1
|
Warburton PJ, Amodeo N, Roberts AP. Mosaic tetracycline resistance genes encoding ribosomal protection proteins. J Antimicrob Chemother 2016; 71:3333-3339. [PMID: 27494928 PMCID: PMC5181394 DOI: 10.1093/jac/dkw304] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes, tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this first review of mosaic genes, we report on their structure, diversity and prevalence, and suggest that these genes may be responsible for an under-reported contribution to tetracycline resistance in bacteria.
Collapse
Affiliation(s)
- Philip J Warburton
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, School of Biomedical and Healthcare Services, Plymouth, UK
| | - Nina Amodeo
- Department of Biomedical and Forensic Science, Faculty of Science and Technology, Anglia Ruskin University, Cambridge, UK
| | - Adam P Roberts
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| |
Collapse
|
2
|
Abstract
The use of tetracycline over the past few decades has been accompanied by a drastic increase in the frequency of tetracycline resistance in a wide range of bacterial species and genera. A diversity of resistance determinants is found in the microbial world, coding for markedly different mechanisms of resistance. The recent analysis of one family of resistance determinants provides evidence for intergenic and intragenic coevolutionary changes as well as for an unusual evolutionary history of duplication and divergence in function of domains within a single locus.
Collapse
Affiliation(s)
- R Johnson
- Rebecca Johnson and Julian Adams are at the Dept of Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
3
|
Sapunaric FM, Levy SB. Substitutions in the interdomain loop of the Tn10 TetA efflux transporter alter tetracycline resistance and substrate specificity. Microbiology (Reading) 2005; 151:2315-2322. [PMID: 16000721 DOI: 10.1099/mic.0.27997-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cysteine replacement of Asp190, Glu192 and Ser201 residues in the cytoplasmic interdomain loop of the TetA(B) tetracycline efflux antiporter from Tn10 reduces tetracycline resistance [Tamura, N., Konishi, S., Iwaki, S., Kimura-Someya, T., Nada, S. & Yamaguchi, A. (2001). J Biol Chem 276, 20330-20339]. It was found that these Cys substitutions altered the substrate specificity of TetA(B), increasing the relative resistance to doxycycline and minocycline over that to tetracycline by three- to sixfold. Substitutions of Asp190 and Glu192 by Ala, Asn and Gln also impaired the ability of TetA(B) to mediate tetracycline resistance while Ser201Ala and Ser201Thr substitutions did not. A Leu9Phe substitution in the first transmembrane helix of TetA(B) suppressed the Ser201Cys mutation, undoing the alterations in resistance and specificity. That the interdomain loop might contact substrate during transport, as is suggested from its role in substrate specificity, is unexpected considering that the primary sequence in the loop is not conserved among a group of otherwise homologous TetA proteins. However, in the interdomain loop of 11 of 14 homologous TetA efflux proteins, computational analysis revealed a short alpha-helix, which includes some residues affecting activity and substrate specificity. Perhaps this conserved secondary structure accounts for the role of the non-conserved interdomain loop in TetA function.
Collapse
Affiliation(s)
- Frédéric M Sapunaric
- The Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | - Stuart B Levy
- The Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
4
|
Safferling M, Griffith H, Jin J, Sharp J, De Jesus M, Ng C, Krulwich TA, Wang DN. TetL tetracycline efflux protein from Bacillus subtilis is a dimer in the membrane and in detergent solution. Biochemistry 2004; 42:13969-76. [PMID: 14636065 PMCID: PMC3580950 DOI: 10.1021/bi035173q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The TetL antiporter from the Bacillus subtilis inner membrane is a tetracycline-divalent cation efflux protein that is energized by the electrochemical proton gradient across the membrane. In this study, we expressed tetL in Escherichia coli and investigated the oligomeric state of TetL in the membrane and in detergent solution. Evidence for an oligomeric state of TetL emerged from SDS-PAGE and Western blot analysis of membrane samples as well as purified protein samples from cells that expressed two differently tagged TetL species. Furthermore, no formation or restoration of TetL oligomers occurred upon detergent solubilization of the membrane. Rather, oligomeric forms established in vivo persisted after solubilization. Mass spectrometry of the purified protein showed the absence of proteolysis and posttranslational modifications. Analytical size-exclusion chromatography of the purified protein revealed a dimeric TetL in dodecyl-maltoside solution. In addition, TetL dimers were found in a number of other detergents and over a wide pH range. It is therefore likely that the oligomeric form of the protein in the membrane is also a dimer.
