1
|
Lu B, Wang Y, Wurihan W, Cheng A, Yeung S, Fondell JD, Lai Z, Wan D, Wu X, Li WV, Fan H. Requirement of GrgA for Chlamydia infectious progeny production, optimal growth, and efficient plasmid maintenance. mBio 2024; 15:e0203623. [PMID: 38112466 PMCID: PMC10790707 DOI: 10.1128/mbio.02036-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Hallmarks of the developmental cycle of the obligate intracellular pathogenic bacterium Chlamydia are the primary differentiation of the infectious elementary body (EB) into the proliferative reticulate body (RB) and the secondary differentiation of RBs back into EBs. The mechanisms regulating these transitions remain unclear. In this report, we developed an effective novel strategy termed dependence on plasmid-mediated expression (DOPE) that allows for the knockdown of essential genes in Chlamydia. We demonstrate that GrgA, a Chlamydia-specific transcription factor, is essential for the secondary differentiation and optimal growth of RBs. We also show that GrgA, a chromosome-encoded regulatory protein, controls the maintenance of the chlamydial virulence plasmid. Transcriptomic analysis further indicates that GrgA functions as a critical regulator of all three sigma factors that recognize different promoter sets at developmental stages. The DOPE strategy outlined here should provide a valuable tool for future studies examining chlamydial growth, development, and pathogenicity.
Collapse
Affiliation(s)
- Bin Lu
- Department of Parasitology, Central South University Xiangya Medical School, Changsha, Hunan, China
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yuxuan Wang
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Wurihan Wurihan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Andrew Cheng
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Sydney Yeung
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Joseph D. Fondell
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Danny Wan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Xiang Wu
- Department of Parasitology, Central South University Xiangya Medical School, Changsha, Hunan, China
| | - Wei Vivian Li
- Department of Statistics, University of California Riverside, Riverside, California, USA
| | - Huizhou Fan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
2
|
Lu B, Wang Y, Wurihan W, Cheng A, Yeung S, Fondell JD, Lai Z, Wan D, Wu X, Li WV, Fan H. Requirement of GrgA for Chlamydia infectious progeny production, optimal growth, and efficient plasmid maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551707. [PMID: 37577610 PMCID: PMC10418237 DOI: 10.1101/2023.08.02.551707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Chlamydia, an obligate intracellular bacterial pathogen, has a unique developmental cycle involving the differentiation of invading elementary bodies (EBs) to noninfectious reticulate bodies (RBs), replication of RBs, and redifferentiation of RBs into progeny EBs. Progression of this cycle is regulated by three sigma factors, which direct the RNA polymerase to their respective target gene promoters. We hypothesized that the Chlamydia-specific transcriptional regulator GrgA, previously shown to activate σ66 and σ28, plays an essential role in chlamydial development and growth. To test this hypothesis, we applied a novel genetic tool known as dependence on plasmid-mediated expression (DOPE) to create Chlamydia trachomatis with conditional GrgA-deficiency. We show that GrgA-deficient C. trachomatis RBs have a growth rate that is approximately half of the normal rate and fail to transition into progeny EBs. In addition, GrgA-deficient C. trachomatis fail to maintain its virulence plasmid. Results of RNA-seq analysis indicate that GrgA promotes RB growth by optimizing tRNA synthesis and expression of nutrient-acquisition genes, while it enables RB-to-EB conversion by facilitating the expression of a histone and outer membrane proteins required for EB morphogenesis. GrgA also regulates numerous other late genes required for host cell exit and subsequent EB invasion into host cells. Importantly, GrgA stimulates the expression of σ54, the third and last sigma factor, and its activator AtoC, and thereby indirectly upregulating the expression of σ54-dependent genes. In conclusion, our work demonstrates that GrgA is a master transcriptional regulator in Chlamydia and plays multiple essential roles in chlamydial pathogenicity.
Collapse
Affiliation(s)
- Bin Lu
- Department of Parasitology, Central South University Xiangya Medical School, Changsha, Hunan 410013, China
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yuxuan Wang
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wurihan Wurihan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Andrew Cheng
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sydney Yeung
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joseph D. Fondell
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Danny Wan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xiang Wu
- Department of Parasitology, Central South University Xiangya Medical School, Changsha, Hunan 410013, China
| | - Wei Vivian Li
- Department of Statistics, University of California Riverside, Riverside, CA 92521, USA
| | - Huizhou Fan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Gibson JA, Gebhardt MJ, Santos RERS, Dove SL, Watnick PI. Sequestration of a dual function DNA-binding protein by Vibrio cholerae CRP. Proc Natl Acad Sci U S A 2022; 119:e2210115119. [PMID: 36343262 PMCID: PMC9674212 DOI: 10.1073/pnas.2210115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Although the mechanism by which the cyclic AMP receptor protein (CRP) regulates global gene transcription has been intensively studied for decades, new discoveries remain to be made. Here, we report that, during rapid growth, CRP associates with both the well-conserved, dual-function DNA-binding protein peptidase A (PepA) and the cell membrane. These interactions are not present under nutrient-limited growth conditions, due to post-translational modification of three lysines on a single face of CRP. Although coincident DNA binding is rare, dissociation from CRP results in increased PepA occupancy at many chromosomal binding sites and differential regulation of hundreds of genes, including several encoding cyclic dinucleotide phosphodiesterases. We show that PepA represses biofilm formation and activates motility/chemotaxis. We propose a model in which membrane-bound CRP interferes with PepA DNA binding. Under nutrient limitation, PepA is released. Together, CRP and free PepA activate a transcriptional response that impels the bacterium to seek a more hospitable environment. This work uncovers a function for CRP in the sequestration of a regulatory protein. More broadly, it describes a paradigm of bacterial transcriptome modulation through metabolically regulated association of transcription factors with the cell membrane.
Collapse
Affiliation(s)
- Jacob A. Gibson
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115
| | - Michael J. Gebhardt
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Renato E. R. S. Santos
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Paula I. Watnick
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
4
|
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium whose unique developmental cycle consists of an infectious elementary body and a replicative reticulate body. Progression of this developmental cycle requires temporal control of the transcriptome. In addition to the three chlamydial sigma factors (σ66, σ28, and σ54) that recognize promoter sequences of genes, chlamydial transcription factors are expected to play crucial roles in transcriptional regulation. Here, we investigate the function of GrgA, a Chlamydia-specific transcription factor, in C. trachomatis transcriptomic expression. We show that 10 to 30 min of GrgA overexpression induces 13 genes, which likely comprise the direct regulon of GrgA. Significantly, σ66-dependent genes that code for two important transcription repressors are components of the direct regulon. One of these repressors is Euo, which prevents the expression of late genes during early phases. The other is HrcA, which regulates molecular chaperone expression and controls stress response. The direct regulon also includes a σ28-dependent gene that codes for the putative virulence factor PmpI. Furthermore, overexpression of GrgA leads to decreased expression of almost all tRNAs. Transcriptomic studies suggest that GrgA, Euo, and HrcA have distinct but overlapping indirect regulons. These findings, together with temporal expression patterns of grgA, euo, and hrcA, indicate that a transcriptional regulatory network of these three transcription factors plays critical roles in C. trachomatis growth and development. IMPORTANCEChlamydia trachomatis is the most prevalent sexually transmitted bacterial pathogen worldwide and is a leading cause of preventable blindness in underdeveloped areas as well as some developed countries. Chlamydia carries genes that encode a limited number of known transcription factors. While Euo is thought to be critical for early chlamydial development, the functions of GrgA and HrcA in the developmental cycle are unclear. Activation of euo and hrcA immediately following GrgA overexpression indicates that GrgA functions as a master transcriptional regulator. In addition, by broadly inhibiting tRNA expression, GrgA serves as a key regulator of chlamydial protein synthesis. Furthermore, by upregulating pmpI, GrgA may act as an upstream virulence determinant. Finally, genes coregulated by GrgA, Euo, and HrcA likely play critical roles in chlamydial growth and developmental control.
