1
|
Jung JM, Rahman A, Schiffer AM, Weisberg AJ. Beav: a bacterial genome and mobile element annotation pipeline. mSphere 2024; 9:e0020924. [PMID: 39037262 PMCID: PMC11351099 DOI: 10.1128/msphere.00209-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024] Open
Abstract
Comprehensive and accurate genome annotation is crucial for inferring the predicted functions of an organism. Numerous tools exist to annotate genes, gene clusters, mobile genetic elements, and other diverse features. However, these tools and pipelines can be difficult to install and run, be specialized for a particular element or feature, or lack annotations for larger elements that provide important genomic context. Integrating results across analyses is also important for understanding gene function. To address these challenges, we present the Beav annotation pipeline. Beav is a command-line tool that automates the annotation of bacterial genome sequences, mobile genetic elements, molecular systems and gene clusters, key regulatory features, and other elements. Beav uses existing tools in addition to custom models, scripts, and databases to annotate diverse elements, systems, and sequence features. Custom databases for plant-associated microbes are incorporated to improve annotation of key virulence and symbiosis genes in agriculturally important pathogens and mutualists. Beav includes an optional Agrobacterium-specific pipeline that identifies and classifies oncogenic plasmids and annotates plasmid-specific features. Following the completion of all analyses, annotations are consolidated to produce a single comprehensive output. Finally, Beav generates publication-quality genome and plasmid maps. Beav is on Bioconda and is available for download at https://github.com/weisberglab/beav. IMPORTANCE Annotation of genome features, such as the presence of genes and their predicted function, or larger loci encoding secretion systems or biosynthetic gene clusters, is necessary for understanding the functions encoded by an organism. Genomes can also host diverse mobile genetic elements, such as integrative and conjugative elements and/or phages, that are often not annotated by existing pipelines. These elements can horizontally mobilize genes encoding for virulence, antimicrobial resistance, or other adaptive functions and alter the phenotype of an organism. We developed a software pipeline, called Beav, that combines new and existing tools for the comprehensive annotation of these and other major features. Existing pipelines often misannotate loci important for virulence or mutualism in plant-associated bacteria. Beav includes custom databases and optional workflows for the improved annotation of plant-associated bacteria. Beav is designed to be easy to install and run, making comprehensive genome annotation broadly available to the research community.
Collapse
Affiliation(s)
- Jewell M. Jung
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Arafat Rahman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Andrea M. Schiffer
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
2
|
Bahramnejad B, Naji M, Bose R, Jha S. A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation. Biotechnol Adv 2019; 37:107405. [PMID: 31185263 DOI: 10.1016/j.biotechadv.2019.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022]
Abstract
Agrobacterium rhizogenes, along with A. tumefaciens, has been used to affect genetic transformation in plants for many years. Detailed studies conducted in the past have uncovered the basic mechanism of foreign gene transfer and the implication of Ri/Ti plasmids in this process. A number of reviews exist describing the usage of binary vectors with A. tumefaciens, but no comprehensive account of the numerous binary vectors employed with A. rhizogenes and their successful applications has been published till date. In this review, we recollect a brief history of development of Ri-plasmid/Ri-T-DNA based binary vectors systems and their successful implementation with A. rhizogenes for different applications. The modification of native Ri plasmid to introduce foreign genes followed by development of binary vector using Ri plasmid and how it facilitated rapid and feasible genetic manipulation, earlier impossible with native Ri plasmid, have been discussed. An important milestone was the development of inducible plant expressing promoter systems which made expression of toxic genes in plant systems possible. The successful application of binary vectors in conjunction with A. rhizogenes in gene silencing and genome editing studies which are relatively newer developments, demonstrating the amenability and adaptability of hairy roots systems to make possible studying previously intractable research areas have been summarized in the present review.
