1
|
Duan J, Yuan B, Jia F, Li X, Chen C, Li G. Development of an Efficient and Seamless Genetic Manipulation Method for Xenorhabdus and Its Application for Enhancing the Production of Fabclavines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:274-283. [PMID: 38109418 DOI: 10.1021/acs.jafc.3c04136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Xenorhabdus can produce numerous natural products, but their development has been hampered by the lack of a seamless genetic manipulation method. In this study, we compared several lethal genes and determined the sacB gene as the most effective counter-selection marker and then established a dual selection/counter-selection system by integrating neo and sacB genes into one cassette. This provides an efficient and seamless genetic manipulation method for Xenorhabdus. Using this method, DNA fragments ranging from 205 to 47,788 bp in length were seamlessly knocked out or replaced with impressively high positive rates of 80 to 100% in Xenorhabdus budapestensis XBD8. In addition, the method was successfully applied with good efficiency (45-100%) in Xenorhabdus nematophila CB6. To further validate the method, different constitutive promoters were used to replace the native fclC promoter in a batch experiment. The positivity rate remained consistently high, at 46.3%. In comparison to WT XBD8, the recombinant strain MX14 demonstrated a significant increase in the production of fabclavine 7 and fabclavine 8 by 4.97-fold and 3.22-fold, respectively, while the overall production of fabclavines was enhanced by 3.52-fold.
Collapse
Affiliation(s)
- Jiaqi Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Baoming Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fenglian Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chang Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Beijing Green Agricultural Science and Technology Group Co., Ltd, Beijing 100193, China
| | - Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Abstract
The ability to manipulate the bacterial genome is an obligatory premise for the study of gene function and regulation in bacterial cells. The λ red recombineering technique allows modification of chromosomal sequences with base-pair precision without the need of intermediate molecular cloning steps. Initially conceived to construct insertion mutants, the technique lends itself to a wide variety of applications including the creation of point mutants, seamless deletions, reporter, and epitope tag fusions and chromosomal rearrangements. Here, we introduce some of the most common implementations of the method.
Collapse
Affiliation(s)
- Nara Figueroa-Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| | - Roberto Balbontín
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41080 Sevilla, Spain
| | - Lionello Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Evans RM, Beaton SE, Rodriguez Macia P, Pang Y, Wong KL, Kertess L, Myers WK, Bjornsson R, Ash PA, Vincent KA, Carr SB, Armstrong FA. Comprehensive structural, infrared spectroscopic and kinetic investigations of the roles of the active-site arginine in bidirectional hydrogen activation by the [NiFe]-hydrogenase 'Hyd-2' from Escherichia coli. Chem Sci 2023; 14:8531-8551. [PMID: 37592998 PMCID: PMC10430524 DOI: 10.1039/d2sc05641k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/01/2023] [Indexed: 08/19/2023] Open
Abstract
The active site of [NiFe]-hydrogenases contains a strictly-conserved pendant arginine, the guanidine head group of which is suspended immediately above the Ni and Fe atoms. Replacement of this arginine (R479) in hydrogenase-2 from E. coli results in an enzyme that is isolated with a very tightly-bound diatomic ligand attached end-on to the Ni and stabilised by hydrogen bonding to the Nζ atom of the pendant lysine and one of the three additional water molecules located in the active site of the variant. The diatomic ligand is bound under oxidising conditions and is removed only after a prolonged period of reduction with H2 and reduced methyl viologen. Once freed of the diatomic ligand, the R479K variant catalyses both H2 oxidation and evolution but with greatly decreased rates compared to the native enzyme. Key kinetic characteristics are revealed by protein film electrochemistry: most importantly, a very low activation energy for H2 oxidation that is not linked to an increased H/D isotope effect. Native electrocatalytic reversibility is retained. The results show that the sluggish kinetics observed for the lysine variant arise most obviously because the advantage of a more favourable low-energy pathway is massively offset by an extremely unfavourable activation entropy. Extensive efforts to establish the identity of the diatomic ligand, the tight binding of which is an unexpected further consequence of replacing the pendant arginine, prove inconclusive.
Collapse
Affiliation(s)
- Rhiannon M Evans
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - Stephen E Beaton
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | | | - Yunjie Pang
- College of Chemistry, Beijing Normal University 100875 Beijing China
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Kin Long Wong
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus Didcot UK
| | - Leonie Kertess
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - William K Myers
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - Ragnar Bjornsson
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire Chimie et Biologie des Métaux 17 Rue Des Martyrs F-38054 Grenoble Cedex France
| | - Philip A Ash
- School of Chemistry, The University of Leicester University Road Leicester LE1 7RH UK
| | - Kylie A Vincent
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - Stephen B Carr
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus Didcot UK
| | - Fraser A Armstrong
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| |
Collapse
|
4
|
Zou X, Xiao X, Mo Z, Ge Y, Jiang X, Huang R, Li M, Deng Z, Chen S, Wang L, Lee SY. Systematic strategies for developing phage resistant Escherichia coli strains. Nat Commun 2022; 13:4491. [PMID: 35918338 PMCID: PMC9345386 DOI: 10.1038/s41467-022-31934-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 07/11/2022] [Indexed: 12/26/2022] Open
Abstract
Phages are regarded as powerful antagonists of bacteria, especially in industrial fermentation processes involving bacteria. While bacteria have developed various defense mechanisms, most of which are effective against a narrow range of phages and consequently exert limited protection from phage infection. Here, we report a strategy for developing phage-resistant Escherichia coli strains through the simultaneous genomic integration of a DNA phosphorothioation-based Ssp defense module and mutations of components essential for the phage life cycle. The engineered E. coli strains show strong resistance against diverse phages tested without affecting cell growth. Additionally, the resultant engineered phage-resistant strains maintain the capabilities of producing example recombinant proteins, D-amino acid oxidase and coronavirus-encoded nonstructural protein nsp8, even under high levels of phage cocktail challenge. The strategy reported here will be useful for developing engineered E. coli strains with improved phage resistance for various industrial fermentation processes for producing recombinant proteins and chemicals of interest. Phage contamination is a persistent problem in industrial biotechnology processes employing bacterial strains. Here, the authors report the construction of E. coli host strains with broad antiphase activities via the genomic integration of the Ssp defense system and mutations of components essential for phage infection cycles.
Collapse
Affiliation(s)
- Xuan Zou
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Xiaohong Xiao
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Ziran Mo
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.,Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Yashi Ge
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Xing Jiang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.,Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Ruolin Huang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.,Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Mengxue Li
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Zixin Deng
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Shi Chen
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China. .,Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China.
| | - Lianrong Wang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Rangarajan AA, Yilmaz C, Schnetz K. Deletion of FRT-sites by no-SCAR recombineering in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35411846 DOI: 10.1099/mic.0.001173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lambda-Red recombineering is the most commonly used method to create point mutations, insertions or deletions in Escherichia coli and other bacteria, but usually an Flp recognition target (FRT) scar-site is retained in the genome. Alternative scarless recombineering methods, including CRISPR/Cas9-assisted methods, generally require cloning steps and/or complex PCR schemes for specific targeting of the genome. Here we describe the deletion of FRT scar-sites by the scarless Cas9-assisted recombineering method no-SCAR using an FRT-specific guide RNA, sgRNAFRT, and locus-specific ssDNA oligonucleotides. We applied this method to construct a scarless E. coli strain suitable for gradual induction by l-arabinose. Genome sequencing of the resulting strain and its parent strains demonstrated that no additional mutations were introduced along with the simultaneous deletion of two FRT scar-sites. The FRT-specific no-SCAR selection by sgRNAFRT/Cas9 may be generally applicable to cure FRT scar-sites of E. coli strains constructed by classical λ-Red recombineering.
Collapse
Affiliation(s)
- Aathmaja Anandhi Rangarajan
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany.,Present address: Department of Microbiology and Molecular Genetics, 5180 Biomedical and Physical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Cihan Yilmaz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
6
|
Kammel M, Sawers RG. The FocA channel functions to maintain intracellular formate homeostasis during Escherichia coli fermentation. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35377837 DOI: 10.1099/mic.0.001168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
FocA translocates formate/formic acid bi-directionally across the cytoplasmic membrane when Escherichia coli grows by fermentation. It remains unclear, however, what physiological benefit is imparted by FocA, because formic acid (pK a=3.75) can diffuse passively across the membrane, especially at low pH. Here, we monitored changes in intra- and extracellular formate levels during batch-culture fermentation, comparing a parental E. coli K-12 strain with its isogenic focA mutant. Our results show that, regardless of the initial pH in the culture, FocA functions to maintain relatively constant intracellular formate levels during growth. Analysis of a strain synthesizing a FocAT91A variant with an exchange in a conserved threonine residue within the translocation pore revealed the strain accumulated formate intracellularly and imported formate poorly, but in a pH-dependent manner, which was different to uptake by native FocA. We conclude that FocA maintains formate homeostasis, using different mechanisms for efflux and uptake of the anion.