Collapse
|
5
|
Yu J, Jia M, Feng Y. The cytidine repressor regulates the survival of Pantoea agglomerans YS19 under oxidative stress and sulfur starvation conditions. J GEN APPL MICROBIOL 2021; 67:59-66. [PMID: 33518552 DOI: 10.2323/jgam.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pantoea agglomerans YS19 is a dominant endophytic bacterium isolated from rice, which is capable of promoting host plant growth by nitrogen-fixing and phytohormone secreting. We previously found that the cytidine repressor (CytR) protein conducts the regulation of indole signal in YS19. Here, we compared the whole-cell protein of the wild type YS19 and the ΔcytR mutant and subsequently identified one differential protein as alkyl hydroperoxide reductase subunit C related to oxidative stress and sulfur starvation tolerance. It was tested that cytR had a positive effect on the survival of YS19 under the oxidative stress and sulfur starvation conditions and this effect was inhibited by indole. To further understand the functional mode of indole in this regulation, we cloned the cytR promoter region (PcytR) of YS19 and tested the effect of indole on PcytR using gfp as a reporter gene. It was found that PcytR can sense indole and significantly inhibit the expression of the downstream gene. This study provided a deeper understanding of the multiple function of cytR and expanded a new research direction of how indole participates in gene regulation.
Collapse
Affiliation(s)
- Jiajia Yu
- School of Life Science, Beijing Institute of Technology
| | - Mengqi Jia
- School of Life Science, Beijing Institute of Technology
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology
| |
Collapse
|
6
|
Freddolino PL, Amemiya HM, Goss TJ, Tavazoie S. Dynamic landscape of protein occupancy across the Escherichia coli chromosome. PLoS Biol 2021; 19:e3001306. [PMID: 34170902 PMCID: PMC8282354 DOI: 10.1371/journal.pbio.3001306] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/15/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
Free-living bacteria adapt to environmental change by reprogramming gene expression through precise interactions of hundreds of DNA-binding proteins. A predictive understanding of bacterial physiology requires us to globally monitor all such protein-DNA interactions across a range of environmental and genetic perturbations. Here, we show that such global observations are possible using an optimized version of in vivo protein occupancy display technology (in vivo protein occupancy display-high resolution, IPOD-HR) and present a pilot application to Escherichia coli. We observe that the E. coli protein-DNA interactome organizes into 2 distinct prototypic features: (1) highly dynamic condition-dependent transcription factor (TF) occupancy; and (2) robust kilobase scale occupancy by nucleoid factors, forming silencing domains analogous to eukaryotic heterochromatin. We show that occupancy dynamics across a range of conditions can rapidly reveal the global transcriptional regulatory organization of a bacterium. Beyond discovery of previously hidden regulatory logic, we show that these observations can be utilized to computationally determine sequence specificity models for the majority of active TFs. Our study demonstrates that global observations of protein occupancy combined with statistical inference can rapidly and systematically reveal the transcriptional regulatory and structural features of a bacterial genome. This capacity is particularly crucial for non-model bacteria that are not amenable to routine genetic manipulation.
Collapse
Affiliation(s)
- Peter L. Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Haley M. Amemiya
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Thomas J. Goss
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| |
Collapse
|
7
|
The cytidine repressor participates in the regulatory pathway of indole in Pantoea agglomerans. Res Microbiol 2017; 168:636-643. [PMID: 28483441 DOI: 10.1016/j.resmic.2017.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 11/23/2022]
Abstract
Indole, an important signal molecule in both intraspecies and interspecies, regulates a variety of bacterial behaviors, but its regulatory mechanism is still unknown. Pantoea agglomerans YS19, a preponderant endophytic bacterium isolated from rice, does not produce indole, yet it senses exogenous indole. In this study, a mutant of YS19-Rpr whose target gene expression was downregulated by indole was selected through mTn5 transposon mutagenesis. Using the TAIL-PCR technique, the mutation gene was identified as a cytR homologue, which encodes a cytidine repressor (CytR) protein, a bacterial transcription factor involved in a complex regulation scheme. The negative regulation of indole in cytR, which is equivalent to the mutation in cytR, promotes the expression of a downstream gene deoC, which encodes the key enzyme deoxyribose-phosphate aldolase in participating in pentose metabolism. We found that DeoC is one of the regulatory proteins of P. agglomerans that is involved in counteracting starvation. Furthermore, the expression of deoC was induced by starvation conditions, accompanied by a decrease in cytR expression. This finding suggests that the indole signal and the mutation of cytR relieve inhibition of CytR in the transcription of deoC, facilitating better adaptation of the bacterium to the adverse conditions of the environment.
Collapse
|
8
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
9
|
Holt AK, Senear DF. The cooperative binding energetics of CytR and cAMP receptor protein support a quantitative model of differential activation and repression of CytR-regulated class III Escherichia coli promoters. Biochemistry 2013; 52:8209-18. [PMID: 24138566 DOI: 10.1021/bi401063c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
cAMP receptor protein (CRP) and CytR mediate positive and negative control of nine genes in Escherichia coli, most of which are involved in nucleoside catabolism and recycling. Five promoters share a common architecture in which tandem CRP sites flank an intervening CytR operator (CytO). CytR and CRP bind cooperatively to these promoters to form a three-protein, DNA-bound complex that controls activation and repression, the levels of which vary markedly among the promoters. To understand the specific combinatorial control mechanisms that are responsible for this outcome, we have used quantitative DNase I footprinting to generate individual site isotherms for each site of protein-DNA interaction. The intrinsic affinities of each transcription factor for its respective site and the specific patterns of cooperativity and competition underlying the molecular interactions at each promoter were determined by a global analysis of these titration data. Here we present results obtained for nupGP and tsxP2, adding to results published previously for deoP2, udpP, and cddP. These data allowed us to correlate the reported levels of activation, repression, and induction with the ligation states of these five promoters under physiologically relevant conditions. A general pattern of transcriptional regulation emerges that allows for complex patterns of regulation in this seemingly simple system.
Collapse
Affiliation(s)
- Allison K Holt
- Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697, United States
| | | |
Collapse
|
10
|
Sernova NV, Gelfand MS. Comparative genomics of CytR, an unusual member of the LacI family of transcription factors. PLoS One 2012; 7:e44194. [PMID: 23028500 PMCID: PMC3454398 DOI: 10.1371/journal.pone.0044194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
CytR is a transcription regulator from the LacI family, present in some gamma-proteobacteria including Escherichia coli and known not only for its cellular role, control of transport and utilization of nucleosides, but for a number of unusual structural properties. The present study addressed three related problems: structure of CytR-binding sites and motifs, their evolutionary conservation, and identification of new members of the CytR regulon. While the majority of CytR-binding sites are imperfect inverted repeats situated between binding sites for another transcription factor, CRP, other architectures were observed, in particular, direct repeats. While the similarity between sites for different genes in one genome is rather low, and hence the consensus motif is weak, there is high conservation of orthologous sites in different genomes (mainly in the Enterobacteriales) arguing for the presence of specific CytR-DNA contacts. On larger evolutionary distances candidate CytR sites may migrate but the approximate distance between flanking CRP sites tends to be conserved, which demonstrates that the overall structure of the CRP-CytR-DNA complex is gene-specific. The analysis yielded candidate CytR-binding sites for orthologs of known regulon members in less studied genomes of the Enterobacteriales and Vibrionales and identified a new candidate member of the CytR regulon, encoding a transporter named NupT (YcdZ).