Collapse
Affiliation(s)
- Markus Safferling
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Sapunaric FM, Levy SB. Second-site suppressor mutations for the serine 202 to phenylalanine substitution within the interdomain loop of the tetracycline efflux protein Tet(C). J Biol Chem 2003; 278:28588-92. [PMID: 12766164 DOI: 10.1074/jbc.m302658200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine 202 to phenylalanine substitution within the cytoplasmic interdomain loop of Tet(C) greatly reduces tetracycline resistance and efflux activity (Saraceni-Richards, C. A., and Levy, S. B. (2000) J. Biol. Chem. 275, 6101-6106). Second-site suppressor mutations were identified following hydroxylamine and nitrosoguanidine mutagenesis. Three mutations, L11F in transmembrane 1 (TM1), A213T in the central interdomain loop, and A270V in cytoplasmic loop 8-9, restored a wild type level of resistance and an active efflux activity in Escherichia coli cells bearing the mutant tet(C) gene. The Tet S202F protein with the additional A270V mutation was expressed in amounts comparable with the original mutant, whereas L11F and A213T Tet(C) protein mutants were overexpressed. Introduction of each single mutation into the wild type tet(C) gene by site-directed mutagenesis did not alter tetracycline resistance or efflux activity. These secondary mutations may restore resistance by promoting a conformational change in the protein to accommodate the S202F mutation. The data demonstrate an interaction of the interdomain loop with other distant regions of the protein and support a role of the interdomain loop in mediating tetracycline resistance.
Collapse
Affiliation(s)
- Frederic M Sapunaric
- Center for Adaptation Genetics and Drug Resistance and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
6
|
Stanton TB, Humphrey SB. Isolation of tetracycline-resistant Megasphaera elsdenii strains with novel mosaic gene combinations of tet(O) and tet(W) from swine. Appl Environ Microbiol 2003; 69:3874-82. [PMID: 12839756 PMCID: PMC165211 DOI: 10.1128/aem.69.7.3874-3882.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaerobic bacteria insensitive to chlortetracycline (64 to 256 microg/ml) were isolated from cecal contents and cecal tissues of swine fed or not fed chlortetracycline. A nutritionally complex, rumen fluid-based medium was used for culturing the bacteria. Eight of 84 isolates from seven different animals were identified as Megasphaera elsdenii strains based on their large-coccus morphology, rapid growth on lactate, and 16S ribosomal DNA sequence similarities with M. elsdenii LC-1(T). All eight strains had tetracycline MICs of between 128 and 256 microg/ml. Based on PCR assays differentiating 14 tet classes, the strains gave a positive reaction for the tet(O) gene. By contrast, three ruminant M. elsdenii strains recovered from 30-year-old culture stocks had tetracycline MICs of 4 microg/ml and did not contain tet genes. The tet genes of two tetracycline-resistant M. elsdenii strains were amplified and cloned. Both genes bestowed tetracycline resistance (MIC = 32 to 64 microg/ml) on recombinant Escherichia coli strains. Sequence analysis revealed that the M. elsdenii genes represent two different mosaic genes formed by interclass (double-crossover) recombination events involving tet(O) and tet(W). One or the other genotype was present in each of the eight tetracycline-resistant M. elsdenii strains isolated in these studies. These findings suggest a role for commensal bacteria not only in the preservation and dissemination of antibiotic resistance in the intestinal tract but also in the evolution of resistance.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/pharmacology
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/drug effects
- Bacteria, Anaerobic/genetics
- Bacteria, Anaerobic/isolation & purification
- Bacterial Proteins/genetics
- Carrier Proteins/genetics
- Cecum/microbiology
- Chlortetracycline/pharmacology
- Culture Media
- DNA, Ribosomal/analysis
- Evolution, Molecular
- Gram-Positive Cocci/classification
- Gram-Positive Cocci/drug effects
- Gram-Positive Cocci/genetics
- Gram-Positive Cocci/isolation & purification
- Lactates/metabolism
- Microbial Sensitivity Tests
- Molecular Sequence Data
- Polymerase Chain Reaction
- RNA, Ribosomal, 16S/genetics
- Recombination, Genetic
- Sequence Analysis, DNA
- Swine
- Tetracycline Resistance/genetics
Collapse
Affiliation(s)
- Thaddeus B Stanton
- Pre-Harvest Food Safety and Enteric Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, PO Box 70, Ames, IA 50010, USA.