Collapse
Affiliation(s)
- Michelle Kammel
- Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3 06120 Halle (Saale), Germany
| | - R Gary Sawers
- Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3 06120 Halle (Saale), Germany
| |
Collapse
|
7
|
The Autonomous Glycyl Radical Protein GrcA Restores Activity to Inactive Full-Length Pyruvate Formate-Lyase In Vivo. J Bacteriol 2022; 204:e0007022. [PMID: 35377165 DOI: 10.1128/jb.00070-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During glucose fermentation, Escherichia coli and many other microorganisms employ the glycyl radical enzyme (GRE) pyruvate formate-lyase (PflB) to catalyze the coenzyme A-dependent cleavage of pyruvate to formate and acetyl-coenzyme A (CoA). Due to its extreme reactivity, the radical in PflB must be controlled carefully and, once generated, is particularly susceptible to dioxygen. Exposure to oxygen of the radical on glycine residue 734 of PflB results in cleavage of the polypeptide chain and consequent inactivation of the enzyme. Two decades ago, a small 14-kDa protein called YfiD (now called autonomous glycyl radical cofactor [GrcA]) was shown to be capable of restoring activity to O2-inactivated PflB in vitro; however, GrcA has never been shown to have this function in vivo. By constructing a strain with a chromosomally encoded PflB enzyme variant with a G734A residue exchange, we could show that cells retained near-wild type fermentative growth, as well as formate and H2 production; H2 is derived by enzymatic disproportionation of formate. Introducing a grcA deletion mutation into this strain completely prevented formate and H2 generation and reduced anaerobic growth. We could show that the conserved glycine at position 102 on GrcA was necessary for GrcA to restore PflB activity and that this recovered activity depended on the essential cysteine residues 418 and 419 in the active site of PflB. Together, our findings demonstrate that GrcA is capable of restoring in vivo activity to inactive full-length PflB and support a model whereby GrcA displaces the C-terminal glycyl radical domain to rescue the catalytic function of PflB. IMPORTANCE Many facultative anaerobic microorganisms use glycyl radical enzymes (GREs) to catalyze chemically challenging reactions under anaerobic conditions. Pyruvate formate-lyase (PflB) is a GRE that catalyzes cleavage of the carbon-carbon bond of pyruvate during glucose fermentation. The problem is that glycyl radicals are destroyed readily, especially by oxygen. To protect and restore activity to inactivated PflB, bacteria like Escherichia coli have a small autonomous glycyl radical cofactor protein called GrcA, which functions to rescue inactivated PflB. To date, this proposed function of GrcA has only been demonstrated in vitro. Our data reveal that GrcA rescues and restores enzyme activity to an inactive full-length form of PflB in vivo. These results have important implications for the evolution of radical-based enzyme mechanisms.
Collapse
|
8
|
Kammel M, Trebbin O, Pinske C, Sawers RG. A single amino acid exchange converts FocA into a unidirectional efflux channel for formate. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35084298 PMCID: PMC8914244 DOI: 10.1099/mic.0.001132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During mixed-acid fermentation, Escherichia coli initially translocates formate out of the cell, but re-imports it at lower pH. This is performed by FocA, the archetype of the formate-nitrite transporter (FNT) family of pentameric anion channels. Each protomer of FocA has a hydrophobic pore through which formate/formic acid is bidirectionally translocated. It is not understood how the direction of formate/formic acid passage through FocA is controlled by pH. A conserved histidine residue (H209) is located within the translocation pore, suggesting that protonation/deprotonation might be linked to the direction of formate translocation. Using a formate-responsive lacZ-based reporter system we monitored changes in formate levels in vivo when H209 in FocA was exchanged for either of the non-protonatable amino acids asparagine or glutamine, which occur naturally in some FNTs. These FocA variants (with N or Q) functioned as highly efficient formate efflux channels and the bacteria could neither accumulate formate nor produce hydrogen gas. Therefore, the data in this study suggest that this central histidine residue within the FocA pore is required for pH-dependent formate uptake into E. coli cells. We also address why H209 is evolutionarily conserved and provide a physiological rationale for the natural occurrence of N/Q variants of FNT channels.
Collapse
Affiliation(s)
- Michelle Kammel
- Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Oliver Trebbin
- Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
- Present address: IMD Laboratory Oderland GmbH, Am Kleistpark 1, Frankfurt (Oder), Germany
| | - Constanze Pinske
- Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - R. Gary Sawers
- Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
- *Correspondence: R. Gary Sawers,
| |
Collapse
|
9
|
Backes N, Phillips GJ. Repurposing CRISPR-Cas Systems as Genetic Tools for the Enterobacteriales. EcoSal Plus 2021; 9:eESP00062020. [PMID: 34125584 PMCID: PMC11163844 DOI: 10.1128/ecosalplus.esp-0006-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022]
Abstract
Over the last decade, the study of CRISPR-Cas systems has progressed from a newly discovered bacterial defense mechanism to a diverse suite of genetic tools that have been applied across all domains of life. While the initial applications of CRISPR-Cas technology fulfilled a need to more precisely edit eukaryotic genomes, creative "repurposing" of this adaptive immune system has led to new approaches for genetic analysis of microorganisms, including improved gene editing, conditional gene regulation, plasmid curing and manipulation, and other novel uses. The main objective of this review is to describe the development and current state-of-the-art use of CRISPR-Cas techniques specifically as it is applied to members of the Enterobacteriales. While many of the applications covered have been initially developed in Escherichia coli, we also highlight the potential, along with the limitations, of this technology for expanding the availability of genetic tools in less-well-characterized non-model species, including bacterial pathogens.
Collapse
Affiliation(s)
- Nicholas Backes
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Gregory J. Phillips
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
10
|
Sellés Vidal L, Murray JW, Heap JT. Versatile selective evolutionary pressure using synthetic defect in universal metabolism. Nat Commun 2021; 12:6859. [PMID: 34824282 PMCID: PMC8616928 DOI: 10.1038/s41467-021-27266-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design de novo. Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of Escherichia coli genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- grid.7445.20000 0001 2113 8111Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ UK ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - James W. Murray
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - John T. Heap
- grid.7445.20000 0001 2113 8111Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ UK ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK ,grid.4563.40000 0004 1936 8868School of Life Sciences, The University of Nottingham, Biodiscovery Institute, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
11
|
Harnessing Escherichia coli for Bio-Based Production of Formate under Pressurized H 2 and CO 2 Gases. Appl Environ Microbiol 2021; 87:e0029921. [PMID: 34647819 DOI: 10.1128/aem.00299-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli is a Gram-negative bacterium that is a workhorse for biotechnology. The organism naturally performs a mixed-acid fermentation under anaerobic conditions where it synthesizes formate hydrogenlyase (FHL-1). The physiological role of the enzyme is the disproportionation of formate into H2 and CO2. However, the enzyme has been observed to catalyze hydrogenation of CO2 given the correct conditions, and so it has possibilities in bio-based carbon capture and storage if it can be harnessed as a hydrogen-dependent CO2 reductase (HDCR). In this study, an E. coli host strain was engineered for the continuous production of formic acid from H2 and CO2 during bacterial growth in a pressurized batch bioreactor. Incorporation of tungsten, in place of molybdenum, in FHL-1 helped to impose a degree of catalytic bias on the enzyme. This work demonstrates that it is possible to couple cell growth to simultaneous, unidirectional formate production from carbon dioxide and develops a process for growth under pressurized gases. IMPORTANCE Greenhouse gas emissions, including waste carbon dioxide, are contributing to global climate change. A basket of solutions is needed to steadily reduce emissions, and one approach is bio-based carbon capture and storage. Here, we present our latest work on harnessing a novel biological solution for carbon capture. The Escherichia coli formate hydrogenlyase (FHL-1) was engineered to be constitutively expressed. Anaerobic growth under pressurized H2 and CO2 gases was established, and aqueous formic acid was produced as a result. Incorporation of tungsten into the enzyme in place of molybdenum proved useful in poising FHL-1 as a hydrogen-dependent CO2 reductase (HDCR).
Collapse
|
12
|
CRAGE-CRISPR facilitates rapid activation of secondary metabolite biosynthetic gene clusters in bacteria. Cell Chem Biol 2021; 29:696-710.e4. [PMID: 34508657 DOI: 10.1016/j.chembiol.2021.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/19/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022]
Abstract
With the advent of genome sequencing and mining technologies, secondary metabolite biosynthetic gene clusters (BGCs) within bacterial genomes are becoming easier to predict. For subsequent BGC characterization, clustered regularly interspaced short palindromic repeats (CRISPR) has contributed to knocking out target genes and/or modulating their expression; however, CRISPR is limited to strains for which robust genetic tools are available. Here we present a strategy that combines CRISPR with chassis-independent recombinase-assisted genome engineering (CRAGE), which enables CRISPR systems in diverse bacteria. To demonstrate CRAGE-CRISPR, we select 10 polyketide/non-ribosomal peptide BGCs in Photorhabdus luminescens as models and create their deletion and activation mutants. Subsequent loss- and gain-of-function studies confirm 22 secondary metabolites associated with the BGCs, including a metabolite from a previously uncharacterized BGC. These results demonstrate that the CRAGE-CRISPR system is a simple yet powerful approach to rapidly perturb expression of defined BGCs and to profile genotype-phenotype relationships in bacteria.
Collapse
|
13
|
Wang N, Gao J, Liu Y, Wang Q, Zhuang X, Zhuang G. Realizing the role of N-acyl-homoserine lactone-mediated quorum sensing in nitrification and denitrification: A review. CHEMOSPHERE 2021; 274:129970. [PMID: 33979914 DOI: 10.1016/j.chemosphere.2021.129970] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Nitrification and denitrification are crucial processes in the nitrogen cycle, a vital microbially driven biogeochemical cycle. N-acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) is widespread in bacteria and plays a key role in their physiological status. Recently, there has been an increase in research into how the AHL-mediated QS system is involved in nitrification and denitrification. Consequentially, the AHL-mediated QS system has been considered a promising regulatory approach in nitrogen metabolism processes, with high potential for real-world applications. In this review, the universal presence of QS in nitrifiers and denitrifiers is summarized. Many microorganisms taking part in nitrification and denitrification harbor QS genes, and they may produce AHLs with different chain lengths. The phenotypes and processes affected by QS in real-world applications are also reviewed. In wastewater bioreactors, QS could affect nitrogen metabolism efficiency, granule aggregation, and biofilm formation. Furthermore, methods commonly used to identify the existence and functions of QS, including physiological tests, genetic manipulation and omics analyses are discussed.
Collapse
Affiliation(s)
- Na Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Gao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ying Liu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Qiuying Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuliang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqiang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Yang X, McQuillen R, Lyu Z, Phillips-Mason P, De La Cruz A, McCausland JW, Liang H, DeMeester KE, Santiago CC, Grimes CL, de Boer P, Xiao J. A two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of FtsW. Nat Microbiol 2021; 6:584-593. [PMID: 33495624 PMCID: PMC8085133 DOI: 10.1038/s41564-020-00853-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023]
Abstract
Synthesis of septal peptidoglycan (sPG) is crucial for bacterial cell division. FtsW, an indispensable component of the cell division machinery in all walled bacterial species, was recently identified in vitro as a peptidoglycan glycosyltransferase (PGTase). Despite its importance, the septal PGTase activity of FtsW has not been demonstrated in vivo. How its activity is spatiotemporally regulated in vivo has also remained elusive. Here, we confirmed FtsW as an essential septum-specific PGTase in vivo using an N-acetylmuramic acid analogue incorporation assay. Next, using single-molecule tracking coupled with genetic manipulations, we identified two populations of processively moving FtsW molecules: a fast-moving population correlated with the treadmilling dynamics of the essential cytoskeletal FtsZ protein and a slow-moving population dependent on active sPG synthesis. We further identified that FtsN, a potential sPG synthesis activator, plays an important role in promoting the slow-moving population. Our results suggest a two-track model, in which inactive sPG synthases follow the 'Z-track' to be distributed along the septum and FtsN promotes their release from the Z-track to become active in sPG synthesis on the slow 'sPG-track'. This model provides a mechanistic framework for the spatiotemporal coordination of sPG synthesis in bacterial cell division.
