1
|
|
2
|
Ogawa S, Shiota K, Yoshida T. Improvement of the Glucose Tolerance of Oligo-1,6-glucosidase from Geobacillus thermoglucosidasius. J Appl Glycosci (1999) 2015. [DOI: 10.5458/jag.jag.jag-2014_010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Shun Ogawa
- Enzymes and Pharmaceuticals Laboratory, GODO SHUSEI Co., Ltd
| | - Kazuma Shiota
- Enzymes and Pharmaceuticals Laboratory, GODO SHUSEI Co., Ltd
| | - Takashi Yoshida
- Faculty of Agriculture and Life Science, Hirosaki University
| |
Collapse
|
3
|
Francetić O, Pugsley AP. Towards the identification of type II secretion signals in a nonacylated variant of pullulanase from Klebsiella oxytoca. J Bacteriol 2005; 187:7045-55. [PMID: 16199575 PMCID: PMC1251600 DOI: 10.1128/jb.187.20.7045-7055.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pullulanase (PulA) from the gram-negative bacterium Klebsiella oxytoca is a 116-kDa surface-anchored lipoprotein of the isoamylase family that allows growth on branched maltodextrin polymers. PulA is specifically secreted via a type II secretion system. PelBsp-PulA, a nonacylated variant of PulA made by replacing the lipoprotein signal peptide (sp) with the signal peptide of pectate lyase PelB from Erwinia chrysanthemi, was efficiently secreted into the medium. Two 80-amino-acid regions of PulA, designated A and B, were previously shown to promote secretion of beta-lactamase (BlaM) and endoglucanase CelZ fused to the C terminus. We show that A and B fused to the PelB signal peptide can also promote secretion of BlaM and CelZ but not that of nuclease NucB or several other reporter proteins. However, the deletion of most of region A or all of region B, either individually or together, had only a minor effect on PelBsp-PulA secretion. Four independent linker insertions between amino acids 234 and 324 in PelBsp-PulA abolished secretion. This part of PulA, region C, could contain part of the PulA secretion signal or be important for its correct presentation. Deletion of region C abolished PelBsp-PulA secretion without dramatically affecting its stability. PelBsp-PulA-NucB chimeras were secreted only if the PulA-NucB fusion point was located downstream from region C. The data show that at least three regions of PulA contain information that influences its secretion, depending on their context, and that some reporter proteins might contribute to the secretion of chimeras of which they are a part.
Collapse
Affiliation(s)
- Olivera Francetić
- Molecular Genetics Unit, CNRS URA2172, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | | |
Collapse
|
4
|
Hekmat O, Kim YW, Williams SJ, He S, Withers SG. Active-site peptide "fingerprinting" of glycosidases in complex mixtures by mass spectrometry. Discovery of a novel retaining beta-1,4-glycanase in Cellulomonas fimi. J Biol Chem 2005; 280:35126-35. [PMID: 16085650 DOI: 10.1074/jbc.m508434200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
New proteomics methods are required for targeting and identification of subsets of a proteome in an activity-based fashion. Here, we report the first gel-free, mass spectrometry-based strategy for mechanism-based profiling of retaining beta-endoglycosidases in complex proteomes. Using a biotinylated, cleavable 2-deoxy-2-fluoroxylobioside inactivator, we have isolated and identified the active-site peptides of target retaining beta-1,4-glycanases in systems of increasing complexity: pure enzymes, artificial proteomes, and the secreted proteome of the aerobic mesophilic soil bacterium Cellulomonas fimi. The active-site peptide of a new C. fimi beta-1,4-glycanase was identified in this manner, and the peptide sequence, which includes the catalytic nucleophile, is highly conserved among glycosidase family 10 members. The glycanase gene (GenBank accession number DQ146941) was cloned using inverse PCR techniques, and the protein was found to comprise a catalytic domain that shares approximately 70% sequence identity with those of xylanases from Streptomyces sp. and a family 2b carbohydrate-binding module. The new glycanase hydrolyzes natural and artificial xylo-configured substrates more efficiently than their cello-configured counterparts. It has a pH dependence very similar to that of known C. fimi retaining glycanases.
