1
|
Deng Y, Wang SY. Sorption of Cellulases in Biofilm Enhances Cellulose Degradation by Bacillus subtilis. Microorganisms 2022; 10:microorganisms10081505. [PMID: 35893563 PMCID: PMC9329931 DOI: 10.3390/microorganisms10081505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Biofilm commonly forms on the surfaces of cellulosic biomass but its roles in cellulose degradation remain largely unexplored. We used Bacillus subtilis to study possible mechanisms and the contributions of two major biofilm components, extracellular polysaccharides (EPS) and TasA protein, to submerged biofilm formation on cellulose and its degradation. We found that biofilm produced by B. subtilis is able to absorb exogenous cellulase added to the culture medium and also retain self-produced cellulase within the biofilm matrix. The bacteria that produced more biofilm degraded more cellulose compared to strains that produced less biofilm. Knockout strains that lacked both EPS and TasA formed a smaller amount of submerged biofilm on cellulose than the wild-type strain and also degraded less cellulose. Imaging of biofilm on cellulose suggests that bacteria, cellulose, and cellulases form cellulolytic biofilm complexes that facilitate synergistic cellulose degradation. This study brings additional insight into the important functions of biofilm in cellulose degradation and could potentiate the development of biofilm-based technology to enhance biomass degradation for biofuel production.
Collapse
|
2
|
Yim S, Kim M. Purification and characterization of thermostable l-asparaginase from Bacillus amyloliquefaciens MKSE in Korean soybean paste. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Wang H, Yang L, Ping Y, Bai Y, Luo H, Huang H, Yao B. Engineering of a Bacillus amyloliquefaciens Strain with High Neutral Protease Producing Capacity and Optimization of Its Fermentation Conditions. PLoS One 2016; 11:e0146373. [PMID: 26752595 PMCID: PMC4708984 DOI: 10.1371/journal.pone.0146373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/16/2015] [Indexed: 01/03/2023] Open
Abstract
The neutral protease has high potential for industrial applications, and attempts to improve enzyme expression level have important application values. In the present study, a neutral protease-encoding gene, Banpr, was cloned from Bacillus amyloliquefaciens strain K11, and a genetic manipulation method specific for this difficult-to-transform strain was developed for the high-level expression of neutral protease. The recombinant plasmid pUB110-Banpr was constructed in Bacillus subtilis strain WB600 and then transformed into strain K11 under optimized conditions. A positive transformant 110N-6 with the highest protease secreting capacity on skim milk plates and great genetic stability for more than 100 generations was selected for further study. Optimization of the fermentation conditions increased the enzyme activity of strain 110N-6 to 8995 ± 250 U/ml in flask culture and 28084 ± 1282 U/ml in 15-l fermentor, which are significantly higher than that of the native strain K11 and industrial strain B. subtilis AS.1398, respectively. The high expression level and extreme genetic stability make B. amyloliquefaciens strain 110N-6 more favorable for mass production of neutral protease for industrial uses.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Lian Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yanhai Ping
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
4
|
Extremophilic Proteases: Developments of Their Special Functions, Potential Resources and Biotechnological Applications. BIOTECHNOLOGY OF EXTREMOPHILES: 2016. [DOI: 10.1007/978-3-319-13521-2_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Enhancement of thermostability and resistance against autolysis in a zinc metalloprotease. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
6
|
Eijsink VGH, Matthews BW, Vriend G. The role of calcium ions in the stability and instability of a thermolysin-like protease. Protein Sci 2011; 20:1346-55. [PMID: 21648000 PMCID: PMC3189520 DOI: 10.1002/pro.670] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 11/06/2022]
Abstract
Thermolysin and other secreted broad-specificity proteases, such as subtilisin or alpha-lytic protease, are produced as pre-pro-proteins that stay at least partially unfolded while in the cytosol. After secretion, the pro-proteases fold to their active conformations in a process that includes the autolytic removal of the pro-peptide. We review the life cycle of the thermolysin-like protease from Bacillus stearothermophilus in light of the calcium dependent stability and instability of the N-terminal domain. The protease binds calcium ions in the regions that are involved in the autolytic maturation process. It is generally assumed that the calcium ions contribute to the extreme stability of the protease, but experimental evidence for TLP-ste indicates that at least one of the calcium ions plays a regulatory role. We hypothesize that this calcium ion plays an important role as a switch that modulates the protease between stable and unstable states as appropriate to the biological need.