Collapse
Affiliation(s)
- Natalia V. Sernova
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences (IITP RAS), Moscow, Russia
| | - Mikhail S. Gelfand
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences (IITP RAS), Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M.V.Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| |
Collapse
|
11
|
Geisel N, Gerland U. Physical limits on cooperative protein-DNA binding and the kinetics of combinatorial transcription regulation. Biophys J 2012; 101:1569-79. [PMID: 21961582 DOI: 10.1016/j.bpj.2011.08.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 11/16/2022] Open
Abstract
Much of the complexity observed in gene regulation originates from cooperative protein-DNA binding. Although studies of the target search of proteins for their specific binding sites on the DNA have revealed design principles for the quantitative characteristics of protein-DNA interactions, no such principles are known for the cooperative interactions between DNA-binding proteins. We consider a simple theoretical model for two interacting transcription factor (TF) species, searching for and binding to two adjacent target sites hidden in the genomic background. We study the kinetic competition of a dimer search pathway and a monomer search pathway, as well as the steady-state regulation function mediated by the two TFs over a broad range of TF-TF interaction strengths. Using a transcriptional AND-logic as exemplary functional context, we identify the functionally desirable regime for the interaction. We find that both weak and very strong TF-TF interactions are favorable, albeit with different characteristics. However, there is also an unfavorable regime of intermediate interactions where the genetic response is prohibitively slow.
Collapse
Affiliation(s)
- Nico Geisel
- Departament de Fisica Fonamental, Facultat de Fisica, Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
12
|
Kakehi M, Usuda Y, Tabira Y, Sugimoto S. Complete deficiency of 5'-nucleotidase activity in Escherichia coli leads to loss of growth on purine nucleotides but not of their excretion. J Mol Microbiol Biotechnol 2007; 13:96-104. [PMID: 17693717 DOI: 10.1159/000103601] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli has many periplasmic phosphatase activities. To test whether it can take up and excrete purine nucleotides, we attempted to completely disrupt periplasmic 5'-nucleotidase activity. A 5'-nucleotidase activity was induced in ushA knockout mutant cells, which lack major 5'-nucleotidase activity, when they were grown with purine nucleotides as the sole carbon source. Using DNA macroarrays to compare global gene expression in wild-type and ushA knockout mutant cells cultured with IMP or GMP as the sole carbon source, we identified two genes that were induced in the ushA knockout mutant cells and encoded signal sequence needed for secretion. One of the genes, aphA, encoded a 5'-nucleotidase activity and was induced by IMP or inosine. An ushA aphA double knockout mutant was shown to be unable to grow on purine nucleotides as the sole carbon source. To investigate the excretion of purine nucleotides, we constructed an ushAaphA double knockout mutant of an inosine-producing strain and found that it accumulated IMP in the medium. In addition, when the guaBA operon was introduced into the ushAaphA double knockout IMP producer, GMP was released into the medium. These observations imply the existence of efflux activity for purine nucleotides in E. coli.
Collapse
Affiliation(s)
- Masahiro Kakehi
- Fermentation and Biotechnology Laboratories, Ajinomoto Co., Kawasaki, Japan
| | | | | | | |
Collapse
|
13
|
Hermsen R, Tans S, ten Wolde PR. Transcriptional regulation by competing transcription factor modules. PLoS Comput Biol 2006; 2:e164. [PMID: 17140283 PMCID: PMC1676028 DOI: 10.1371/journal.pcbi.0020164] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 10/23/2006] [Indexed: 11/19/2022] Open
Abstract
Gene regulatory networks lie at the heart of cellular computation. In these networks, intracellular and extracellular signals are integrated by transcription factors, which control the expression of transcription units by binding to cis-regulatory regions on the DNA. The designs of both eukaryotic and prokaryotic cis-regulatory regions are usually highly complex. They frequently consist of both repetitive and overlapping transcription factor binding sites. To unravel the design principles of these promoter architectures, we have designed in silico prokaryotic transcriptional logic gates with predefined input-output relations using an evolutionary algorithm. The resulting cis-regulatory designs are often composed of modules that consist of tandem arrays of binding sites to which the transcription factors bind cooperatively. Moreover, these modules often overlap with each other, leading to competition between them. Our analysis thus identifies a new signal integration motif that is based upon the interplay between intramodular cooperativity and intermodular competition. We show that this signal integration mechanism drastically enhances the capacity of cis-regulatory domains to integrate signals. Our results provide a possible explanation for the complexity of promoter architectures and could be used for the rational design of synthetic gene circuits.
Collapse
Affiliation(s)
- Rutger Hermsen
- FOM Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands
| | | | | |
Collapse
|
14
|
Zheng D, Constantinidou C, Hobman JL, Minchin SD. Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 2004; 32:5874-93. [PMID: 15520470 PMCID: PMC528793 DOI: 10.1093/nar/gkh908] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Escherichia coli cyclic AMP receptor protein (CRP) is a global regulator that controls transcription initiation from more than 100 promoters by binding to a specific DNA sequence within cognate promoters. Many genes in the CRP regulon have been predicted simply based on the presence of DNA-binding sites within gene promoters. In this study, we have exploited a newly developed technique, run-off transcription/microarray analysis (ROMA) to define CRP-regulated promoters. Using ROMA, we identified 176 operons that were activated by CRP in vitro and 16 operons that were repressed. Using positive control mutants in different regions of CRP, we were able to classify the different promoters into class I or class II/III. A total of 104 operons were predicted to contain Class II CRP-binding sites. Sequence analysis of the operons that were repressed by CRP revealed different mechanisms for CRP inhibition. In contrast, the in vivo transcriptional profiles failed to identify most CRP-dependent regulation because of the complexity of the regulatory network. Analysis of these operons supports the hypothesis that CRP is not only a regulator of genes required for catabolism of sugars other than glucose, but also regulates the expression of a large number of other genes in E.coli. ROMA has revealed 152 hitherto unknown CRP regulons.