Collapse
Affiliation(s)
- Omid Hekmat
- Protein Engineering Network of Centres of Excellence of Canada, Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | | | | |
Collapse
|
5
|
Browngardt CM, Wen ZT, Burne RA. RegM is required for optimal fructosyltransferase and glucosyltransferase gene expression inStreptococcus mutans. FEMS Microbiol Lett 2004; 240:75-9. [PMID: 15500982 DOI: 10.1016/j.femsle.2004.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 08/20/2004] [Accepted: 09/14/2004] [Indexed: 11/28/2022] Open
Abstract
Glucosyltransferases (Gtfs) and fructosyltransferase (Ftf), and the exopolysaccharides they produce, facilitate bacterial adherence and biofilm formation, and enhance the virulence of Streptococcus mutans. In this study, we used continuous chemostat cultures and reporter gene fusions to study the expression of ftf and gtfBC in response to carbohydrate availability and pH, and to asses the role of a protein similar to catabolite control protein A (CcpA), RegM, in regulation of these genes. Expression of ftf was efficient at pH 7.0 and 6.0, but was repressed at pH 5.0 under glucose-excess conditions. At pH 7.0, ftf expression was 5-fold lower under glucose-limiting conditions than in cells growing with an excess of glucose. Expression of gtfBC was also sensitive, albeit to a lesser extent, to pH and glucose availability. Inactivation of regM resulted in decreases of as much as 10-fold in both ftf and gtfBC expression, depending on growth conditions. These findings reinforce the importance of pH and carbohydrate availability for expression of two primary virulence attributes of S. mutans and reveal a critical role for RegM in regulation of expression of both gtfBC and ftf.
Collapse
Affiliation(s)
- Christopher M Browngardt
- Department of Oral Biology, College of Dentistry, University of Florida, 1600 SW Archer Road, P.O. Box 100424, Gainesville, FL 32610-0424, USA
| | | | | |
Collapse
|
6
|
Leloup L, Haddaoui EA, Chambert R, Petit-Glatron MF. Characterization of the rate-limiting step of the secretion of Bacillus subtilis alpha-amylase overproduced during the exponential phase of growth. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 10):3295-3303. [PMID: 9353930 DOI: 10.1099/00221287-143-10-3295] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Bacillus subtilis alpha-amylase gene, amyE, was expressed under the regulated control of sacR, the levansucrase leader region. The gene fusion including the complete amyE coding sequence with the signal peptide sequence was integrated into the chromosome of a degU32(Hy) strain deleted of the sacB DNA fragment. In this genetic contex, alpha-amylase is produced in the culture supernatant at a high level (2% of total protein) during the exponential phase of growth upon induction by sucrose. Pulse-chase experiments showed that the rate-limiting step (t1/2 = 120 s) of the secretion process is the release of a cell-associated precursor form whose signal peptide has been cleaved. The efficiency of this ultimate step of secretion decreased dramatically in the presence of a metal chelator (EDTA) or when the cells were converted to protoplasts. The hypothesis that this step is tightly coupled with the folding process of alpha-amylase occurring within the cell wall environment was substantiated by in vitro folding studies. The unfolding-folding transition, monitored by the resistance to proteolysis, was achieved within the same time range (t1/2 = 60 s) and required the presence of calcium. This metal requirement could possibly be satisfied in vivo by the integrity of the cell wall. The t1/2 of the alpha-amylase release step is double that of levansucrase, although their folding rates are similar. This perhaps indicates that the passage through the cell wall may depend on parietal properties (e.g. metal ion binding and porosity) and on certain intrinsic properties of the protein (molecular mass and folding properties).
