational analysis has indicated that RegA and RegB constitute cognate components of a prokaryotic sensory transduction cascade with RegB comprising a membrane-spanning sensor kinase and RegA a cytosolic response regulator. In this study we have purified RegA, as well as a truncated portion of RegB (RegB') and undertaken an in vitro analysis of autophosphorylation and phosphotransfer activities. Incubation of RegB' with [gamma-32P]ATP and MgCl2 resulted in phosphorylation of RegB' (RegB' approximately P) over a 20-min incubation period. Incubation of RegB' approximately P with RegA resulted in rapid transfer of the phosphate from RegB' to RegA. In analogy to other characterized prokaryotic sensory transduction components, mutational and chemical stability studies also indicate that RegB' is autophosphorylated at a conserved histidine and that RegA accepts the phosphate from RegB at a conserved aspartate.
Collapse
Affiliation(s)
- K Inoue
- Department of Biology, Indiana University, Bloomington 47405
| | | | | | | |
Collapse
|
20
|
Scheeren-Groot EP, Rodenburg KW, den Dulk-Ras A, Turk SC, Hooykaas PJ. Mutational analysis of the transcriptional activator VirG of Agrobacterium tumefaciens. J Bacteriol 1994; 176:6418-26. [PMID: 7961391 PMCID: PMC196993 DOI: 10.1128/jb.176.21.6418-6426.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To find VirG proteins with altered properties, the virG gene was mutagenized. Random chemical mutagenesis of single-stranded DNA containing the Agrobacterium tumefaciens virG gene led with high frequency to the inactivation of the gene. Sequence analysis showed that 29% of the mutants contained a virG gene with one single-base-pair substitution somewhere in the open reading frame. Thirty-nine different mutations that rendered the VirG protein inactive were mapped. Besides these inactive mutants, two mutants in which the vir genes were active even in the absence of acetosyringone were found on indicator plates. A VirG protein with an N54D substitution turned out to be able to induce a virB-lacZ reporter gene to a high level even in the absence of the inducer acetosyringone. A VirG protein with an I77V substitution exhibited almost no induction in the absence of acetosyringone but showed a maximum induction level already at low concentrations of acetosyringone.
Collapse
Affiliation(s)
- E P Scheeren-Groot
- Institute of Molecular Plant Sciences, Clusius Laboratory, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Winans SC, Mantis NJ, Chen CY, Chang CH, Han DC. Host recognition by the VirA, VirG two-component regulatory proteins of agrobacterium tumefaciens. Res Microbiol 1994; 145:461-73. [PMID: 7855433 DOI: 10.1016/0923-2508(94)90095-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Agrobacterium tumefaciens contains about 25 vir genes localized on a 200-kb tumour-inducing (Ti) plasmid that direct a conjugation-like transfer of tumorigenic DNA from the bacterium to the nuclei of infected plant cells. These genes are strongly and coordinately induced during infection in response to three different classes of stimuli which are thought to be key chemical features of a typical wound site. These stimuli are (i) guaiacol and syringol derivatives such as acetosyringone, (ii) sugars such as glucose and glucuronic acid, and (iii) acidic pH. The sensing of these compounds is carried out by the VirA, VirG and ChvE proteins. VirA is a four-domain histidine protein kinase, while VirG is a transcriptional activator which is activated by VirA-mediated phosphorylation. ChvE is a chromosomally encoded periplasmic sugar binding protein which is required for sensing sugars but dispensable for sensing the other two stimuli. Here we will review the nature of these chemical stimuli, the structure and function of the three regulatory proteins, their similarity to sensors found in human and animal pathogens, the factors influencing their pool size, and their role in the host range of different strains of A. tumefaciens.
