1
|
Malán AK, Tuleski T, Catalán AI, de Souza EM, Batista S. Herbaspirillum seropedicae expresses non-phosphorylative pathways for D-xylose catabolism. Appl Microbiol Biotechnol 2021; 105:7339-7352. [PMID: 34499201 DOI: 10.1007/s00253-021-11507-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Herbaspirillum seropedicae is a β-proteobacterium that establishes as an endophyte in various plants. These bacteria can consume diverse carbon sources, including hexoses and pentoses like D-xylose. D-xylose catabolic pathways have been described in some microorganisms, but databases of genes involved in these routes are limited. This is of special interest in biotechnology, considering that D-xylose is the second most abundant sugar in nature and some microorganisms, including H. seropedicae, are able to accumulate poly-3-hydroxybutyrate when consuming this pentose as a carbon source. In this work, we present a study of D-xylose catabolic pathways in H. seropedicae strain Z69 using RNA-seq analysis and subsequent analysis of phenotypes determined in targeted mutants in corresponding identified genes. G5B88_22805 gene, designated xylB, encodes a NAD+-dependent D-xylose dehydrogenase. Mutant Z69∆xylB was still able to grow on D-xylose, although at a reduced rate. This appears to be due to the expression of an L-arabinose dehydrogenase, encoded by the araB gene (G5B88_05250), that can use D-xylose as a substrate. According to our results, H. seropedicae Z69 uses non-phosphorylative pathways to catabolize D-xylose. The lower portion of metabolism involves co-expression of two routes: the Weimberg pathway that produces α-ketoglutarate and a novel pathway recently described that synthesizes pyruvate and glycolate. This novel pathway appears to contribute to D-xylose metabolism, since a mutant in the last step, Z69∆mhpD, was able to grow on this pentose only after an extended lag phase (40-50 h). KEY POINTS: • xylB gene (G5B88_22805) encodes a NAD+-dependent D-xylose dehydrogenase. • araB gene (G5B88_05250) encodes a L-arabinose dehydrogenase able to recognize D-xylose. • A novel route involving mhpD gene is preferred for D-xylose catabolism.
Collapse
Affiliation(s)
- Ana Karen Malán
- Laboratorio Microbiología Molecular- Depto. BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.
| | - Thalita Tuleski
- Department of Biochemistry and Molecular Biology, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Ana Inés Catalán
- Laboratorio Microbiología Molecular- Depto. BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Silvia Batista
- Laboratorio Microbiología Molecular- Depto. BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
2
|
McClintock MK, Wang J, Zhang K. Application of Nonphosphorylative Metabolism as an Alternative for Utilization of Lignocellulosic Biomass. Front Microbiol 2017; 8:2310. [PMID: 29218038 PMCID: PMC5703739 DOI: 10.3389/fmicb.2017.02310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/08/2017] [Indexed: 01/28/2023] Open
Abstract
Production of chemicals via fermentation has been evolving over the past 30 years in search of economically viable systems. Thus far, there have been few industrially relevant chemicals that have seen commercialization, examples being lactic acid and ethanol. Currently, many of these fermentation processes still compete with food sources. In order to reduce this competition fermentation of alternative feedstocks, such as lignocellulosic biomass must to be utilized. Hemicellulosic sugars can be employed effectively for the production of chemicals by incorporating nonphosphorylative metabolism. This review covers nonphosphorylative metabolism, the pathways and enzymes involved, as well as the products that have been produced using nonphosphorylative metabolism.
Collapse
Affiliation(s)
- Maria K McClintock
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States
| | - Jilong Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States
| | - Kechun Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Aro-Kärkkäinen N, Toivari M, Maaheimo H, Ylilauri M, Pentikäinen OT, Andberg M, Oja M, Penttilä M, Wiebe MG, Ruohonen L, Koivula A. L-arabinose/D-galactose 1-dehydrogenase of Rhizobium leguminosarum bv. trifolii characterised and applied for bioconversion of L-arabinose to L-arabonate with Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2014; 98:9653-65. [PMID: 25236800 DOI: 10.1007/s00253-014-6039-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
Abstract
Four potential dehydrogenases identified through literature and bioinformatic searches were tested for L-arabonate production from L-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a D-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a L-arabinose/D-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP(+) but uses also NAD(+) as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards L-arabinose, D-galactose and D-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of L-arabinose, and the stable oxidation product detected is L-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear L-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for L-arabinose uptake, resulted in production of 18 g of L-arabonate per litre, at a rate of 248 mg of L-arabonate per litre per hour, with 86 % of the provided L-arabinose converted to L-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for L-arabonate production in yeast.