Collapse
Affiliation(s)
- VGH Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life SciencesN-1432 Ås, Norway
| | - BW Matthews
- Institute of Molecular Biology, University of OregonEugene, 97403-1229 Oregon, USA
| | - G Vriend
- CMBI, NCMLS, Radboud University Nijmegen Medical Centre6525 GA 26-28 Nijmegen, The Netherlands
| |
Collapse
|
7
|
Purohit MK, Singh SP. Comparative analysis of enzymatic stability and amino acid sequences of thermostable alkaline proteases from two haloalkaliphilic bacteria isolated from Coastal region of Gujarat, India. Int J Biol Macromol 2011; 49:103-12. [DOI: 10.1016/j.ijbiomac.2011.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
|
8
|
Radestock S, Gohlke H. Protein rigidity and thermophilic adaptation. Proteins 2011; 79:1089-108. [DOI: 10.1002/prot.22946] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/28/2010] [Accepted: 11/07/2010] [Indexed: 11/05/2022]
|
9
|
Schwab K, Bader J, Brokamp C, Popović MK, Bajpai R, Berovic M. Dual feeding strategy for the production of alpha-amylase by Bacillus caldolyticus using complex media. N Biotechnol 2009; 26:68-74. [PMID: 19439206 DOI: 10.1016/j.nbt.2009.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/10/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
In this study, the objective was to investigate an exponential feeding strategy for fed-batch production of thermostable alpha-amylase (E.C. 3.2.1.1.) from the Bacillus caldolyticus (DSM405). The parameters for establishing compositions of feed media and feeding rate were obtained by statistical analysis of batch and continuous shake flask experiments. These parameters were casitone to starch ratio of 2.67g(casitone)g(starch)(-1), maintenance coefficient 0.174g(casitone)g(DW)(-1)h(-1), cell yield 0.62g(DW)g(casitone)(-1) and mu(opt)=0.2h(-1). The exponentially fed fermentation resulted in yield of 120Uml(-1) alpha-amylase that was thermostable up to 105 degrees C. Results of the exponentially fed fermentation have been discussed in the light of a feed-back controlled fed-batch fermentation reported earlier by the authors. A comparison of the temperature and pH effects on amylase produced by B. caldolyticus and on several other commercially available amylases has also been presented.
Collapse
Affiliation(s)
- Karima Schwab
- University of Applied Sciences, FBV - Life Sciences and Technology, Seestrasse 64, 13347 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Improvement of the thermostability and activity of a pectate lyase by single amino acid substitutions, using a strategy based on melting-temperature-guided sequence alignment. Appl Environ Microbiol 2007; 74:1183-9. [PMID: 18156340 DOI: 10.1128/aem.02220-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the vast number of random mutagenesis experiments that have targeted protein thermostability, single amino acid substitutions that increase the apparent melting temperature (Tm) of the enzyme more than 1 to 2 degrees C are rare and often require the creation of a large library of mutated genes. Here we present a case where a single beneficial mutation (R236F) of a hemp fiber-processing pectate lyase of Xanthomonas campestris origin (PL(Xc)) produced a 6 degrees C increase in Tm and a 23-fold increase in the half-life at 45 degrees C without compromising the enzyme's catalytic efficiency. This success was based on a variation of sequence alignment strategy where a mesophilic amino acid sequence is matched with the sequences of its thermophilic counterparts that have established Tm values. Altogether, two-thirds of the nine targeted single amino acid substitutions were found to have effects either on the thermostability or on the catalytic activity of the enzyme, evidence of a high success rate of mutation without the creation of a large gene library and subsequent screening of clones. Combination of R236F with another beneficial mutation (A31G) resulted in at least a twofold increase in specific activity while preserving the improved Tm value. To understand the structural basis for the increased thermal stability or activity, the variant R236F and A31G R236F proteins and wild-type PL(Xc) were purified and crystallized. By structure analysis and computational methods, hydrophobic desolvation was found to be the driving force for the increased stability with R236F.
Collapse
|
11
|
Adekoya OA, Helland R, Willassen NP, Sylte I. Comparative sequence and structure analysis reveal features of cold adaptation of an enzyme in the thermolysin family. Proteins 2005; 62:435-49. [PMID: 16294337 DOI: 10.1002/prot.20773] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Knowledge about the structural features underlying cold adaptation is important for designing enzymes of different industrial relevance. Vibriolysin from Antarctic bacterium strain 643 (VAB) is at present the only enzyme of the thermolysin family from an organism that thrive in extremely cold climate. In this study comparative sequence-structure analysis and molecular dynamics (MD) simulations were used to reveal the molecular features of cold adaptation of VAB. Amino acid sequence analysis of 44 thermolysin enzymes showed that VAB compared to the other enzymes has: (1) fewer arginines, (2) a lower Arg/(Lys + Arg) ratio, (3) a lower fraction of large aliphatic side chains, expressed by the (Ile + Leu)/(Ile + Leu + Val) ratio, (4) more methionines, (5) more serines, and (6) more of the thermolabile amino acid asparagine. A model of the catalytic domain of VAB was constructed based on homology with pseudolysin. MD simulations for 3 ns of VAB, pseudolysin, and thermolysin supported the assumption that cold-adapted enzymes have a more flexible three-dimensional (3D) structure than their thermophilic and mesophilic counterparts, especially in some loop regions. The structural analysis indicated that VAB has fewer intramolecular cation-pi electron interactions and fewer hydrogen bonds than its mesophilic (pseudolysin) and thermophilic (thermolysin) counterparts. Lysine is the dominating cationic amino acids involved in salt bridges in VAB, while arginine is dominating in thermolysin and pseudolysin. VAB has a greater volume of inaccessible cavities than pseudolysin and thermolysin. The electrostatic potentials on the surface of the catalytic domain were also more negative for VAB than for thermolysin and pseudolysin. Thus, the MD simulations, the structural patterns, and the amino acid composition of VAB relative to other enzymes of the thermolysin family suggest that VAB possesses the biophysical properties generally following adaptation to cold climate.