| | | |
Collapse
|
7
|
McMurry LM, Aldema-Ramos ML, Levy SB. Fe(2+)-tetracycline-mediated cleavage of the Tn10 tetracycline efflux protein TetA reveals a substrate binding site near glutamine 225 in transmembrane helix 7. J Bacteriol 2002; 184:5113-20. [PMID: 12193628 PMCID: PMC135328 DOI: 10.1128/jb.184.18.5113-5120.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TetA specified by Tn10 is a class B member of a group of related bacterial transport proteins of 12 transmembrane alpha helices that mediate resistance to the antibiotic tetracycline. A tetracycline-divalent metal cation complex is expelled from the cell in exchange for a entering proton. The site(s) where tetracycline binds to this export pump is not known. We found that, when chelated to tetracycline, Fe(2+) cleaved the backbone of TetA predominantly at a single position, glutamine 225 in transmembrane helix 7. The related class D TetA protein from plasmid RA1 was cut at exactly the same position. There was no cleavage with glycylcycline, an analog of tetracycline that does not bind to TetA. The Fe(2+)-tetracycline complex was not detectably transported by TetA. However, cleavage products of the same size as with Fe(2+) occurred with Co(2+), known to be cotransported with tetracycline. The known substrate Mg (2+)-tetracycline interfered with cleavage by Fe(2+). These findings suggest that cleavage results from binding at a substrate-specific site. Fe(2+) is known to be able to cleave amide bonds in proteins at distances up to approximately 12 A. We conclude that the alpha carbon of glutamine 225 is probably within 12 A of the position of the Fe(2+) ion in the Fe(2+)-tetracycline complex bound to the protein.
Collapse
Affiliation(s)
- Laura M McMurry
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | |
Collapse
|
8
|
|
9
|
Veenhoff LM, Heuberger EH, Poolman B. The lactose transport protein is a cooperative dimer with two sugar translocation pathways. EMBO J 2001; 20:3056-62. [PMID: 11406582 PMCID: PMC150208 DOI: 10.1093/emboj/20.12.3056] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Major Facilitator Superfamily lactose transport protein (LacS) undergoes reversible self-association in the detergent-solubilized state, and is present in the membrane as a dimer. We determined the functional unit for proton motive force (Deltap)-driven lactose uptake and lactose/methyl-beta-D-galactopyranoside equilibrium exchange in a proteoliposomal system in which a single cysteine mutant, LacS-C67, defective in Deltap-driven uptake, was co-reconstituted with fully functional cysteine-less protein, LacS-cl. From the quadratic relationship between the uptake activity and the ratio of LacS-C67/LacS-cl, we conclude that the dimeric state of LacS is required for Deltap-driven uptake. N-ethylmaleimide (NEM) treatment of proteoliposomes abolished the LacS-C67 exchange activity but left the LacS-cl unaffected. After NEM treatment, the exchange activity decreased linearly with increasing ratios of LacS-C67/LacS-cl, suggesting that the monomeric state of LacS is sufficient for this mode of transport. We propose that the two subunits of LacS are functionally coupled in the step associated with conformational reorientation of the empty binding site, a step unique for Deltap-driven uptake.
Collapse
Affiliation(s)
| | | | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Corresponding author e-mail:
| |
Collapse
|
10
|
Tuckman M, Petersen PJ, Projan SJ. Mutations in the interdomain loop region of the tetA(A) tetracycline resistance gene increase efflux of minocycline and glycylcyclines. Microb Drug Resist 2001; 6:277-82. [PMID: 11272255 DOI: 10.1089/mdr.2000.6.277] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel class of tetracyclines, the glycylcyclines, have been shown to be active against bacterial strains harboring genes encoding tetracycline efflux pumps. However, two veterinary Salmonella isolates that carried tetracycline resistance determinants of the tetA(A) class were found to have reduced susceptibility to glycylcyclines, especially two early investigational glycylcyclines, DMG-MINO and DMG-DMDOT. These isolates were also quite resistant to tetracycline and minocycline. The isolates, one a strain of S. cholerasuis and the other, S. typhimurium, both carried the same novel tetA(A) variant, based on DNA sequencing, with one determinant plasmid encoded and the other located on the chromosome. This tetA(A) variant was cloned and shown to provide reduced susceptibility to the glycylcycline class although GAR-936, a glycylcycline currently in clinical development, was the least affected. The novel tetA(A) gene carries two mutations in the largest cytoplasmic loop of the efflux pump, which causes a double frameshift in codons 201, 202, and 203. This "interdomain region" of the efflux pump has generally been regarded as having no functional role in the efflux of tetracycline but the double frameshift is most likely responsible for the enhanced resistance observed and points to an interaction that was previously unrecognized. Mutants of the tetA(B) class with decreased susceptibility to the glycylcyclines were also generated in vitro. These all carried mutations in the portion of the tetA(B) gene encoding a transmembrane spanning region of the efflux pump. The laboratory-generated mutants point to the tight constraints in substrate recognition of the transmembrane-spanning region and may suggest that it will be the interdomain region of the pump that is likely to be the locus of future glycylcycline resistance mutations as these compounds enter clinical use.