Collapse
|
4
|
Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB, Fernandez MA, Fungaro MHP, Grisard EC, Hungria M, Madeira HMF, Nodari RO, Osaku CA, Petzl-Erler ML, Terenzi H, Vieira LGE, Steffens MBR, Weiss VA, Pereira LFP, Almeida MIM, Alves LR, Marin A, Araujo LM, Balsanelli E, Baura VA, Chubatsu LS, Faoro H, Favetti A, Friedermann G, Glienke C, Karp S, Kava-Cordeiro V, Raittz RT, Ramos HJO, Ribeiro EMSF, Rigo LU, Rocha SN, Schwab S, Silva AG, Souza EM, Tadra-Sfeir MZ, Torres RA, Dabul ANG, Soares MAM, Gasques LS, Gimenes CCT, Valle JS, Ciferri RR, Correa LC, Murace NK, Pamphile JA, Patussi EV, Prioli AJ, Prioli SMA, Rocha CLMSC, Arantes OMN, Furlaneto MC, Godoy LP, Oliveira CEC, Satori D, Vilas-Boas LA, Watanabe MAE, Dambros BP, Guerra MP, Mathioni SM, Santos KL, Steindel M, Vernal J, Barcellos FG, Campo RJ, Chueire LMO, Nicolás MF, Pereira-Ferrari L, Silva JLDC, Gioppo NMR, Margarido VP, Menck-Soares MA, Pinto FGS, Simão RDCG, Takahashi EK, Yates MG, Souza EM. Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 2011; 7:e1002064. [PMID: 21589895 PMCID: PMC3093359 DOI: 10.1371/journal.pgen.1002064] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 03/18/2011] [Indexed: 01/28/2023] Open
Abstract
The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme--GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species.
Collapse
|
5
|
Kale AJ, McGlinchey RP, Moore BS. Characterization of 5-chloro-5-deoxy-D-ribose 1-dehydrogenase in chloroethylmalonyl coenzyme A biosynthesis: substrate and reaction profiling. J Biol Chem 2010; 285:33710-7. [PMID: 20736169 PMCID: PMC2962469 DOI: 10.1074/jbc.m110.153833] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/10/2010] [Indexed: 11/06/2022] Open
Abstract
SalM is a short-chain dehydrogenase/reductase enzyme from the marine actinomycete Salinispora tropica that is involved in the biosynthesis of chloroethylmalonyl-CoA, a novel halogenated polyketide synthase extender unit of the proteasome inhibitor salinosporamide A. SalM was heterologously overexpressed in Escherichia coli and characterized in vitro for its substrate specificity, kinetics, and reaction profile. A sensitive real-time (13)C NMR assay was developed to visualize the oxidation of 5-chloro-5-deoxy-D-ribose to 5-chloro-5-deoxy-D-ribono-γ-lactone in an NAD(+)-dependent reaction, followed by spontaneous lactone hydrolysis to 5-chloro-5-deoxy-D-ribonate. Although short-chain dehydrogenase/reductase enzymes are widely regarded as metal-independent, a strong divalent metal cation dependence for Mg(2+), Ca(2+), or Mn(2+) was observed with SalM. Oxidative activity was also measured with the alternative substrates D-erythrose and D-ribose, making SalM the first reported stereospecific non-phosphorylative ribose 1-dehydrogenase.
Collapse
Affiliation(s)
- Andrew J. Kale
- From the Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and
| | - Ryan P. McGlinchey
- From the Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and
| | - Bradley S. Moore
- From the Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
6
|
Mojzita D, Vuoristo K, Koivistoinen OM, Penttilä M, Richard P. The 'true' L-xylulose reductase of filamentous fungi identified in Aspergillus niger. FEBS Lett 2010; 584:3540-4. [PMID: 20654618 DOI: 10.1016/j.febslet.2010.06.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/10/2010] [Accepted: 06/25/2010] [Indexed: 11/16/2022]
Abstract
L-Xylulose reductase is part of the eukaryotic pathway for l-arabinose catabolism. A previously identified L-xylulose reductase in Hypocrea jecorina turned out to be not the 'true' one since it was not upregulated during growth on L-arabinose and the deletion strain showed no reduced L-xylulose reductase activity but instead lost the D-mannitol dehydrogenase activity. In this communication we identified the 'TRUE'L-xylulose reductase in Aspergillus niger. The gene, lxrA (JGI177736), is upregulated on L-arabinose and the deletion results in a strain lacking the NADPH-specific L-xylulose reductase activity and having reduced growth on l-arabinose. The purified enzyme had a K(m) for L-xylulose of 25 mM and a nu(max) of 650 U/mg.