Collapse
Affiliation(s)
- Olayiwola A Adekoya
- Department of Pharmacology, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, Tromsø, Norway
| | | | | | | |
Collapse
|
12
|
Eijsink VGH, Bjørk A, Gåseidnes S, Sirevåg R, Synstad B, van den Burg B, Vriend G. Rational engineering of enzyme stability. J Biotechnol 2004; 113:105-20. [PMID: 15380651 DOI: 10.1016/j.jbiotec.2004.03.026] [Citation(s) in RCA: 326] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 02/16/2004] [Accepted: 03/04/2004] [Indexed: 11/19/2022]
Abstract
During the past 15 years there has been a continuous flow of reports describing proteins stabilized by the introduction of mutations. These reports span a period from pioneering rational design work on small enzymes such as T4 lysozyme and barnase to protein design, and directed evolution. Concomitantly, the purification and characterization of naturally occurring hyperstable proteins has added to our understanding of protein stability. Along the way, many strategies for rational protein stabilization have been proposed, some of which (e.g. entropic stabilization by introduction of prolines or disulfide bridges) have reasonable success rates. On the other hand, comparative studies and efforts in directed evolution have revealed that there are many mutational strategies that lead to high stability, some of which are not easy to define and rationalize. Recent developments in the field include increasing awareness of the importance of the protein surface for stability, as well as the notion that normally a very limited number of mutations can yield a large increase in stability. Another development concerns the notion that there is a fundamental difference between the "laboratory stability" of small pure proteins that unfold reversibly and completely at high temperatures and "industrial stability", which is usually governed by partial unfolding processes followed by some kind of irreversible inactivation process (e.g. aggregation). Provided that one has sufficient knowledge of the mechanism of thermal inactivation, successful and efficient rational stabilization of enzymes can be achieved.
Collapse
Affiliation(s)
- Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Agricultural University of Norway, PO Box 5040, N-1432 As.
| | | | | | | | | | | | | |
Collapse
|
13
|
Cloning and sequencing of a gene of organic solvent-stable protease secreted from Pseudomonas aeruginosa PST-01 and its expression in Escherichia coli. Biochem Eng J 2000; 5:191-200. [PMID: 10828420 DOI: 10.1016/s1369-703x(00)00060-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A gene of organic solvent-stable protease (PST-01 protease) secreted by Pseudomonas aeruginosa PST-01 was cloned and its nucleotide was sequenced. The nucleotide sequence analysis revealed that the PST-01 protease was a pseudolysin, which was an elastase produced by P. aeruginosa and was well characterized by the previous investigators. The PST-01 protease produced in recombinant Escherichia coli was not secreted into the extracellular medium, but its proenzyme was released by the lysis of the cells and became a 33.1kDa mature enzyme autoproteolytically. Its characteristics including organic solvent stability were as same as those of the PST-01 protease secreted by P. aeruginosa PST-01.
Collapse
|
14
|
Vecerek B, Venema G. Expression of the neutral protease gene from a thermophilic Bacillus sp. BT1 strain in Bacillus subtilis and its natural host: identification of a functional promoter. J Bacteriol 2000; 182:4104-7. [PMID: 10869092 PMCID: PMC94599 DOI: 10.1128/jb.182.14.4104-4107.2000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2000] [Accepted: 04/20/2000] [Indexed: 11/20/2022] Open
Abstract
The expression of the neutral protease gene (npr) from the thermophilic Bacillus sp. BT1 strain was studied in its natural host and in mesophilic Bacillus subtilis. In the thermophilic BT1 strain, the transcription of the protease gene is initiated from its own promoter, just 5' to the gene. In contrast, in heterologous B. subtilis this thermophilic npr promoter does not function, and expression of the npr gene results from transcription originating upstream of an adjacent gene, open reading frame X (ORF X). A functional promoter was identified 5' to ORF X that is required for efficient expression of the npr gene in Bacillus subtilis as verified by primer extension, reverse transcription-PCR, and 5' rapid amplification of cDNA ends experiments. These data suggest that transcriptional signals used in thermophilic Bacillus sp. BT1 strain are different from those used in B. subtilis.
Collapse
Affiliation(s)
- B Vecerek
- Laboratory of Enzyme Technology, Institute of Microbiology CAS, Prague, Czech Republic.
| | | |
Collapse
|
15
|
Veltman OR, Eijsink VG, Vriend G, de Kreij A, Venema G, Van den Burg B. Probing catalytic hinge bending motions in thermolysin-like proteases by glycine --> alanine mutations. Biochemistry 1998; 37:5305-11. [PMID: 9548762 DOI: 10.1021/bi972374j] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The active site of thermolysin-like proteases (TLPs) is located at the bottom of a cleft between the N- and C-terminal domains. Crystallographic studies have shown that the active-site cleft is more closed in ligand-binding TLPs than in ligand-free TLPs. Accordingly, it has been proposed that TLPs undergo a hinge-bending motion during catalysis resulting in "closure" and "opening" of the active-site cleft. Two hinge regions have been proposed. One is located around a conserved glycine 78; the second involves residues 135 and 136. The importance of conserved glycine residues in these hinge regions was studied experimentally by analyzing the effects of Gly --> Ala mutations on catalytic activity. Eight such mutations were made in the TLP of Bacillus stearothermophilus (TLP-ste) and their effects on activity toward casein and various peptide substrates were determined. Only the Gly78Ala, Gly136Ala, and Gly135Ala + Gly136Ala mutants decreased catalytic activity significantly. These mutants displayed a reduction in kcat/Km for 3-(2-furylacryloyl)-L-glycyl-L-leucine amide of 73%, 62%, and 96%, respectively. Comparisons of effects on kcat/Km for various substrates with effects on the Ki for phosphoramidon suggested that the mutation at position 78 primarily had an effect on substrate binding, whereas the mutations at positions 135 and 136 primarily influence kcat. The apparent importance of conserved glycine residues in proposed hinge-bending regions for TLP activity supports the idea that hinge-bending is an essential part of catalysis.
