1
|
Proteomic changes in Bacteroides fragilis exposed to subinhibitory concentration of piperacillin/tazobactam. Anaerobe 2013; 22:69-76. [DOI: 10.1016/j.anaerobe.2013.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 04/12/2013] [Indexed: 11/15/2022]
|
2
|
Bartlow P, Tiwari N, Beitle RR, Ataai MM. Evaluation of Escherichia coli proteins that burden nonaffinity-based chromatography as a potential strategy for improved purification performance. Biotechnol Prog 2011; 28:137-45. [DOI: 10.1002/btpr.703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/28/2011] [Indexed: 11/12/2022]
|
3
|
Nicholson MJ, Theodorou MK, Brookman JL. Molecular analysis of the anaerobic rumen fungus Orpinomyces - insights into an AT-rich genome. MICROBIOLOGY-SGM 2005; 151:121-133. [PMID: 15632432 DOI: 10.1099/mic.0.27353-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The anaerobic gut fungi occupy a unique niche in the intestinal tract of large herbivorous animals and are thought to act as primary colonizers of plant material during digestion. They are the only known obligately anaerobic fungi but molecular analysis of this group has been hampered by difficulties in their culture and manipulation, and by their extremely high A+T nucleotide content. This study begins to answer some of the fundamental questions about the structure and organization of the anaerobic gut fungal genome. Directed plasmid libraries using genomic DNA digested with highly or moderately rich AT-specific restriction enzymes (VspI and EcoRI) were prepared from a polycentric Orpinomyces isolate. Clones were sequenced from these libraries and the breadth of genomic inserts, both genic and intergenic, was characterized. Genes encoding numerous functions not previously characterized for these fungi were identified, including cytoskeletal, secretory pathway and transporter genes. A peptidase gene with no introns and having sequence similarity to a gene encoding a bacterial peptidase was also identified, extending the range of metabolic enzymes resulting from apparent trans-kingdom transfer from bacteria to fungi, as previously characterized largely for genes encoding plant-degrading enzymes. This paper presents the first thorough analysis of the genic, intergenic and rDNA regions of a variety of genomic segments from an anaerobic gut fungus and provides observations on rules governing intron boundaries, the codon biases observed with different types of genes, and the sequence of only the second anaerobic gut fungal promoter reported. Large numbers of retrotransposon sequences of different types were found and the authors speculate on the possible consequences of any such transposon activity in the genome. The coding sequences identified included several orphan gene sequences, including one with regions strongly suggestive of structural proteins such as collagens and lampirin. This gene was present as a single copy in Orpinomyces, was expressed during vegetative growth and was also detected in genomes from another gut fungal genus, Neocallimastix.
Collapse
Affiliation(s)
- Matthew J Nicholson
- School of Biological Sciences, University of Manchester, 1.800 Stopford Building, Oxford Road, Manchester M13 9PT, UK
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK
| | - Michael K Theodorou
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK
| | - Jayne L Brookman
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK
| |
Collapse
|
4
|
Walker ND, McEwan NR, Wallace RJ. A pepD-like peptidase from the ruminal bacterium,Prevotella albensis. FEMS Microbiol Lett 2005; 243:399-404. [PMID: 15686841 DOI: 10.1016/j.femsle.2004.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 12/10/2004] [Accepted: 12/29/2004] [Indexed: 11/18/2022] Open
Abstract
Peptidases of Prevotella spp. play an important role in the breakdown of protein to ammonia in the rumen. This study describes a peptidase cloned from Prevotella albensis M384. DNA from P. albensis was used to complement a peptidase-deficient strain of Escherichia coli, CM107. A cloned fragment, Pep581, which enabled growth of E. coli CM107, contained an ORF of 1452 bp, encoding a 484 amino acid residue protein with a calculated molecular weight of 53.2 kDa and a theoretical pI of 4.90. Pep581 shared similar sequence identity of 47% with PepD from E. coli, and it was also a metallo-aminopeptidase. A putative catalytic metal binding region was identified in Pep581, similar to that found in the related PepT (a tripeptidase) and PepA (an oligopeptidase). Gel filtration indicated Pep581 was a dimer in its native state, similar to PepD of E. coli. PepD is a broad specificity dipeptidase that has been found in several prokaryotes. The enzyme expressed from Pep581 differed from PepD enzymes previously characterised in that it hydrolysed tri- and oligopeptides in addition to dipeptides, cleaving single amino acids from the N terminus.