Collapse
Affiliation(s)
- Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA.,Correspondence and requests for materials should be addressed to X.Y. (), P.d.B. () and J.X. ()
| | - Ryan McQuillen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Polly Phillips-Mason
- Department of Molecular Biology & Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | - Ana De La Cruz
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Joshua W. McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Hai Liang
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA
| | - Kristen E. DeMeester
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA
| | - Cintia C. Santiago
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA
| | - Catherine L. Grimes
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA.,Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Piet de Boer
- Department of Molecular Biology & Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA.,Correspondence and requests for materials should be addressed to X.Y. (), P.d.B. () and J.X. ()
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA.,Correspondence and requests for materials should be addressed to X.Y. (), P.d.B. () and J.X. ()
| |
Collapse
|
15
|
Wang J, Sui X, Ding Y, Fu Y, Feng X, Liu M, Zhang Y, Xian M, Zhao G. A fast and robust iterative genome-editing method based on a Rock-Paper-Scissors strategy. Nucleic Acids Res 2021; 49:e12. [PMID: 33270888 PMCID: PMC7826264 DOI: 10.1093/nar/gkaa1141] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 11/07/2020] [Indexed: 01/22/2023] Open
Abstract
The production of optimized strains of a specific phenotype requires the construction and testing of a large number of genome modifications and combinations thereof. Most bacterial iterative genome-editing methods include essential steps to eliminate selection markers, or to cure plasmids. Additionally, the presence of escapers leads to time-consuming separate single clone picking and subsequent cultivation steps. Herein, we report a genome-editing method based on a Rock-Paper-Scissors (RPS) strategy. Each of three constructed sgRNA plasmids can cure, or be cured by, the other two plasmids in the system; plasmids from a previous round of editing can be cured while the current round of editing takes place. Due to the enhanced curing efficiency and embedded double check mechanism, separate steps for plasmid curing or confirmation are not necessary, and only two times of cultivation are needed per genome-editing round. This method was successfully demonstrated in Escherichia coli and Klebsiella pneumoniae with both gene deletions and replacements. To the best of our knowledge, this is the fastest and most robust iterative genome-editing method, with the least times of cultivation decreasing the possibilities of spontaneous genome mutations.
Collapse
Affiliation(s)
- Jichao Wang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Xinyue Sui
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yamei Ding
- Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China
| | - Yingxin Fu
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Xinjun Feng
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Min Liu
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Guang Zhao
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| |
Collapse
|
16
|
Yilmaz C, Rangarajan AA, Schnetz K. The transcription regulator and c-di-GMP phosphodiesterase PdeL represses motility in Escherichia coli. J Bacteriol 2020; 203:JB.00427-20. [PMID: 33318048 PMCID: PMC8095459 DOI: 10.1128/jb.00427-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
PdeL is a transcription regulator and catalytically active c-di-GMP phosphodiesterases (PDE) in Escherichia coli PdeL has been shown to be a transcription autoregulator, while no other target genes have been identified so far. Here, we show that PdeL represses transcription of the flagella class II operon, fliFGHIJK, and activates sslE encoding an extracellular anchored metalloprotease, among additional loci. DNA-binding studies and expression analyses using plasmidic reporters suggest that regulation of the fliF and sslE promoters by PdeL is direct. Transcription repression of the fliFGHIJK operon, encoding protein required for assembly of the flagellar basal body, results in inhibition of motility on soft agar plates and reduction of flagella assembly, as shown by fluorescence staining of the flagella hook protein FlgE. PdeL-mediated repression of motility is independent of its phosphodiesterase activity. Thus, in motility control the transcription regulator function of PdeL reducing the number of assembled flagella is apparently epistatic to its phosphodiesterase function, which can indirectly promote the activity of the flagellar motor by lowering the c-di-GMP concentration.Bacteria adopt different lifestyles depending on their environment and physiological condition. In Escherichia coli and other enteric bacteria the transition between the motile and the sessile state is controlled at multiple levels from the regulation of gene expression to the modulation of various processes by the second messenger c-di-GMP as signaling molecule. The significance of our research is in identifying PdeL, a protein of dual function that hydrolyzes c-di-GMP and that regulates transcription of genes, as a repressor of Flagella gene expression and an inhibitor of motility, which adds an additional regulatory switch to the control of motility.
Collapse
Affiliation(s)
- Cihan Yilmaz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| | | | - Karin Schnetz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
17
|
Fels U, Gevaert K, Van Damme P. Bacterial Genetic Engineering by Means of Recombineering for Reverse Genetics. Front Microbiol 2020; 11:548410. [PMID: 33013782 PMCID: PMC7516269 DOI: 10.3389/fmicb.2020.548410] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Serving a robust platform for reverse genetics enabling the in vivo study of gene functions primarily in enterobacteriaceae, recombineering -or recombination-mediated genetic engineering-represents a powerful and relative straightforward genetic engineering tool. Catalyzed by components of bacteriophage-encoded homologous recombination systems and only requiring short ∼40–50 base homologies, the targeted and precise introduction of modifications (e.g., deletions, knockouts, insertions and point mutations) into the chromosome and other episomal replicons is empowered. Furthermore, by its ability to make use of both double- and single-stranded linear DNA editing substrates (e.g., PCR products or oligonucleotides, respectively), lengthy subcloning of specific DNA sequences is circumvented. Further, the more recent implementation of CRISPR-associated endonucleases has allowed for more efficient screening of successful recombinants by the selective purging of non-edited cells, as well as the creation of markerless and scarless mutants. In this review we discuss various recombineering strategies to promote different types of gene modifications, how they are best applied, and their possible pitfalls.
Collapse
Affiliation(s)
- Ursula Fels
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Finney AJ, Buchanan G, Palmer T, Coulthurst SJ, Sargent F. Activation of a [NiFe]-hydrogenase-4 isoenzyme by maturation proteases. MICROBIOLOGY (READING, ENGLAND) 2020; 166:854-860. [PMID: 32731905 PMCID: PMC7654741 DOI: 10.1099/mic.0.000963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/22/2020] [Indexed: 12/23/2022]
Abstract
Maturation of [NiFe]-hydrogenases often involves specific proteases responsible for cleavage of the catalytic subunits. Escherichia coli HycI is the protease dedicated to maturation of the Hydrogenase-3 isoenzyme, a component of formate hydrogenlyase-1. In this work, it is demonstrated that a Pectobacterium atrosepticum HycI homologue, HyfK, is required for hydrogenase-4 activity, a component of formate hydrogenlyase-2, in that bacterium. The P. atrosepticum ΔhyfK mutant phenotype could be rescued by either P. atrosepticum hyfK or E. coli hycI on a plasmid. Conversely, an E. coli ΔhycI mutant was complemented by either E. coli hycI or P. atrosepticum hyfK in trans. E. coli is a rare example of a bacterium containing both hydrogenase-3 and hydrogenase-4, however the operon encoding hydrogenase-4 has no maturation protease gene. This work suggests HycI should be sufficient for maturation of both E. coli formate hydrogenlyases, however no formate hydrogenlyase-2 activity was detected in any E. coli strains tested here.
Collapse
Affiliation(s)
- Alexander J. Finney
- School of Natural & Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Grant Buchanan
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Tracy Palmer
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - Frank Sargent
- School of Natural & Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
19
|
Skorupa P, Lindenstrauß U, Burschel S, Blumenscheit C, Friedrich T, Pinske C. The N-terminal domains of the paralogous HycE and NuoCD govern assembly of the respective formate hydrogenlyase and NADH dehydrogenase complexes. FEBS Open Bio 2020; 10:371-385. [PMID: 31925988 PMCID: PMC7050243 DOI: 10.1002/2211-5463.12787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 11/23/2022] Open
Abstract
Formate hydrogenlyase (FHL) is the main hydrogen-producing enzyme complex in enterobacteria. It converts formate to CO2 and H2 via a formate dehydrogenase and a [NiFe]-hydrogenase. FHL and complex I are evolutionarily related and share a common core architecture. However, complex I catalyses the fundamentally different electron transfer from NADH to quinone and pumps protons. The catalytic FHL subunit, HycE, resembles NuoCD of Escherichia coli complex I; a fusion of NuoC and NuoD present in other organisms. The C-terminal domain of HycE harbours the [NiFe]-active site and is similar to other hydrogenases, while this domain in NuoCD is involved in quinone binding. The N-terminal domains of these proteins do not bind cofactors and are not involved in electron transfer. As these N-terminal domains are separate proteins in some organisms, we removed them in E. coli and observed that both FHL and complex I activities were essentially absent. This was due to either a disturbed assembly or to complex instability. Replacing the N-terminal domain of HycE with a 180 amino acid E. coli NuoC protein fusion did not restore activity, indicating that the domains have complex-specific functions. A FHL complex in which the N- and C-terminal domains of HycE were physically separated still retained most of its FHL activity, while the separation of NuoCD abolished complex I activity completely. Only the FHL complex tolerates physical separation of the HycE domains. Together, the findings strongly suggest that the N-terminal domains of these proteins are key determinants in complex assembly.