Collapse
Affiliation(s)
- O R Veltman
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Veltman OR, Vriend G, Hardy F, Mansfeld J, van den Burg B, Venema G, Eijsink VG. Mutational analysis of a surface area that is critical for the thermal stability of thermolysin-like proteases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:433-40. [PMID: 9346299 DOI: 10.1111/j.1432-1033.1997.00433.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Site-directed mutagenesis was used to assess the contribution of individual residues and a bound calcium in the 55-69 region of the thermolysin-like protease of Bacillus stearothermophilus (TLP-ste) to thermal stability. The importance of the 55-69 region was reflected by finding that almost all mutations had drastic effects on stability. These effects (both stabilizing and destabilizing) were obtained by mutations affecting main chain flexibility, as well as by mutations affecting the interaction between the 55-69 region and the rest of the protease molecule. The calcium-dependency of stability could be largely abolished by mutating one of its ligands (Asp57 or Asp59). In the case of the Asp57-->Ser mutation, the accompanying loss in stability was modest compared with the effects of other destabilizing mutations or the effects of (combinations of) stabilizing mutations. The detailed knowledge of the stability-determining region of TLP-ste permits effective rational design of stabilizing mutations, which, presumably, are also useful for related TLP such as thermolysin. This is demonstrated by the successful design of a stabilizing salt bridge involving residues 65 and 11.
Collapse
Affiliation(s)
- O R Veltman
- Department of Genetics, Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Mansfeld J, Vriend G, Dijkstra BW, Veltman OR, Van den Burg B, Venema G, Ulbrich-Hofmann R, Eijsink VG. Extreme stabilization of a thermolysin-like protease by an engineered disulfide bond. J Biol Chem 1997; 272:11152-6. [PMID: 9111013 DOI: 10.1074/jbc.272.17.11152] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The thermal inactivation of broad specificity proteases such as thermolysin and subtilisin is initiated by partial unfolding processes that render the enzyme susceptible to autolysis. Previous studies have revealed that a surface-located region in the N-terminal domain of the thermolysin-like protease produced by Bacillus stearothermophilus is crucial for thermal stability. In this region a disulfide bridge between residues 8 and 60 was designed by molecular modelling, and the corresponding single and double cysteine mutants were constructed. The disulfide bridge was spontaneously formed in vivo and resulted in a drastic stabilization of the enzyme. This stabilization presents one of the very few examples of successful stabilization of a broad specificity protease by a designed disulfide bond. We propose that the success of the present stabilization strategy is the result of the localization and mutation of an area of the molecule involved in the partial unfolding processes that determine thermal stability.
Collapse
Affiliation(s)
- J Mansfeld
- Martin-Luther University Halle-Wittenberg, Institute of Biotechnology, Kurt-Mothes-Strasse 3, D-06120 Halle, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Saul DJ, Williams LC, Toogood HS, Daniel RM, Bergquist PL. Sequence of the gene encoding a highly thermostable neutral proteinase from Bacillus sp. strain EA1: expression in Escherichia coli and characterisation. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1308:74-80. [PMID: 8765753 DOI: 10.1016/0167-4781(96)00074-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The gene for a highly thermostable neutral proteinase (Npr) was isolated from Bacillus sp. strain EA1 by the polymerase chain reaction using consensus primers based on the sequences of npr genes from related species. The gene was sequenced and shown to be closely related to a neutral proteinase gene from Bacillus caldolyticus strain YP-T; the mature form of the enzyme differing by only a single amino acid. Enzyme samples were prepared from both the native organisms and also from recombinant Escherichia coli expressing the two npr genes. The proteinase from strain EA1 was shown to be significantly more thermostable than that from B. caldolyticus and that this difference is the result of a single amino acid substitution which is situated proximal to a region of the enzyme known to be crucial to conferring thermal stability. The phylogenetic relationship of EA1 to other Bacilli is also described.
Collapse
Affiliation(s)
- D J Saul
- Centre for Gene Technology, University of Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
19
|
YANG SHOUJUN, JIN CHENG, BAO DONGHUI, ZHANG SHUZHENG. Cloning and Expression of Thermostable Protease Gene from Bacillus stearothermophilus HY-69 in Bacillus subtilisa. Ann N Y Acad Sci 1996. [DOI: 10.1111/j.1749-6632.1996.tb40563.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Vecerek B, Kyslík P. Cloning and sequencing of the neutral protease-encoding gene from a thermophilic strain of Bacillus sp. Gene 1995; 158:147-8. [PMID: 7789802 DOI: 10.1016/0378-1119(95)00167-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The neutral protease-encoding gene (npr) from the thermophilic strain Bacillus sp. BT1 was cloned and sequenced. A possible means of regulation of npr expression is suggested.