Collapse
Affiliation(s)
- Dongling Zheng
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
15
|
Thomsen LE, Pedersen M, Nørregaard-Madsen M, Valentin-Hansen P, Kallipolitis BH. Protein-ligand interaction: grafting of the uridine-specific determinants from the CytR regulator of Salmonella typhimurium to Escherichia coli CytR. J Mol Biol 1999; 288:165-75. [PMID: 10329134 DOI: 10.1006/jmbi.1999.2668] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the LacI family of transcriptional repressors respond to the presence of small effector molecules. The binding of the ligands affect the proteins ability to repress transcription by stabilizing a conformation that, in most cases, is unfavorable for high-affinity DNA binding. The CytR anti-activator diverges from the other family members by relying on the cooperative DNA binding with the global regulator CRP. The inducers of CytR do not affect CytR-DNA binding per se, but alleviate repression by interrupting protein-protein interactions between the two regulators. Here, we have studied of the CytR-inducer interaction by exploring a discrepancy in the inducer response observed for the homologous CytR regulators of Escherichia coli and Salmonella typhimurium. CytR of S. typhimurium (CytRSt) appears to respond to the presence of both uridine and cytidine nucleosides, whereas E. coli CytR (CytREc) responds to cytidine only. We have used a combination of genetic and structural modeling studies to provide detailed information regarding the nature of this discrepancy. By analysis of hybrid CytR proteins followed by site-directed mutagenesis, we have successfully transferred the specificity determinants for uridine from CytRSt to CytREc, revealing that serine substitutions of only two residues (G131 and A152) in CytREc is required to make CytREc sensitive to uridine. In addition, by employing a genetic screen for induction of defective mutants, we have identified four amino acid residues in CytRSt that appear to be important for the response to uridine. The implications of these findings for the understanding of the ligand binding and induction of CytR are discussed in the context of the structural knowledge of CytR and homologous protein-ligand complexes.
Collapse
Affiliation(s)
- L E Thomsen
- Department of Molecular Biology, Odense University, Campusvej 55, Odense M, DK-5230, Denmark
| | | | | | | | | |
Collapse
|
16
|
Kallipolitis BH, Valentin-Hansen P. Transcription of rpoH, encoding the Escherichia coli heat-shock regulator sigma32, is negatively controlled by the cAMP-CRP/CytR nucleoprotein complex. Mol Microbiol 1998; 29:1091-9. [PMID: 9767576 DOI: 10.1046/j.1365-2958.1998.00999.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, the rpoH gene encoding the essential heat-shock regulator sigma32, is expressed in a complex manner. Transcription occurs from four promoters (P1, P3, P4 and P5) and is modulated by several factors including (i) two sigma factors (sigma70 and sigmaE); (ii) the global regulator CRP; and (iii) the DnaA protein. Here, a further dissection of the rpoH regulatory region has revealed that an additional transcription control exists that appears to link rpoH expression to nucleoside metabolism. The cAMP-CRP complex and the CytR anti-activator bind co-operatively to the promoter region forming a repression complex that overlaps the sigmaE-dependent P3 promoter and the sigma70-dependent P4 and P5 promoters. During steady-state growth conditions with glycerol as the carbon and energy source, transcription from P3, P4 and P5 is reduced approximately threefold by CytR, whereas transcription from the upstream promoter, P1, appears to be unaffected. Furthermore, in strains that slightly overproduce CytR, transcription from P3, P4 and P5 is reduced even further (approximately 10-fold), and repression can be fully neutralized by the addition of the inducer cytidine to the growth medium. In the induced state, P4 is the strongest promoter and, together with P3 and P5, it is responsible for most rpoH transcription (65-70%). At present, CytR has been shown to 'fine tune' transcription of two genes (rpoH and ppiA) that are connected with protein-folding activities. These findings suggest that additional assistance in protein folding is required under conditions in which CytR is induced (i.e. in the presence of nucleosides).
Collapse
|
17
|
Hu ST, Wang HC, Lei GS, Wang SH. Negative regulation of IS2 transposition by the cyclic AMP (cAMP)-cAMP receptor protein complex. J Bacteriol 1998; 180:2682-8. [PMID: 9573153 PMCID: PMC107220 DOI: 10.1128/jb.180.10.2682-2688.1998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Three sequences similar to that of the consensus binding sequence of the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex were found in the major IS2 promoter region. Experiments were performed to determine whether the cAMP-CRP complex plays a role in the regulation of IS2 transposition. In the gel retardation assay, the cAMP-CRP complex was found to be able to bind the major IS2 promoter. A DNA footprinting assay confirmed that the cAMP-CRP complex binds to the sequences mentioned above. With an IS2 promoter-luciferase gene fusion construct, the cAMP-CRP complex was shown to inhibit transcription from the major IS2 promoter. IS2 was found to transpose at a frequency approximately 200-fold higher in an Escherichia coli host defective for CRP or adenyl cyclase than in a wild-type host. These results suggest that the cAMP-CRP complex is a negative regulator of IS2 transposition.
Collapse
Affiliation(s)
- S T Hu
- Department of Microbiology and Graduate Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
18
|
Abstract
This review attempts to substantiate the notion that nonlinear DNA structures allow prokaryotic cells to evolve complex signal integration devices that, to some extent, parallel the transduction cascades employed by higher organisms to control cell growth and differentiation. Regulatory cascades allow the possibility of inserting additional checks, either positive or negative, in every step of the process. In this context, the major consequence of DNA bending in transcription is that promoter geometry becomes a key regulatory element. By using DNA bending, bacteria afford multiple metabolic control levels simply through alteration of promoter architecture, so that positive signals favor an optimal constellation of protein-protein and protein-DNA contacts required for activation. Additional effects of regulated DNA bending in prokaryotic promoters include the amplification and translation of small physiological signals into major transcriptional responses and the control of promoter specificity for cognate regulators.
Collapse
Affiliation(s)
- J Pérez-Martín
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, Spain
| | | |
Collapse
|
19
|
Barbier CS, Short SA, Senear DF. Allosteric mechanism of induction of CytR-regulated gene expression. Cytr repressor-cytidine interaction. J Biol Chem 1997; 272:16962-71. [PMID: 9202008 DOI: 10.1074/jbc.272.27.16962] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Transcription from cistrons of the Escherichia coli CytR regulon is activated by E. coli cAMP receptor protein (CRP) and repressed by a multiprotein complex composed of CRP and CytR. De-repression results when CytR binds cytidine. CytR is a homodimer and a LacI family member. A central question for all LacI family proteins concerns the allosteric mechanism that couples ligand binding to the protein-DNA and protein-protein interactions that regulate transcription. To explore this mechanism for CytR, we analyzed nucleoside binding in vitro and its coupling to cooperative CytR binding to operator DNA. Analysis of the thermodynamic linkage between sequential cytidine binding to dimeric CytR and cooperative binding of CytR to deoP2 indicates that de-repression results from just one of the two cytidine binding steps. To test this conclusion in vivo, CytR mutants that have wild-type repressor function but are cytidine induction-deficient (CID) were identified. Each has a substitution for Asp281 or neighboring residue. CID CytR281N was found to bind cytidine with three orders of magnitude lower affinity than wild-type CytR. Other CytR mutants that do not exhibit the CID phenotype were found to bind cytidine with affinity similar to wild-type CytR. The rate of transcription regulated by heterodimeric CytR composed of one CytR281N and one wild-type subunit was compared with that regulated by wild-type CytR under inducing conditions. The data support the conclusion that the first cytidine binding step alone is sufficient to induce.
Collapse
Affiliation(s)
- C S Barbier
- Molecular Sciences, Glaxo Welcome, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
20
|
Kallipolitis BH, Nørregaard-Madsen M, Valentin-Hansen P. Protein-protein communication: structural model of the repression complex formed by CytR and the global regulator CRP. Cell 1997; 89:1101-9. [PMID: 9215632 DOI: 10.1016/s0092-8674(00)80297-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cAMP receptor protein (CRP) and the LacI-related CytR antiactivator bind cooperatively to adjacent DNA sites at or near promoters, an interaction that involves direct protein contacts. Here, we identify a collection of amino acid substitutions in CytR that reestablish protein-protein communication to mutant CRP proteins specifically defective in cooperative binding with wild-type CytR. To assess the location and spatial arrangement of these substitutions, we built a three-dimensional model of CytR based on the recent X-ray structure of the highly homologous PurR repressor bound to DNA. This approach enables us to specify the patch on CytR's surface that contacts CRP. Furthermore, our results permit the construction of a three-dimensional structure of the higher order nucleoprotein complex formed by CytR and CRP.
