1
|
Sugio T, Inoue T, Kitano Y, Takeuchi F, Kamimura K. Noncompetitive inhibition by L-cysteine and activation by L-glutamate of the iron-oxidizing activity of a mixotrophic iron-oxidizing bacterium strain OKM-9. J Biosci Bioeng 2005; 98:85-91. [PMID: 16233671 DOI: 10.1016/s1389-1723(04)70247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 05/10/2004] [Indexed: 11/21/2022]
Abstract
A mesophilic, mixotrophic iron-oxidizing bacterium strain OKM-9 uses ferrous iron as a sole source of energy and L-glutamate as a sole source of cellular carbon. Uptake of L-glutamate into OKM-9 cells is absolutely dependent on ferrous iron oxidation. Thus, the Fe(2+)-dependent L-glutamate uptake system of strain OKM-9 is crucial for the bacterium to grow mixotrophically in iron medium with L-glutamate. The relationship between iron oxidation and L-glutamate transport activities was studied. Iron oxidase containing cytochrome a was purified 9-fold from the plasma membrane of OKM-9. A purified iron oxidase showed one rust-colored band following disc gel electrophoresis after incubation with Fe(2+). The Fe(2+)-dependent L-glutamate transport system was also purified 14.5-fold from the plasma membrane using the same purification steps as for iron oxidase. Fe(2+)-dependent L-glutamate and L-cysteine uptake activities of OKM-9 were 0.36 and 0.24 nmol/mg/min, respectively, when a concentration of 18 mM of these amino acids was used as a substrate. Both uptake activities were completely inhibited by potassium cyanide (KCN), suggesting that cytochrome a in the iron oxidase is involved in the transport process. The iron-oxidizing activity of strain OKM-9 was activated 1.7-fold by 80 mM L-glutamate. In contrast, the activity was noncompetitively inhibited by L-cysteine. The Michaelis constant of iron oxidase for Fe(2+) was 12.6 mM and the inhibition constant for L-cysteine was 41.6 mM. A marked inhibition of iron oxidase by 50 mM L-cysteine was completely reversed by the addition of 60 mM L-glutamate. The results suggest the possibility that iron oxidase has a binding site for L-cysteine and the cysteine first bound to the iron oxidase was replaced by the added L-glutamate.
Collapse
Affiliation(s)
- Tsuyoshi Sugio
- Division of Science and Technology for Energy Conversion, Graduate School of Natural Science and Technology, Okayama University 3-1-1, Tsushima-naka, Okayama, 700-8530, Japan.
| | | | | | | | | |
Collapse
|
2
|
Inoue T, Kamimura K, Sugio T. Ferrous-iron-dependent uptake of L-glutamate by a mesophilic, mixotrophic iron-oxidizing bacterium strain OKM-9. Biosci Biotechnol Biochem 2002; 66:2030-5. [PMID: 12450111 DOI: 10.1271/bbb.66.2030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Strain OKM-9 is a mesophilic, mixotrophic iron-oxidizing bacterium that absolutely requires ferrous iron as its energy source and L-amino acids (including L-glutamate) as carbon sources for growth. The properties of the L-glutamate transport system were studied with OKM-9 resting cells, plasma membranes, and actively reconstituted proteoliposomes. L-Glutamate uptake into resting cells was totally dependent on ferrous iron that was added to the reaction mixture. Potassium cyanide, an iron oxidase inhibitor, completely inhibited the activity at 1 mM. The optimum pH for Fe2+-dependent uptake activity of L-glutamate was 3.5-4.0. Uptake activity was dependent on the concentration of the L-glutamate. The Km and Vmax for L-glutamate were 0.4 mM and 11.3 nmol x min(-1) x mg(-1), respectively. L-Aspartate, D-aspartate, D-glutamate, and L-cysteine strongly inhibited L-glutamate uptake. L-Aspartate competitively inhibited the activity, and the apparent Ki for this amino acid was 75.9 microM. 2,4-Dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, gramicidin D, valinomycin, and monensin did not inhibit Fe2+-dependent L-glutamate uptake. The OKM-9 plasma membranes had approximately 40% of the iron-oxidizing activity of the resting cells and approximately 85% of the Fe2+-dependent uptake activity. The glutamate transport system was solubilized from the membranes with 1% n-octyl-beta-D-glucopyranoside and reconstituted into a lecithin liposome. The L-glutamate transport activity of the reconstituted proteoliposomes was 8-fold than that of the resting cells. The Fe2+-dependent L-glutamate uptake observed here seems to explain the mixotrophic nature of this strain, which absolutely requires Fe2+ oxidation when using amino acids as carbon sources.