Collapse
Affiliation(s)
- M Tuckman
- Wyeth-Ayerst Research, Pearl River, NY 10965, USA
| | | | | |
Collapse
|
11
|
Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001; 65:232-60 ; second page, table of contents. [PMID: 11381101 PMCID: PMC99026 DOI: 10.1128/mmbr.65.2.232-260.2001] [Citation(s) in RCA: 2513] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tetracyclines were discovered in the 1940s and exhibited activity against a wide range of microorganisms including gram-positive and gram-negative bacteria, chlamydiae, mycoplasmas, rickettsiae, and protozoan parasites. They are inexpensive antibiotics, which have been used extensively in the prophlylaxis and therapy of human and animal infections and also at subtherapeutic levels in animal feed as growth promoters. The first tetracycline-resistant bacterium, Shigella dysenteriae, was isolated in 1953. Tetracycline resistance now occurs in an increasing number of pathogenic, opportunistic, and commensal bacteria. The presence of tetracycline-resistant pathogens limits the use of these agents in treatment of disease. Tetracycline resistance is often due to the acquisition of new genes, which code for energy-dependent efflux of tetracyclines or for a protein that protects bacterial ribosomes from the action of tetracyclines. Many of these genes are associated with mobile plasmids or transposons and can be distinguished from each other using molecular methods including DNA-DNA hybridization with oligonucleotide probes and DNA sequencing. A limited number of bacteria acquire resistance by mutations, which alter the permeability of the outer membrane porins and/or lipopolysaccharides in the outer membrane, change the regulation of innate efflux systems, or alter the 16S rRNA. New tetracycline derivatives are being examined, although their role in treatment is not clear. Changing the use of tetracyclines in human and animal health as well as in food production is needed if we are to continue to use this class of broad-spectrum antimicrobials through the present century.
Collapse
Affiliation(s)
- I Chopra
- Antimicrobial Research Centre and Division of Microbiology, School of Biochemistry & Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
12
|
Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001. [PMID: 11381101 DOI: 10.1016/s0022-3093(98)00783-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Tetracyclines were discovered in the 1940s and exhibited activity against a wide range of microorganisms including gram-positive and gram-negative bacteria, chlamydiae, mycoplasmas, rickettsiae, and protozoan parasites. They are inexpensive antibiotics, which have been used extensively in the prophlylaxis and therapy of human and animal infections and also at subtherapeutic levels in animal feed as growth promoters. The first tetracycline-resistant bacterium, Shigella dysenteriae, was isolated in 1953. Tetracycline resistance now occurs in an increasing number of pathogenic, opportunistic, and commensal bacteria. The presence of tetracycline-resistant pathogens limits the use of these agents in treatment of disease. Tetracycline resistance is often due to the acquisition of new genes, which code for energy-dependent efflux of tetracyclines or for a protein that protects bacterial ribosomes from the action of tetracyclines. Many of these genes are associated with mobile plasmids or transposons and can be distinguished from each other using molecular methods including DNA-DNA hybridization with oligonucleotide probes and DNA sequencing. A limited number of bacteria acquire resistance by mutations, which alter the permeability of the outer membrane porins and/or lipopolysaccharides in the outer membrane, change the regulation of innate efflux systems, or alter the 16S rRNA. New tetracycline derivatives are being examined, although their role in treatment is not clear. Changing the use of tetracyclines in human and animal health as well as in food production is needed if we are to continue to use this class of broad-spectrum antimicrobials through the present century.
Collapse
Affiliation(s)
- I Chopra
- Antimicrobial Research Centre and Division of Microbiology, School of Biochemistry & Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
13
|
Gerchman Y, Rimon A, Venturi M, Padan E. Oligomerization of NhaA, the Na+/H+ antiporter of Escherichia coli in the membrane and its functional and structural consequences. Biochemistry 2001; 40:3403-12. [PMID: 11258962 DOI: 10.1021/bi002669o] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, a two-dimensional crystal structure of NhaA, the Na+/H+ antiporter of Escherichia coli has been obtained [Williams, K. A., Kaufer, U. G., Padan, E., Schuldiner, S. and Kühlbrandt, W. (1999) EMBO J., 18, 3558-3563]. In these crystals NhaA exists as a dimer. Using biochemical and genetic approaches here we show that NhaA exists in the native membrane as a homooligomer. Functional complementation between the polypeptides of NhaA was demonstrated by coexpression of pairs of conditional lethal (at high pH in the presence of Na+) mutant alleles of nhaA in EP432, a strain lacking antiporters. Physical interaction in the membrane was shown between the His-tagged NhaA polypeptide which is readily affinity purified from DM-solubilized membranes with a Ni2+-NTA column and another which is not; only when coexpressed did both copurify on the column. The organization of the oligomer in the membrane was studied in situ by site-directed cross-linking experiments. Cysteine residues were introduced--one per NhaA--into certain loops of Cys-less NhaA, so that only intermolecular cross-linking could take place. Different linker-size cross-linkers were applied to the membranes, and the amount of the cross-linked protein was analyzed by mobility shift on SDS-PAGE. The results are consistent with homooligomeric NhaA and the location of residue 254 in the interface between monomers. Intermolecular cross-linking of V254C caused an acidic shift in the pH profile of NhaA.