Collapse
Affiliation(s)
- Philipp Skorupa
- Institute of Biology/MicrobiologyMartin‐Luther University Halle‐WittenbergGermany
| | - Ute Lindenstrauß
- Institute of Biology/MicrobiologyMartin‐Luther University Halle‐WittenbergGermany
| | - Sabrina Burschel
- Institute of Biochemistry/Molecular BioenergeticsAlbert‐Ludwigs‐University FreiburgGermany
| | | | - Thorsten Friedrich
- Institute of Biochemistry/Molecular BioenergeticsAlbert‐Ludwigs‐University FreiburgGermany
| | - Constanze Pinske
- Institute of Biology/MicrobiologyMartin‐Luther University Halle‐WittenbergGermany
| |
Collapse
|
20
|
Development of a rapid method for site-directed mutagenesis in Streptococcus zooepidemicus. J Biotechnol 2020; 324S:100025. [PMID: 34154731 DOI: 10.1016/j.btecx.2020.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 11/21/2022]
Abstract
This paper describes the development of a straightforward method for site-directed gene mutagenesis in Streptococcus zooepidemicus, inspired by the mechanism of natural competence regulated by ComX in other streptococci. An alternative sigma factor comX gene was overexpressed from a plasmid in S. zooepidemicus and electrocompetent cells were prepared. As proof of concept, a DNA cassette with two targeting regions flanking a kanamycin resistance gene was spliced in an overlap extension PCR and electroporated. The cassette was then integrated in the genomic DNA by homologous recombination. Next, the gene SeseC_00180 (fibrinogen- and Ig-binding protein precursor) was selected as target for markerless gene deletion and the impact of its loss on the resulting hyaluronan production was determined. The new method of site-directed mutagenesis is significant because it is not necessary to clone the DNA cassette in an auxiliary vector, electroporating it in S. zooepidemicus cells is enough, which allows to bypass the problems with hard to clone DNA sequences and speeds up the whole process of mutation generation in S. zooepidemicus.
Collapse
|
21
|
Throckmorton K, Vinnik V, Chowdhury R, Cook T, Chevrette MG, Maranas C, Pfleger B, Thomas MG. Directed Evolution Reveals the Functional Sequence Space of an Adenylation Domain Specificity Code. ACS Chem Biol 2019; 14:2044-2054. [PMID: 31430120 DOI: 10.1021/acschembio.9b00532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonribosomal peptides are important natural products biosynthesized by nonribosomal peptide synthetases (NRPSs). Adenylation (A) domains of NRPSs are highly specific for the substrate they recognize. This recognition is determined by 10 residues in the substrate-binding pocket, termed the specificity code. This finding led to the proposal that nonribosomal peptides could be altered by specificity code swapping. Unfortunately, this approach has proven, with few exceptions, to be unproductive; changing the specificity code typically results in broadened specificity or poor function. To enhance our understanding of A domain substrate selectivity, we carried out a detailed analysis of the specificity code from the A domain of EntF, an NRPS involved in enterobactin biosynthesis in Escherichia coli. Using directed evolution and a genetic selection, we determined which sites in the code have strict residue requirements and which are tolerant of variation. We showed that the EntF A domain, and other l-Ser-specific A domains, have a functional sequence space for l-Ser recognition, rather than a single code. This functional space is more expansive than the aggregate of all characterized l-Ser-specific A domains: we identified 152 new l-Ser specificity codes. Together, our data provide essential insights into how to overcome the barriers that prevent rational changes to A domain specificity.
Collapse
Affiliation(s)
- Kurt Throckmorton
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Vladimir Vinnik
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Taylor Cook
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Marc G. Chevrette
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department of Genetics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Costas Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Brian Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Michael George Thomas
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Abstract
Recombineering inserts PCR products into DNA using homologous recombination. A pair of short homology arms (50 base pairs) on the ends of a PCR cassette target the cassette to its intended location. These homology arms can be easily introduced as 5' primer overhangs during the PCR reaction. The flexibility to choose almost any pair of homology arms enables the precise modification of virtually any DNA for purposes of sequence deletion, replacement, insertion, or point mutation. Recombineering often offers significant advantages relative to previous homologous recombination methods that require the construction of cassettes with large homology arms, and relative to traditional cloning methods that become intractable for large plasmids or DNA sequences. However, the tremendous number of variables, options, and pitfalls that can be encountered when designing and performing a recombineering protocol for the first time introduce barriers that can make recombineering a challenging technique for new users to adopt. This article focuses on three recombineering protocols we have found to be particularly robust, providing a detailed guide for choosing the simplest recombineering method for a given application and for performing and troubleshooting experiments. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Louis J Papa
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts
| | - Matthew D Shoulders
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts
| |
Collapse
|
23
|
Lubek D, Simon AH, Pinske C. Amino acid variants of the HybB membrane subunit ofEscherichia coli[NiFe]‐hydrogenase‐2 support a role in proton transfer. FEBS Lett 2019; 593:2194-2203. [DOI: 10.1002/1873-3468.13514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Dorothea Lubek
- Department of Microbiology Martin‐Luther University Halle‐Wittenberg Germany
| | - Andreas H. Simon
- Department Naturstoffbiochemie, Charles Tanford Protein Centre Martin‐Luther University Halle‐Wittenberg Germany
| | - Constanze Pinske
- Department of Microbiology Martin‐Luther University Halle‐Wittenberg Germany
| |
Collapse
|
24
|
Lindenstrauß U, Pinske C. Dissection of the Hydrogen Metabolism of the Enterobacterium Trabulsiella guamensis: Identification of a Formate-Dependent and Essential Formate Hydrogenlyase Complex Exhibiting Phylogenetic Similarity to Complex I. J Bacteriol 2019; 201:e00160-19. [PMID: 30962355 PMCID: PMC6531613 DOI: 10.1128/jb.00160-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/29/2019] [Indexed: 01/06/2023] Open
Abstract
Trabulsiella guamensis is a nonpathogenic enterobacterium that was isolated from a vacuum cleaner on the island of Guam. It has one H2-oxidizing Hyd-2-type hydrogenase (Hyd) and encodes an H2-evolving Hyd that is most similar to the uncharacterized Escherichia coli formate hydrogenlyase (FHL-2 Ec ) complex. The T. guamensis FHL-2 (FHL-2 Tg ) complex is predicted to have 5 membrane-integral and between 4 and 5 cytoplasmic subunits. We showed that the FHL-2 Tg complex catalyzes the disproportionation of formate to CO2 and H2 FHL-2 Tg has activity similar to that of the E. coli FHL-1 Ec complex in H2 evolution from formate, but the complex appears to be more labile upon cell lysis. Cloning of the entire 13-kbp FHL-2 Tg operon in the heterologous E. coli host has now enabled us to unambiguously prove FHL-2 Tg activity, and it allowed us to characterize the FHL-2 Tg complex biochemically. Although the formate dehydrogenase (FdhH) gene fdhF is not contained in the operon, the FdhH is part of the complex, and FHL-2 Tg activity was dependent on the presence of E. coli FdhH. Also, in contrast to E. coli, T. guamensis can ferment the alternative carbon source cellobiose, and we further investigated the participation of both the H2-oxidizing Hyd-2 Tg and the H2-forming FHL-2 Tg under these conditions.IMPORTANCE Biological H2 production presents an attractive alternative for fossil fuels. However, in order to compete with conventional H2 production methods, the process requires our understanding on a molecular level. FHL complexes are efficient H2 producers, and the prototype FHL-1 Ec complex in E. coli is well studied. This paper presents the first biochemical characterization of an FHL-2-type complex. The data presented here will enable us to solve the long-standing mystery of the FHL-2 Ec complex, allow a first biochemical characterization of T. guamensis's fermentative metabolism, and establish this enterobacterium as a model organism for FHL-dependent energy conservation.
Collapse
Affiliation(s)
- Ute Lindenstrauß
- Department of Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Constanze Pinske
- Department of Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
25
|
Rahpeyma SS, Raheb J. Mutagenesis of the rpoS gene involved in alteration of outer membrane composition. IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:67-74. [PMID: 30996834 PMCID: PMC6462273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES rpoS is a bacterial sigma factor of RNA polymerase which is involved in the expression of the genes which control regulons and play a critical role in survival against stresses. Few suitable vectors are available which could be maintained successfully in Flexibacter chinesis cells and could in particular be used as a suicide vector to make mutation in the rpoS gene. The aim of this study was to investigate if rpoS mutagenesis has impact on bacterial morphology in addition to cell division. MATERIALS AND METHODS A 0.603 kb BamHI-PstI fragment subclone of pICRPOS38Ω was cloned into linearized pLYLO3. The final construct, pLRPOS38 suicide vector, was introduced into Flexibacter chinesis. Then the cytoplasm of mutant strain and wild-type were investigated by transmission electron microscopy. RESULTS After successful subcloning of suicide vector into F. chinesis, based on TEM study, it was demonstrated that mutation in rpoS gene leads to decomposition of outer membrane of F. chinesis. CONCLUSION A suitable vector to make suicide mutation in rpoS was constructed for F. chinesi.
Collapse
Affiliation(s)
| | - Jamshid Raheb
- Corresponding author: Jamshid Raheb, Ph.D, Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. Tel: +98-21-44580387, Fax: +98-21-44787399,
| |
Collapse
|
26
|
Urtecho G, Tripp AD, Insigne KD, Kim H, Kosuri S. Systematic Dissection of Sequence Elements Controlling σ70 Promoters Using a Genomically Encoded Multiplexed Reporter Assay in Escherichia coli. Biochemistry 2018; 58:1539-1551. [PMID: 29388765 DOI: 10.1021/acs.biochem.7b01069] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Promoters are the key drivers of gene expression and are largely responsible for the regulation of cellular responses to time and environment. In Escherichia coli, decades of studies have revealed most, if not all, of the sequence elements necessary to encode promoter function. Despite our knowledge of these motifs, it is still not possible to predict the strength and regulation of a promoter from primary sequence alone. Here we develop a novel multiplexed assay to study promoter function in E. coli by building a site-specific genomic recombination-mediated cassette exchange system that allows for the facile construction and testing of large libraries of genetic designs integrated into precise genomic locations. We build and test a library of 10898 σ70 promoter variants consisting of all combinations of a set of eight -35 elements, eight -10 elements, three UP elements, eight spacers, and eight backgrounds. We find that the -35 and -10 sequence elements can explain approximately 74% of the variance in promoter strength within our data set using a simple log-linear statistical model. Simple neural network models explain >95% of the variance in our data set by capturing nonlinear interactions with the spacer, background, and UP elements.