Collapse
Affiliation(s)
- B Vecerek
- Laboratory of Enzyme Technology, Institute of Microbiology CAS, Prague, Czech Republic
| | | |
Collapse
|
21
|
Eijsink VG, Veltman OR, Aukema W, Vriend G, Venema G. Structural determinants of the stability of thermolysin-like proteinases. NATURE STRUCTURAL BIOLOGY 1995; 2:374-9. [PMID: 7664094 DOI: 10.1038/nsb0595-374] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thermolysin is a member of a family of homologous proteinases which differ in their resistance to thermally induced unfolding and subsequent autolytic degradation. Site-directed mutagenesis studies of the thermolysin-like proteinase (TLP) from Bacillus stearothermophilus (TLP-ste) show that its reduced resistance to thermally induced autolysis, as compared to thermolysin, is due to only some of the 44 naturally occurring amino-acid differences between them. In fact TLP-ste becomes more resistant than thermolysin by mutation of just a few of these amino-acids. The crucial differences are all localized to a solvent-exposed region in the N-terminal domain of TLP-ste.
Collapse
Affiliation(s)
- V G Eijsink
- Department of Genetics, Center for Biological Sciences, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Maciver B, McHale RH, Saul DJ, Bergquist PL. Cloning and sequencing of a serine proteinase gene from a thermophilic Bacillus species and its expression in Escherichia coli. Appl Environ Microbiol 1994; 60:3981-8. [PMID: 7993087 PMCID: PMC201925 DOI: 10.1128/aem.60.11.3981-3988.1994] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The gene for a serine proteinase from a thermophilic Bacillus species was identified by PCR amplification, and the complete gene was cloned after identification and isolation of suitably sized restriction fragments from Southern blots by using the PCR product as a probe. Two additional, distinct PCR products, which were shown to have been derived from other serine proteinase genes present in the thermophilic Bacillus species, were also obtained. Sequence analysis showed an open reading frame of 1,206 bp, coding for a polypeptide of 401 amino acids. The polypeptide was determined to be an extracellular serine proteinase with a signal sequence and prosequence. The mature proteinase possessed homology to the subtilisin-like serine proteinases from a number of Bacillus species and had 61% homology to thermitase, a serine proteinase from Thermoactinomyces vulgaris. The gene was expressed in Escherichia coli in the expression vector pJLA602 and as a fusion with the alpha-peptide of the lacZ gene in the cloning vector pGEM5. A recombinant proteinase from the lacZ fusion plasmid was used to determine some characteristics of the enzyme, which showed a pH optimum of 8.5, a temperature optimum of 75 degrees C, and thermostabilities ranging from a half-life of 12.2 min at 90 degrees C to a half-life of 40.3 h at 75 degrees C. The enzyme was bound to a bacitracin column, and this method provided a simple, one-step method for producing the proteinase, purified to near homogeneity.
Collapse
Affiliation(s)
- B Maciver
- Centre for Gene Technology, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
23
|
Abstract
Protein structural flexibility is important for catalysis, binding, and allostery. Flexibility has been predicted from amino acid sequence with a sliding window averaging technique and applied primarily to epitope search. New prediction parameters were derived from 92 refined protein structures in an unbiased selection of the Protein Data Bank by developing further the method of Karplus and Schulz (Naturwissenschaften 72:212-213, 1985). The accuracy of four flexibility prediction techniques was studied by comparing atomic temperature factors of known three-dimensional protein structures to predictions by using correlation coefficients. The size of the prediction window was optimized for each method. Predictions made with our new parameters, using an optimized window size of 9 residues in the prediction window, were giving the best results. The difference from another previously used technique was small, whereas two other methods were much poorer. Applicability of the predictions was also tested by searching for known epitopes from amino acid sequences. The best techniques predicted correctly 20 of 31 continuous epitopes in seven proteins. Flexibility parameters have previously been used for calculating protein average flexibility indices which are inversely correlated to protein stability. Indices with the new parameters showed better correlation to protein stability than those used previously; furthermore they had relationship even when the old parameters failed.
Collapse
Affiliation(s)
- M Vihinen
- Department of Biochemistry, University of Turku, Finland
| | | | | |
Collapse
|
24
|
O'Donohue MJ, Roques BP, Beaumont A. Cloning and expression in Bacillus subtilis of the npr gene from Bacillus thermoproteolyticus Rokko coding for the thermostable metalloprotease thermolysin. Biochem J 1994; 300 ( Pt 2):599-603. [PMID: 8002967 PMCID: PMC1138203 DOI: 10.1042/bj3000599] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the isolation, cloning and expression, in Bacillus subtilis, of the gene coding for thermolysin, a thermostable metalloprotease which is produced by Bacillus thermoproteolyticus Rokko. The nucleotide sequence has revealed that, like neutral proteases produced by other members of the Bacillus species, thermolysin is probably produced as a preproenzyme carrying a typical N-terminal membrane signal sequence. Further, the thermolysin gene shares a strong homology with two other previously cloned genes from two different strains of Bacillus stearothermophilus. The sequence of the mature secreted protease, inferred from the DNA sequence, is, with two exceptions, identical with the previously published protein sequence of thermolysin [Titani, Hermodson, Ericsson, Walsh and Neurath (1972) Nature (London) 238, 35-37]. The exceptions are Asn37 and Gln119, originally reported to be Asp and Glu respectively. The biochemical characterization of the secreted recombinant protein shows that it is indistinguishable from the wild-type thermolysin.