Collapse
|
5
|
Brombacher E, Dorel C, Zehnder AJB, Landini P. The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli. MICROBIOLOGY-SGM 2003; 149:2847-2857. [PMID: 14523117 DOI: 10.1099/mic.0.26306-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Production of curli, extracellular structures important for biofilm formation, is positively regulated by OmpR, which constitutes with the EnvZ protein an osmolarity-sensing two-component regulatory system. The expression of curli is cryptic in most Escherichia coli laboratory strains such as MG1655, due to the lack of csgD expression. The csgD gene encodes a transcription activator of the curli-subunit-encoding csgBA operon. The ompR234 up-mutation can restore csgD expression, resulting in curli production and increased biofilm formation. In this report, it is shown that ompR234-dependent csgD expression, in addition to csgBA activation during stationary phase of growth, stimulates expression of the yaiC gene and negatively regulates at least two other genes, pepD and yagS. The promoter regions of these four genes share a conserved 11 bp sequence (CGGGKGAKNKA), necessary for csgBA and yaiC regulation by CsgD. While at both the csgBA and yaiC promoters the sequence is located upstream of the promoter elements, in both yagS and pepD it overlaps either the putative -10 sequence or the transcription start point, suggesting that CsgD can function as both an activator and a repressor. Adhesion experiments show that csgD-independent expression of both yagS and pepD from a multicopy plasmid negatively affects biofilm formation, which, in contrast, is stimulated by yaiC expression. Thus it is proposed that CsgD stimulates biofilm formation in E. coli by contemporary activation of adhesion positive determinants (the curli-encoding csg operons and the product of the yaiC gene) and repression of negative effectors such as yagS and pepD.
Collapse
Affiliation(s)
- Eva Brombacher
- Swiss Federal Institute of Environmental Technology (EAWAG), Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Corinne Dorel
- Unité de Microbiologie et Génétique (CNRS UMR 5122), Institut National des Sciences Appliquées de Lyon, 10 rue Dubois, 69622 Villeurbanne Cedex, France
| | - Alexander J B Zehnder
- Swiss Federal Institute of Environmental Technology (EAWAG), Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Paolo Landini
- Swiss Federal Institute of Environmental Technology (EAWAG), Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
6
|
Håkansson K, Miller CG. Structure of peptidase T from Salmonella typhimurium. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:443-50. [PMID: 11856302 DOI: 10.1046/j.0014-2956.2001.02665.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The structure of peptidase T, or tripeptidase, was determined by multiple wavelength anomalous dispersion (MAD) methodology and refined to 2.4 A resolution. Peptidase T comprises two domains; a catalytic domain with an active site containing two metal ions, and a smaller domain formed through a long insertion into the catalytic domain. The two metal ions, presumably zinc, are separated by 3.3 A, and are coordinated by five carboxylate and histidine ligands. The molecular surface of the active site is negatively charged. Peptidase T has the same basic fold as carboxypeptidase G2. When the structures of the two enzymes are superimposed, a number of homologous residues, not evident from the sequence alone, could be identified. Comparison of the active sites of peptidase T, carboxypeptidase G2, Aeromonas proteolytica aminopeptidase, carboxypeptidase A and leucine aminopeptidase reveals a common structural framework with interesting similarities and differences in the active sites and in the zinc coordination. A putative binding site for the C-terminal end of the tripeptide substrate was found at a peptidase T specific fingerprint sequence motif.