Collapse
Affiliation(s)
- Y Gerchman
- Division of Microbial and Molecular Ecology, Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | |
Collapse
|
14
|
Yin CC, Aldema-Ramos ML, Borges-Walmsley MI, Taylor RW, Walmsley AR, Levy SB, Bullough PA. The quarternary molecular architecture of TetA, a secondary tetracycline transporter from Escherichia coli. Mol Microbiol 2000; 38:482-92. [PMID: 11069672 DOI: 10.1046/j.1365-2958.2000.02149.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
TetA, a tetracycline cation/proton antiporter, was expressed in Escherichia coli with a C-terminal tag of six histidines, solubilized in dodecyl maltoside and purified in a single step using Ni2+ affinity chromatography. Two-dimensional crystals were obtained after reconstitution of purified protein with lipids. Electron microscopy of negatively stained crystals revealed a trigonal symmetry, from which we infer that this secondary transporter has a trimeric structure. An overall molecular envelope can be described by a triangle of side approximately 100 A enclosing a central stain-filled depression. These dimensions are consistent with those obtained from projection views of single, isolated TetA particles that also display a trimeric architecture, confirming that the threefold symmetry is not simply a consequence of crystal-packing interactions. These data represent the first direct view of the quarternary arrangement of any antibiotic efflux pump. They are fully consistent with biochemical data on TetA, which indicate that it functions as a multimer and that the monomer consists of two domains, one of which plays the major part in oligomerization interactions.
Collapse
Affiliation(s)
- C C Yin
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Saraceni-Richards CA, Levy SB. Evidence for interactions between helices 5 and 8 and a role for the interdomain loop in tetracycline resistance mediated by hybrid Tet proteins. J Biol Chem 2000; 275:6101-6. [PMID: 10692399 DOI: 10.1074/jbc.275.9.6101] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An interdomain hybrid Tet protein consisting of a class C alpha domain and a class B beta domain (Tet(C/B)) lacks detectable efflux ability and provides only minimal levels of resistance to tetracycline (Tc) (3 microg/ml) compared with intact class B (256 microg/ml) and class C (64 microg/ml). Twenty-one independently isolated mutants of the Tet(C/B) protein with increased Tc resistance were generated by random chemical mutagenesis. Nine mutants with a Glu substitution for Gly-152 in helix 5 of the class C alpha domain produced a resistance of 48 microg/ml, whereas another 9 with an Asp replacement of Gly-247 in helix 8 of the class B beta domain mediated resistance at 32 microg/ml. The third type of mutation, found in 3 mutants expressing 24 microg/ml resistance, was a S202F replacement in the putative interdomain cytoplasmic loop of Tet(C/B). The latter underscores a previously unappreciated function of the interdomain cytoplasmic loop. All three types of Tet(C/B) mutant proteins were expressed in amounts comparable with that of the original protein and demonstrated restored energy-dependent efflux of tetracycline. Site-directed mutational analysis demonstrated that a Gly-247 to Asn mutation could also facilitate Tc resistance by the Tet(C/B) hybrid, and a negatively charged side chain at position 152 was required for Tet(C/B) activity. These mutations appear to promote the necessary functional interactions between the interclass domains that do not occur in the Tet(C/B) hybrid protein and suggest a direct association between helix 5 and helix 8 in the function of Tet efflux proteins.
Collapse
Affiliation(s)
- C A Saraceni-Richards
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
16
|
van Veen HW, Konings WN. Structure and function of multidrug transporters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 456:145-58. [PMID: 10549367 DOI: 10.1007/978-1-4615-4897-3_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- H W van Veen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands.
| | | |
Collapse
|
17
|
|
18
|
Abstract
Protein folding that is coupled to disulphide bond formation has many experimental advantages. In particular, the kinetic roles and importance of all the disulphide intermediates can be determined, usually unambiguously. This contrasts with other types of protein folding, where the roles of any intermediates detected are usually not established. Nevertheless, there is considerable confusion in the literature about even the best-characterized disulphide folding pathways. This article attempts to set the record straight.