Collapse
Affiliation(s)
- M J O'Donohue
- Laboratoire de Pharmacochimie Moléculaire et Structurale, CNRS URA D1500, INSERM U266, Faculté de Pharmacie, Université Paris V, France
| | | | | |
Collapse
|
25
|
Wetmore DR, Wong SL, Roche RS. The efficiency of processing and secretion of the thermolysin-like neutral protease from Bacillus cereus does not require the whole prosequence, but does depend on the nature of the amino acid sequence in the region of the cleavage site. Mol Microbiol 1994; 12:747-59. [PMID: 8052127 DOI: 10.1111/j.1365-2958.1994.tb01062.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using deletion mutants, it is shown that part of the prosequence, the omega-peptide (-4, -24), of the thermolysin-like neutral protease (TNP) from Bacillus cereus, Cnp, is not required for efficient processing and secretion of fully functional mature protease. It is demonstrated that the rate and selectivity of proprotein processing is dependent on both the flexibility and primary sequence of the processing site. Processing is found to be particularly sensitive to the nature of the amino acid three residues upstream from the site of cleavage. A consensus sequence for TNP proprotein processing has been identified, which provides further insights. Finally, a larger deletion of a portion of the Cnp prosequence upstream from the omega-peptide that includes amino acids conserved among TNPs reduces the rate of processing and secretion of Cnp and results in the accumulation of export-incompetent pre-proprotein in the cell fraction.
Collapse
Affiliation(s)
- D R Wetmore
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
26
|
Meinhardt F, Busskamp M, Wittchen KD. Cloning and sequencing of the leu C and npr M genes and a putative spo IV gene from Bacillus megaterium DSM319. Appl Microbiol Biotechnol 1994; 41:344-51. [PMID: 7764969 DOI: 10.1007/bf00221230] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The leuC gene, encoding 3-isopropylmalate dehydrogenase, the nprM gene (neutral protease) and a sporulation gene coding for a putative spoIV protein (spoIV) from Bacillus megaterium DSM 319 were cloned and the nucleotide sequences were determined. The leuC gene is 1101 bp in length, preceded by a ribosome binding site; no promoter consensus sequence could be found. The nucleotide sequence from nprM when compared to the recently published gene from B. megaterium ATCC 14581 exhibited only a 17-base pair deviation. From a sporulation mutant isolated after transposon-mutagenesis with transposon Tn917 the insertion site of the transposon was cloned and adjacent chromosomal fragments were characterized. An open reading frame that encodes for a putative spo protein of 247 amino-acid residues was identified.
Collapse
Affiliation(s)
- F Meinhardt
- Institut für Mikrobiologie, Westfälische Wilhelms-Universität, Münster, Germany
| | | | | |
Collapse
|
27
|
Van den Burg B, Dijkstra BW, Vriend G, Van der Vinne B, Venema G, Eijsink VG. Protein stabilization by hydrophobic interactions at the surface. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:981-5. [PMID: 8143751 DOI: 10.1111/j.1432-1033.1994.tb18702.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The contribution of the solvent-exposed residue 63 to thermal stability of the thermolysin-like neutral protease of Bacillus stearothermophilus was studied by analyzing the effect of twelve different amino acid substitutions at this position. The thermal stability of the enzyme was increased considerably by introducing Arg, Lys or bulky hydrophobic amino acids. In general, the effects of the mutations showed that hydrophobic contacts in this surface-located region of the protein are a major determinant of thermal stability. This observation contrasts with general concepts concerning the contribution of surface-located residues and surface hydrophobicity to protein stability and indicates new ways for protein stabilization by site-directed mutagenesis.
Collapse
Affiliation(s)
- B Van den Burg
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Extracellular zinc-containing metalloproteases are widely distributed in the bacterial world. The most extensively studied are those which are associated with pathogenic bacteria or bacteria which have industrial significance. They are found practically wherever they are sought in both gram-negative and gram-positive microorganisms, be they aerobic or anaerobic. This ubiquity in itself implies that these enzymes serve important functions for the organisms which produce them. Because of the importance of zinc to enzymatic activity, it is not surprising that there is a pervasive amino acid sequence homology in the primary structure of this family of enzymes regardless of their source. The evidence suggests that both convergent and divergent evolutionary forces are at work. Within the large family of bacterial zinc-containing metalloendopeptidases, smaller family units are observed, such as thermolysin-like, elastase-like, and Serratia protease-like metalloproteases from various bacterial species. While this review was in the process of construction, a new function for zinc-containing metalloproteases was discovered: the neurotoxins of Clostridium tetani and Clostridium botulinum type B have been shown to be zinc metalloproteases with specificity for synaptobrevin, an integral membrane protein of small synaptic vesicles which is involved in neurotransmission. Additional understanding of the mode of action of proteases which contribute to pathogenicity could lead to the development of inhibitors, such as chelators, surrogate substrates, or antibodies, which could prevent or interrupt the disease process. Further studies of this broad family of metalloproteases will provide important additional insights into the pathogenesis and structure-function relationships of enzymes and will lead to the development of products, including "designer proteins," which might be industrially and/or therapeutically useful.