Collapse
Affiliation(s)
- Takao Inoue
- Division of Science and Technology for Energy Conversion, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | | | | |
Collapse
|
3
|
Kelly DJ, Thomas GH. The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. FEMS Microbiol Rev 2001; 25:405-24. [PMID: 11524131 DOI: 10.1111/j.1574-6976.2001.tb00584.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Until recently, extracytoplasmic solute receptor (ESR)-dependent uptake systems were invariably found to possess a conserved ATP-binding protein (the ATP-binding cassette protein or ABC protein), which couples ATP hydrolysis to the translocation of the solute across the cytoplasmic membrane. While it is clear that this class of ABC transporter is ubiquitous in prokaryotes, it is now firmly established that other, unrelated types of membrane transport systems exist which also have ESR components. These systems have been designated tripartite ATP-independent periplasmic (TRAP) transporters, and they form a distinct class of ESR-dependent secondary transporters where the driving force for solute accumulation is an electrochemical ion gradient and not ATP hydrolysis. Currently, the most well characterised TRAP transporter at the functional and molecular level is the high-affinity C4-dicarboxylate transport (Dct) system from Rhodobacter capsulatus. This consists of three proteins; an ESR (DctP) and small (DctQ) and large (DctM) integral membrane proteins. The characteristics of this system are discussed in detail. Homologues of the R. capsulatus DctPQM proteins are present in a diverse range of prokaryotes, both bacteria and archaea, but not in eukaryotes. The deduced structures and possible functions of these homologous systems are described. In addition to the DctP family, other types of ESRs can be associated with TRAP transporters. A conserved family of immunogenic extracytoplasmic proteins is shown to be invariably associated with TRAP systems that contain a large DctQM fusion protein. All of the currently known archaeal systems are of this type. It is concluded that TRAP transporters are a widespread and ancient type of solute uptake system that transport a potentially diverse range of solutes and most likely evolved by the addition of auxiliary proteins to a single secondary transporter.
Collapse
Affiliation(s)
- D J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| | | |
Collapse
|
4
|
Adewoye LO, Worobec EA. Multiple environmental factors regulate the expression of the carbohydrate-selective OprB porin of Pseudomonas aeruginosa. Can J Microbiol 1999. [DOI: 10.1139/w99-110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In response to low extracellular glucose concentration, Pseudomonas aeruginosa induces the expression of the outer membrane carbohydrate-selective OprB porin. The promoter region of the oprB gene was cloned into a lacZ transcriptional fusion vector, and the construct was mobilized into P. aeruginosa OprB-deficient strain, WW100, to evaluate additional environmental factors that influence OprB porin gene expression. Growth temperature, pH of the growth medium, salicylate concentration, and carbohydrate source were found to differentially influence porin expression. This expression pattern was compared to those of whole-cell [14C]glucose uptake under conditions of high osmolarity, ionicity, variable pH, growth temperatures, and carbohydrate source. These studies revealed that the high-affinity glucose transport genes are down-regulated by salicylic acid, differentially regulated by pH and temperature, and are specifically responsive to exogenous glucose induction.Key words: Pseudomonas aeruginosa, OprB porin, glucose transport, regulation.