Collapse
Affiliation(s)
- S C Winans
- Section of Microbiology, Cornell University, Ithaca, NY 14853
| | | | | | | | | |
Collapse
|
22
|
Banta LM, Joerger RD, Howitz VR, Campbell AM, Binns AN. Glu-255 outside the predicted ChvE binding site in VirA is crucial for sugar enhancement of acetosyringone perception by Agrobacterium tumefaciens. J Bacteriol 1994; 176:3242-9. [PMID: 8195079 PMCID: PMC205494 DOI: 10.1128/jb.176.11.3242-3249.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transcriptional activation of the Agrobacterium tumefaciens vir regulon is regulated by phenolics such as acetosyringone (AS), certain monosaccharides, and acidic conditions produced by wounded plant cells. The transmembrane protein VirA acts as an environmental sensor, mediating signal transduction upon perception of these stimuli. Although the periplasmic domain of VirA is not absolutely required for AS-dependent vir gene induction, it is needed for interactions with the periplasmic sugar-binding protein ChvE that result in sugar-induced enhancement of phenolic sensitivity. In this report, we demonstrate that mutations within the periplasmic domain but outside the predicted ChvE binding region can drastically alter the sensitivity of VirA to As. Using site-directed mutagenesis, we have characterized the roles of three individual amino acids in sugar-dependent AS sensitivity and have correlated the induction phenotype with the tumorigenic capacity of strains expressing mutant versions of VirA. Substitution of leucine for Glu-255 abolishes sugar enhancement while replacement with aspartic acid results in a wild-type phenotype. This residue lies outside the predicted ChvE binding site and thus identifies a new region of the VirA periplasmic domain crucial for the enhancement of vir gene induction by carbohydrates. In the absence of inducing sugar, wild-type VirA protein appears to be subject to some form of inhibition that suppresses the maximal level of transcriptional activation; deletions within the periplasmic region relieve this suppression.
Collapse
Affiliation(s)
- L M Banta
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018
| | | | | | | | | |
Collapse
|
23
|
Thorstenson YR, Zambryski PC. The essential virulence protein VirB8 localizes to the inner membrane of Agrobacterium tumefaciens. J Bacteriol 1994; 176:1711-7. [PMID: 8132466 PMCID: PMC205259 DOI: 10.1128/jb.176.6.1711-1717.1994] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Agrobacterium tumefaciens genetically transforms plant cells by transferring a specific DNA fragment from the bacterium through several biological membranes to the plant nucleus where the DNA is integrated. This complex DNA transport process likely involves membrane-localized proteins in both the plant and the bacterium. The 11 hydrophobic or membrane-localized proteins of the virB operon are excellent candidates to have a role in DNA export from agrobacteria. Here, we show by TnphoA mutagenesis and immunogold electron microscopy that one of the VirB proteins, VirB8, is located at the inner membrane. The observation that a virB8::TnphoA fusion restores export of alkaline phosphatase to the periplasm suggests that VirB8 spans the inner membrane. Immunogold labeling of VirB8 was detected on the inner membrane of vir-induced A. tumefaciens by transmission electron microscopy. Compared with that of the controls, VirB8 labeling was significantly greater on the inner membrane than on the other cell compartments. These results confirm the inner membrane localization of VirB8 and strengthen the hypothesis that VirB proteins help form a transfer DNA export channel or gate.
Collapse
Affiliation(s)
- Y R Thorstenson
- Plant Biology Department, University of California, Berkeley 94720
| | | |
Collapse
|
24
|
Mutants of Agrobacterium VirA that activate vir gene expression in the absence of the inducer acetosyringone. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41993-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Binns AN, Howitz VR. The genetic and chemical basis of recognition in the Agrobacterium: plant interaction. Curr Top Microbiol Immunol 1994; 192:119-38. [PMID: 7859503 DOI: 10.1007/978-3-642-78624-2_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A N Binns
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018
| | | |
Collapse
|
26
|
Shimoda N, Toyoda-Yamamoto A, Aoki S, Machida Y. Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74348-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Abstract
Expression of the virulence genes (vir) on the hairy-root-inducing plasmid pRiA4 is induced by plant signals in Agrobacterium cells through a two-component regulatory system, the VirA-VirG system. We constructed an in vitro transcription system that consisted of the purified VirG protein and the Agrobacterium RNA polymerase holoenzyme. Both versions of VirG, the non-phosphorylated form and the VirA-phosphorylated form, were active but showed different patterns of the pH-dependency for transcriptional activation.
Collapse
Affiliation(s)
- H Endoh
- Laboratory of Molecular Genetics, Institute for Chemical Research, Kyoto University, Japan
| | | | | |
Collapse
|
28
|
Pan SQ, Charles T, Jin S, Wu ZL, Nester EW. Preformed dimeric state of the sensor protein VirA is involved in plant--Agrobacterium signal transduction. Proc Natl Acad Sci U S A 1993; 90:9939-43. [PMID: 8234338 PMCID: PMC47688 DOI: 10.1073/pnas.90.21.9939] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Plant signal molecules such as acetosyringone and certain monosaccharides induce the expression of Agrobacterium tumefaciens virulence (vir) genes, which are required for the processing, transfer, and possibly integration of a piece of the bacterial plasmid DNA (T-DNA) into the plant genome. Two fo the vir genes, virA and virG, belonging to the bacterial two-component regulatory system family, control the induction of vir genes by plant signals. virA encodes a membrane-bound sensor kinase protein and virG encodes a cytoplasmic regulator protein. Although it is well established from in vitro studies that the signal transduction process involves VirA autophosphorylation and subsequent phosphate transfer to VirG, the structural state of the VirA protein involved in signal transduction is not understood. In this communication, we describe an in vivo crosslinking approach which provides physical evidence that VirA exists as a homodimer in its native configuration. The dimerization of VirA neither requires nor is stimulated by the plant signal molecule acetosyringone. We also present genetic data which support the hypothesis that VirA exists as a homodimer which is the functional state transducing the plant signal in an intersubunit mechanism. To our knowledge, this report provides the first evidence that a bacterial membrane-bound sensor kinase exists and functions as a homodimer in vivo.