Collapse
Affiliation(s)
- C C Häse
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia 65212
| | | |
Collapse
|
29
|
Vriend G, Eijsink V. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases. J Comput Aided Mol Des 1993; 7:367-96. [PMID: 8229092 DOI: 10.1007/bf02337558] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bacillus neutral proteases (NPs) form a group of well-characterized homologous enzymes, that exhibit large differences in thermostability. The three-dimensional (3D) structures of several of these enzymes have been modelled on the basis of the crystal structures of the NPs of B. thermoproteolyticus (thermolysin) and B. cereus. Several new techniques have been developed to improve the model-building procedures. Also a 'model-building by mutagenesis' strategy was used, in which mutants were designed just to shed light on parts of the structures that were particularly hard to model. The NP models have been used for the prediction of site-directed mutations aimed at improving the thermostability of the enzymes. Predictions were made using several novel computational techniques, such as position-specific rotamer searching, packing quality analysis and property-profile database searches. Many stabilizing mutations were predicted and produced: improvement of hydrogen bonding, exclusion of buried water molecules, capping helices, improvement of hydrophobic interactions and entropic stabilization have been applied successfully. At elevated temperatures NPs are irreversibly inactivated as a result of autolysis. It has been shown that this denaturation process is independent of the protease activity and concentration and that the inactivation follows first-order kinetics. From this it has been conjectured that local unfolding of (surface) loops, which renders the protein susceptible to autolysis, is the rate-limiting step. Despite the particular nature of the thermal denaturation process, normal rules for protein stability can be applied to NPs. However, rather than stabilizing the whole protein against global unfolding, only a small region has to be protected against local unfolding. In contrast to proteins in general, mutational effects in proteases are not additive and their magnitude is strongly dependent on the location of the mutation. Mutations that alter the stability of the NP by a large amount are located in a relatively weak region (or more precisely, they affect a local unfolding pathway with a relatively low free energy of activation). One weak region, that is supposedly important in the early steps of NP unfolding, has been determined in the NP of B. stearothermophilus. After eliminating this weakest link a drastic increase in thermostability was observed and the search for the second-weakest link, or the second-lowest energy local unfolding pathway is now in progress. Hopefully, this approach can be used to unravel the entire early phase of unfolding.
Collapse
Affiliation(s)
- G Vriend
- EMBL, Protein Design Group, Heidelberg, Germany
| | | |
Collapse
|
30
|
Peek K, Veitch DP, Prescott M, Daniel RM, MacIver B, Bergquist PL. Some characteristics of a proteinase from a thermophilic Bacillus sp. expressed in Escherichia coli: comparison with the native enzyme and its processing in E. coli and in vitro. Appl Environ Microbiol 1993; 59:1168-75. [PMID: 8476291 PMCID: PMC202256 DOI: 10.1128/aem.59.4.1168-1175.1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Proteinase Ak.1 was produced during the stationary phase of Bacillus sp. Ak.1 cultures. It is a serine proteinase with a pI of 4.0, and the molecular mass was estimated to be 36.9 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at 60 and 70 degrees C, with half-lives of 13 h and 19 min at 80 and 90 degrees C, respectively. Maximum proteolytic activity was observed at pH 7.5 with azocasein as a substrate, and the enzyme also cleaved the endoproteinase substrate Suc-Ala-Ala-Pro-Phe-NH-Np (succinyl-alanyl-alanyl-prolyl-phenylalanine p-nitroanalide). Major cleavage sites of the insulin B chain were identified as Leu-15-Tyr-16, Gln-4-His-5, and Glu-13-Ala-14. The proteinase gene was cloned in Escherichia coli, and expression of the active enzyme was detected in the extracellular medium at 75 degrees C. The enzyme is expressed in E. coli as an inactive proproteinase at 37 degrees C and is converted to the mature enzyme by heating the cell-free media to 60 degrees C or above. The proproteinase was purified to homogeneity and had a pI of 4.3 and a molecular mass of 45 kDa. The NH2-terminal sequence was Ala-Ser-Asn-Asp-Gly-Val-Glu-, showing the exact signal peptide cleavage point. Heating the proenzyme resulted in the production of active proteinase with an NH2-terminal sequence identical to that of the native enzyme. The characteristics of the cloned proteinase were identical to those of the native enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Peek
- Pacific Enzymes Ltd., University of Waikato, Hamilton, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
31
|
Hardy F, Vriend G, Veltman OR, van der Vinne B, Venema G, Eijsink VG. Stabilization of Bacillus stearothermophilus neutral protease by introduction of prolines. FEBS Lett 1993; 317:89-92. [PMID: 8428638 DOI: 10.1016/0014-5793(93)81497-n] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The thermostability of neutral proteases has been shown to depend on autolysis which presumably occurs in flexible regions of the protein. In an attempt to rigidify such a region in the neutral protease of Bacillus stearothermophilus, residues in the solvent-exposed 63-69 loop were replaced by proline. The mutations caused large positive (Ser-65-->Pro, Ala-69-->Pro) or negative (Thr-63-->Pro, Tyr-66-->Pro) changes in thermostability, which were explained on the basis of molecular modelling of the mutant proteins. The data show that the introduction of prolines at carefully selected positions in the protein can be a powerful method for stabilization.