Collapse
|
21
|
Nieweg A, Bremer E. The nucleoside-specific Tsx channel from the outer membrane of Salmonella typhimurium, Klebsiella pneumoniae and Enterobacter aerogenes: functional characterization and DNA sequence analysis of the tsx genes. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 2):603-615. [PMID: 9043137 DOI: 10.1099/00221287-143-2-603] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Escherichia coli tsx gene encodes an integral outer-membrane protein (Tsx) that functions as a substrate-specific channel for deoxynucleosides and the antibiotic albicidin, and also serves as a receptor for bacteriophages and colicins. We cloned the structural genes of the Tsx proteins from Salmonella typhimurium, Klebsiella pneumoniae and Enterobacter aerogenes and expressed them in an E.coli tsx mutant. The heterologous Tsx proteins fully substituted the E.coli Tsx protein with respect to its function in deoxynucleoside and albicidin uptake, and as receptor for colicin K. The Tsx proteins from K. pneumoniae and Ent. aerogenes were also proficient as receptors for several Tsx-specific bacteriophages, whereas the corresponding protein from S. typhimurium did not confer sensitivity against these phages. The nucleotide sequence of the tsx genes from S. typhimurium, K. pneumoniae and Ent. aerogenes was established. Each of the Tsx proteins is initially synthesized with typical bacterial signal sequence peptides and the predicted mature forms of the Tsx proteins have a calculated M(r) of 30,567 (265 residues), 31,412 (272 residues) and 31,477 (272 residues), respectively. Multiple sequence alignments between the Tsx proteins showed a high degree of sequence identity and revealed the presence of four hypervariable regions, which are thought to constitute segments of the polypeptide chain exposed at the cell surface. Most notable was a deletion of 8 amino acids in one of these hypervariable domains in the S. typhimurium Tsx protein. When this deletion was introduced by site-directed mutagenesis into the corresponding region of the E.coli tsx gene, the mutant Tsx-515 protein lost its phage receptor function but still served as a colicin K receptor and as a substrate-specific channel, indicating that the region between residues 198 and 207 might be part of the bacteriophage receptor area. Multiple sequence alignments, structural predictions and the properties of previously characterized Tsx missense mutants were taken into account to develop a two-dimensional model for the topological organization of the Tsx protein within the outer membrane.
Collapse
Affiliation(s)
- Annette Nieweg
- Department of Biology, University of Konstanz, PO Box 5560, D-78434 Konstanz, Germany
| | - Erhard Bremer
- Philipps University Marburg, Laboratory for Microbiology, Karl-von-Frisch Str., D-35032 Marburg, Germany
- Department of Biology, University of Konstanz, PO Box 5560, D-78434 Konstanz, Germany
| |
Collapse
|
22
|
|
23
|
Perini LT, Doherty EA, Werner E, Senear DF. Multiple specific CytR binding sites at the Escherichia coli deoP2 promoter mediate both cooperative and competitive interactions between CytR and cAMP receptor protein. J Biol Chem 1996; 271:33242-55. [PMID: 8969182 DOI: 10.1074/jbc.271.52.33242] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Binding of cAMP receptor protein (CRP) and CytR mediates both positive and negative control of transcription from Escherichia coli deoP2. Transcription is activated by CRP and repressed by a multi-protein CRP.CytR.CRP complex. The latter is stabilized by cooperative interactions between CRP and CytR. Similar interactions at the other transcriptional units of the CytR regulon coordinate expression of the transport proteins and enzymes required for nucleoside catabolism. A fundamental question in both prokaryotic and eukaryotic gene regulation is how combinatorial mechanisms of this sort regulate differential expression. To understand the combinatorial control mechanism at deoP2, we have used quantitative footprint and gel shift analysis of CRP and CytR binding to evaluate the distribution of ligation states. By comparison to distributions for other CytR-regulated promoters, we hope to understand the roles of individual states in differential gene expression. The results indicate that CytR binds specifically to multiple sites at deoP2, including both the well recognized CytR site flanked by CRP1 and CRP2 and also sites coincident with CRP1 and CRP2. Binding to these multiple sites yields both cooperative and competitive interactions between CytR and CRP. Based on these findings we propose that CytR functions as a differential modulator of CRP1 versus CRP2-mediated activation. Additional high affinity specific sites are located at deoP1 and near the middle of the 600-base pair sequence separating P1 and P2. Evaluation of the DNA sequence requirement for specific CytR binding suggests that a limited array of contiguous and overlapping CytR sites exists at deoP2. Similar extended arrays, but with different arrangements of overlapping CytR and CRP sites, are found at the other CytR-regulated promoters. We propose that competition and cooperativity in CytR and CRP binding are important to differential regulation of these promoters.
Collapse
Affiliation(s)
- L T Perini
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA.
| | | | | | | |
Collapse
|
24
|
Fang FC, Chen CY, Guiney DG, Xu Y. Identification of sigma S-regulated genes in Salmonella typhimurium: complementary regulatory interactions between sigma S and cyclic AMP receptor protein. J Bacteriol 1996; 178:5112-20. [PMID: 8752327 PMCID: PMC178306 DOI: 10.1128/jb.178.17.5112-5120.1996] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
sigma S (RpoS)-regulated lacZ transcriptional fusions in Salmonella typhimurium were identified from a MudJ transposon library by placing the rpoS gene under the control of the araBAD promoter and detecting lacZ expression in the presence or absence of arabinose supplementation. Western blot (immunoblot) analysis of bacteria carrying PBAD::rpoS demonstrated arabinose-dependent rpoS expression during all phases of growth. sigma S-dependent gene expression of individual gene fusions was confirmed by P22-mediated transduction of the MudJ insertions into wild-type or rpoS backgrounds. Analysis of six insertions revealed the known sigma S-regulated gene otsA, as well as five novel loci. Each of these genes is maximally expressed in stationary phase, and all but one show evidence of cyclic AMP receptor protein-dependent repression during logarithmic growth which is relieved in stationary phase. For these genes, as well as for the sigma S-regulated spvB plasmid virulence gene, a combination of rpoS overexpression and crp inactivation can result in high-level expression during logarithmic growth. The approach used to identify sigma S-regulated genes in this study provides a general method for the identification of genes controlled by trans-acting regulatory factors.