Collapse
Affiliation(s)
- Guillaume Urtecho
- Molecular Biology Interdepartmental Doctoral Program , University of California , Los Angeles , California 90095 , United States
| | - Arielle D Tripp
- Department of Molecular, Cell, and Developmental Biology , University of California , Los Angeles , California 90095 , United States
| | - Kimberly D Insigne
- Bioinformatics Interdepartmental Graduate Program , University of California , Los Angeles , California 90095 , United States
| | - Hwangbeom Kim
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Sriram Kosuri
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States.,UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center , University of California , Los Angeles , California 90095 , United States
| |
Collapse
|
27
|
An Orphan MbtH-Like Protein Interacts with Multiple Nonribosomal Peptide Synthetases in Myxococcus xanthus DK1622. J Bacteriol 2018; 200:JB.00346-18. [PMID: 30126939 DOI: 10.1128/jb.00346-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/13/2018] [Indexed: 11/20/2022] Open
Abstract
One mechanism by which bacteria and fungi produce bioactive natural products is the use of nonribosomal peptide synthetases (NRPSs). Many NRPSs in bacteria require members of the MbtH-like protein (MLP) superfamily for their solubility or function. Although MLPs are known to interact with the adenylation domains of NRPSs, the role MLPs play in NRPS enzymology has yet to be elucidated. MLPs are nearly always encoded within the biosynthetic gene clusters (BGCs) that also code for the NRPSs that interact with the MLP. Here, we identify 50 orphan MLPs from diverse bacteria. An orphan MLP is one that is encoded by a gene that is not directly adjacent to genes predicted to be involved in nonribosomal peptide biosynthesis. We targeted the orphan MLP MXAN_3118 from Myxococcus xanthus DK1622 for characterization. The M. xanthus DK1622 genome contains 15 NRPS-encoding BGCs but only one MLP-encoding gene (MXAN_3118). We tested the hypothesis that MXAN_3118 interacts with one or more NRPS using a combination of in vivo and in vitro assays. We determined that MXAN_3118 interacts with at least seven NRPSs from distinct BGCs. We show that one of these BGCs codes for NRPS enzymology that likely produces a valine-rich natural product that inhibits the clumping of M. xanthus DK1622 in liquid culture. MXAN_3118 is the first MLP to be identified that naturally interacts with multiple NRPS systems in a single organism. The finding of an MLP that naturally interacts with multiple NRPS systems suggests it may be harnessed as a "universal" MLP for generating functional hybrid NRPSs.IMPORTANCE MbtH-like proteins (MLPs) are essential accessory proteins for the function of many nonribosomal peptide synthetases (NRPSs). We identified 50 MLPs from diverse bacteria that are coded by genes that are not located near any NRPS-encoding biosynthetic gene clusters (BGCs). We define these as orphan MLPs because their NRPS partner(s) is unknown. Investigations into the orphan MLP from Myxococcus xanthus DK1622 determined that it interacts with NRPSs from at least seven distinct BGCs. Support for these MLP-NRPS interactions came from the use of a bacterial two-hybrid assay and copurification of the MLP with various NRPSs. The flexibility of this MLP to naturally interact with multiple NRPSs led us to hypothesize that this MLP may be used as a "universal" MLP during the construction of functional hybrid NRPSs.
Collapse
|
28
|
Modernized Tools for Streamlined Genetic Manipulation and Comparative Study of Wild and Diverse Proteobacterial Lineages. mBio 2018; 9:mBio.01877-18. [PMID: 30301859 PMCID: PMC6178617 DOI: 10.1128/mbio.01877-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A great challenge in microbiota research is the immense diversity of symbiotic bacteria with the capacity to impact the lives of plants and animals. Moving beyond correlative DNA sequencing-based studies to define the cellular and molecular mechanisms by which symbiotic bacteria influence the biology of their hosts is stalling because genetic manipulation of new and uncharacterized bacterial isolates remains slow and difficult with current genetic tools. Moreover, developing tools de novo is an arduous and time-consuming task and thus represents a significant barrier to progress. To address this problem, we developed a suite of engineering vectors that streamline conventional genetic techniques by improving postconjugation counterselection, modularity, and allelic exchange. Our modernized tools and step-by-step protocols will empower researchers to investigate the inner workings of both established and newly emerging models of bacterial symbiosis. Correlating the presence of bacteria and the genes they carry with aspects of plant and animal biology is rapidly outpacing the functional characterization of naturally occurring symbioses. A major barrier to mechanistic studies is the lack of tools for the efficient genetic manipulation of wild and diverse bacterial isolates. To address the need for improved molecular tools, we used a collection of proteobacterial isolates native to the zebrafish intestinal microbiota as a testbed to construct a series of modernized vectors that expedite genetic knock-in and knockout procedures across lineages. The innovations that we introduce enhance the flexibility of conventional genetic techniques, making it easier to manipulate many different bacterial isolates with a single set of tools. We developed alternative strategies for domestication-free conjugation, designed plasmids with customizable features, and streamlined allelic exchange using visual markers of homologous recombination. We demonstrate the potential of these tools through a comparative study of bacterial behavior within the zebrafish intestine. Live imaging of fluorescently tagged isolates revealed a spectrum of distinct population structures that differ in their biogeography and dominant growth mode (i.e., planktonic versus aggregated). Most striking, we observed divergent genotype-phenotype relationships: several isolates that are predicted by genomic analysis and in vitro assays to be capable of flagellar motility do not display this trait within living hosts. Together, the tools generated in this work provide a new resource for the functional characterization of wild and diverse bacterial lineages that will help speed the research pipeline from sequencing-based correlations to mechanistic underpinnings.
Collapse
|
29
|
Saragliadis A, Trunk T, Leo JC. Producing Gene Deletions in Escherichia coli by P1 Transduction with Excisable Antibiotic Resistance Cassettes. J Vis Exp 2018. [PMID: 30222159 DOI: 10.3791/58267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A first approach to study the function of an unknown gene in bacteria is to create a knock-out of this gene. Here, we describe a robust and fast protocol for transferring gene deletion mutations from one Escherichia coli strain to another by using generalized transduction with the bacteriophage P1. This method requires that the mutation be selectable (e.g., based on gene disruptions using antibiotic cassette insertions). Such antibiotic cassettes can be mobilized from a donor strain and introduced into a recipient strain of interest to quickly and easily generate a gene deletion mutant. The antibiotic cassette can be designed to include flippase recognition sites that allow the excision of the cassette by a site-specific recombinase to produce a clean knock-out with only a ~100-base-pair-long scar sequence in the genome. We demonstrate the protocol by knocking out the tamA gene encoding an assembly factor involved in autotransporter biogenesis and test the effect of this knock-out on the biogenesis and function of two trimeric autotransporter adhesins. Though gene deletion by P1 transduction has its limitations, the ease and speed of its implementation make it an attractive alternative to other methods of gene deletion.
Collapse
Affiliation(s)
| | - Thomas Trunk
- Evolution and Genetics, Department of Biosciences, University of Oslo
| | - Jack C Leo
- Evolution and Genetics, Department of Biosciences, University of Oslo;
| |
Collapse
|
30
|
Pinske C. The Ferredoxin-Like Proteins HydN and YsaA Enhance Redox Dye-Linked Activity of the Formate Dehydrogenase H Component of the Formate Hydrogenlyase Complex. Front Microbiol 2018; 9:1238. [PMID: 29942290 PMCID: PMC6004506 DOI: 10.3389/fmicb.2018.01238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/23/2018] [Indexed: 12/30/2022] Open
Abstract
Formate dehydrogenase H (FDH-H) and [NiFe]-hydrogenase 3 (Hyd-3) form the catalytic components of the hydrogen-producing formate hydrogenlyase (FHL) complex, which disproportionates formate to H2 and CO2 during mixed acid fermentation in enterobacteria. FHL comprises minimally seven proteins and little is understood about how this complex is assembled. Early studies identified a ferredoxin-like protein, HydN, as being involved in FDH-H assembly into the FHL complex. In order to understand how FDH-H and its small subunit HycB, which is also a ferredoxin-like protein, attach to the FHL complex, the possible roles of HydN and its paralogue, YsaA, in FHL complex stability and assembly were investigated. Deletion of the hycB gene reduced redox dye-mediated FDH-H activity to approximately 10%, abolished FHL-dependent H2-production, and reduced Hyd-3 activity. These data are consistent with HycB being an essential electron transfer component of the FHL complex. The FDH-H activity of the hydN and the ysaA deletion strains was reduced to 59 and 57% of the parental, while the double deletion reduced activity of FDH-H to 28% and the triple deletion with hycB to 1%. Remarkably, and in contrast to the hycB deletion, the absence of HydN and YsaA was without significant effect on FHL-dependent H2-production or total Hyd-3 activity; FDH-H protein levels were also unaltered. This is the first description of a phenotype for the E. coli ysaA deletion strain and identifies it as a novel factor required for optimal redox dye-linked FDH-H activity. A ysaA deletion strain could be complemented for FDH-H activity by hydN and ysaA, but the hydN deletion strain could not be complemented. Introduction of these plasmids did not affect H2 production. Bacterial two-hybrid interactions showed that YsaA, HydN, and HycB interact with each other and with the FDH-H protein. Further novel anaerobic cross-interactions of 10 ferredoxin-like proteins in E. coli were also discovered and described. Together, these data indicate that FDH-H activity measured with the redox dye benzyl viologen is the sum of the FDH-H protein interacting with three independent small subunits and suggest that FDH-H can associate with different redox-protein complexes in the anaerobic cell to supply electrons from formate oxidation.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
31
|
The structure of hydrogenase-2 from Escherichia coli: implications for H 2-driven proton pumping. Biochem J 2018; 475:1353-1370. [PMID: 29555844 PMCID: PMC5902676 DOI: 10.1042/bcj20180053] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 01/19/2023]
Abstract
Under anaerobic conditions, Escherichia coli is able to metabolize molecular hydrogen via the action of several [NiFe]-hydrogenase enzymes. Hydrogenase-2, which is typically present in cells at low levels during anaerobic respiration, is a periplasmic-facing membrane-bound complex that functions as a proton pump to convert energy from hydrogen (H2) oxidation into a proton gradient; consequently, its structure is of great interest. Empirically, the complex consists of a tightly bound core catalytic module, comprising large (HybC) and small (HybO) subunits, which is attached to an Fe–S protein (HybA) and an integral membrane protein (HybB). To date, efforts to gain a more detailed picture have been thwarted by low native expression levels of Hydrogenase-2 and the labile interaction between HybOC and HybA/HybB subunits. In the present paper, we describe a new overexpression system that has facilitated the determination of high-resolution crystal structures of HybOC and, hence, a prediction of the quaternary structure of the HybOCAB complex.