Collapse
|
19
|
Mallonee DH, Hylemon PB. Sequencing and expression of a gene encoding a bile acid transporter from Eubacterium sp. strain VPI 12708. J Bacteriol 1996; 178:7053-8. [PMID: 8955384 PMCID: PMC178615 DOI: 10.1128/jb.178.24.7053-7058.1996] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Eubacterium sp. strain VPI 12708 expresses inducible bile acid 7alpha-dehydroxylation activity via a multistep pathway. The genes encoding several of the inducible proteins involved in the pathway have been previously mapped to a bile acid-inducible (bai) operon in Eubacterium sp. strain VPI 12708. We now report the cloning, sequencing, and characterization of the baiG gene, which is part of the bai operon. The predicted amino acid sequence of the BaiG polypeptide shows significant homology to several membrane transport proteins, including sugar and antibiotic resistance transporters, which are members of the major facilitator superfamily. Hydrophilicity plots of BaiG show a high degree of similarity to class K and L TetA proteins from gram-positive bacteria, and, like these classes of TetA proteins, BaiG has 14 proposed transmembrane domains. The baiG gene was cloned into Escherichia coli and shown to confer an energy-dependent bile acid uptake activity. Primary bile acids were preferentially transported into E. coli cells expressing this gene, with at least sevenfold and fourfold increases in the uptake of cholic acid and chenodeoxycholic acid, respectively, over control reactions. Less transport activity was observed with cholylglycine, 7-oxocholic acid, and deoxycholic acid. The transport activity was inhibited by the proton ionophores carbonyl cyanide m-chlorophenylhydrazone, 2,4-dinitrophenol, and nigericin but not by the potassium ionophore valinomycin, suggesting that the transport is driven by the proton motive force across the cell membrane. In summary, we have cloned, sequenced, and expressed a bile acid-inducible bile acid transporter from Eubacterium sp. strain VPI 12708. To our knowledge, this is the first report of the cloning and expression of a gene encoding a procaryotic bile acid transporter.
Collapse
Affiliation(s)
- D H Mallonee
- Department of Microbiology and Immunology, Medical College of Virginia, Richmond 23298-0678, USA
| | | |
Collapse
|
20
|
Chapter 8 Multidrug resistance in prokaryotes: Molecular mechanisms of drug efflux. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
McMurry LM, Levy SB. The NH2-terminal half of the Tn10-specified tetracycline efflux protein TetA contains a dimerization domain. J Biol Chem 1995; 270:22752-7. [PMID: 7559401 DOI: 10.1074/jbc.270.39.22752] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The 43.1-kDa tetracycline-cation/proton antiporter TetA from Tn10 comprises two equal-sized domains, alpha and beta (amino-terminal and carboxyl-terminal halves, respectively). An inactivating mutation in the alpha domain can complement a mutation on a second polypeptide in the beta domain to restore partial tetracycline resistance in bacterial cells, suggesting that intermolecular interactions permit this transport protein to act as a multimer. In the present studies, multimer formation was examined in mixtures of dodecylmaltoside extracts of membranes from Escherichia coli cells containing different TetA derivatives. TetA, TetA alpha, and TetA beta were each fused genetically to a six-histidine carboxyl-terminal tail. The ability of these fusions, immobilized on a nickel affinity column, to bind wild type TetA or other Tet fusions was determined. An interaction between alpha domains on different polypeptides which resulted in multimerization was seen. The binding was specific for Tet protein and did not occur with other membrane proteins or another polyhistidine fusion protein. No alpha-beta interactions were detected by this method, although they are postulated to occur in the intact cell based on the alpha-beta genetic complementations. A dimeric model for TetA having intermolecular alpha-alpha and alpha-beta interactions is presented.
Collapse
Affiliation(s)
- L M McMurry
- Center for Adaptation Genetics and Drug Resistance, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
22
|
McNicholas P, McGlynn M, Guay GG, Rothstein DM. Genetic analysis suggests functional interactions between the N- and C-terminal domains of the TetA(C) efflux pump encoded by pBR322. J Bacteriol 1995; 177:5355-7. [PMID: 7665527 PMCID: PMC177333 DOI: 10.1128/jb.177.18.5355-5357.1995] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Genetic analysis of the tetA(C) gene of pBR322 indicates the importance of two-cytoplasmic loops in the TetA(C) protein (P. McNicholas, I. Chopra, and D. M. Rothstein, J. Bacteriol. 174:7926-7933, 1992). In this study, we characterized second-site suppressor mutations that suggest a functional interaction between these two cytoplasmic regions of the protein.