Collapse
Affiliation(s)
- Kjell Håkansson
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
7
|
Bradshaw RA, Hope CJ, Yi E, Walker KW. Co- and Posttranslational Processing: The Removal of Methionine. CO- AND POSTTRANSLATIONAL PROTEOLYSIS OF PROTEINS 2002. [DOI: 10.1016/s1874-6047(02)80015-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Bidle KA, Bartlett DH. RNA arbitrarily primed PCR survey of genes regulated by ToxR in the deep-sea bacterium Photobacterium profundum strain SS9. J Bacteriol 2001; 183:1688-93. [PMID: 11160100 PMCID: PMC95054 DOI: 10.1128/jb.183.5.1688-1693.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We are currently investigating the role of ToxR-mediated gene regulation in Photobacterium profundum strain SS9. SS9 is a moderately piezophilic ("pressure loving") psychrotolerant marine bacterium belonging to the family Vibrionaceae. In Vibrio cholerae, ToxR is a transmembrane DNA binding protein involved in mediating virulence gene expression in response to various environmental signals. A homolog to V. cholerae ToxR that is necessary for pressure-responsive gene expression of two outer membrane protein-encoding genes was previously found in SS9. To search for additional genes regulated by ToxR in SS9, we have used RNA arbitrarily primed PCR (RAP-PCR) with wild-type and toxR mutant strains of SS9. Seven ToxR-activated transcripts and one ToxR-repressed transcript were identified in this analysis. The cDNAs corresponding to these partial transcripts were cloned and sequenced, and ToxR regulation of their genes was verified. The products of these genes are all predicted to fall into one or both of two functional categories, those whose products alter membrane structure and/or those that are part of a starvation response. The transcript levels of all eight newly identified genes were also characterized as a function of hydrostatic pressure. Various patterns of pressure regulation were observed, indicating that ToxR activation or repression cannot be used to predict the influence of pressure on gene expression in SS9. These results provide further information on the nature of the ToxR regulon in SS9 and indicate that RAP-PCR is a useful approach for the discovery of new genes under the control of global regulatory transcription factors.
Collapse
Affiliation(s)
- K A Bidle
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California 92093-0202, USA
| | | |
Collapse
|
9
|
Weber BA, Klein JR, Henrich B. Expression of the phospho-beta-glycosidase ArbZ from Lactobacillus delbrueckii subsp. lactis in Lactobacillus helveticus: substrate induction and catabolite repression. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 8):1941-1948. [PMID: 10931898 DOI: 10.1099/00221287-146-8-1941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ArbZ from Lactobacillus delbrueckii subsp. lactis was previously shown to enable utilization of the beta-glucoside arbutin by Escherichia coli. The arbZ gene was cloned and expressed in the industrially used beta-glucoside-negative strain Lactobacillus helveticus 3036(62). The transformants were able to ferment not only arbutin, but also cellobiose, salicin and methyl-beta-glucoside (MbetaGlc). Cleavage of beta-glucosides by the transformants depended on the integrity of the cytoplasmic membrane, whereas in cell-free extracts only C(6)-phosphorylated substrates were hydrolysed. This suggested that ArbZ is a phospho-beta-glycosidase. ArbZ activity in transformants of Lb. helveticus was subject to substrate induction mediated by the beta-glucosides arbutin, salicin and MbetaGlc, whereas cellobiose or the beta-galactoside lactose had no inducing effect. Northern blot analysis proved that induction by MbetaGlc was due to enhanced transcription of arbZ. Catabolite repression of arbZ induction was observed with glucose, mannose, fructose and galactose. The induction kinetics observed in the presence of these sugars indicated that at least two different mechanisms are operative in catabolite repression of arbZ in Lb. helveticus.
Collapse
Affiliation(s)
- Beate A Weber
- Universität Kaiserslautern, Fachbereich Biologie, Abteilung Mikrobiologie, PO Box 3049, D-67653 Kaiserslautern, Germany1
| | - Jürgen R Klein
- Universität Kaiserslautern, Fachbereich Biologie, Abteilung Mikrobiologie, PO Box 3049, D-67653 Kaiserslautern, Germany1
| | - Bernhard Henrich
- Universität Kaiserslautern, Fachbereich Biologie, Abteilung Mikrobiologie, PO Box 3049, D-67653 Kaiserslautern, Germany1
| |
Collapse
|
10
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
11
|
Weber BA, Klein JR, Henrich B. The arbZ gene from Lactobacillus delbrueckii subsp. lactis confers to Escherichia coli the ability to utilize the beta-glucoside arbutin. Gene X 1998; 212:203-11. [PMID: 9611263 DOI: 10.1016/s0378-1119(98)00156-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
From a genomic library of the industrially used strain Lactobacillus delbrueckii subsp. lactis DSM7290, a gene designated arbZ (869bp; encoding a 33.5kDa protein) was isolated by screening E. coli transformants for the ability to utilize the beta-glucoside arbutin. Out of 9000 transformants nine were able to ferment arbutin, whereas no utilization of the beta-glucosides salicin, esculin or cellobiose could be detected. Overexpression of arbZ using the T7-polymerase-T7-promoter-system resulted in the formation of insoluble, catalytically inactive protein aggregates (inclusion bodies). Accordingly, overexpression was not accompanied by an increase in ArbZ activity. Induction of arbZ controlled by the lac promoter under conditions that reduce protein aggregation resulted in a 12-fold increase in arbutin hydrolyzing activity of intact cells and a 13-fold increase in phospho-beta-glycosidase activity in cell-free extracts of the respective transformants. Nucleotide sequence analysis revealed a second gene upstream of arbZ that was designated arbX (830bp). ArbX (32.6kDa) shared similarity with several glycosyltransferases involved in the biosynthesis of lipopolysaccharides in Gram-negative bacteria. In Lb. delbrueckii subsp. lactis DSM7290 two transcripts, one covering arbX together with arbZ and one covering arbZ alone were detected by Northern blot analysis.