Collapse
Affiliation(s)
- Laurence Leloup
- Institut Jacques Monod, CNRS, Université Paris 7 Denis Diderot, Laboratoire Génétique et Membranes, Tour 43-2, place Jussieu, 75251 Paris Cedex 05, France
| | - El Arbi Haddaoui
- Institut Jacques Monod, CNRS, Université Paris 7 Denis Diderot, Laboratoire Génétique et Membranes, Tour 43-2, place Jussieu, 75251 Paris Cedex 05, France
| | - Régis Chambert
- Institut Jacques Monod, CNRS, Université Paris 7 Denis Diderot, Laboratoire Génétique et Membranes, Tour 43-2, place Jussieu, 75251 Paris Cedex 05, France
| | | |
Collapse
|
7
|
Nishida T, Nakamura A, Masaki H, Uozumi T. Regulation of cyclodextrin glucanotransferase synthesis in Bacillus ohbensis. FEMS Microbiol Lett 1997; 149:221-6. [PMID: 9141663 DOI: 10.1111/j.1574-6968.1997.tb10332.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The production of cyclodextrin glucanotransferase (CGTase) by Bacillus ohbensis is dependent on the presence of starch and inhibited by glucose in the medium. Northern blot analysis revealed that the CGTase gene (cgt) was transcribed to almost the same level irrespective of the presence or absence of starch, but glucose completely repressed the transcription. Furthermore, a relatively high amount of CGTase protein was detected on Western blotting only in the medium with starch, showing the lack of posttranslational control of the CGTase activity. These findings suggest some starch induction mechanism for the cgt gene, possibly at the posttranscriptional level, besides negative transcriptional regulation by glucose.
Collapse
Affiliation(s)
- T Nishida
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|
8
|
Mareková M, Jonecová Z, Kmeĭ V. Location of the alpha-amylase gene in rumen Streptococcus bovis strains distinguished by unstable amylase activity. Folia Microbiol (Praha) 1995; 40:181-4. [PMID: 8851562 DOI: 10.1007/bf02815419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genetic stability of amylase activity after serial subcultivation experiments with amylolytic ruminal Streptococcus bovis strains was investigated. Two strains Amy+ and Amy- were obtained. Loss of amylase activity connected with the loss of plasmid DNA was not found in these strains. The presence of the gene responsible for the amylase activity in the chromosome of these strains was revealed by hybridization of the alpha-amylase gene on pJK108 against chromosomal DNA of S. bovis and Bacillus subtilis after a complete restriction with EcoRI.
Collapse
Affiliation(s)
- M Mareková
- Institute of Animal Physiology, Slovak Academy of Sciences, Kosice
| | | | | |
Collapse
|
9
|
Chak KF, Tseng MY, Yamamoto T. Expression of the crystal protein gene under the control of the alpha-amylase promoter in Bacillus thuringiensis strains. Appl Environ Microbiol 1994; 60:2304-10. [PMID: 8074511 PMCID: PMC201647 DOI: 10.1128/aem.60.7.2304-2310.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The expression of an insecticidal crystal protein gene of Bacillus thuringiensis under the control of the alpha-amylase gene promoter was investigated. The cryIC gene, which encodes a protein known to have a unique activity against Spodoptera (armyworm) species, was used in this investigation. The cryIC gene was placed, along with the alpha-amylase promoter from B. subtilis, in a B. thuringiensis-derived cloning vector, generating a pair of recombinant plasmids, pSB744 and pSB745. The cloning vector that contains the minimal replicon of B. thuringiensis subsp. kurstaki HD73 is stably maintained in a variety of B. thuringiensis strains, as previously reported by Gamel and Piot (Gene 120:17-26, 1992). The present study confirmed that the recombinant plasmids are also stably maintained in B. thuringiensis subsp. kurstaki Cry-B and HD73 growing in media without selection pressure for at least 48 h. The cryIC gene on the recombinant plasmids were notably expressed at high levels in both recombinant strains. Expression of the introduced cryIC gene on the recombinant plasmid in B. thuringiensis subsp. kurstaki HD73 did not impair expression of the resident cryIA(c) gene. The CryIA(c) protein is known to have a high level of activity against loopers such as Trichoplusia ni (the cabbage looper). As a result of coexpression of the introduced cryIC gene and the resident cryIA(c) gene, recombinant strain HD73 acquired an additional insecticidal activity against Spodoptera exigua (the beet armyworm) whereas the original activity level against T. ni was maintained.