Collapse
Affiliation(s)
- Bahman Bahramnejad
- Department of Agronomy and Plant Breeding, University of Kurdistan, Sanandaj, Kurdistan 66177-15175, Iran.
| | - Mohammad Naji
- Department of Agronomy and Plant Breeding, University of Kurdistan, Sanandaj, Kurdistan 66177-15175, Iran
| | - Rahul Bose
- Department of Genetics, University of Calcutta, Kolkata 700019, India
| | - Sumita Jha
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| |
Collapse
|
3
|
Hwang HH, Yang FJ, Cheng TF, Chen YC, Lee YL, Tsai YL, Lai EM. The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens. PHYTOPATHOLOGY 2013; 103:888-99. [PMID: 23593941 DOI: 10.1094/phyto-01-13-0020-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The soil phytopathogen Agrobacterium tumefaciens causes crown gall disease in a wide range of plant species. The neoplastic growth at the infection sites is caused by transferring, integrating, and expressing transfer DNA (T-DNA) from A. tumefaciens into plant cells. A trans-zeatin synthesizing (tzs) gene is located in the nopaline-type tumor-inducing plasmid and causes trans-zeatin production in A. tumefaciens. Similar to known virulence (Vir) proteins that are induced by the vir gene inducer acetosyringone (AS) at acidic pH 5.5, Tzs protein is highly induced by AS under this growth condition but also constitutively expressed and moderately upregulated by AS at neutral pH 7.0. We found that the promoter activities and protein levels of several AS-induced vir genes increased in the tzs deletion mutant, a mutant with decreased tumorigenesis and transient transformation efficiencies, in Arabidopsis roots. During AS induction and infection of Arabidopsis roots, the tzs deletion mutant conferred impaired growth, which could be rescued by genetic complementation and supplementing exogenous cytokinin. Exogenous cytokinin also repressed vir promoter activities and Vir protein accumulation in both the wild-type and tzs mutant bacteria with AS induction. Thus, the tzs gene or its product, cytokinin, may be involved in regulating AS-induced vir gene expression and, therefore, affect bacterial growth and virulence during A. tumefaciens infection.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan, 402.
| | | | | | | | | | | | | |
Collapse
|
4
|
Vences-Guzmán MÁ, Guan Z, Bermúdez-Barrientos JR, Geiger O, Sohlenkamp C. Agrobacteria lacking ornithine lipids induce more rapid tumour formation. Environ Microbiol 2012; 15:895-906. [PMID: 22958119 DOI: 10.1111/j.1462-2920.2012.02867.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/02/2012] [Accepted: 08/04/2012] [Indexed: 01/23/2023]
Abstract
Ornithine lipids (OLs) are phosphorus-free membrane lipids that are widespread among Gram-negative bacteria. Their basic structure consists of a 3-hydroxy fatty acyl group attached in amide linkage to the α-amino group of ornithine and a second fatty acyl group ester-linked to the 3-hydroxy position of the first fatty acid. It has been shown that OLs can be hydroxylated within the amide-linked fatty acyl moiety, the secondary fatty acyl moiety or within the ornithine moiety. These modifications have been related to increased stress tolerance and symbiotic proficiency in different organisms such as Rhizobium tropici or Burkholderia cenocepacia. Analysing the membrane lipid composition of the plant pathogen Agrobacterium tumefaciens we noticed that it forms two different OLs. In the present work we studied if OLs play a role in stress tolerance and pathogenicity in A. tumefaciens. Mutants deficient in the OLs biosynthesis genes olsB or olsE were constructed and characterized. They either completely lack OLs (ΔolsB) or only form the unmodified OL (ΔolsE). Here we present a characterization of both OL mutants under stress conditions and in a plant transformation assay using potato tuber discs. Surprisingly, the lack of agrobacterial OLs promotes earlier tumour formation on the plant host.