Collapse
Affiliation(s)
- B A Weber
- Fachbereich Biologie, Abteilung Mikrobiologie, Universitaet Kaiserslautern, Postfach 3049, D-67653, Kaiserslautern, Germany.
| | | | | |
Collapse
|
12
|
Abstract
Aminopeptidases are exopeptidases that selectively release N-terminal amino acid residues from polypeptides and proteins. Bacteria display several aminopeptidasic activities which may be localised in the cytoplasm, on membranes, associated with the cell envelope or secreted into the extracellular media. Studies on the bacterial aminopeptide system have been carried out over the past three decades and are significant in fundamental and biotechnological domains. At present, about one hundred bacterial aminopeptidases have been purified and biochemically studied. About forty genes encoding aminopeptidases have also been cloned and characterised. Recently, the three-dimensional structure of two aminopeptidases, the methionine aminopeptidase from Escherichia coli and the leucine aminopeptidase from Aeromonas proteolytica, have been elucidated by crystallographic studies. Most of the quoted studies demonstrate that bacterial aminopeptidases generally show Michaelis-Menten kinetics and can be placed into either of two categories based on their substrate specificity: broad or narrow. These enzymes can also be classified by another criterium based on their catalytic mechanism: metallo-, cysteine- and serine-aminopeptidases, the former type being predominant in bacteria. Aminopeptidases play a role in several important physiological processes. It is noteworthy that some of them take part in the catabolism of exogenously supplied peptides and are necessary for the final steps of protein turnover. In addition, they are involved in some specific functions, such as the cleavage of N-terminal methionine from newly synthesised peptide chains (methionine aminopeptidases), the stabilisation of multicopy ColE1 based plasmids (aminopeptidase A) and the pyroglutamyl aminopeptidase (Pcp) present in many bacteria and responsible for the cleavage of the N-terminal pyroglutamate.
Collapse
Affiliation(s)
- T Gonzales
- Laboratoire de Génétique Moléculaire des Microorganismes et des Interactions Cellulaires, C.N.R.S. UMR 5577, Bâtiment, Villeurbanne, France
| | | |
Collapse
|
13
|
Dudley EG, Husgen AC, He W, Steele JL. Sequencing, distribution, and inactivation of the dipeptidase A gene (pepDA) from Lactobacillus helveticus CNRZ32. J Bacteriol 1996; 178:701-4. [PMID: 8550503 PMCID: PMC177715 DOI: 10.1128/jb.178.3.701-704.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Previously, the gene for a general dipeptidase (pepDA) was isolated from a gene bank of Lactobacillus helveticus CNRZ32. The pepDA gene consists of a 1,422-bp open reading frame which could encode a polypeptide of 53.5 kDa. No significant identity was found between the deduced amino acid sequence of the pepDA product and the sequence for other polypeptides reported in GenBank. Southern hybridization studies with a pepDA probe indicated that the nucleotide sequence for pepDA is not well conserved among a variety of lactic acid bacteria. Growth studies indicated that a pepDA deletion had no detectable effect on growth rate or acid production by L. helveticus CNRZ32 in milk. Furthermore, no difference in total cellular dipeptidase activity was detected between the mutant and wild-type strains during logarithmic growth in MRS medium.