Collapse
Affiliation(s)
- F C Fang
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
25
|
Moffat GJ, McLaren AW, Wolf CR. Functional characterization of the transcription silencer element located within the human Pi class glutathione S-transferase promoter. J Biol Chem 1996; 271:20740-7. [PMID: 8702826 DOI: 10.1074/jbc.271.34.20740] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have previously demonstrated enhanced transcriptional activity of the human Pi class glutathione S-transferase (GSTP1) promoter in a multidrug-resistant derivative (VCREMS) of the human mammary carcinoma cell line, MCF7 (Moffat, G. J., McLaren, A. W., and Wolf, C. R. (1994) J. Biol. Chem. 269, 16397-16402). Furthermore, we have identified an essential sequence (C1; -70 to -59) within the GSTP1 promoter that bound a Jun-Fos heterodimer in VCREMS but not in MCF7 cells. These present studies have examined the negative regulatory element (-105 to -86), which acted to suppress GSTP1 transcription in MCF7 cells. Mutational analysis of this silencer element further defined the repressor binding site to be located between nucleotides -97 and -90. In vitro DNA binding assays suggested that the repressor exerted its action by causing displacement of the essential non-AP-1-like MCF7 C1 complex. However, the addition of MCF7 nuclear extract did not disrupt binding of the VCREMS Jun-Fos C1 complex to the GSTP1 promoter. Furthermore, upstream insertion of the GSTP1 silencer element failed to inhibit activity of a heterologous promoter in MCF7 cells. These results highlighted the cell and promoter specificity of the GSTP1 transcriptional repressor and implicated a functional requirement for contact between the repressor and C1 complex. In this regard, the introduction of half-helical turns between the silencer and the C1 element abrogated repressor activity, thus leading to the hypothesis that a direct interaction between the repressor and C1 complex was required to suppress GSTP1 transcription. Moreover, these findings suggest that cell-specific differences in the composition of the C1 nuclear complex may dictate repressor activity.
Collapse
Affiliation(s)
- G J Moffat
- Imperial Cancer Research Fund Molecular Pharmacology Unit, Biomedical Research Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, United Kingdom
| | | | | |
Collapse
|
26
|
Ramseier TM, Saier MH. cAMP-cAMP receptor protein complex: five binding sites in the control region of the Escherichia coli mannitol operon. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 8):1901-1907. [PMID: 7551052 DOI: 10.1099/13500872-141-8-1901] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The control region of the mannitol (mtl) operon of Escherichia coli has been shown to contain five cAMP receptor protein (CRP) binding sequences, the most yet reported for any operon. A DNA fragment encompassing the entire mtl operon regulatory region was generated by PCR, and the binding of the cAMP-CRP complex was studied. Using restrictional analysis to separate, delineate and destroy the various putative CRP binding sites, all five sites were shown to be functional for CRP binding in vitro. Four of these sites bound the cAMP-CRP complex with high affinity while the fifth site (the most distal relative to the transcriptional start site) bound the complex with lower affinity. Simultaneous binding of cAMP-CRP complexes to several of these sites was demonstrated. The results serve to identify and define five dissimilar CRP binding sites in a single operon of E. coli. A model for mtl operon transcriptional initiation and repression complexes is presented.
Collapse
|
27
|
Xu J, Johnson RC. aldB, an RpoS-dependent gene in Escherichia coli encoding an aldehyde dehydrogenase that is repressed by Fis and activated by Crp. J Bacteriol 1995; 177:3166-75. [PMID: 7768815 PMCID: PMC177007 DOI: 10.1128/jb.177.11.3166-3175.1995] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Escherichia coli aldB was identified as a gene that is negatively regulated by Fis but positively regulated by RpoS. The complete DNA sequence determined in this study indicates that aldB encodes a 56.3-kDa protein which shares a high degree of homology with an acetaldehyde dehydrogenase encoded by acoD of Alcaligenes eutrophus and an aldehyde dehydrogenase encoded by aldA of Vibrio cholerae and significant homology with a group of other aldehyde dehydrogenases from prokaryotes and eukaryotes. Expression of aldB is maximally induced during the transition from exponential phase to stationary phase. Its message levels are elevated three- to fourfold by a fis mutation and abolished by an rpoS mutation. In addition, the expression of an aldB-lacZ fusion was decreased about 20-fold in the absence of crp. DNase I footprinting analysis showed that five Fis binding sites and one Crp binding site are located within the aldB promoter region, suggesting that Fis and Crp are acting directly to control aldB transcription. AldB expression is induced by ethanol, but in contrast to that of most of the RpoS-dependent genes, the expression of aldB is not altered by an increase in medium osmolarity.
Collapse
Affiliation(s)
- J Xu
- Department of Biological Chemistry, UCLA School of Medicine 90095, USA
| | | |
Collapse
|
28
|
Affiliation(s)
- J L Doull
- Department of Biology, Mount St. Vincent University, Halifax, N.S, Canada
| | | |
Collapse
|
29
|
Nørregaard-Madsen M, Mygind B, Pedersen R, Valentin-Hansen P, Søgaard-Andersen L. The gene encoding the periplasmic cyclophilin homologue, PPIase A, in Escherichia coli, is expressed from four promoters, three of which are activated by the cAMP-CRP complex and negatively regulated by the CytR repressor. Mol Microbiol 1994; 14:989-97. [PMID: 7715459 DOI: 10.1111/j.1365-2958.1994.tb01333.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The rot gene in Escherichia coli encodes PPIase A, a periplasmic peptidyl-prolyl cis-trans isomerase with homology to the cyclophilin family of proteins. Here it is demonstrated that rot is expressed in a complex manner from four overlapping promoters and that the rot regulatory region is unusually compact, containing a close array of sites for DNA-binding proteins. The three most upstream rot promoters are activated by the global gene regulatory cAMP-CRP complex and negatively regulated by the CytR repressor protein. Activation of these three promoters occurs by binding of cAMP-CRP to two sites separated by 53 bp. Moreover, one of the cAMP-CRP complexes is involved in the activation of both a Class I and a Class II promoter. Repression takes place by the formation of a CytR/cAMP-CRP/DNA nucleoprotein complex consisting of the two cAMP-CRP molecules and CytR bound in between. The two regulators bind co-operatively to the DNA overlapping the three upstream promoters, simultaneously quenching the cAMP-CRP activator function. These results expand the CytR regulon to include a gene whose product has no known function in ribo- and deoxyribonucleoside catabolism or transport.
Collapse
|
30
|
Plumbridge J, Kolb A. DNA loop formation between Nag repressor molecules bound to its two operator sites is necessary for repression of the nag regulon of Escherichia coli in vivo. Mol Microbiol 1993; 10:973-81. [PMID: 7934873 DOI: 10.1111/j.1365-2958.1993.tb00969.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Binding sites for the Nag repressor overlap the transcription start sites of the divergent nagE and nagB genes, such that the centres of the sites are separated by nine turns of the B-DNA helix. Mutations which prevent repressor binding to either site or alter the phasing of the binding sites result in simultaneous derepression of both genes. An additional mutation which restores the phasing of the two sites permits repression. These observations show that repression is the result of co-operative binding of the repressor to its two sites, resulting in the formation of a loop of DNA.
Collapse
Affiliation(s)
- J Plumbridge
- Institut de Biologie Physico-chimique (URA1139), Paris, France
| | | |
Collapse
|
31
|
Abstract
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome.
Collapse
Affiliation(s)
- M Riley
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
32
|
Søgaard-Andersen L, Valentin-Hansen P. Protein-protein interactions in gene regulation: the cAMP-CRP complex sets the specificity of a second DNA-binding protein, the CytR repressor. Cell 1993; 75:557-66. [PMID: 8221894 DOI: 10.1016/0092-8674(93)90389-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Maximal repression by the CytR protein depends on the formation of nucleoprotein complexes in which CytR interacts with DNA and with cAMP-cAMP receptor protein (CRP). Here we demonstrate that CytR regulates transcription from deoP2 promoters in which the entire CytR recognition sequence has been eliminated. Furthermore, CytR proteins deleted for the DNA-binding domain repress deoP2 in vivo and interact with deoP2 in vitro in a strictly cAMP-CRP-dependent fashion. These experiments show that the site of action of CytR can be specified by protein-protein interactions to cAMP-CRP, whereas CytR-DNA interactions may primarily serve to stabilize the nucleo-protein complex. This type of specificity mechanism may represent a general concept in the recruitment of DNA-binding proteins in combinatorial regulatory systems.