Collapse
|
7
|
Watanabe S, Yamada M, Ohtsu I, Makino K. α-Ketoglutaric Semialdehyde Dehydrogenase Isozymes Involved in Metabolic Pathways of D-Glucarate, D-Galactarate, and Hydroxy-L-proline. J Biol Chem 2007; 282:6685-95. [PMID: 17202142 DOI: 10.1074/jbc.m611057200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Azospirillum brasilense possesses an alternative pathway of l-arabinose metabolism in which alpha-ketoglutaric semialdehyde (alphaKGSA) dehydrogenase (KGSADH) is involved in the last step, the conversion of alphaKGSA to alpha-ketoglutarate. In the preceding studies, we identified a set of metabolic genes of the l-arabinose pathway including the KGSADH gene (Watanabe, S., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 2612-2623; Watanabe, S., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 28876-28888; Watanabe, S., Shimada, N., Tajima, K., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 33521-33536). Here, we describe that A. brasilense possesses two different KGSADH isozymes from l-arabinose-related enzyme (KGSADH-I); that is, d-glucarate/d-galactarate-inducible KGSADH-II and hydroxy-l-proline-inducible KGSADH-III. They were purified homogeneously from A. brasilense cells grown on d-galactarate or hydroxy-l-proline, respectively. When compared with KGSADH-I, amino acid sequences of KGSADH-II and KGSADH-III were significantly similar but not totally identical. Physiological characterization using recombinant enzymes revealed that KGSADH-II and KGSADH-III showed similar high substrate specificity for alphaKGSA and different coenzyme specificity; that is, NAD(+)-dependent KGSADH-II and NADP(+)-dependent KGSADH-III. In the phylogenetic tree of the aldehyde dehydrogenase (ALDH) superfamily, KGSADH-II and KGSADH-III were poorly related to the known ALDH subclasses including KGSADH-I. On the other hand, ALDH-like ycbD protein involved in d-glucarate/d-galactarate operon from Bacillus subtilis is closely related to the methylmalonyl semialdehyde dehydrogenase subclass but not A. brasilense KGSADH isozymes. To estimate the correct function, the corresponding gene was expressed, purified, and characterized. Kinetic analysis revealed the physiological role as NADP(+)-dependent KGSADH. We conclude that three different types of KGSADH appeared in the bacterial evolutional stage convergently. Furthermore, even the same pathway such as l-arabinose and d-glucarate/d-galactarate metabolism also evolved by the independent involvement of KGSADH.
Collapse
Affiliation(s)
- Seiya Watanabe
- Faculty of Engineering, Kyoto University, Kyotodaigaku-katsura, Saikyo-ku, Kyoto 615-8530, Japan
| | | | | | | |
Collapse
|
8
|
Watanabe S, Shimada N, Tajima K, Kodaki T, Makino K. Identification and Characterization of l-Arabonate Dehydratase, l-2-Keto-3-deoxyarabonate Dehydratase, and l-Arabinolactonase Involved in an Alternative Pathway of l-Arabinose Metabolism. J Biol Chem 2006; 281:33521-36. [PMID: 16950779 DOI: 10.1074/jbc.m606727200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Azospirillum brasiliense possesses an alternative pathway of L-arabinose metabolism, different from the known bacterial and fungal pathways. In the preceding articles, we identified and characterized L-arabinose-1-dehydrogenase and alpha-ketoglutaric semialdehyde dehydrogenase, which catalyzes the first and final reaction steps in this pathway, respectively (Watanabe, S., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 2612-2623 and Watanabe, S., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 28876-28888). We here report the remaining three enzymes, L-arabonate dehydratase, L-2-keto-3-deoxyarabonate (L-KDA) dehydratase, and L-arabinolactonase. N-terminal amino acid sequences of L-arabonate dehydratase and L-KDA dehydratase purified from A. brasiliense cells corresponded to those of AraC and AraD genes, which form a single transcriptional unit together with the L-arabinose-1-dehydrogenase gene. Furthermore, the L-arabinolactonase gene (AraB) was also identified as a component of the gene cluster. Genetic characterization of the alternative L-arabinose pathway suggested a significant evolutional relationship with the known sugar metabolic pathways, including the Entner-Doudoroff (ED) pathway and the several modified versions. L-arabonate dehydratase belongs to the ILVD/EDD family and spectrophotometric and electron paramagnetic resonance analysis revealed it to contain a [4Fe-4S](2+) cluster. Site-directed mutagenesis identified three cysteine ligands essential for cluster coordination. L-KDA dehydratase was sequentially similar to DHDPS/NAL family proteins. D-2-Keto-3-deoxygluconate aldolase, a member of the DHDPS/NAL family, catalyzes the equivalent reaction to L-KDA aldolase involved in another alternative L-arabinose pathway, probably associating a unique evolutional event between the two alternative L-arabinose pathways by mutation(s) of a common ancestral enzyme. Site-directed mutagenesis revealed a unique catalytic amino acid residue in L-KDA dehydratase, which may be a candidate for such a natural mutation.