Collapse
Affiliation(s)
- S Q Pan
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | | | | | |
Collapse
|
29
|
Kolibachuk D, Greenberg EP. The Vibrio fischeri luminescence gene activator LuxR is a membrane-associated protein. J Bacteriol 1993; 175:7307-12. [PMID: 8226677 PMCID: PMC206874 DOI: 10.1128/jb.175.22.7307-7312.1993] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Vibrio fischeri luminescence (lux) genes are activated at sufficiently high culture densities by the transcriptional activator LuxR in combination with a diffusible signal compound termed autoinducer. We have used antibodies directed against LuxR in immunoprecipitation experiments to study the subcellular location of this transcription factor. The LuxR polypeptide was detected in membranes and not in the soluble pool of cytoplasmic proteins from V. fischeri. LuxR was not released from the membranes by 0.6 M KCl or by the nonionic detergents Nonidet P-40, N-octyl-beta-D-glucopyranoside, and Triton X-100. LuxR and a number of other V. fischeri proteins were released from the membranes by EDTA. The autoinducer had no detectable influence on the subcellular location of LuxR. In spheroplasts, neither the abundance nor the molecular mass of the LuxR antigen was influenced by treatment with proteinase K. Together with other information, these results indicate that LuxR is an amphipathic protein that is associated with the cytoplasmic membrane of V. fischeri.
Collapse
Affiliation(s)
- D Kolibachuk
- Department of Microbiology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
30
|
Jin S, Song YN, Deng WY, Gordon MP, Nester EW. The regulatory VirA protein of Agrobacterium tumefaciens does not function at elevated temperatures. J Bacteriol 1993; 175:6830-5. [PMID: 8226624 PMCID: PMC206806 DOI: 10.1128/jb.175.21.6830-6835.1993] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Previous studies have shown that Agrobacterium tumefaciens causes tumors on plants only at temperatures below 32 degrees C, and virulence gene expression is specifically inhibited at temperatures above 32 degrees C. We show here that this effect persists even when the virA and virG loci are expressed under the control of a lac promoter whose activity is temperature independent. This finding suggests that one or more steps in the signal transduction process mediated by the VirA and VirG proteins are temperature sensitive. Both the autophosphorylation of VirA and the subsequent transfer of phosphate to VirG are shown to be sensitive to high temperatures (> 32 degrees C), and this correlates with the reduced vir gene expression observed at these temperatures. At temperatures of 32 degrees C and higher, the VirA molecule undergoes a reversible inactivation while the VirG molecule is not affected. vir gene induction is temperature sensitive in an acetosyringone-independent virA mutant background but not in a virG constitutive mutant which is virA and acetosyringone independent. These observations all support the notion that the VirA protein is responsible for the thermosensitivity of vir gene expression. However, an Agrobacterium strain containing a constitutive virG locus still cannot cause tumors on Kalanchoe plants at 32 degrees C. This strain induces normal-size tumors at temperatures up to 30 degrees C, whereas the wild-type Agrobacterium strain produces almost no tumors at 30 degrees C. These results suggest that at temperatures above 32 degrees C, the plant becomes more resistant to infection by A. tumefaciens and/or functions of some other vir gene products are lost in spite of their normal levels of expression.