Collapse
|
33
|
Barbier CS, Short SA. Characterization of cytR mutations that influence oligomerization of mutant repressor subunits. J Bacteriol 1993; 175:4625-30. [PMID: 8335621 PMCID: PMC204913 DOI: 10.1128/jb.175.15.4625-4630.1993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In Escherichia coli, the transport and catabolism of nucleosides require expression of the genes composing the CytR regulon. The role of the CytR repressor in transcriptional regulation has been examined through a study of mutant CytR proteins. Two important and interrelated CytR mutants are encoded by cytR delta M149, a dominant negative allele, and cytRC289R. Studies with CytR delta M149 indicated that the native, repression-competent CytR protein is multimeric while the CytR amino acid substitution C-289-->R has been proposed to affect subunit oligomerization on the basis of its ability to suppress the transdominance of CytR delta M149. The present study identifies other CytR amino acid residues proximal to Cys-289 that may also participate in normal subunit oligomerization. Mutations in these CytR residues, cytRA307P, cytRM308R, and cytRL309P, encoded inactive repressors in a CytR- background and, when combined with cytR delta M149, yielded hybrid repressors that were recessive in a CytR+ genetic background. Because the stability and solubility observed for the new, mutant CytR proteins and the wild-type CytR protein were indistinguishable, these residue replacements, like the C-289-->R substitution, are envisaged as being located at the subunit interface and thus suppress the CytR delta M149 transdominance by blocking efficient and stable assembly of wild-type and hybrid CytR subunits. The assignment of CytR amino acids to a protein region involved in subunit association is also consistent with the observations that these CytR amino acids are roughly colinear with regions of the LacI repressor that influence monomer-dimer association and would be surface located by alignment to the E. coli galactose-binding protein crystal structure.
Collapse
Affiliation(s)
- C S Barbier
- Division of Molecular Genetics and Microbiology, Wellcome Research Laboratory, Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
34
|
Dersch P, Schmidt K, Bremer E. Synthesis of the Escherichia coli K-12 nucleoid-associated DNA-binding protein H-NS is subjected to growth-phase control and autoregulation. Mol Microbiol 1993; 8:875-89. [PMID: 8355613 DOI: 10.1111/j.1365-2958.1993.tb01634.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mutations in the structural gene (hns) for the Escherichia coli nucleoid-associated DNA-binding protein H-NS cause highly pleiotropic effects on gene expression, site-specific recombination, transposition of phage Mu, the stability of the genetic material and the topological state of the DNA. We have investigated the regulation of hns expression and found that hns transcription is subjected to stationary phase induction and negative autoregulation. A set of hns-lacZ protein and operon fusions was constructed in vitro and integrated in single copy into the attB site of the bacterial genome. Quantification of beta-galactosidase activity along the bacterial growth curve showed that hns expression increases approximately 10-fold in stationary phase compared with exponentially growing cells. Immunological detection of the H-NS protein in growing and stationary phase cells supported the genetic data and showed that H-NS synthesis varies with growth phase. In addition, primer extension experiments demonstrated that the amount of hns mRNA is elevated in stationary phase cultures and that hns transcription is directed by a unique promoter functioning in both log and stationary phase. Disruption of the hns gene by an insertion mutation led to the derepression (approximately fourfold) of the expression of an hns-lacZ operon fusion integrated at the attB site, showing that hns transcription is subjected to negative regulation by its own gene product. Autoregulation of hns expression is particularly pronounced in log phase. Both stationary phase control and autoregulation of hns transcription are associated with a 130 bp fragment that contains the hns promoter. In order to study the interaction of H-NS with its own regulatory region, we developed an efficient overproduction procedure and a simple purification scheme for H-NS. DNA gel retardation assays showed that the H-NS protein can preferentially interact with a restriction fragment carrying the hns promoter. This restriction fragment showed features of curved DNA as judged by two-dimensional polyacrylamide gel electrophoresis performed at 4 degrees C and 60 degrees C.
Collapse
Affiliation(s)
- P Dersch
- Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
| | | | | |
Collapse
|
35
|
Sacco M, Ricca E, Marasco R, Paradiso R, De Felice M. A stereospecific alignment between the promoter and the cis-acting sequence is required for Lrp-dependent activation of ilvIH transcription in Escherichia coli. FEMS Microbiol Lett 1993; 107:331-6. [PMID: 8472914 DOI: 10.1111/j.1574-6968.1993.tb06053.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The leucine-responsive regulatory protein (Lrp) is a DNA binding protein that affects, either positively or negatively, the expression of several E. coli genes. The ilvIH operon is positively regulated by Lrp and leucine counteracts this effect reducing 5- to 10-fold the efficiency of ilvIH transcription. An investigation of the mechanism of transcription activation of the ilvIH operon by Lrp indicated that: (i) a stereospecific alignment between the ilvIH promoter and the cis-acting sequence upstream of it is required for activation; (ii) a correct distance between the promoter and the adjacent cis-acting sequence is needed for leucine to counteract the positive role of Lrp; (iii) Lrp fails to activate transcription when the cis-acting region is placed several hundred base pairs upstream of the ilvIH promoter.
Collapse
Affiliation(s)
- M Sacco
- International Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | | | | | | | |
Collapse
|
36
|
Rasmussen PB, Søgaard-Andersen L, Valentin-Hansen P. Identification of the nucleotide sequence recognized by the cAMP-CRP dependent CytR repressor protein in the deoP2 promoter in E. coli. Nucleic Acids Res 1993; 21:879-85. [PMID: 8451188 PMCID: PMC309220 DOI: 10.1093/nar/21.4.879] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In E. coli repression of transcription initiation by the CytR protein relies on CytR-DNA interactions as well as on interactions between CytR and the cAMP-CRP activator complex. To identify the nucleotide sequence recognized by CytR, mutants of the deoP2 promoter with a reduced regulatory response to CytR have been isolated. Five single bp mutation derivatives of deoP2 with a 2-5-fold decrease in CytR regulation have been characterized. In vitro, the only effect of the mutations was a decrease in the binding affinity of CytR, and a clear correlation was observed between the reduction in CytR regulation in vivo and the reduction in CytR binding in vitro. The mutations all reside in a sequence element that contains an imperfect direct as well as an imperfect inverted repeat. As the active form of CytR, most likely, is an oligomer with two-fold rotational symmetry, CytR probably interacts with the inverted repeat. Degenerate versions of the inverted repeat are present in all CytR binding sites characterized so far, however, the distance between the half-sites varies.