Collapse
|
5
|
Forward JA, Behrendt MC, Wyborn NR, Cross R, Kelly DJ. TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria. J Bacteriol 1997; 179:5482-93. [PMID: 9287004 PMCID: PMC179420 DOI: 10.1128/jb.179.17.5482-5493.1997] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The dct locus of Rhodobacter capsulatus encodes a high-affinity transport system for the C4-dicarboxylates malate, succinate, and fumarate. The nucleotide sequence of the region downstream of the previously sequenced dctP gene (encoding a periplasmic C4-dicarboxylate-binding protein) was determined. Two open reading frames (ORFs) of 681 bp (dctQ) and 1,320 bp (dctM) were identified as additional dct genes by insertional mutagenesis and complementation studies. DctQ (24,763 Da) and DctM (46,827 Da) had hydropathic profiles consistent with the presence of 4 and 12 potential transmembrane segments, respectively, and were localized in the cytoplasmic membrane fraction after heterologous expression of the dctQM ORFs in Escherichia coli. DctP, DctQ, and DctM were found to be unrelated to known transport proteins in the ABC (ATP-binding cassette) superfamily but were shown to be homologous with the products of previously unidentified ORFs in a number of gram-negative bacteria, including Bordetella pertussis, E. coli, Salmonella typhimurium, Haemophilus influenzae, and Synechocystis sp. strain PCC6803. An additional ORF (rypA) downstream of dctM encodes a protein with sequence similarity to eukaryotic protein-tyrosine phosphatases, but interposon mutagenesis of this ORF did not result in a Dct- phenotype. Complementation of a Rhizobium meliloti dctABD deletion mutant by heterologous expression of the dctPQM genes from R. capsulatus demonstrated that no additional structural genes were required to form a functional transport system. Transport via the Dct system was vanadate insensitive, and in uncoupler titrations with intact cells, the decrease in the rate of succinate transport correlated closely with the fall in membrane potential but not with the cellular ATP concentration, implying that the proton motive force, rather than ATP hydrolysis, drives uptake. It is concluded that the R. capsulatus Dct system is a new type of periplasmic secondary transporter and that similar, hitherto-unrecognized systems are widespread in gram-negative bacteria. The name TRAP (for tripartite ATP-independent periplasmic) transporters is proposed for this new group.
Collapse
Affiliation(s)
- J A Forward
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, United Kingdom
| | | | | | | | | |
Collapse
|
6
|
Jacobs MH, van der Heide T, Driessen AJ, Konings WN. Glutamate transport in Rhodobacter sphaeroides is mediated by a novel binding protein-dependent secondary transport system. Proc Natl Acad Sci U S A 1996; 93:12786-90. [PMID: 8917497 PMCID: PMC23998 DOI: 10.1073/pnas.93.23.12786] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Growth of a glutamate transport-deficient mutant of Rhodobacter sphaeroides on glutamate as sole carbon and nitrogen source can be restored by the addition of millimolar amounts of Na+. Uptake of glutamate (Kt of 0.2 microM) by the mutant strictly requires Na+ (K(m) of 25 mM) and is inhibited by ionophores that collapse the proton motive force (pmf). The activity is osmotic-shock-sensitive and can be restored in spheroplasts by the addition of osmotic shock fluid. Transport of glutamate is also observed in membrane vesicles when Na+, a proton motive force, and purified glutamate binding protein are present. Both transport and binding is highly specific for glutamate. The Na(+)-dependent glutamate transporter of Rb. sphaeroides is an example of a secondary transport system that requires a periplasmic binding protein and may define a new family of bacterial transport proteins.
Collapse
Affiliation(s)
- M H Jacobs
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
7
|
Stegehuis F, van der Wal FJ, Luirink J, Oudega B. Expression of the pCloDF13 encoded bacteriocin release protein or its stable signal peptide causes early effects on protein biosynthesis and Mg2+ transport. Antonie Van Leeuwenhoek 1995; 67:255-60. [PMID: 7778894 DOI: 10.1007/bf00873689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of the pCloDF13 encoded bacteriocin release protein (BRP) on Escherichia coli cell lethality was studied. Induction of the BRP resulted in a strong inhibition of the incorporation of radioactive labeled amino acids and affected the transport of Mg2+ ions. Similar effects were obtained when the BRP stable signal peptide was expressed as a separate entity. Kinetic studies revealed that these effects occurred prior to quasi-lysis and release of cloacin DF13. The results indicated that the BRP induced cell lethality is caused by early effects on protein synthesis and Mg2+ transport, due to the accumulation of stable BRP signal peptides in the cytoplasmic membrane.