Collapse
Affiliation(s)
- S Jin
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | | | | | |
Collapse
|
31
|
Mantis NJ, Winans SC. The chromosomal response regulatory gene chvI of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence. J Bacteriol 1993; 175:6626-36. [PMID: 8407840 PMCID: PMC206774 DOI: 10.1128/jb.175.20.6626-6636.1993] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In an effort to identify the Agrobacterium tumefaciens phosphate regulatory gene(s), we isolated a clone from an A. tumefaciens cosmid library that restored regulated alkaline phosphatase activity to an Escherichia coli phoB mutant. The gene that complemented phoB was localized by subcloning and deletion analysis, and the DNA sequence was determined. An open reading frame, denoted chvI, was identified that encoded a predicted protein with amino acid similarity to the family of bacterial response regulators and 35% identify to PhoB. Surprisingly, an A. tumefaciens chvI mutant showed normal induction of phosphatase activity and normal virG expression when grown in phosphate-limiting media. However, this mutant was unable to grow in media containing tryptone, peptone, or Casamino Acids and was also more sensitive than the wild type to acidic extracellular pH. This mutant was avirulent on Kalanchoeë diagremontiana and was severely attenuated in vir gene expression. The pH-inducible expression of virG was also abolished. Growth of the chvI mutant was inhibited by K. diagremontiana wound sap, suggesting that avirulence may be due, in part, to the inability of this mutant to survive the plant wound environment.
Collapse
Affiliation(s)
- N J Mantis
- Section of Microbiology, Cornell University, Ithaca, New York 14853-8101
| | | |
Collapse
|
32
|
Turk SC, van Lange RP, Sonneveld E, Hooykaas PJ. The chimeric VirA-tar receptor protein is locked into a highly responsive state. J Bacteriol 1993; 175:5706-9. [PMID: 8366057 PMCID: PMC206631 DOI: 10.1128/jb.175.17.5706-5709.1993] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The wild-type VirA protein is known to be responsive not only to phenolic compounds but also to sugars via the ChvE protein (G. A. Cangelosi, R. G. Ankenbauer, and E. W. Nester, Proc. Natl. Acad. Sci. USA 87:6708-6712, 1990, and N. Shimoda, A. Toyoda-Yamamoto, J. Nagamine, S. Usami, M. Katayama, Y. Sakagami, and Y. Machida, Proc. Natl. Acad. Sci. USA 87:6684-6688, 1990). It is shown here that the mutant VirA(Ser-44, Arg-45) protein and the chimeric VirA-Tar protein are no longer responsive to sugars and the ChvE protein. However, whereas the chimeric VirA-Tar protein was found to be locked in a highly responsive state, the VirA(Ser-44, Arg-45) mutant protein appeared to be locked in a low responsive state. This difference turned out to be important for tumorigenicity of the host strains in virulence assays on Kalanchoë daigremontiana.
Collapse
Affiliation(s)
- S C Turk
- Clusius Laboratory, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
33
|
Raineri DM, Boulton MI, Davies JW, Nester EW. VirA, the plant-signal receptor, is responsible for the Ti plasmid-specific transfer of DNA to maize by Agrobacterium. Proc Natl Acad Sci U S A 1993; 90:3549-53. [PMID: 8475103 PMCID: PMC46338 DOI: 10.1073/pnas.90.8.3549] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Agrobacteria exhibit marked Ti (tumor-inducing)/Ri (root-inducing) plasmid specificity in their interaction with the Gramineae. In this study, we have used the technique of "agroinfection," in which Agrobacterium-mediated delivery of viral genomes into plants is detected by the development of viral disease symptoms, to identify the region of the Ti plasmid which is responsible for the major differences seen in the ability of nopaline- vs. octopine-type Ti plasmids to transfer maize streak virus (MSV) DNA to maize. Introduction of fragments of the C58 (nopaline-type) Ti plasmid into strains containing an octopine-type Ti plasmid showed that a fragment containing the nopaline-type virA locus was able to complement these normally non-agroinfectious strains to high levels of MSV DNA transfer. Octopine-type virA mutant strains that express vir genes at high levels in the absence of the plant inducing compound acetosyringone also efficiently transferred MSV DNA. These findings imply a functional difference between the virA gene products encoded by octopine- and nopaline-type Ti plasmids which has a profound effect on their ability to mediate DNA transfer to maize.
Collapse
Affiliation(s)
- D M Raineri
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
34
|
Turk SC, Nester EW, Hooykaas PJ. The virA promoter is a host-range determinant in Agrobacterium tumefaciens. Mol Microbiol 1993; 7:719-24. [PMID: 8469115 DOI: 10.1111/j.1365-2958.1993.tb01162.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The limited host range (LHR) Agrobacterium tumefaciens strain Ag162 is an isolate with a narrow host range. Introduction of the wide host range (WHR) virA gene is essential for extending the host range to Kalanchoë daigremontiana. In this report we show that the region upstream of the ATG start codon is responsible for the LHR phenomenon and that this is probably due to the non-inducibility of the LHRvirA promoter. By comparing the characteristics of the LHR and WHR VirA receptor proteins, it was found that the LHR VirA protein is able to activate the WHR VirG protein in the presence of acetosyringone and that this acetosyringone-dependent vir-induction is enhanced by the presence of D-glucose, as in the case of WHR VirA proteins. These results indicate that the domains, acting as receptors for sugars and phenolic signals, must be conserved between the LHR and WHR VirA receptor proteins.