Collapse
Affiliation(s)
- F Hardy
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Structural Determinants of the Thermostability of thermolysin-Like Bacillus Neutral Proteases. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/b978-0-444-89372-7.50016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Eijsink VG, Vriend G, van der Vinne B, Hazes B, van den Burg B, Venema G. Effects of changing the interaction between subdomains on the thermostability of Bacillus neutral proteases. Proteins 1992; 14:224-36. [PMID: 1409570 DOI: 10.1002/prot.340140209] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Variants of the thermolabile neutral protease (Npr) of B. subtilis (Npr-sub) and the thermostable neutral protease of B. stearothermophilus (Npr-ste) were produced by means of site-directed mutagenesis and the effects of the mutations on thermostability were determined. Mutations were designed to alter the interaction between the middle and C-terminal subdomain of these enzymes. In all Nprs a cluster of hydrophobic contacts centered around residue 315 contributes to this interaction. In thermostable Nprs (like Npr-ste) a 10 residue beta-hairpin, covering the domain interface, makes an additional contribution. The hydrophobic residue at position 315 was replaced by smaller amino acids. In addition, the beta-hairpin was deleted from Npr-ste and inserted into Npr-sub. The changes in thermostability observed after these mutations confirmed the importance of the hydrophobic cluster and of the beta-hairpin for the structural integrity of Nprs. Combined mutants showed that the effects of individual mutations affecting the interaction between the subdomains were not additive. The effects on thermostability decreased as the strength of the subdomain interaction increased. The results show that once the subdomain interface is sufficiently stabilized, additional stabilizing mutations at the same interface do not further increase thermostability. The results are interpreted on the basis of a model for the thermal inactivation of neutral proteases, in which it is assumed that inactivation results from the occurrence of local unfolding processes that render these enzymes susceptible to autolysis.
Collapse
Affiliation(s)
- V G Eijsink
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Wetmore DR, Wong SL, Roche RS. The role of the pro-sequence in the processing and secretion of the thermolysin-like neutral protease from Bacillus cereus. Mol Microbiol 1992; 6:1593-604. [PMID: 1495388 DOI: 10.1111/j.1365-2958.1992.tb00884.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Bacillus cereus cnp gene coding for the thermolysin-like neutral protease (TNP) has been cloned, sequenced, and expressed in Bacillus subtilis. The protease is first produced as a pre-pro-protein (M(r) = 61,000); the pro-peptide is approximately two-thirds of the size of the mature protein. The pro-sequence has been compared with those of six other TNPs, and significant homologies have been found. Additionally, the TNP pro-sequences are shown to be homologous to the pro-sequence of Pseudomonas aeruginosa elastase. A mutant has been constructed from cnp, in which 23 amino acids upstream from the pro-protein processing site have been deleted. This region has no homologous analogue in any of the other TNP pro-sequences. The deletion results in a delay of six to eight hours in detection of active protease in the growth medium, as well as a 75% decrease in maximum protease production. N-terminal analysis of the mutant mature protein demonstrates that the processing site is unaltered by the pro-sequence deletion. The deletion must, therefore, modulate the kinetics of processing and/or secretion of the pro-protein.
Collapse
Affiliation(s)
- D R Wetmore
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
35
|
Kiel JA, Boels JM, Beldman G, Venema G. The glgB gene from the thermophile Bacillus caldolyticus encodes a thermolabile branching enzyme. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1992; 3:221-32. [PMID: 1296817 DOI: 10.3109/10425179209034021] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have cloned the structural gene for the Bacillus caldolyticus glycogen branching enzyme (glgB) in Escherichia coli. The glgB gene consisted of a 1998 bp open reading frame (ORF) encoding a 78,087 Da protein, which was highly similar to the Bacillus stearothermophilus branching enzyme. The 5' end of a second gene that encoded a protein with extensive similarity to E. coli ADP-glucose pyrophosphorylase (ADPGP) partly overlapped the 3' end of the glgB gene. A putative promoter recognized by Bacillus subtilis RNA polymerase containing the sigma factor H (E-sigma H) preceded the genes. These data suggest that in contrast to the situation observed in B. stearothermophilus, the genes involved in glycogen synthesis in B. caldolyticus are clustered on the chromosome, and are presumably coordinately expressed during the early stages of sporulation. An incomplete third gene started upstream of B. caldolyticus glgB. This gene was highly similar to a gene found directly upstream of B. stearothermophilus glgB, which encodes a putative membrane protein with unknown function. The B. caldolyticus glgB gene was expressed in E. coli and B. subtilis. Surprisingly, the branching enzyme appeared to be thermolabile, the temperature of optimal activity being only 39 degrees C.
Collapse
Affiliation(s)
- J A Kiel
- Department of Genetics, Center of Biological Sciences, Haren, The Netherlands
| | | | | | | |
Collapse
|