Collapse
|
32
|
Balikó G, Vernyik V, Karcagi I, Györfy Z, Draskovits G, Fehér T, Pósfai G. Rational Efforts to Streamline the Escherichia coliGenome. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Gabriella Balikó
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Viktor Vernyik
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Ildikó Karcagi
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Zsuzsanna Györfy
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Gábor Draskovits
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Tamás Fehér
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - György Pósfai
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| |
Collapse
|
33
|
Evans RM, Beaton SE. A novel overproduction system for the structural determination of a proton-pumping hydrogen-producing [NiFe]-hydrogenase. Methods Enzymol 2018; 613:91-116. [DOI: 10.1016/bs.mie.2018.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Karinou E, Hoskisson PA, Strecker A, Unden G, Javelle A. The E. coli dicarboxylic acid transporters DauA act as a signal transducer by interacting with the DctA uptake system. Sci Rep 2017; 7:16331. [PMID: 29180752 PMCID: PMC5703999 DOI: 10.1038/s41598-017-16578-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/14/2017] [Indexed: 11/09/2022] Open
Abstract
The Slc26A/SulP family of ions transporter is ubiquitous and widpsread in all kingdon of life. In E. coli, we have demonstrated that the Slc26 protein DauA is a C4-dicarboxilic acids (C4-diC) transporter active at acidic pH. The main C4-diC transporter active at pH7 is DctA and is induced by C4-diC via the DcuS/R two component system. DctA interacts with DcuS, the membrane embedded histidine kinase, to transfers DcuS to the responsive state, i.e. in the absence of DctA, DcuS is permanently "on", but its activity is C4-diC-dependent when in complex with DctA. Using phenotypic characterization, transport assays and protein expression studies, we show that at pH7 full DctA production depends on the presence of DauA. A Bacterial Two Hybrid system indicates that DauA and the sensor complex DctA/DcuS physically interact at the membrane. Pull down experiments completed by co-purification study prove that DauA and DctA interact physically at the membrane. These data open a completely new aspect of the C4-diC metabolism in E. coli and reveals how the bacterial Slc26A uptake systems participate in multiple cellular functions. This constitutes a new example of a bacterial transporter that acts as a processor in a transduction pathway.
Collapse
Affiliation(s)
- Eleni Karinou
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Alexander Strecker
- Institute for Microbiology and Wine Research, Johannes Gutenberg-University, Mainz, Germany
| | - Gottfried Unden
- Institute for Microbiology and Wine Research, Johannes Gutenberg-University, Mainz, Germany
| | - Arnaud Javelle
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK. .,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
35
|
Schomer RA, Thomas MG. Characterization of the Functional Variance in MbtH-like Protein Interactions with a Nonribosomal Peptide Synthetase. Biochemistry 2017; 56:5380-5390. [PMID: 28880538 PMCID: PMC5902190 DOI: 10.1021/acs.biochem.7b00517] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many nonribosomal peptide synthetases (NRPSs) require MbtH-like proteins (MLPs) for solubility or for activation of amino acid substrate by the adenylation domain. MLPs are capable of functional crosstalk with noncognate NRPSs at varying levels. Using enterobactin biosynthesis in Escherichia coli as a model MLP-dependent NRPS system, we use in vivo and in vitro techniques to characterize how seven noncognate MLPs influence the function of the enterobactin NRPS EntF when the cognate MLP, YbdZ, is absent. Using a series of in vitro assays to analyze EntF solubility, adenylation, aminoacylation, and in vitro enterobactin production, we show that interactions between MLPs and NRPSs are multifaceted and more complex than previously appreciated. We separate MLP influence on solubility and function in a manner that shows altered solubility is not indicative of a functional MLP/NRPS pair. Although much of the functional variation among these noncognates can be explained by differences in EntF affinity for an MLP or the extent an MLP alters EntF l-Ser affinity, we demonstrate that MLPs can have a broader impact beyond solubility and adenylation. First, we show that a noncognate MLP can affect formation of l-Ser-S-EntF. Second, under in vitro conditions saturating for substrate and MLP, enterobactin production remains compromised in the absence of an appropriate MLP partner. These data suggest that we expand our investigations into how the MLPs influence NRPS enzymology. A more detailed understanding of these influences will be essential for downstream engineering of hybrid NRPS systems.
Collapse
Affiliation(s)
- Rebecca A. Schomer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | |
Collapse
|
36
|
The dual-function chaperone HycH improves assembly of the formate hydrogenlyase complex. Biochem J 2017; 474:2937-2950. [PMID: 28718449 DOI: 10.1042/bcj20170431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 11/17/2022]
Abstract
The assembly of multi-protein complexes requires the concerted synthesis and maturation of its components and subsequently their co-ordinated interaction. The membrane-bound formate hydrogenlyase (FHL) complex is the primary hydrogen-producing enzyme in Escherichia coli and is composed of seven subunits mostly encoded within the hycA-I operon for [NiFe]-hydrogenase-3 (Hyd-3). The HycH protein is predicted to have an accessory function and is not part of the final structural FHL complex. In this work, a mutant strain devoid of HycH was characterised and found to have significantly reduced FHL activity due to the instability of the electron transfer subunits. HycH was shown to interact specifically with the unprocessed species of HycE, the catalytic hydrogenase subunit of the FHL complex, at different stages during the maturation and assembly of the complex. Variants of HycH were generated with the aim of identifying interacting residues and those that influence activity. The R70/71/K72, the Y79, the E81 and the Y128 variant exchanges interrupt the interaction with HycE without influencing the FHL activity. In contrast, FHL activity, but not the interaction with HycE, was negatively influenced by H37 exchanges with polar residues. Finally, a HycH Y30 variant was unstable. Surprisingly, an overlapping function between HycH with its homologous counterpart HyfJ from the operon encoding [NiFe]-hydrogenase-4 (Hyd-4) was identified and this is the first example of sharing maturation machinery components between Hyd-3 and Hyd-4 complexes. The data presented here show that HycH has a novel dual role as an assembly chaperone for a cytoplasmic [NiFe]-hydrogenase.
Collapse
|
37
|
Guo Q, Li S, Xie Y, Zhang Q, Liu M, Xu Z, Sun H, Yang Y. The NAD +-dependent deacetylase, Bifidobacterium longum Sir2 in response to oxidative stress by deacetylating SigH (σ H) and FOXO3a in Bifidobacterium longum and HEK293T cell respectively. Free Radic Biol Med 2017; 108:929-939. [PMID: 28506746 DOI: 10.1016/j.freeradbiomed.2017.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/25/2022]
Abstract
Silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. The mammalian sirtuin family SIRT1, SIRT2, SIRT3 and SIRT6 can regulate oxidative stress. The probiotics (Bifidobacterium longum(B.longum) and Lactobacillus acidophilus(L. acidophilus)) have Sir2 gene family and have antioxidant activity in human body. it remains unknown whether probiotics Sir2 has a direct role in regulating oxidative stress. To this end, we knockout BL-sir2(sir2 B. longum) and LA-sir2(sir2 L.acidophilus) in low oxygen level. The antioxidant activities of two sir2 deficient strains was decreased, while when reintroduction of BL-sir2 and LA-sir2, the antioxidant activities were recoveried. In order to understand the regulation mechanism of probiotics Sir2 oxidation response. Then, we screened 65 acetylated protein, and found that SigH (σH) was a substrate of BL-Sir2. In addition, the acetylation level of σH decreased with the increase of BL-Sir2 level in B. longum. Thus, BL-Sir2 deacetylated σH in response to oxidative stress. Next, we transfected BL-Sir2 into H2O2-induced oxidative damage of 293T cells, BL-Sir2 increased the activity of manganese superoxide dismutase (MnSOD/SOD2) and catalase (CAT) and reduced reactive oxygen species(ROS). Then, we analyzed the differential gene by RNA sequencing and Gene ontology (GO) and found that BL-Sir2 regulated forkhead transcription factor (FOXO3a) mediated antioxidant genes in overexpressed BL-Sir2 HEK293T cells. Our study is the first to link probiotics Sir2 with oxidative stress and uncover the antioxidant mechanism of BL-Sir2 in B. longum itself and human body.
Collapse
Affiliation(s)
- Qing Guo
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shiyu Li
- Institute of Genetic Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yajie Xie
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qian Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Mengge Liu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhenrui Xu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Yan Yang
- Research Center of Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
38
|
Ghachi ME, Howe N, Auger R, Lambion A, Guiseppi A, Delbrassine F, Manat G, Roure S, Peslier S, Sauvage E, Vogeley L, Rengifo-Gonzalez JC, Charlier P, Mengin-Lecreulx D, Foglino M, Touzé T, Caffrey M, Kerff F. Crystal structure and biochemical characterization of the transmembrane PAP2 type phosphatidylglycerol phosphate phosphatase from Bacillus subtilis. Cell Mol Life Sci 2017; 74:2319-2332. [PMID: 28168443 PMCID: PMC11107685 DOI: 10.1007/s00018-017-2464-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/14/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
Type 2 phosphatidic acid phosphatases (PAP2s) can be either soluble or integral membrane enzymes. In bacteria, integral membrane PAP2s play major roles in the metabolisms of glycerophospholipids, undecaprenyl-phosphate (C55-P) lipid carrier and lipopolysaccharides. By in vivo functional experiments and biochemical characterization we show that the membrane PAP2 coded by the Bacillus subtilis yodM gene is the principal phosphatidylglycerol phosphate (PGP) phosphatase of B. subtilis. We also confirm that this enzyme, renamed bsPgpB, has a weaker activity on C55-PP. Moreover, we solved the crystal structure of bsPgpB at 2.25 Å resolution, with tungstate (a phosphate analog) in the active site. The structure reveals two lipid chains in the active site vicinity, allowing for PGP substrate modeling and molecular dynamic simulation. Site-directed mutagenesis confirmed the residues important for substrate specificity, providing a basis for predicting the lipids preferentially dephosphorylated by membrane PAP2s.