Collapse
Affiliation(s)
- S C Turk
- Institute of Molecular Plant Sciences, Clusius Laboratory, Leiden University, The Netherlands
| | | | | |
Collapse
|
35
|
Jin S, Song Y, Pan SQ, Nester EW. Characterization of a virG mutation that confers constitutive virulence gene expression in Agrobacterium. Mol Microbiol 1993; 7:555-62. [PMID: 8459774 DOI: 10.1111/j.1365-2958.1993.tb01146.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Transformation of plants by Agrobacterium tumefaciens is mediated by a set of virulence (vir) genes that are specifically induced by plant signal molecules through the VirA/VirG two-component regulatory system. The plant signal is transmitted from VirA to VirG by a cascade of phosphorylation reactions followed by the sequence-specific DNA binding of the VirG protein to the vir gene promoters which then activates their transcription. In this report, we describe a VirG mutant which is able to activate vir gene expression independently of the VirA molecule and the two plant signal molecules, acetosyringone and monosaccharides. A strain of Agrobacterium containing this virG gene but lacking a functional virA gene was able to induce tumours on all three plants that were tested. A single amino acid change of asparagine (N) to aspartate (D) at position 54, adjacent to the site of VirG phosphorylation, aspartate 52, resulted in this constitutive phenotype. In vitro phosphorylation experiments showed that the mutant protein cannot be phosphorylated by VirA, suggesting that the negative charge resulting from the N to D switch mimics the phosphorylated conformation of the VirG molecule. The same amino acid change in the virG gene of the supervirulent strain A281 also resulted in a constitutive phenotype. However, the vir genes were not induced to high levels when compared with the levels of the constitutive virG of strain A348.
Collapse
Affiliation(s)
- S Jin
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
36
|
|
37
|
|
38
|
Effect of osmolarity and dehydration on alginate production by fluorescent pseudomonads. Curr Microbiol 1992. [DOI: 10.1007/bf01577231] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Chang CH, Winans SC. Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bacteriol 1992; 174:7033-9. [PMID: 1400253 PMCID: PMC207384 DOI: 10.1128/jb.174.21.7033-7039.1992] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
VirA and VirG activate the Agrobacterium tumefaciens vir regulon in response to phenolic compounds, monosaccharides, and acidity released from plant wound sites. VirA contains an amino-terminal periplasmic domain and three cytoplasmic domains: a linker, a protein kinase, and a phosphoryl receiver. We constructed internal deletions of virA that truncate one or more domains and tested the ability of the resulting proteins to mediate environmentally responsive vir gene activation in vivo. The periplasmic domain is required for sensing of monosaccharides (in agreement with earlier results), while the linker domain is required for sensing of phenolic compounds and acidity. The phosphoryl receiver domain of VirA plays an inhibitory role in signal transduction that may be modulated by phosphorylation. The carboxy terminus of the protein was also dispensable for tumorigenesis, while the periplasmic domain was required.
Collapse
Affiliation(s)
- C H Chang
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
40
|
Han DC, Chen CY, Chen YF, Winans SC. Altered-function mutations of the transcriptional regulatory gene virG of Agrobacterium tumefaciens. J Bacteriol 1992; 174:7040-3. [PMID: 1400254 PMCID: PMC207385 DOI: 10.1128/jb.174.21.7040-7043.1992] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Three point mutations were isolated in the Agrobacterium tumefaciens virG gene by screening for vir gene expression in the absence of added phenolic inducing compounds. All three mutations were localized in the predicted amino-terminal phosphoryl receiver domain of the protein. One mutant (N54D) bypasses the requirement for VirA and phenolic inducers both for transcriptional activation of all tested vir promoters and for plant tumorigenesis. This mutant also activates vir gene expression efficiently at neutral pH, indicating that the step in induction that is normally stimulated by acid pH occurs before or during VirG phosphorylation. The other two mutants (M13T and H15R) require VirA for activity but are sensitized to low levels of inducing stimuli.