Collapse
Affiliation(s)
- K F Chak
- Department of Biochemistry, National Yang-Ming Medical College, Shih-Pai, Taipei, Taiwan
| | | | | |
Collapse
|
10
|
Satoh E, Niimura Y, Uchimura T, Kozaki M, Komagata K. Molecular cloning and expression of two alpha-amylase genes from Streptococcus bovis 148 in Escherichia coli. Appl Environ Microbiol 1993; 59:3669-73. [PMID: 8285674 PMCID: PMC182515 DOI: 10.1128/aem.59.11.3669-3673.1993] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The alpha-amylase genes of Streptococcus bovis 148 were cloned in Escherichia coli MC1061, using pBR322. The recombinant plasmids were classified into two groups on the basis of their restriction maps. Southern blot analysis did not show homology between the two types of alpha-amylase genes, and the two alpha-amylase genes existed on the chromosomal DNA of S. bovis 148. The enzymatic properties and N-terminal amino acid sequences of the two purified enzymes produced by the cloned E. coli strains were quite different from each other. Particularly, one alpha-amylase (Amy I) was adsorbed on raw corn starch and hydrolyzed raw corn starch, and another (Amy II) was not adsorbed on raw corn starch and did not hydrolyze raw corn starch. Amy I was considered to be the same as the extracellular alpha-amylase of S. bovis 148 in raw starch absorbability, ability to hydrolyze raw corn starch, enzymatic characteristics, N-terminal amino acid sequence, and mode of action on soluble starch. Amy II showed a unique pattern of oligosaccharide production from soluble starch compared with the extracellular alpha-amylase of S. bovis 148. Amy II was suggested to be an intracellular alpha-amylase of S. bovis 148.
Collapse
Affiliation(s)
- E Satoh
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Japan
| | | | | | | | | |
Collapse
|
11
|
Renna MC, Najimudin N, Winik LR, Zahler SA. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol 1993; 175:3863-75. [PMID: 7685336 PMCID: PMC204803 DOI: 10.1128/jb.175.12.3863-3875.1993] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Acetoin is a major extracellular product of Bacillus subtilis grown on glucose and other fermentable carbon sources. The enzymes responsible for the formation of acetoin, acetolactate synthase, and acetolactate decarboxylase are synthesized in detectable amounts only in cells that have reached stationary phase. We have cloned and sequenced the genes encoding these enzymes, alsS and alsD, as well as a gene, alsR, that regulates their expression. alsS and alsD appear to compose a single operon, while alsR is transcribed divergently from the alsSD operon. AlsR shows significant homology to the LysR family of bacterial activator proteins, and when alsR is disrupted the alsSD operon is not expressed. Transcriptional fusions to alsS and alsR revealed that AlsR is required for the transcription of the alsSD operon, which increases during stationary phase. Two mutations that cause increased expression of the alsSD operon have been isolated, cloned, and sequenced. They each change an amino acid in the AlsR protein.
Collapse
Affiliation(s)
- M C Renna
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853
| | | | | | | |
Collapse
|
12
|
Stewart GC. Catabolite repression in the gram-positive bacteria: generation of negative regulators of transcription. J Cell Biochem 1993; 51:25-8. [PMID: 8432740 DOI: 10.1002/jcb.240510106] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Operons subject to catabolite repression (CR) in the gram-positive bacteria appear to be transcriptionally regulated by negative acting catabolite repressors. Cis elements within the promoter regions of a few CR operons have been identified as the target sequences for these repressors. It has also been proposed that sequences internal to the transcriptional unit may represent targets for recognition of the operons as catabolite repressible. The precise mechanism(s) of regulation have yet to be worked out.