Collapse
Affiliation(s)
- Meriem El Ghachi
- Centre d'Ingénierie des Protéines, InBioS, Université de Liège, allée du 6 Août 19, Bât B5a, 4000, Liège, Belgium
| | - Nicole Howe
- Membrane Structural and Functional Biology Group, Schools of Medicine and Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Rodolphe Auger
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Alexandre Lambion
- Centre d'Ingénierie des Protéines, InBioS, Université de Liège, allée du 6 Août 19, Bât B5a, 4000, Liège, Belgium
| | - Annick Guiseppi
- Laboratoire de Chimie Bactérienne UMR 7283, Aix-Marseille Université, Marseille, France
| | - François Delbrassine
- Centre d'Ingénierie des Protéines, InBioS, Université de Liège, allée du 6 Août 19, Bât B5a, 4000, Liège, Belgium
| | - Guillaume Manat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Sophie Roure
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Sabine Peslier
- Laboratoire de Chimie Bactérienne UMR 7283, Aix-Marseille Université, Marseille, France
| | - Eric Sauvage
- Centre d'Ingénierie des Protéines, InBioS, Université de Liège, allée du 6 Août 19, Bât B5a, 4000, Liège, Belgium
| | - Lutz Vogeley
- Membrane Structural and Functional Biology Group, Schools of Medicine and Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Juan-Carlos Rengifo-Gonzalez
- Centre d'Ingénierie des Protéines, InBioS, Université de Liège, allée du 6 Août 19, Bât B5a, 4000, Liège, Belgium
| | - Paulette Charlier
- Centre d'Ingénierie des Protéines, InBioS, Université de Liège, allée du 6 Août 19, Bât B5a, 4000, Liège, Belgium
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Maryline Foglino
- Laboratoire de Chimie Bactérienne UMR 7283, Aix-Marseille Université, Marseille, France
| | - Thierry Touzé
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| | - Martin Caffrey
- Membrane Structural and Functional Biology Group, Schools of Medicine and Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| | - Frédéric Kerff
- Centre d'Ingénierie des Protéines, InBioS, Université de Liège, allée du 6 Août 19, Bât B5a, 4000, Liège, Belgium.
| |
Collapse
|
39
|
Huang Q, Alcock F, Kneuper H, Deme JC, Rollauer SE, Lea SM, Berks BC, Palmer T. A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase. Proc Natl Acad Sci U S A 2017; 114:E1958-E1967. [PMID: 28223511 PMCID: PMC5347605 DOI: 10.1073/pnas.1615056114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.
Collapse
Affiliation(s)
- Qi Huang
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Felicity Alcock
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Holger Kneuper
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Justin C Deme
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Sarah E Rollauer
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Tracy Palmer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| |
Collapse
|
40
|
Albareda M, Buchanan G, Sargent F. Identification of a stable complex between a [NiFe]-hydrogenase catalytic subunit and its maturation protease. FEBS Lett 2017; 591:338-347. [PMID: 28029689 PMCID: PMC5299533 DOI: 10.1002/1873-3468.12540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 11/11/2022]
Abstract
Salmonella enterica serovar Typhimurium has the ability to use molecular hydrogen as a respiratory electron donor. This is facilitated by three [NiFe]‐hydrogenases termed Hyd‐1, Hyd‐2, and Hyd‐5. Hyd‐1 and Hyd‐5 are homologous oxygen‐tolerant [NiFe]‐hydrogenases. A critical step in the biosynthesis of a [NiFe]‐hydrogenase is the proteolytic processing of the catalytic subunit. In this work, the role of the maturation protease encoded within the Hyd‐5 operon, HydD, was found to be partially complemented by the maturation protease encoded in the Hyd‐1 operon, HyaD. In addition, both maturation proteases were shown to form stable complexes, in vivo and in vitro, with the catalytic subunit of Hyd‐5. The protein–protein interactions were not detectable in a strain that could not make the enzyme metallocofactor.
Collapse
|
41
|
Tikh IB, Samuelson JC. Leveraging modern DNA assembly techniques for rapid, markerless genome modification. Biol Methods Protoc 2016; 1:bpw004. [PMID: 32368618 PMCID: PMC7189271 DOI: 10.1093/biomethods/bpw004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/06/2016] [Accepted: 09/26/2016] [Indexed: 11/14/2022] Open
Abstract
The ability to alter the genomic material of a prokaryotic cell is necessary for experiments designed to define the biology of the organism. In addition, the production of biomolecules may be significantly improved by application of engineered prokaryotic host cells. Furthermore, in the age of synthetic biology, speed and efficiency are key factors when choosing a method for genome alteration. To address these needs, we have developed a method for modification of the Escherichia coli genome named FAST-GE for Fast Assembly-mediated Scarless Targeted Genome Editing. Traditional cloning steps such as plasmid transformation, propagation and isolation were eliminated. Instead, we developed a DNA assembly-based approach for generating scarless strain modifications, which may include point mutations, deletions and gene replacements, within 48 h after the receipt of polymerase chain reaction primers. The protocol uses established, but optimized, genome modification components such as I-SceI endonuclease to improve recombination efficiency and SacB as a counter-selection mechanism. All DNA-encoded components are assembled into a single allele-exchange vector named pDEL. We were able to rapidly modify the genomes of both E. coli B and K-12 strains with high efficiency. In principle, the method may be applied to other prokaryotic organisms capable of circular dsDNA uptake and homologous recombination.
Collapse
Affiliation(s)
- Ilya B Tikh
- Protein Expression and Modification Division, New England BioLabs, Inc., Ipswich, MA, 01938-2723, USA
| | - James C Samuelson
- Protein Expression and Modification Division, New England BioLabs, Inc., Ipswich, MA, 01938-2723, USA
| |
Collapse
|
42
|
Brooke EJ, Evans RM, Islam STA, Roberts GM, Wehlin SAM, Carr SB, Phillips SEV, Armstrong FA. Importance of the Active Site “Canopy” Residues in an O2-Tolerant [NiFe]-Hydrogenase. Biochemistry 2016; 56:132-142. [DOI: 10.1021/acs.biochem.6b00868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | - Gerri M. Roberts
- Division
of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Stephen B. Carr
- Research
Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, U.K
- Department
of Biochemistry, University of Oxford, Oxford, U.K
| | - Simon E. V. Phillips
- Research
Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, U.K
- Department
of Biochemistry, University of Oxford, Oxford, U.K
| | | |
Collapse
|
43
|
Martínez-Rubio R, Quiles-Puchalt N, Martí M, Humphrey S, Ram G, Smyth D, Chen J, Novick RP, Penadés JR. Phage-inducible islands in the Gram-positive cocci. ISME JOURNAL 2016; 11:1029-1042. [PMID: 27959343 DOI: 10.1038/ismej.2016.163] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 08/29/2016] [Accepted: 09/20/2016] [Indexed: 12/24/2022]
Abstract
The SaPIs are a cohesive subfamily of extremely common phage-inducible chromosomal islands (PICIs) that reside quiescently at specific att sites in the staphylococcal chromosome and are induced by helper phages to excise and replicate. They are usually packaged in small capsids composed of phage virion proteins, giving rise to very high transfer frequencies, which they enhance by interfering with helper phage reproduction. As the SaPIs represent a highly successful biological strategy, with many natural Staphylococcus aureus strains containing two or more, we assumed that similar elements would be widespread in the Gram-positive cocci. On the basis of resemblance to the paradigmatic SaPI genome, we have readily identified large cohesive families of similar elements in the lactococci and pneumococci/streptococci plus a few such elements in Enterococcus faecalis. Based on extensive ortholog analyses, we found that the PICI elements in the four different genera all represent distinct but parallel lineages, suggesting that they represent convergent evolution towards a highly successful lifestyle. We have characterized in depth the enterococcal element, EfCIV583, and have shown that it very closely resembles the SaPIs in functionality as well as in genome organization, setting the stage for expansion of the study of elements of this type. In summary, our findings greatly broaden the PICI family to include elements from at least three genera of cocci.
Collapse
Affiliation(s)
- Roser Martínez-Rubio
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Moncada, Spain
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Miguel Martí
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Castellón, Spain
| | - Suzanne Humphrey
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Geeta Ram
- Skirball Institute Program in Molecular Pathogenesis and Departments of Microbiology and Medicine, Skirball Institute, New York University Medical Center, New York, NY, USA
| | - Davida Smyth
- Skirball Institute Program in Molecular Pathogenesis and Departments of Microbiology and Medicine, Skirball Institute, New York University Medical Center, New York, NY, USA
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Richard P Novick
- Skirball Institute Program in Molecular Pathogenesis and Departments of Microbiology and Medicine, Skirball Institute, New York University Medical Center, New York, NY, USA
| | - José R Penadés
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Moncada, Spain.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
44
|
Probing for Binding Regions of the FtsZ Protein Surface through Site-Directed Insertions: Discovery of Fully Functional FtsZ-Fluorescent Proteins. J Bacteriol 2016; 199:JB.00553-16. [PMID: 27795325 DOI: 10.1128/jb.00553-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/04/2016] [Indexed: 11/20/2022] Open
Abstract
FtsZ, a bacterial tubulin homologue, is a cytoskeletal protein that assembles into protofilaments that are one subunit thick. These protofilaments assemble further to form a "Z ring" at the center of prokaryotic cells. The Z ring generates a constriction force on the inner membrane and also serves as a scaffold to recruit cell wall remodeling proteins for complete cell division in vivo One model of the Z ring proposes that protofilaments associate via lateral bonds to form ribbons; however, lateral bonds are still only hypothetical. To explore potential lateral bonding sites, we probed the surface of Escherichia coli FtsZ by inserting either small peptides or whole fluorescent proteins (FPs). Among the four lateral surfaces on FtsZ protofilaments, we obtained inserts on the front and back surfaces that were functional for cell division. We concluded that these faces are not sites of essential interactions. Inserts at two sites, G124 and R174, located on the left and right surfaces, completely blocked function, and these sites were identified as possible sites for essential lateral interactions. However, the insert at R174 did not interfere with association of protofilaments into sheets and bundles in vitro Another goal was to find a location within FtsZ that supported insertion of FP reporter proteins while allowing the FtsZ-FPs to function as the sole source of FtsZ. We discovered one internal site, G55-Q56, where several different FPs could be inserted without impairing function. These FtsZ-FPs may provide advances for imaging Z-ring structure by superresolution techniques. IMPORTANCE One model for the Z-ring structure proposes that protofilaments are assembled into ribbons by lateral bonds between FtsZ subunits. Our study excluded the involvement of the front and back faces of the protofilament in essential interactions in vivo but pointed to two potential lateral bond sites, on the right and left sides. We also identified an FtsZ loop where various fluorescent proteins could be inserted without blocking function; these FtsZ-FPs functioned as the sole source of FtsZ. This advance provides improved tools for all fluorescence imaging of the Z ring and may be especially important for superresolution imaging.