Collapse
Affiliation(s)
- D C Han
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| | | | | | | |
Collapse
|
41
|
Abstract
The field of plant-microbe interactions has witnessed several recent breakthroughs, such as the molecular details of vir gene induction, identification of Nod factors, and the cloning and characterization of avr genes. Other breakthroughs, such as the cloning and characterization of R genes, appear imminent. Parallels to mammalian systems are emerging in the world of plant-microbe interactions, for example, ion channels formed by Rhizobium proteins, similarities of hrp genes to pathogenicity genes of mammalian pathogens, and plant signal transduction via calcium and protein phosphorylation. We remain, however, largely ignorant of many facets of signaling in plant-microbe interactions. We know little about how microbial signals are perceived by plants or how subsequent signal transduction occurs within plant cells and are probably unaware of many of the microbe-generated signals to which plants respond or of plant-generated signals to which bacteria and fungi respond. Contributions from those working on the genetics, molecular biology, and physiology of bacteria, fungi, and plants will be required to address these questions. The many nonpathogenic plant-microbe interactions in addition to the Rhizobium-plant interaction remain relatively unexplored. Genetic and molecular approaches are being initiated to investigate the signaling that is likely to underlie interactions such as those between mycorrhizal fungi and plant roots and between epiphytic bacteria and plant leaf surfaces. The importance of these interactions to plant growth and development makes it likely that they will figure more prominently at future symposia.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H R Clarke
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
42
|
Lee K, Dudley MW, Hess KM, Lynn DG, Joerger RD, Binns AN. Mechanism of activation of Agrobacterium virulence genes: identification of phenol-binding proteins. Proc Natl Acad Sci U S A 1992; 89:8666-70. [PMID: 1528878 PMCID: PMC49981 DOI: 10.1073/pnas.89.18.8666] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Agrobacterium tumefaciens initiates the expression of pathogenic genes (vir genes) in response to host-derived phenolic signals through a two-component regulatory system consisting of VirA and VirG. alpha-Bromoacetosyringone (ASBr) was developed as an inhibitor of this induction process and found to be a specific and irreversible inhibitor of vir gene induction in this pathogen. Formal replacement of one of the methoxy groups of ASBr with iodine gave an equally effective inhibitor that could carry an 125I label. We report here that the resulting radiolabeled inhibitor does not react with the sensory component of this system, VirA, either in vivo or in vitro. Rather, two small proteins, p10 and p21, bind labeled inhibitor in vivo in a time period that is consistent with the exposure time required for the inhibition of vir gene expression. Labeling to these proteins was protected by preexposure to ASBr but not by alpha-bromo-3,5-dimethoxyacetophenone, a compound of comparable chemical reactivity but previously shown not to inhibit vir gene expression. Our findings suggest that proteins that are not tumor-inducing plasmid-encoded mediate vir gene activation in a step prior to the VirA/VirG two-component regulatory system.
Collapse
Affiliation(s)
- K Lee
- Searle Chemistry Laboratory, University of Chicago, IL 60637
| | | | | | | | | | | |
Collapse
|
43
|
Finnen RL, Martin NL, Siehnel RJ, Woodruff WA, Rosok M, Hancock RE. Analysis of the Pseudomonas aeruginosa major outer membrane protein OprF by use of truncated OprF derivatives and monoclonal antibodies. J Bacteriol 1992; 174:4977-85. [PMID: 1378429 PMCID: PMC206311 DOI: 10.1128/jb.174.15.4977-4985.1992] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
TnphoA mutagenesis of the cloned oprF gene was utilized to generate 16 classes of fusions encoding differing lengths of the amino terminus of OprF fused to either alkaline phosphatase or to peptide tags of 1 to 20 amino acids, depending on the orientation and reading frame into which TnphoA was inserted. Representatives of each of the 16 classes were sequenced to determine the precise fusion joint. Four of these 16 representatives which produced in-frame fusions to alkaline phosphatase and another 8 with fusion joints in the amino-terminal half of OprF failed to react with a panel of 10 specific monoclonal antibodies. In contrast, OprF derivatives with predicted fusion joints at amino acids 180, 204, 289, and 299 reacted with one to five of the monoclonal antibodies. Four other immunoreactive OprF derivatives were created by subcloning and encoded amino acids 1 to 187, 188 to 326, 1 to 273 and 1 to 170 plus 301 to 326. On the basis of reactivity with the TnphoA-truncated derivatives and subclones of oprF, the epitopes for all 10 monoclonal antibodies were localized, in part, to specific regions of OprF. Nine of the 10 monoclonal antibodies, 8 of which recognize surface-exposed epitopes, mapped within the carboxy-terminal region of OprF that is homologous to the Escherichia coli outer membrane protein OmpA. Thus, we concluded that parts of the carboxy terminus of OprF are exposed on the external face of the outer membrane. In addition, a clone containing only the first two cysteine residues of OprF demonstrated reactivity with monoclonal antibodies MA4-4 and MA7-8 that was destroyed by 2-mercaptoethanol treatment, as was reactivity with intact OprF. Thus, we conclude that this first pair of cysteines at residues 176 and 185 of mature OprF form a disulfide bond.