Collapse
Affiliation(s)
- G C Stewart
- Department of Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia 29208
| |
Collapse
|
13
|
Caparon MG, Geist RT, Perez-Casal J, Scott JR. Environmental regulation of virulence in group A streptococci: transcription of the gene encoding M protein is stimulated by carbon dioxide. J Bacteriol 1992; 174:5693-701. [PMID: 1512202 PMCID: PMC206517 DOI: 10.1128/jb.174.17.5693-5701.1992] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have found that different atmospheres can have significant effects on the transcription of emm, the gene that encodes M protein, the major virulence factor of the group A streptococcus (Streptococcus pyogenes). Expression of emm was monitored by constructing a transcriptional fusion of the promoter for emm6.1 from S. pyogenes JRS4 to a promoterless chloramphenicol acetyltransferase gene. Transcription, as measured by determining chloramphenicol acetyltransferase specific activity, was stimulated by as much as 25-fold by increased carbon dioxide tension. Expression was greater in the latter stages of growth and was not affected by growth at 30 instead of 37 degrees C. Insertional inactivation of mry, a gene encoding a positive regulator of emm6.1, reduced chloramphenicol acetyltransferase activity below the detectable level. We conclude that expression of emm is influenced by environmental factors and that the level of carbon dioxide is one signal that may influence expression of M protein during infection.
Collapse
Affiliation(s)
- M G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | | | | | | |
Collapse
|
14
|
van Rooijen RJ, Gasson MJ, de Vos WM. Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity. J Bacteriol 1992; 174:2273-80. [PMID: 1372602 PMCID: PMC205848 DOI: 10.1128/jb.174.7.2273-2280.1992] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the location, activity, and regulation of the promoter of the Lactococcus lactis 8-kb lactose operon (lacABCDFEGX), which encodes the enzymes of the lactose phosphotransferase system and the tagatose 6-phosphate pathway. The lac promoter sequence corresponds closely to the consensus promoter described for gram-positive bacteria and is located in a back-to-back configuration with the promoter of the divergently transcribed lacR gene, which encodes the LacR repressor. The transcription start sites used under induced (lactose) and noninduced (glucose) conditions were determined. The minimal promoter region that could be isolated on a single restriction fragment included sequences ranging from -75 to +42. The effect of the presence of flanking sequences and the lacR gene on promoter activity and regulation was studied in Escherichia coli and L. lactis strains by using transcriptional fusions with promoterless chloramphenicol acetyltransferase reporter genes. The results showed that transcriptional regulation of the lac operon is mediated by the interaction between the LacR repressor, the lac promoter, and sequences in the noncoding region between the lacR and lacA genes. Sequences flanking the minimal promoter region appeared to enhance lac promoter activity much more in L. lactis (5- to 38-fold) than in E. coli (1.3- to 5-fold).
Collapse
Affiliation(s)
- R J van Rooijen
- Department of Biophysical Chemistry, Netherlands Institute for Dairy Research (NIZO), Ede
| | | | | |
Collapse
|
15
|
Henkin TM, Grundy FJ, Nicholson WL, Chambliss GH. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol 1991; 5:575-84. [PMID: 1904524 DOI: 10.1111/j.1365-2958.1991.tb00728.x] [Citation(s) in RCA: 259] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Expression of the alpha-amylase gene of Bacillus subtilis is controlled at the transcriptional level, and responds to the growth state of the cell as well as the availability of rapidly metabolizable carbon sources. Glucose-mediated repression has previously been shown to involve a site near the transcriptional start-point of the amyE gene. In this study, a transposon insertion mutation was characterized which resulted in loss of glucose repression of amyE gene expression. The gene affected by this mutation, which was localized near 263 degrees on the B. subtilis chromosomal map, was isolated and its DNA sequence was determined. This gene, designated ccpA, exhibited striking homology to repressor genes of the lac and gal repressor family. The ccpA gene was found to be allelic to alsA, previously identified as a regulator of acetoin biosynthesis, and may be involved in catabolite regulation of other systems as well.