Collapse
Affiliation(s)
- P McNicholas
- Department of Microbial Genetics and Biochemistry, Lederle Laboratories, Pearl River, New York 10965, USA
| | | | | | | |
Collapse
|
23
|
Allen NE. Biochemical mechanisms of resistance to non-cell wall antibacterial agents. PROGRESS IN MEDICINAL CHEMISTRY 1995; 32:157-238. [PMID: 8577918 DOI: 10.1016/s0079-6468(08)70454-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- N E Allen
- Infectious Disease Research, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
24
|
Sahin-Tóth M, Lawrence MC, Kaback HR. Properties of permease dimer, a fusion protein containing two lactose permease molecules from Escherichia coli. Proc Natl Acad Sci U S A 1994; 91:5421-5. [PMID: 8202501 PMCID: PMC44007 DOI: 10.1073/pnas.91.12.5421] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
An engineered fusion protein containing two tandem lactose permease molecules (permease dimer) exhibits high transport activity and is used to test the phenomenon of negative dominance. Introduction of the mutation Glu-325-->Cys into either the first or the second half of the dimer results in a 50% decrease in activity, whereas introduction of the mutation into both halves of the dimer abolishes transport. Lactose transport by permease dimer is completely inactivated by N-ethylmaleimide; however, 40-45% activity is retained after N-ethylmaleimide treatment when either the first or the second half of the dimer is replaced with a mutant devoid of cysteine residues. The observations demonstrate that both halves of the fusion protein are equally active and suggest that each half may function independently. To test the possibility that oligomerization between dimers might account for the findings, a permease dimer was constructed that contains two different deletion mutants that complement functionally when expressed as untethered molecules. Because this construct does not catalyze lactose transport to any extent whatsoever, it is unlikely that the two halves of the dimer interact or that there is an oligomeric interaction between dimers. The approach is consistent with the contention that the functional unit of lactose permease is a monomer.
Collapse
Affiliation(s)
- M Sahin-Tóth
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90024-1662
| | | | | |
Collapse
|
25
|
Sloan J, McMurry LM, Lyras D, Levy SB, Rood JI. The Clostridium perfringens Tet P determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline-resistance determinants. Mol Microbiol 1994; 11:403-15. [PMID: 8170402 DOI: 10.1111/j.1365-2958.1994.tb00320.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The complete nucleotide sequence and mechanism of action of the tetracycline-resistance determinant, Tet P, from Clostridium perfringens has been determined. Analysis of the 4.4 kb of sequence data revealed the presence of two open reading frames, designated as tetA(P) and tetB(P). The tetA(P) gene appears to encode a 420 amino acid protein (molecular weight 46,079) with twelve transmembrane domains. This gene was shown to be responsible for the active efflux of tetracycline from resistant cells. Although there was some amino acid sequence similarity between the putative TetA(P) protein and other tetracycline efflux proteins, analysis suggested that TetA(P) represented a different type of efflux protein. The tetB(P) gene would encode a putative 652 amino acid protein (molecular weight 72,639) with significant sequence similarity to Tet(M)-like cytoplasmic proteins that specify a ribosomal-protection tetracycline-resistance mechanism. In both C. perfringens and Escherichia coli, tetB(P) encoded low-level resistance to tetracycline and minocycline whereas tetA(P) only conferred tetracycline resistance. The tetA(P) and tetB(P) genes appeared to be linked in an operon, which represented a novel genetic arrangement for tetracycline-resistance determinants. It is proposed that tetB(P) evolved from the conjugative transfer into C. perfringens of a tet(M)-like gene from another bacterium.
Collapse
Affiliation(s)
- J Sloan
- Department of Microbiology, Monash University, Clayton, Australia
| | | | | | | | | |
Collapse
|
26
|
Yamaguchi A, Someya Y, Sawai T. The in vivo assembly and function of the N- and C-terminal halves of the Tn10-encoded TetA protein in Escherichia coli. FEBS Lett 1993; 324:131-5. [PMID: 8389718 DOI: 10.1016/0014-5793(93)81378-d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The tetA gene was cut into its N- and C-terminal halves at the central EcoRI site and the two halves were subcloned individually or together under a separate lac promoter/operator. The expression of the C-terminal half was detected with a C-terminal-specific antibody. The amount of the N-terminal half in the cytoplasmic membrane was not affected by the presence of the C-terminal half. In contrast, the amount of the C-terminal half in the membrane was increased in the presence of the N-terminal half, indicating that the N-terminal half helps the stable folding of the C-terminal half in the membrane. Each half individually showed no tetracycline transport activity, however, when both halves were expressed together, the resultant complex showed about 40% of the tetracycline transport activity of the wild-type per number of the C-terminals of TetA protein in the membrane.
Collapse
Affiliation(s)
- A Yamaguchi
- Division of Microbial Chemistry, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | |
Collapse
|
27
|
Yamaguchi A, Kimura T, Someya Y, Sawai T. Metal-tetracycline/H+ antiporter of Escherichia coli encoded by transposon Tn10. The structural resemblance and functional difference in the role of the duplicated sequence motif between hydrophobic segments 2 and 3 and segments 8 and 9. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53278-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
28
|
Abstract
The TetA(C) protein, encoded by the tetA(C) gene of plasmid pBR322, is a member of a family of membrane-bound proteins that mediate energy-dependent efflux of tetracycline from the bacterial cell. The tetA(C) gene was mutagenized with hydroxylamine, and missense mutations causing the loss of tetracycline resistance were identified at 30 distinct codons. Mutations that encoded substitutions within putative membrane-spanning alpha-helical regions were scattered throughout the gene. In contrast, mutations outside the alpha-helical regions were clustered in two cytoplasmic loops, between helices 2 and 3 and helices 10 and 11, suggesting that these regions play a critical role in the recognition of tetracycline and/or energy transduction. All of the missense mutations encoded a protein that retained the ability to rescue an Escherichia coli strain defective in potassium uptake, suggesting that the loss of tetracycline resistance was not due to an unstable TetA(C) protein or to the failure of the protein to be inserted in the membrane. We postulate that the mutations encode residues that are critical for the active efflux of tetracycline, except for mutations that result in the introduction of charged residues within hydrophobic regions of the TetA(C) protein.