Collapse
Affiliation(s)
- R L Finnen
- Department of Microbiology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Hooykaas PJ, Schilperoort RA. Agrobacterium and plant genetic engineering. PLANT MOLECULAR BIOLOGY 1992; 19:15-38. [PMID: 1600167 DOI: 10.1007/bf00015604] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Affiliation(s)
- P J Hooykaas
- Clusius Laboratory, Leiden University, Netherlands
| | | |
Collapse
|
45
|
Hrabak EM, Willis DK. The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J Bacteriol 1992; 174:3011-20. [PMID: 1314807 PMCID: PMC205956 DOI: 10.1128/jb.174.9.3011-3020.1992] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The lemA gene of the plant pathogen Pseudomonas syringae pv. syringae is required for disease lesion formation on bean plants. Cosmid clones that complemented a lemA mutant in trans were isolated previously. The lemA gene was localized by subcloning and transposon mutagenesis. The lemA region and flanking DNA were sequenced, and an open reading frame of 2.7 kb was identified. The nucleotide and predicted amino acid sequences of the lemA gene showed sequence similarity to a family of prokaryotic two-component regulatory proteins. Unlike most of the previously described two-component systems, the lemA gene product contained homology to both components in one protein. Mutations introduced upstream and downstream of the lemA gene failed to locate a gene for a second protein component but identified the putative cysM gene of P. syringae pv. syringae. The cysM gene was located upstream of the lemA gene and was divergently transcribed. The lemA gene product was expressed at low levels in P. syringae pv. syringae and appeared to be positively auto-regulated.
Collapse
Affiliation(s)
- E M Hrabak
- Department of Plant Pathology, University of Wisconsin, Madison 53706
| | | |
Collapse
|
46
|
Abstract
The discovery in 1977 that Agrobacterium species can transfer a discrete segment of oncogenic DNA (T-DNA) to the genome of host plant cells has stimulated an intense interest in the molecular biology underlying these plant-microbe associations. This attention in turn has resulted in a series of insights about the biology of these organisms that continue to accumulate at an ever-increasing rate. This excitement was due in part to the notion that this unprecedented interkingdom DNA transfer could be exploited to create transgenic plants containing foreign genes of scientific or commercial importance. In the course of these discoveries, Agrobacterium became one of the best available models for studying the molecular interactions between bacteria and higher organisms. One extensively studied aspect of this association concerns the exchange of chemical signals between Agrobacterium spp. and host plants. Agrobacterium spp. can recognize no fewer than five classes of low-molecular-weight compounds released from plants, and other classes probably await discovery. The most widely studied of these are phenolic compounds, which stimulate the transcription of the genes needed for infection. Other compounds include specific monosaccharides and acidic environments which potentiate vir gene induction, acidic polysaccharides which induce one or more chromosomal genes, and a family of compounds called opines which are released from tumorous plant cells to the bacteria as nutrient sources. Agrobacterium spp. in return release a variety of chemical compounds to plants. The best understood is the transferred DNA itself, which contains genes that in various ways upset the balance of phytohormones, ultimately causing neoplastic cell proliferation. In addition to transferring DNA, some Agrobacterium strains directly secrete phytohormones. Finally, at least some strains release a pectinase, which degrades a component of plant cell walls.
Collapse
Affiliation(s)
- S C Winans
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
47
|
Mantis NJ, Winans SC. The Agrobacterium tumefaciens vir gene transcriptional activator virG is transcriptionally induced by acid pH and other stress stimuli. J Bacteriol 1992; 174:1189-96. [PMID: 1735712 PMCID: PMC206411 DOI: 10.1128/jb.174.4.1189-1196.1992] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A set of Agrobacterium tumefaciens operons required for pathogenesis is coordinately induced during plant infection by the VirA and VirG proteins. The intracellular concentration of VirG increases in response to acidic media, and this response was proposed to be regulated at the level of transcription at a promoter (P2) that resembles the Escherichia coli heat shock promoters. To test this hypothesis, we first constructed a virG-lacZ transcriptional fusion. A strain containing this fusion had higher levels of beta-galactosidase activity in acidic media than in media at neutral pH. Second, primer extension analysis of virG indicated that acidic media stimulated the transcription of this promoter. To determine whether P2 is a member of a heat shock-like regulon in A. tumefaciens, five agents that induce E. coli heat shock genes were tested for their abilities to induce a P2-lacZ fusion in A. tumefaciens. P2 was most strongly induced by low pH, was moderately stimulated by CdCl2 or mitomycin C, and was slightly induced by P2 as measured by beta-galactosidase activity and primer extension analysis. Induction by these treatments did not require any Ti plasmid-encoded function or the chromosomally encoded RecA protein. We also pulse-labeled cellular proteins after a shift to low pH and detected several proteins whose synthesis was induced by these conditions. We conclude that P2 is primarily induced by acid pH and secondarily by certain other stimuli, each of which is stressful to cell growth. This stress induction is at least partly independent of the heat shock and SOS responses.