Collapse
Affiliation(s)
- T M Henkin
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130
| | | | | | | |
Collapse
|
16
|
Tonkova A. Alpha-Amylase Synthesis in the Genus Bacillus. BIOTECHNOL BIOTEC EQ 1991. [DOI: 10.1080/13102818.1991.10818638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Emori M, Takagi M, Maruo B, Yano K. Molecular cloning, nucleotide sequencing, and expression of the Bacillus subtilis (natto) IAM1212 alpha-amylase gene, which encodes an alpha-amylase structurally similar to but enzymatically distinct from that of B. subtilis 2633. J Bacteriol 1990; 172:4901-8. [PMID: 2118504 PMCID: PMC213144 DOI: 10.1128/jb.172.9.4901-4908.1990] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An alpha-amylase gene of Bacillus subtilis (natto) IAM1212 was cloned in a lambda EMBL3 bacteriophage vector, and the nucleotide sequence was determined. An open reading frame encoding the alpha-amylase (AMY1212) consists of 1,431 base pairs and contains 477 amino acid residues, which is the same in size as the alpha-amylase (AMY2633) of B. subtilis 2633, an alpha-amylase-hyperproducing strain, and smaller than that of B. subtilis 168, Marburg strain. The amino acid sequence of AMY1212 is different from that of AMY2633 at five residues. Enzymatic properties of these two alpha-amylases were examined by introducing the cloned genes into an alpha-amylase-deficient strain, B. subtilis M15. It was revealed that products of soluble starch hydrolyzed by AMY1212 are maltose and maltotriose, while those of AMY2633 are glucose and maltose. From the detailed analyses with oligosaccharides as substrates, it was concluded that the difference in hydrolysis products of the two similar alpha-amylases should be ascribed to the different activity hydrolyzing low-molecular-weight substrates, especially maltotriose; AMY1212 slowly hydrolyzes maltotetraose and cannot hydrolyze maltotriose, while AMY2633 efficiently hydrolyzes maltotetraose and maltotriose. Further analyses with chimeric alpha-amylase molecules constructed from the cloned genes revealed that only one amino acid substitution is responsible for the differences in hydrolysis products.
Collapse
Affiliation(s)
- M Emori
- Laboratory of Radiation Microbiology, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | |
Collapse
|
18
|
Weickert MJ, Chambliss GH. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci U S A 1990; 87:6238-42. [PMID: 2117276 PMCID: PMC54508 DOI: 10.1073/pnas.87.16.6238] [Citation(s) in RCA: 224] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Catabolite repression of the Bacillus subtilis alpha-amylase gene (amyE) involves an operator sequence located just downstream of the promoter (amyR), overlapping the transcription start site. Oligonucleotide site-directed mutagenesis of this sequence identified bases required for catabolite repression. Two mutations increased both the 2-fold symmetry of the operator and the repression ratio. Although many mutations reduced the repression ratio 3- to 11-fold, some also caused a 2-fold or greater increase in amylase production. Others caused hyperproduction without affecting catabolite repression. Homologous sequences in other catabolite-repressed B. subtilis promoters suggest a common regulatory site may be involved in catabolite repression.
Collapse
Affiliation(s)
- M J Weickert
- Department of Genetics, University of Wisconsin, Madison 53706
| | | |
Collapse
|
19
|
Oskouian B, Stewart GC. Repression and catabolite repression of the lactose operon of Staphylococcus aureus. J Bacteriol 1990; 172:3804-12. [PMID: 2163387 PMCID: PMC213359 DOI: 10.1128/jb.172.7.3804-3812.1990] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The lacR gene encodes the repressor of the lactose operon of S. aureus. The nucleotide sequence of this gene and the promoter-operator region of the operon are reported. The lacR gene encodes a protein with a molecular weight of 28,534. This protein was found to share sequence homology with the DeoR protein, the repressor of the E. coli deoxyribonucleotide operon. Directly and invertedly repeated sequences were found associated with the promoter for the structural genes of the operon. These sequences were examined by site-directed mutagenesis and found to be important in repressor binding and in the binding of a catabolite repressor. Evidence is presented in support of a model for catabolite repression of the operon which involves a negative-acting transcriptional regulator which binds to the promoter region of the operon and prevents transcription.
Collapse
Affiliation(s)
- B Oskouian
- Department of Microbiology, University of Kansas, Lawrence 66045
| | | |
Collapse
|
20
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1989; 17:8023-30. [PMID: 2798149 PMCID: PMC334940 DOI: 10.1093/nar/17.19.8023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|