Collapse
Affiliation(s)
- P McNicholas
- Department of Microbial Genetics, Lederle Laboratories, Pearl River, New York 10965
| | | | | |
Collapse
|
29
|
Affiliation(s)
- S B Levy
- Department of Molecular Biology, Tufts University School of Medicine, New England Medical Center, Boston, Massachusetts 02111
| |
Collapse
|
30
|
Sugar—Cation Symport Systems in Bacteria. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0074-7696(08)62676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
|
31
|
Grafstrom RH, Zachariasewycz K, Brigandi RA, Block TM. Genetically engineered bacteria to identify and produce anti-viral agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 312:25-40. [PMID: 1514444 DOI: 10.1007/978-1-4615-3462-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have prepared a strain of Escherichia coli that expresses both the HIV protease and a Tet protein which has been modified to contain the HIV protease recognition sequence. When the protease is expressed, the bacteria will not grow in the presence of tetracycline. However, when the protease is inhibited the bacteria can grow in tetracycline containing media (Block and Grafstrom 1990). We have selected spontaneously arising Tet resistant mutants and have screened them for those that could be producing an inhibitor of HIV protease. The problems in the construction of this strain and the characterization of the various Tetr mutants are discussed.
Collapse
Affiliation(s)
- R H Grafstrom
- Department of Microbiology and Immunology, Jefferson Medical College, Philadelphia, PA 19107
| | | | | | | |
Collapse
|
32
|
Abstract
There is a symbiotic relationship between the evolution of fundamental theory and the winning of experimentally-based knowledge. The impact of the General Chemiosmotic Theory on our understanding of the nature of membrane transport processes is described and discussed. The history of experimental studies on transport catalysed by ionophore antibiotics and the membrane proteins of mitochondria and bacteria are used to illustrate the evolution of knowledge and theory. Recent experimental approaches to understanding the lactose-H+ symport protein of Escherichia coli and other sugar porters are described to show that the lack of experimental knowledge of the three-dimensional structures of the proteins currently limits the development of theories about their molecular mechanism of translocation catalysis.
Collapse
|
33
|
|
34
|
Rubin RA, Levy SB. Tet protein domains interact productively to mediate tetracycline resistance when present on separate polypeptides. J Bacteriol 1991; 173:4503-9. [PMID: 2066343 PMCID: PMC208114 DOI: 10.1128/jb.173.14.4503-4509.1991] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Both domains, alpha and beta, of the cytoplasmic membrane-localized Tet proteins encoded by the tet gene family (classes A through E) are required for resistance to tetracycline (Tcr) in gram-negative bacteria. Two inactive proteins, each containing a mutation in the opposite domain, are capable of complementation to produce Tcr. Similarly, inactive hybrid proteins expressed by interdomain gene hybrids constructed between tet(B) and tet(C) [tet(B) alpha/(C) beta and tet(C) alpha/(B) beta] together produce significant Tcr via trans complementation (R.A. Rubin and S. B. Levy, J. Bacteriol. 172:2303-2312, 1990). A derivative of tet(B) was constructed to express the two domains of Tet(B) as separate polypeptides, neither containing intact the central, hydrophilic interdomain region. Cells harboring this tet(B) mutant expressed Tcr at about 20% the level conferred by intact tet(B). As expected, no detectable amount of a full-length Tet protein was expressed. A polypeptide corresponding to the alpha domain was observed. Interdomain hybrids between tet(B) and tet(C) containing a frameshift at the fusion junction, designed to result in expression of each of the four domains on separate polypeptides, showed trans complementation without production of detectable full-length proteins. Levels of Tcr were greater than or equal to those previously observed in complementations using full-length hybrid proteins. These results strongly suggest that polypeptides harboring individual alpha and beta domains, lacking an intact interdomain region, can interact productively in the cell to confer Tcr.
Collapse
Affiliation(s)
- R A Rubin
- Department of Molecular Biology, Tufts University School of Medicine, Boston, Massachusetts
| | | |
Collapse
|
35
|
Metal-tetracycline/H+ antiporter of Escherichia coli encoded by a transposon Tn10. Histidine 257 plays an essential role in H+ translocation. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)38081-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|