Collapse
Affiliation(s)
- P B Rasmussen
- Department of Molecular Biology, Odense University, Denmark
| | | | | |
Collapse
|
37
|
Collado-Vides J. A linguistic representation of the regulation of transcription initiation. II. Distinctive features of sigma 70 promoters and their regulatory binding sites. Biosystems 1993; 29:105-28. [PMID: 8374063 DOI: 10.1016/0303-2647(93)90087-s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The goal of this paper and the accompanying one is to achieve a linguistic representation of a set of sigma 70 promoters. Such a description is formed by an ordered concatenated array of complex symbols identified by their categorical property, i.e. promoter, operator, activator binding site, etc. Each of these symbols may contain several properties associated with their respective classes of 'molecular words'. The main problem in attaining such a description is to define which properties are going to be represented, and how. In the accompanying paper the criteria on which the selection of alternative descriptions is based were discussed. The properties of promoters and regulatory sites are discussed here, and their corresponding distinctive features are selected following such criteria. Thus, information that is not directly relevant and that can overspecify the description has been excluded, since it does not seem to contribute to identifying classes of substitutable elements. Other properties, such as strength of promoters, position of regulatory sites, different types of specificities of regulatory proteins, affinity of their binding sites, etc., are also discussed. As a result of this analysis, a complete representation with distinctive features of the set of sigma 70 promoters is attainable.
Collapse
Affiliation(s)
- J Collado-Vides
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| |
Collapse
|
38
|
Collado-Vides J. A linguistic representation of the regulation of transcription initiation. I. An ordered array of complex symbols with distinctive features. Biosystems 1993; 29:87-104. [PMID: 8374070 DOI: 10.1016/0303-2647(93)90086-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The inadequacy of context-free grammars in the description of regulatory information contained in DNA gave the formal justification for a linguistic approach to the study of gene regulation. Based on that result, we have initiated a linguistic formalization of the regulatory arrays of 107 sigma 70 E. coli promoters. The complete sequences of promoter (Pr), operator (Op) and activator binding sites (I) have previously been identified as the smallest elements, or categories, for a combinatorial analysis of the range of transcription initiation of sigma 70 promoters. These categories are conceptually equivalent to phonemes of natural language. Several features associated with these categories are required in a complete description of regulatory arrays of promoters. We have to select the best way to describe the properties that are pertinent for the description of such regulatory regions. In this paper we define distinctive features of regulatory regions based on the following criteria: identification of subclasses of substitutable elements, simplicity, selection of the most directly related information, and distinction of one array among the whole set of promoters. Alternative ways to represent distances in between regulatory sites are discussed, permitting, together with a principle of precedence, the identification of an ordered set of complex symbols as a unique representation for a promoter and its associated regulatory sites. In the accompanying paper additional distinctive features of promoters and regulatory sites are identified.
Collapse
Affiliation(s)
- J Collado-Vides
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| |
Collapse
|
39
|
Pedersen H, Søgaard-Andersen L, Holst B, Gerlach P, Bremer E, Valentin-Hansen P. cAMP-CRP activator complex and the CytR repressor protein bind co-operatively to the cytRP promoter in Escherichia coli and CytR antagonizes the cAMP-CRP-induced DNA bend. J Mol Biol 1992; 227:396-406. [PMID: 1328649 DOI: 10.1016/0022-2836(92)90896-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Initiation of transcription from the cytRP promoter in Escherichia coli is activated by the cAMP-CRP complex and negatively regulated by the CytR repressor protein. By combining gel retardation and footprinting assays, we show that cAMP-CRP binds to a single site centered at position -64 and induces a considerable bend in the DNA. CytR binds to a region immediately downstream from, and partially overlapping, the CRP site, and induces a modest bend into the DNA. In combination, cAMP-CRP and CytR bind co-operatively to cytRP forming a nucleoprotein complex in which the proteins directly interact with each other and bind to the same face of the DNA helix. CytR binding concomitantly antagonizes the cAMP-CRP-induced bend. This study indicates that the minimal DNA region required to obtain CytR regulation consists of a single binding site for each of cAMP-CRP and CytR. The case described here, in which a protein-induced DNA bend is modulated by a second protein, may illustrate a mechanism that applies to other regulatory systems.
Collapse
Affiliation(s)
- H Pedersen
- Department of Molecular Biology, Odense University, Denmark
| | | | | | | | | | | |
Collapse
|
40
|
Waelkens F, Foglia A, Morel JB, Fourment J, Batut J, Boistard P. Molecular genetic analysis of the Rhizobium meliloti fixK promoter: identification of sequences involved in positive and negative regulation. Mol Microbiol 1992; 6:1447-56. [PMID: 1625575 DOI: 10.1111/j.1365-2958.1992.tb00865.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription of the Rhizobium meliloti fixK gene is induced in symbiotic and microaerobic growth conditions by the FixL/FixJ modulator/effector pair. Transcription of fixK is also negatively autoregulated. By 5' deletion analysis, the involvement in negative regulation of a DNA region between -514 and -450 with respect to the transcription start was demonstrated. Site-directed mutagenesis allowed us to show that a sequence homologous to the binding site of the Escherichia coli Fnr protein, centred at position -487, participates in this effect. However, deletion or mutagenesis of this Fnr-like sequence does not completely eliminate FixK-dependent repression, which suggests that either an additional DNA region is involved in negative regulation or that it is mediated at the level of fixLJ transcription. Deletion analysis also allowed the definition of a DNA region involved in FixJ-mediated activation of the fixK promoter, between -79 and -42. Different point mutations in the -60, -45 and -35 regions were shown to affect promoter activity. In some cases, the activity of mutant promoters could be partly or fully restored by increasing the expression of the fixLJ regulatory genes, in an E. coli strain harbouring a plasmid with fixLJ under the control of an inducible (p-tac) promoter.
Collapse
Affiliation(s)
- F Waelkens
- Laboratoire de Biologie Moléculaire des Interactions Plantes-Microorganismes, INRA/CNRS, Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
41
|
Barbier CS, Short SA. Amino acid substitutions in the CytR repressor which alter its capacity to regulate gene expression. J Bacteriol 1992; 174:2881-90. [PMID: 1569019 PMCID: PMC205940 DOI: 10.1128/jb.174.9.2881-2890.1992] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In Escherichia coli, transport and catabolism of nucleosides require expression of the genes composing the CytR regulon. Transcription initiation of cistrons in this gene family is activated by cyclic AMP-catabolite activator protein (cAMP-CAP), repressed by the CytR protein, and induced by cytidine. A random proofreading mutagenesis procedure and a genetic screen using udp-lac fusions have allowed the identification of distinct regions of the 341-amino-acid CytR polypeptide that are critical for repression of gene expression and response to induction. Determination of the ability of various CytR mutants to control gene expression in vivo indicated that the intrinsic affinity of the CytR protein for operator DNA is gene specific and that efficient repression of transcription by wild-type CytR is dependent on the interaction of CytR with cAMP-CAP. CytR mutants that were cytidine induction defective (CID) were characterized; these mutant proteins had only Asp-281 replaced. Data obtained with cytR delta M149, a dominant negative allele, indicated that the native CytR repressor is an oligomeric protein. Representative cytR mutations were combined with cytR delta M149, and the resulting hybrid repressors were tested for transdominance in a CytR+ E. coli strain. Amino acid substitutions A209E and C289Y suppressed the transdominance of CytR delta M149, suggesting that these replacements alter the normal protein contacts involved in repressor subunit-subunit association. In contrast, amino acid substitutions located in the N-terminal portion of the CytR protein had no effect on the transdominance of CytR delta M149. The results from this study suggest that the CytR repressor is an oligomeric, allosteric protein in which conformational changes are required for repression and derepression.
Collapse
Affiliation(s)
- C S Barbier
- Division of Molecular Genetics and Microbiology, Wellcome Research Laboratory, Research Triangle Park, North Carolina 27709
| | | |
Collapse
|