Collapse
Affiliation(s)
- F Stegehuis
- Department of Microbiology, BioCentrum Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
8
|
Jacobs MH, Driessen AJ, Konings WN. Characterization of a binding protein-dependent glutamate transport system of Rhodobacter sphaeroides. J Bacteriol 1995; 177:1812-6. [PMID: 7896705 PMCID: PMC176810 DOI: 10.1128/jb.177.7.1812-1816.1995] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mechanism of L-glutamate uptake was studied in Rhodobacter sphaeroides. Uptake of L-glutamate is mediated by a high-affinity (Kt of 1.2 microM), shock-sensitive transport system that is inhibited by vanadate and dependent on the internal pH. From the shock fluid, an L-glutamate-binding protein was isolated and purified. The protein binds L-glutamate (apparent Kd of 1.3 microM) and L-glutamine (Ki of 15 microM) with high affinity. The expression level of this binding protein is maximal at limiting concentrations of glutamine in the growth medium. The glutamate-binding protein restores the uptake of L-glutamate in spheroplasts. L-Aspartate is a strong competitive inhibitor of L-glutamate uptake (Ki of 3 microM) but competes only poorly with L-glutamate for binding to the binding protein (Ki of > 200 microM). The uptake of L-aspartate in R. sphaeroides also involves a binding protein which is distinct from the L-glutamate-binding protein. These data suggest that in R. sphaeroides, the L-glutamate- and L-aspartate-binding proteins interact with the same membrane transporter.
Collapse
Affiliation(s)
- M H Jacobs
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | |
Collapse
|
9
|
Van Veen HW, Abee T, Kortstee GJ, Konings WN, Zehnder AJ. Characterization of two phosphate transport systems in Acinetobacter johnsonii 210A. J Bacteriol 1993; 175:200-6. [PMID: 8380151 PMCID: PMC196114 DOI: 10.1128/jb.175.1.200-206.1993] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The transport of P(i) was characterized in Acinetobacter johnsonii 210A, which is able to accumulate an excessive amount of phosphate as polyphosphate (polyP) under aerobic conditions. P(i) is taken up against a concentration gradient by energy-dependent, carrier-mediated processes. A. johnsonii 210A, grown under P(i) limitation, contains two uptake systems with Kt values of 0.7 +/- 0.2 microM and 9 +/- 1 microM. P(i) uptake via the high-affinity component is drastically reduced by N,N'-dicyclohexylcarbodiimide, an inhibitor of H(+)-ATPase, and by osmotic shock. Together with the presence of P(i)-binding activity in concentrated periplasmic protein fractions, these results suggest that the high-affinity transport system belongs to the group of ATP-driven, binding-protein-dependent transport systems. Induction of this transport system upon transfer of cells grown in the presence of excess P(i) to P(i)-free medium results in a 6- to 10-fold stimulation of the P(i) uptake rate. The constitutive low-affinity uptake system for P(i) is inhibited by uncouplers and can mediate counterflow of P(i), indicating its reversible, secondary nature. The presence of an inducible high-affinity uptake system for P(i) and the ability to decrease the free internal P(i) pool by forming polyP enable A. johnsonii 210A to reduce the P(i) concentration in the aerobic environment to micromolar levels. Under anaerobic conditions, polyP is degraded again and P(i) is released via the low-affinity secondary transport system.
Collapse
Affiliation(s)
- H W Van Veen
- Department of Microbiology, Agricultural University Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Abee T, Siebers A, Altendorf K, Konings WN. Isolation and characterization of the high-affinity K(+)-translocating ATPase from Rhodobacter sphaeroides. J Bacteriol 1992; 174:6911-7. [PMID: 1400242 PMCID: PMC207370 DOI: 10.1128/jb.174.21.6911-6917.1992] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cells of the purple nonsulfur bacterium Rhodobacter sphaeroides express a high-affinity K+ uptake system when grown in media with low K+ concentrations. A vanadate-sensitive, K(+)-stimulated and Mg(2+)-stimulated ATPase was purified from membranes of these cells by solubilization with decyl-beta-D-maltoside in the presence of Escherichia coli phospholipids followed by triazine-dye affinity chromatography. This primary transport system has a substrate specificity and an inhibitor sensitivity closely similar to those of the Kdp ATPase from E. coli and is composed of three subunits with molecular masses of 70.0, 43.5, and 23.5 kDa.
Collapse
Affiliation(s)
- T Abee
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
11
|
Abee T, Knol J, Hellingwerf KJ, Bakker EP, Siebers A, Konings WN. A Kdp-like, high-affinity, K+-translocating ATPase is expressed during growth of Rhodobacter sphaeroides in low potassium media. Arch Microbiol 1992. [DOI: 10.1007/bf00245368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Shaw JG, Kelly DJ. Binding protein dependent transport of C4-dicarboxylates in Rhodobacter capsulatus. Arch Microbiol 1991. [DOI: 10.1007/bf00244963] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|