Collapse
Affiliation(s)
- E G Dudley
- Department of Bacteriology, University of Wisconsin-Madison 53706, USA
| | | | | | | |
Collapse
|
14
|
Mapping, cloning, and DNA sequencing of pepB which encodes peptidase B of Escherichia coli K-12. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0922-338x(96)89157-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Stucky K, Hagting A, Klein JR, Matern H, Henrich B, Konings WN, Plapp R. Cloning and characterization of brnQ, a gene encoding a low-affinity, branched-chain amino acid carrier in Lactobacillus delbrückii subsp. lactis DSM7290. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:682-90. [PMID: 8544834 DOI: 10.1007/bf00418038] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A gene (brnQ), encoding a carrier for branched-chain amino acids in Lactobacillus delbrückii subsp. lactis DSM7290 was cloned in the low-copy-number vector pLG339 by complementation of a transport-deficient Escherichia coli strain. The plasmid carrying the cloned gene restored growth of an E. coli strain mutated in 4 different branched-chain amino acid transport genes at low concentrations of isoleucine, and increased its sensitivity to valine. Transport assays showed that leucine, isoleucine and valine are transported by this carrier and that transport is driven by the proton motive force. Nucleotide sequence analysis revealed an open reading frame of 1338 bp encoding a hydrophobic protein of 446 amino acids with a calculated molecular mass of 47864 Daltons. The start site of brnQ transcription was determined by primer extension analysis using mRNA from Lactobacillus delbrückii subsp. lactis DSM7290. The hydropathy profile suggests the existence of at least 12 hydrophobic domains that probably form membrane-associated alpha-helices. Comparisons of the nucleotide sequence of brnQ from Lactobacillus delbrückii subsp. lactis DSM7290, the amino acid sequence of its product and the topology of the hydrophobic domains with those of the respective carrier genes and proteins of Salmonella typhimurium and Pseudomonas aeruginosa revealed extensive homology.
Collapse
Affiliation(s)
- K Stucky
- Universität Kaiserslautern, Fachbereich Biologie, Abteilung Mikrobiologie, Kaiserslauterm, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Arfin SM, Kendall RL, Hall L, Weaver LH, Stewart AE, Matthews BW, Bradshaw RA. Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes. Proc Natl Acad Sci U S A 1995; 92:7714-8. [PMID: 7644482 PMCID: PMC41216 DOI: 10.1073/pnas.92.17.7714] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Using partial amino acid sequence data derived from porcine methionyl aminopeptidase (MetAP; methionine aminopeptidase, peptidase M; EC 3.4.11.18), a full-length clone of the homologous human enzyme has been obtained. The cDNA sequence contains 2569 nt with a single open reading frame corresponding to a protein of 478 amino acids. The C-terminal portion representing the catalytic domain shows limited identity with MetAP sequences from various prokaryotes and yeast, while the N terminus is rich in charged amino acids, including extended strings of basic and acidic residues. These highly polar stretches likely result in the spuriously high observed molecular mass (67 kDa). This cDNA sequence is highly similar to a rat protein, termed p67, which was identified as an inhibitor of phosphorylation of initiation factor eIF2 alpha and was previously predicted to be a metallopeptidase based on limited sequence homology. Model building established that human MetAP (p67) could be readily accommodated into the Escherichia coli MetAP structure and that the Co2+ ligands were fully preserved. However, human MetAP was found to be much more similar to a yeast open reading frame that differed markedly from the previously reported yeast MetAP. A similar partial sequence from Methanothermus fervidus suggests that this p67-like sequence is also found in prokaryotes. These findings suggest that there are two cobalt-dependent MetAP families, presently composed of the prokaryote and yeast sequences (and represented by the E. coli structure) (type I), on the one hand, and by human MetAP, the yeast open reading frame, and the partial prokaryotic sequence (type II), on the other.
Collapse
Affiliation(s)
- S M Arfin
- Department of Biological Chemistry, College of Medicine, University of California, Irvine 92717-1700, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Henrich B, Schmidtberger B. Positive-selection vector with enhanced lytic potential based on a variant of phi X174 phage gene E. Gene 1995; 154:51-4. [PMID: 7867948 DOI: 10.1016/0378-1119(94)00839-k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A cloning vector, pUH89, allowing positive selection of recombinant Escherichia coli clones by insertional inactivation of the modified lysis gene E of bacteriophage phi X174, was developed. Ten unique cloning sites were introduced into gene E by site-directed mutagenesis. To achieve efficient expression of the mutagenized gene, the combined lac and tac promoters were used. Additional restriction sites in the flanking sequences allow screening for transcription terminators and the excision of several cartridges suitable for vector construction.