Collapse
Affiliation(s)
- Seiya Watanabe
- Faculty of Engineering, Kyoto University, Kyotodaigaku-katsura, Saikyo-ku, Kyoto 615-8530, Japan
| | | | | | | | | |
Collapse
|
9
|
Abstract
Azospirillum brasilense possesses an alternative pathway of l-arabinose metabolism, which is different from the known bacterial and fungal pathways. In a previous paper (Watanabe, S., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 2612-2623), we identified and characterized l-arabinose 1-dehydrogenase, which catalyzes the first reaction step in this pathway, and we cloned the corresponding gene. Here we focused on the fifth enzyme, alpha-ketoglutaric semialdehyde (alphaKGSA) dehydrogenase, catalyzing the conversion of alphaKGSA to alpha-ketoglutarate. alphaKGSA dehydrogenase was purified tentatively as a NAD(+)-preferring aldehyde dehydrogenase (ALDH) with high activity for glutaraldehyde. The gene encoding this enzyme was cloned and shown to be located on the genome of A. brasilense separately from a gene cluster containing the l-arabinose 1-dehydrogenase gene, in contrast with Burkholderia thailandensis in which both genes are located in the same gene cluster. Higher catalytic efficiency of ALDH was found with alphaKGSA and succinic semialdehyde among the tested aldehyde substrates. In zymogram staining analysis with the cell-free extract, a single active band was found at the same position as the purified enzyme. Furthermore, a disruptant of the gene did not grow on l-arabinose. These results indicated that this ALDH gene was the only gene of the NAD(+)-preferring alphaKGSA dehydrogenase in A. brasilense. In the phylogenetic tree of the ALDH family, alphaKGSA dehydrogenase from A. brasilense falls into the succinic semialdehyde dehydrogenase (SSALDH) subfamily. Several putative alphaKGSA dehydrogenases from other bacteria belong to a different ALDH subfamily from SSALDH, suggesting strongly that their substrate specificities for alphaKGSA are acquired independently during the evolutionary stage. This is the first evidence of unique "convergent evolution" in the ALDH family.
Collapse
Affiliation(s)
- Seiya Watanabe
- Faculty of Engineering, Kyoto University, Kyotodaigakukatsura, Saikyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
10
|
Brouns SJJ, Walther J, Snijders APL, van de Werken HJG, Willemen HLDM, Worm P, de Vos MGJ, Andersson A, Lundgren M, Mazon HFM, van den Heuvel RHH, Nilsson P, Salmon L, de Vos WM, Wright PC, Bernander R, van der Oost J. Identification of the Missing Links in Prokaryotic Pentose Oxidation Pathways. J Biol Chem 2006; 281:27378-88. [PMID: 16849334 DOI: 10.1074/jbc.m605549200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pentose metabolism of Archaea is largely unknown. Here, we have employed an integrated genomics approach including DNA microarray and proteomics analyses to elucidate the catabolic pathway for D-arabinose in Sulfolobus solfataricus. During growth on this sugar, a small set of genes appeared to be differentially expressed compared with growth on D-glucose. These genes were heterologously overexpressed in Escherichia coli, and the recombinant proteins were purified and biochemically studied. This showed that D-arabinose is oxidized to 2-oxoglutarate by the consecutive action of a number of previously uncharacterized enzymes, including a D-arabinose dehydrogenase, a D-arabinonate dehydratase, a novel 2-keto-3-deoxy-D-arabinonate dehydratase, and a 2,5-dioxopentanoate dehydrogenase. Promoter analysis of these genes revealed a palindromic sequence upstream of the TATA box, which is likely to be involved in their concerted transcriptional control. Integration of the obtained biochemical data with genomic context analysis strongly suggests the occurrence of pentose oxidation pathways in both Archaea and Bacteria, and predicts the involvement of additional enzyme components. Moreover, it revealed striking genetic similarities between the catabolic pathways for pentoses, hexaric acids, and hydroxyproline degradation, which support the theory of metabolic pathway genesis by enzyme recruitment.