Collapse
|
45
|
Lamont CM, Sargent F. Design and characterisation of synthetic operons for biohydrogen technology. Arch Microbiol 2016; 199:495-503. [PMID: 27872947 PMCID: PMC5350229 DOI: 10.1007/s00203-016-1322-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022]
Abstract
Biohydrogen is produced by a number of microbial systems and the commonly used host bacterium Escherichia coli naturally produces hydrogen under fermentation conditions. One approach to engineering additional hydrogen production pathways is to introduce non-native hydrogenases into E. coli. An attractive candidate is the soluble [NiFe]-hydrogenase from Ralstonia eutropha, which has been shown to link NADH/NAD+ biochemistry directly to hydrogen metabolism, an activity that E. coli does not perform. In this work, three synthetic operons were designed that code for the soluble hydrogenase and two different enzyme maturase systems. Interestingly, using this system, the recombinant soluble hydrogenase was found to be assembled by the native E. coli [NiFe]-hydrogenase assembly machinery, and, vice versa, the synthetic maturase operons were able to complement E. coli mutants defective in hydrogenase biosynthesis. The heterologously expressed soluble hydrogenase was found to be active and was shown to produce biohydrogen in vivo.
Collapse
Affiliation(s)
- Ciaran M Lamont
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, MSI/WTB/JBC/DCTIR Research Complex, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Frank Sargent
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, MSI/WTB/JBC/DCTIR Research Complex, Dow Street, Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
46
|
Xu JZ, Zhang WG. Strategies used for genetically modifying bacterial genome: site-directed mutagenesis, gene inactivation, and gene over-expression. J Zhejiang Univ Sci B 2016; 17:83-99. [PMID: 26834010 DOI: 10.1631/jzus.b1500187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the availability of the whole genome sequence of Escherichia coli or Corynebacterium glutamicum, strategies for directed DNA manipulation have developed rapidly. DNA manipulation plays an important role in understanding the function of genes and in constructing novel engineering bacteria according to requirement. DNA manipulation involves modifying the autologous genes and expressing the heterogenous genes. Two alternative approaches, using electroporation linear DNA or recombinant suicide plasmid, allow a wide variety of DNA manipulation. However, the over-expression of the desired gene is generally executed via plasmid-mediation. The current review summarizes the common strategies used for genetically modifying E. coli and C. glutamicum genomes, and discusses the technical problem of multi-layered DNA manipulation. Strategies for gene over-expression via integrating into genome are proposed. This review is intended to be an accessible introduction to DNA manipulation within the bacterial genome for novices and a source of the latest experimental information for experienced investigators.
Collapse
Affiliation(s)
- Jian-zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei-guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
47
|
Connelly KRS, Stevenson C, Kneuper H, Sargent F. Biosynthesis of selenate reductase in Salmonella enterica: critical roles for the signal peptide and DmsD. MICROBIOLOGY-SGM 2016; 162:2136-2146. [PMID: 27902441 PMCID: PMC5203670 DOI: 10.1099/mic.0.000381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative bacterium with a flexible respiratory capability. Under anaerobic conditions, S. enterica can utilize a range of terminal electron acceptors, including selenate, to sustain respiratory electron transport. The S. enterica selenate reductase is a membrane-bound enzyme encoded by the ynfEFGH-dmsD operon. The active enzyme is predicted to comprise at least three subunits where YnfE is a molybdenum-containing catalytic subunit. The YnfE protein is synthesized with an N-terminal twin-arginine signal peptide and biosynthesis of the enzyme is coordinated by a signal peptide binding chaperone called DmsD. In this work, the interaction between S. enterica DmsD and the YnfE signal peptide has been studied by chemical crosslinking. These experiments were complemented by genetic approaches, which identified the DmsD binding epitope within the YnfE signal peptide. YnfE signal peptide residues L24 and A28 were shown to be important for assembly of an active selenate reductase. Conversely, a random genetic screen identified the DmsD V16 residue as being important for signal peptide recognition and selenate reductase assembly.
Collapse
Affiliation(s)
| | - Calum Stevenson
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Holger Kneuper
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Frank Sargent
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
48
|
Breddermann H, Schnetz K. Correlation of Antagonistic Regulation of leuO Transcription with the Cellular Levels of BglJ-RcsB and LeuO in Escherichia coli. Front Cell Infect Microbiol 2016; 6:106. [PMID: 27695690 PMCID: PMC5025477 DOI: 10.3389/fcimb.2016.00106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/02/2016] [Indexed: 01/03/2023] Open
Abstract
LeuO is a conserved and pleiotropic transcription regulator, antagonist of the nucleoid-associated silencer protein H-NS, and important for pathogenicity and multidrug resistance in Enterobacteriaceae. Regulation of transcription of the leuO gene is complex. It is silenced by H-NS and its paralog StpA, and it is autoregulated. In addition, in Escherichia coli leuO is antagonistically regulated by the heterodimeric transcription regulator BglJ-RcsB and by LeuO. BglJ-RcsB activates leuO, while LeuO inhibits activation by BglJ-RcsB. Furthermore, LeuO activates expression of bglJ, which is likewise H-NS repressed. Mutual activation of leuO and bglJ resembles a double-positive feedback network, which theoretically can result in bi-stability and heterogeneity, or be maintained in a stable OFF or ON states by an additional signal. Here we performed quantitative and single-cell expression analyses to address the antagonistic regulation and feedback control of leuO transcription by BglJ-RcsB and LeuO using a leuO promoter mVenus reporter fusion and finely tunable bglJ and leuO expression plasmids. The data revealed uniform regulation of leuO expression in the population that correlates with the relative cellular concentration of BglJ and LeuO. The data are in agreement with a straightforward model of antagonistic regulation of leuO expression by the two regulators, LeuO and BglJ-RcsB, by independent mechanisms. Further, the data suggest that at standard laboratory growth conditions feedback regulation of leuO is of minor relevance and that silencing of leuO and bglJ by H-NS (and StpA) keeps these loci in the OFF state.
Collapse
Affiliation(s)
- Hannes Breddermann
- Department of Biology, Institute for Genetics, University of Cologne Cologne, Germany
| | - Karin Schnetz
- Department of Biology, Institute for Genetics, University of Cologne Cologne, Germany
| |
Collapse
|
49
|
Biosynthesis of Salmonella enterica [NiFe]-hydrogenase-5: probing the roles of system-specific accessory proteins. J Biol Inorg Chem 2016; 21:865-73. [PMID: 27566174 DOI: 10.1007/s00775-016-1385-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
A subset of bacterial [NiFe]-hydrogenases have been shown to be capable of activating dihydrogen-catalysis under aerobic conditions; however, it remains relatively unclear how the assembly and activation of these enzymes is carried out in the presence of air. Acquiring this knowledge is important if a generic method for achieving production of O2-resistant [NiFe]-hydrogenases within heterologous hosts is to be developed. Salmonella enterica serovar Typhimurium synthesizes the [NiFe]-hydrogenase-5 (Hyd-5) enzyme under aerobic conditions. As well as structural genes, the Hyd-5 operon also contains several accessory genes that are predicted to be involved in different stages of biosynthesis of the enzyme. In this work, deletions in the hydF, hydG, and hydH genes have been constructed. The hydF gene encodes a protein related to Ralstonia eutropha HoxO, which is known to interact with the small subunit of a [NiFe]-hydrogenase. HydG is predicted to be a fusion of the R. eutropha HoxQ and HoxR proteins, both of which have been implicated in the biosynthesis of an O2-tolerant hydrogenase, and HydH is a homologue of R. eutropha HoxV, which is a scaffold for [NiFe] cofactor assembly. It is shown here that HydG and HydH play essential roles in Hyd-5 biosynthesis. Hyd-5 can be isolated and characterized from a ΔhydF strain, indicating that HydF may not play the same vital role as the orthologous HoxO. This study, therefore, emphasises differences that can be observed when comparing the function of hydrogenase maturases in different biological systems.
Collapse
|
50
|
O'Callaghan A, van Sinderen D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front Microbiol 2016; 7:925. [PMID: 27379055 PMCID: PMC4908950 DOI: 10.3389/fmicb.2016.00925] [Citation(s) in RCA: 506] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/31/2016] [Indexed: 12/11/2022] Open
Abstract
Members of the genus Bifidobacterium are among the first microbes to colonize the human gastrointestinal tract and are believed to exert positive health benefits on their host. Due to their purported health-promoting properties, bifidobacteria have been incorporated into many functional foods as active ingredients. Bifidobacteria naturally occur in a range of ecological niches that are either directly or indirectly connected to the animal gastrointestinal tract, such as the human oral cavity, the insect gut and sewage. To be able to survive in these particular ecological niches, bifidobacteria must possess specific adaptations to be competitive. Determination of genome sequences has revealed genetic attributes that may explain bifidobacterial ecological fitness, such as metabolic abilities, evasion of the host adaptive immune system and colonization of the host through specific appendages. However, genetic modification is crucial toward fully elucidating the mechanisms by which bifidobacteria exert their adaptive abilities and beneficial properties. In this review we provide an up to date summary of the general features of bifidobacteria, whilst paying particular attention to the metabolic abilities of this species. We also describe methods that have allowed successful genetic manipulation of bifidobacteria.
Collapse
Affiliation(s)
- Amy O'Callaghan
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork Cork, Ireland
| | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork Cork, Ireland
| |
Collapse
|