Collapse
Affiliation(s)
- B Henrich
- Universität Kaiserslautern, Abteilung Mikrobiologie, Germany
| | | |
Collapse
|
18
|
Conlin CA, Miller CG. Dipeptidyl carboxypeptidase and oligopeptidase A from Escherichia coli and Salmonella typhimurium. Methods Enzymol 1995; 248:567-79. [PMID: 7674945 DOI: 10.1016/0076-6879(95)48036-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C A Conlin
- Department of Biological Sciences, Mankato State University, Minnesota 56002, USA
| | | |
Collapse
|
19
|
Affiliation(s)
- N D Rawlings
- Department of Biochemistry, Strangeways Research Laboratory, Cambridge, United Kingdom
| | | |
Collapse
|
20
|
Schroeder U, Henrich B, Fink J, Plapp R. Peptidase D of Escherichia coli K-12, a metallopeptidase of low substrate specificity. FEMS Microbiol Lett 1994; 123:153-9. [PMID: 7988883 DOI: 10.1111/j.1574-6968.1994.tb07215.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Peptidase D of Escherichia coli was overproduced from a multicopy plasmid and purified to electrophoretic homogeneity. The pure enzyme was stable at 4 degrees C or -20 degrees C and had a pH optimum at pH 9, and a pI of 4.7; the temperature optimum was at 37 degrees C. As the enzyme was activated by Co2+ and Zn2+, and deactivated by metal chelators, it appears to be a metallopeptidase. By activity staining of native gels, 11 dipeptides which are preferentially cleaved by peptidase D were identified. Peptidase D activity required dipeptide substrates with an unblocked amino terminus and the amino group in the alpha or beta position. Non-protein amino acids and proline were not accepted in the C-terminal position, whereas some dipeptide amides and formyl amino acids were hydrolyzed. Km values of 2 to 5 mM indicate a relatively poor interaction of the enzyme with its substrates.
Collapse
Affiliation(s)
- U Schroeder
- Universität Kaiserslautern, Abteilung Mikrobiologie, FRG
| | | | | | | |
Collapse
|
21
|
Mierau I, Haandrikman AJ, Velterop O, Tan PS, Leenhouts KL, Konings WN, Venema G, Kok J. Tripeptidase gene (pepT) of Lactococcus lactis: molecular cloning and nucleotide sequencing of pepT and construction of a chromosomal deletion mutant. J Bacteriol 1994; 176:2854-61. [PMID: 8188586 PMCID: PMC205439 DOI: 10.1128/jb.176.10.2854-2861.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The gene encoding a tripeptidase (pepT) of Lactococcus lactis subsp. cremoris (formerly subsp. lactis) MG1363 was cloned from a genomic library in pUC19 and subsequently sequenced. The tripeptidase of L. lactis was shown to be homologous to PepT of Salmonella typhimurium with 47.4% identity in the deduced amino acid sequences. L. lactis PepT was enzymatically active in Escherichia coli and allowed growth of a peptidase-negative leucine-auxotrophic E. coli strain by liberation of Leu from a tripeptide. Using a two-step integration-excision system, a pepT-negative mutant of L. lactis was constructed. No differences between the growth of the mutant and that of the wild-type strain in milk or in chemically defined medium with casein as the sole source of essential amino acids were observed.
Collapse
Affiliation(s)
- I Mierau
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bazan JF, Weaver LH, Roderick SL, Huber R, Matthews BW. Sequence and structure comparison suggest that methionine aminopeptidase, prolidase, aminopeptidase P, and creatinase share a common fold. Proc Natl Acad Sci U S A 1994; 91:2473-7. [PMID: 8146141 PMCID: PMC43391 DOI: 10.1073/pnas.91.7.2473] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Amino acid sequence comparison suggests that the structure of Escherichia coli methionine aminopeptidase (EC 3.4.11.18) and the C-terminal domain of Pseudomonas putida creatinase (EC 3.5.3.3) are related. A detailed comparison of the three-dimensional folds of the two enzymes confirms this homology: with an approximately 260-residue chain segment, 218 C alpha atoms of the structures superimpose within 2.5 A; only 41 of these overlapping positions (i.e., 19%) feature identical amino acids in the two protein chains. Notwithstanding this striking correspondence in structure, methionine aminopeptidase binds and is stimulated by Co2+, while creatinase is not a metal-dependent enzyme. Searches of protein data banks using sequence and structure-based profiles reveal other enzymes, including aminopeptidase P (EC 3.4.11.9), prolidase (EC 3.4.13.9), and agropine synthase, that likely share the same "pita-bread" fold common to creatinase and methionine aminopeptidase.