Collapse
Affiliation(s)
- Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Watanabe S, Kodaki T, Kodak T, Makino K. Cloning, Expression, and Characterization of Bacterial l-Arabinose 1-Dehydrogenase Involved in an Alternative Pathway of l-Arabinose Metabolism. J Biol Chem 2006; 281:2612-23. [PMID: 16326697 DOI: 10.1074/jbc.m506477200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Azospirillum brasiliense converts L-arabinose to alpha-ketoglutarate via five hypothetical enzymatic steps. We purified and characterized L-arabinose 1-dehydrogenase (EC 1.1.1.46), catalyzing the conversion of L-arabinose to L-arabino-gamma-lactone as an enzyme responsible for the first step of this alternative pathway of L-arabinose metabolism. The purified enzyme preferred NADP+ to NAD+ as a coenzyme. Kinetic analysis revealed that the enzyme had high catalytic efficiency for both L-arabinose and D-galactose. The gene encoding L-arabinose 1-dehydrogenase was cloned using a partial peptide sequence of the purified enzyme and was overexpressed in Escherichia coli as a fully active enzyme. The enzyme consists of 308 amino acids and has a calculated molecular mass of 33,663.92 Da. The deduced amino acid sequence had some similarity to glucose-fructose oxidoreductase, D-xylose 1-dehydrogenase, and D-galactose 1-dehydrogenase. Site-directed mutagenesis revealed that the enzyme possesses unique catalytic amino acid residues. Northern blot analysis showed that this gene was induced by L-arabinose but not by D-galactose. Furthermore, a disruptant of the L-arabinose 1-dehydrogenase gene did not grow on L-arabinose but grew on D-galactose at the same growth rate as the wild-type strain. There was a partial gene for L-arabinose transport in the flanking region of the L-arabinose 1-dehydrogenase gene. These results indicated that the enzyme is involved in the metabolism of L-arabinose but not D-galactose. This is the first identification of a gene involved in an alternative pathway of L-arabinose metabolism in bacterium.
Collapse
Affiliation(s)
- Seiya Watanabe
- Faculty of Engineering, Kyoto University, Kyotodaigakukatsura, Saikyo-ku, Kyoto 615-8530
| | | | | | | |
Collapse
|
12
|
Moore RA, Reckseidler-Zenteno S, Kim H, Nierman W, Yu Y, Tuanyok A, Warawa J, DeShazer D, Woods DE. Contribution of gene loss to the pathogenic evolution of Burkholderia pseudomallei and Burkholderia mallei. Infect Immun 2004; 72:4172-87. [PMID: 15213162 PMCID: PMC427422 DOI: 10.1128/iai.72.7.4172-4187.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis. Burkholderia thailandensis is a closely related species that can readily utilize l-arabinose as a sole carbon source, whereas B. pseudomallei cannot. We used Tn5-OT182 mutagenesis to isolate an arabinose-negative mutant of B. thailandensis. Sequence analysis of regions flanking the transposon insertion revealed the presence of an arabinose assimilation operon consisting of nine genes. Analysis of the B. pseudomallei chromosome showed a deletion of the operon from this organism. This deletion was detected in all B. pseudomallei and Burkholderia mallei strains investigated. We cloned the B. thailandensis E264 arabinose assimilation operon and introduced the entire operon into the chromosome of B. pseudomallei 406e via homologous recombination. The resultant strain, B. pseudomallei SZ5028, was able to utilize l-arabinose as a sole carbon source. Strain SZ5028 had a significantly higher 50% lethal dose for Syrian hamsters compared to the parent strain 406e. Microarray analysis revealed that a number of genes in a type III secretion system were down-regulated in strain SZ5028 when cells were grown in l-arabinose, suggesting a regulatory role for l-arabinose or a metabolite of l-arabinose. These results suggest that the ability to metabolize l-arabinose reduces the virulence of B. pseudomallei and that the genes encoding arabinose assimilation may be considered antivirulence genes. The increase in virulence associated with the loss of these genes may have provided a selective advantage for B. pseudomallei as these organisms adapted to survival in animal hosts.
Collapse
Affiliation(s)
- Richard A Moore
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary Health Sciences Centre, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | | | | | |
Collapse
|