Collapse
Affiliation(s)
- N J Mantis
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
48
|
Chen CY, Wang L, Winans SC. Characterization of the supervirulent virG gene of the Agrobacterium tumefaciens plasmid pTiBo542. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:302-9. [PMID: 1745238 DOI: 10.1007/bf00290681] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The virG gene of the Agrobacterium tumefaciens Ti plasmid pTiBo542 has previously been reported to elicit stronger vir gene expression than its counterpart in the pTiA6 plasmid, a property we call the "superactivator" phenotype. The DNA sequence of the pTiBo542 virG gene was determined and compared to that of the pTiA6 gene. The DNA sequences of these genes differ at 16 positions: two differences are in the promoter regions, 12 are in the coding regions, and two are in the 3' untranslated regions. The 3' end of the pTiA6 virG gene also contains a probable insertion sequence that is not found downstream of the pTiBo542 gene. The base pair differences, in the two coding regions result in only two amino acid differences, both in the amino-terminal halves of the proteins. Five hybrid virG genes were constructed and used to activate the expression of a virB::lacZ gene fusion. Differences in the coding regions of these genes accounted for most of the superactivator phenotype, while differences at the promoter and 3' untranslated regions also contributed. These findings suggest that the properties of these VirG proteins and their quantities are important for vir gene induction, and also suggest a long-term selective pressure for mutations contributing to differences between these two genes.
Collapse
Affiliation(s)
- C Y Chen
- Section of Microbiology, Cornell University, Ithaca, NY 14853
| | | | | |
Collapse
|
49
|
Winans SC. An Agrobacterium two-component regulatory system for the detection of chemicals released from plant wounds. Mol Microbiol 1991; 5:2345-50. [PMID: 1791750 DOI: 10.1111/j.1365-2958.1991.tb02080.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Crown gall tumorigenesis by Agrobacterium tumefaciens requires the co-ordinate transcriptional induction of a set of pathogenesis genes. At least three classes of environmental stimuli act synergistically to induce these genes: (i) monocyclic aromatic hydrocarbons such as acetosyringone, coniferyl alcohol, and vanillin, (ii) neutral or acidic monosaccharides such as glucose and glucuronic acid, and (iii) acidic pH. Three proteins are required to sense and respond to these stimuli: (i) VirA, a transmembrane sensory protein and histidine protein kinase, (ii) VirG, a transcriptional activator which is phosphorylated by phosphoryl VirA, and (iii) ChvE, a periplasmic sugar-binding protein. VirA and VirG are members of the so-called two-component family of regulatory proteins. This regulatory system continues to offer new discoveries in the areas of signal transduction, host-microbe interactions, and host range.
Collapse
Affiliation(s)
- S C Winans
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
50
|
Valdivia RH, Wang L, Winans SC. Characterization of a putative periplasmic transport system for octopine accumulation encoded by Agrobacterium tumefaciens Ti plasmid pTiA6. J Bacteriol 1991; 173:6398-405. [PMID: 1655707 PMCID: PMC208972 DOI: 10.1128/jb.173.20.6398-6405.1991] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neoplastic crown gall tumors incited by Agrobacterium tumefaciens release novel amino acid or sugar derivatives known as opines, whose synthesis is directed by genes transferred to plant cells. Agrobacterium cells can transport and catabolize these compounds as sources of carbon and nitrogen. This article describes a region of the pTiA6 plasmid which is required for catabolism of the opine octopine and whose transcription is induced by octopine. This region of the plasmid contains four open reading frames, occQ, occM, occP, and occJ, which show homology to the family of so-called shock-sensitive permeases. TnphoA mutagenesis demonstrated that the OccJ and OccM proteins lie fully or partly in the periplasmic space. The OccJ protein was identified by electrophoresis and found to be fully localized in the periplasmic space. When these proteins were expressed in Escherichia coli, radiolabeled octopine became cell-associated.
Collapse
Affiliation(s)
- R H Valdivia
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|