Collapse
Affiliation(s)
- J F Bazan
- Institute of Molecular Biology, Howard Hughes Medical Institute, Eugene, OR
| | | | | | | | | |
Collapse
|
23
|
Abstract
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome.
Collapse
Affiliation(s)
- M Riley
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
24
|
Henrich B, Becker S, Schroeder U, Plapp R. dcp gene of Escherichia coli: cloning, sequencing, transcript mapping, and characterization of the gene product. J Bacteriol 1993; 175:7290-300. [PMID: 8226676 PMCID: PMC206872 DOI: 10.1128/jb.175.22.7290-7300.1993] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Dipeptidyl carboxypeptidase is a C-terminal exopeptidase of Escherichia coli. We have isolated the respective gene, dcp, from a low-copy-number plasmid library by its ability to complement a dcp mutation preventing the utilization of the unique substrate N-benzoyl-L-glycyl-L-histidyl-L-leucine. Sequence analysis of a 2.9-kb DNA fragment revealed an open reading frame of 2,043 nucleotides which was assigned to the dcp gene by N-terminal amino acid sequencing and electrophoretic molecular mass determination of the purified dcp product. Transcript mapping by primer extension and S1 protection experiments verified the physiological significance of potential initiation and termination signals for dcp transcription and allowed the identification of a single species of monocistronic dcp mRNA. The codon usage pattern and the effects of elevated gene copy number indicated a relatively low level of dcp expression. The predicted amino acid sequence of dipeptidyl carboxypeptidase, containing a potential zinc-binding site, is highly homologous (78.8%) to the corresponding enzyme from Salmonella typhimurium. It also displays significant homology to the products of the S. typhimurium opdA and the E. coli prlC genes and to some metalloproteases from rats and Saccharomyces cerevisiae. No potential export signals could be inferred from the amino acid sequence. Dipeptidyl carboxypeptidase was enriched 80-fold from crude extracts of E. coli and used to investigate some of its biochemical and biophysical properties.
Collapse
Affiliation(s)
- B Henrich
- Fachbereich Biologie, Universität Kaiserslautern, Germany
| | | | | | | |
Collapse
|
25
|
Abstract
An updated compilation of 300 E. coli mRNA promoter sequences is presented. For each sequence the most recent relevant paper was checked, to verify the location of the transcriptional start position as identified experimentally. We comment on the reliability of the sequence databanks and analyze the conservation of known promoter features in the current compilation. This database is available by E-mail.
Collapse
Affiliation(s)
- S Lisser
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
26
|
Pel HJ, Rep M, Grivell LA. Sequence comparison of new prokaryotic and mitochondrial members of the polypeptide chain release factor family predicts a five-domain model for release factor structure. Nucleic Acids Res 1992; 20:4423-8. [PMID: 1408743 PMCID: PMC334167 DOI: 10.1093/nar/20.17.4423] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have recently reported the cloning and sequencing of the gene for the mitochondrial release factor mRF-1. mRF-1 displays high sequence similarity to the bacterial release factors RF-1 and RF-2. A database search for proteins resembling these three factors revealed high similarities to two amino acid sequences deduced from unassigned genomic reading frames in Escherichia coli and Bacillus subtilis. The amino acid sequence derived from the Bacillus reading frame is 47% identical to E.coli and Salmonella typhimurium RF-2, strongly suggesting that it represents B.subtilis RF-2. Our comparison suggests that the expression of the B.subtilis gene is, like that of the E.coli and S. typhimurium RF-2 genes, autoregulated by a stop codon dependent +1 frameshift. A comparison of prokaryotic and mitochondrial release factor sequences, including the putative B.subtilis RF-2, leads us to propose a five-domain model for release factor structure. Possible functions of the various domains are discussed.
Collapse
Affiliation(s)
- H J Pel
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
27
|
Henrich B, Backes H, Klein JR, Plapp R. The promoter region of the Escherichia coli pepD gene: deletion analysis and control by phosphate concentration. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:117-25. [PMID: 1313142 DOI: 10.1007/bf00299144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of deletions removing progressively larger parts of the 5' flanking region of the Escherichia coli pepD gene was constructed. After fusing the resulting promoter fragments to the chromosomal malPQ operon, their activities were determined by assaying for amylomaltase, the product of the malQ gene. Transcription from the pepD promoter region in exponentially growing cells was estimated to be about 5 times less efficient than transcription from the induced lac promoter. Approximately 115 bp preceding the translation start site of the pepD gene are important for regular promoter functioning, whereas the more distal sequences could be deleted without any significant effects. In bacterial cultures containing limiting amounts of inorganic phosphate, the rate of de novo synthesis of peptidase D, simultaneously with the derepression of alkaline phosphatase, increased about fivefold as a consequence of phosphate starvation. This regulation was shown to occur at the transcriptional level by the use of chromosomal pepD promoter-malPQ fusions. The inducibility by phosphate limitation was conserved in all of the deletion clones in which the pepD promoter region was still functional. As demonstrated by the use of phoB, R, and M mutants, the modulation of pepD expression is independent of the genetic system controlling the pho regulon.
Collapse
Affiliation(s)
- B Henrich
- Universität Kaiserslautern, Fachbereich Biologie, FRG
| | | | | | | |
Collapse
|
28
|
Henrich B, Plapp R. Locations of the genes from pepD through proA on the physical map of the Escherichia coli chromosome. J Bacteriol 1991; 173:7407-8. [PMID: 1938933 PMCID: PMC212499 DOI: 10.1128/jb.173.23.7407-7408.1991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- B Henrich
- Fachbereich Biologie, Abteilung Mikrobiologie, Universität Kaiserslautern, Germany
| | | |
Collapse
|
29
|
Klein JR, Henrich B, Plapp R. Molecular analysis and nucleotide sequence of the envCD operon of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:230-40. [PMID: 1720861 DOI: 10.1007/bf00290673] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The chromosomal DNA insert in plasmid pJK131, which complements the phenotypic defects associated with a mutation in the envC gene of Escherichia coli strain PM61, was sequenced. The analysis of the nucleotide sequence revealed two open reading frames (ORFs) coding for the proteins EnvC (41,281 daltons) and EnvD (104,415 daltons). The envC gene product is synthesized as a pre-protein and, after cleavage of a signal peptide, the mature protein is incorporated into the cytoplasmic membrane. The detection of a common transcript for both ORFs indicated the existence of an envCD operon. Deletion analysis and the generation of frameshifts demonstrated that simultaneous expression of both genes is required to complement the defects in strain PM61. Overproduction of EnvC protein appears to be lethal to Escherichia coli. The envD gene, however, could be cloned and expressed at high levels under control of the tac promoter without deleterious effects on the host.
Collapse
Affiliation(s)
- J R Klein
- Abteilung Mikrobiologie, Universität Kaiserslautern, FRG
| | | | | |
Collapse
|
30
|
Miller CG, Miller JL, Bagga DA. Cloning and nucleotide sequence of the anaerobically regulated pepT gene of Salmonella typhimurium. J Bacteriol 1991; 173:3554-8. [PMID: 1904438 PMCID: PMC207971 DOI: 10.1128/jb.173.11.3554-3558.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The anaerobically regulated pepT gene of Salmonella typhimurium has been cloned in pBR328. Strains carrying the pepT plasmid, pJG17, overproduce peptidase T by approximately 70-fold. The nucleotide sequence of a 2.5-kb region including pepT has been determined. The sequence codes for a protein of 44,855 Da, consistent with a molecular weight of approximately 46,000 for peptidase T (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration). The N-terminal amino acid sequence of peptidase T purified from a pJG17-containing strain matches that predicted by the nucleotide sequence. A plasmid carrying an anaerobically regulated pepT::lacZ transcriptional fusion contains only 165 bp 5' to the start of translation. This region contains a sequence highly homologous to that identified in Escherichia coli as the site of action of the FNR protein, a positive regulator of anaerobic gene expression. A region of the deduced amino acid sequence of peptidase T is similar to segments of Pseudomonas carboxypeptidase G2, the E. coli peptidase encoded by the iap gene, and E. coli peptidase D.
Collapse
Affiliation(s)
- C G Miller
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | |
Collapse
|