Collapse
Affiliation(s)
- Miguel Ángel Vences-Guzmán
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | | | | | | | | |
Collapse
|
5
|
Hwang HH, Wang MH, Lee YL, Tsai YL, Li YH, Yang FJ, Liao YC, Lin SK, Lai EM. Agrobacterium-produced and exogenous cytokinin-modulated Agrobacterium-mediated plant transformation. MOLECULAR PLANT PATHOLOGY 2010; 11:677-90. [PMID: 20696005 PMCID: PMC6640272 DOI: 10.1111/j.1364-3703.2010.00637.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogenic bacterium that causes neoplastic growths, called 'crown gall', via the transfer and integration of transferred DNA (T-DNA) from the bacterium into the plant genome. We characterized an acetosyringone (AS)-induced tumour-inducing (Ti) plasmid gene, tzs (trans-zeatin synthesizing), that is responsible for the synthesis of the plant hormone cytokinin in nopaline-type A. tumefaciens strains. The loss of Tzs protein expression and trans-zeatin secretions by the tzs frameshift (tzs-fs) mutant is associated with reduced tumorigenesis efficiency on white radish stems and reduced transformation efficiencies on Arabidopsis roots. Complementation of the tzs-fs mutant with a wild-type tzs gene restored wild-type levels of trans-zeatin secretions and transformation efficiencies. Exogenous application of cytokinin during infection increased the transient transformation efficiency of Arabidopsis roots infected by strains lacking Tzs, which suggests that the lower transformation efficiency resulted from the lack of Agrobacterium-produced cytokinin. Interestingly, although the tzs-fs mutant displayed reduced tumorigenesis efficiency on several tested plants, the loss of Tzs enhanced tumorigenesis efficiencies on green pepper and cowpea. These data strongly suggest that Tzs, by synthesizing trans-zeatin at early stage(s) of the infection process, modulates plant transformation efficiency by A. tumefaciens.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tsai YL, Wang MH, Gao C, Klüsener S, Baron C, Narberhaus F, Lai EM. Small heat-shock protein HspL is induced by VirB protein(s) and promotes VirB/D4-mediated DNA transfer in Agrobacterium tumefaciens. MICROBIOLOGY-SGM 2009; 155:3270-3280. [PMID: 19556291 PMCID: PMC2885654 DOI: 10.1099/mic.0.030676-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Agrobacterium tumefaciens is a Gram-negative plant-pathogenic bacterium that causes crown gall disease by transferring and integrating its transferred DNA (T-DNA) into the host genome. We characterized the chromosomally encoded alpha-crystallin-type small heat-shock protein (alpha-Hsp) HspL, which was induced by the virulence (vir) gene inducer acetosyringone (AS). The transcription of hspL but not three other alpha-Hsp genes (hspC, hspAT1, hspAT2) was upregulated by AS. Further expression analysis in various vir mutants suggested that AS-induced hspL transcription is not directly activated by the VirG response regulator but rather depends on the expression of VirG-activated virB genes encoding components of the type IV secretion system (T4SS). Among the 11 virB genes encoded by the virB operon, HspL protein levels were reduced in strains with deletions of virB6, virB8 or virB11. VirB protein accumulation but not virB transcription levels were reduced in an hspL deletion mutant early after AS induction, implying that HspL may affect the stability of individual VirB proteins or of the T4S complex directly or indirectly. Tumorigenesis efficiency and the VirB/D4-mediated conjugal transfer of an IncQ plasmid RSF1010 derivative between A. tumefaciens strains were reduced in the absence of HspL. In conclusion, increased HspL abundance is triggered in response to certain VirB protein(s) and plays a role in optimal VirB protein accumulation, VirB/D4-mediated DNA transfer and tumorigenesis.
Collapse
Affiliation(s)
- Yun-Long Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsuan Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chan Gao
- Biology Department, McMaster University, Hamilton, ON, Canada
| | - Sonja Klüsener
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Bochum, Germany
| | - Christian Baron
- Département de Biochimie, Université de Montréal, Montréal, QC, Canada.,Biology Department, McMaster University, Hamilton, ON, Canada
| | - Franz Narberhaus
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Bochum, Germany
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol 2008; 190:2841-50. [PMID: 18263727 DOI: 10.1128/jb.01775-07] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens is a plant-pathogenic bacterium capable of secreting several virulence factors into extracellular space or the host cell. In this study, we used shotgun proteomics analysis to investigate the secretome of A. tumefaciens, which resulted in identification of 12 proteins, including 1 known secretory protein (VirB1*) and 11 potential secretory proteins. Interestingly, one unknown protein, which we designated hemolysin-coregulated protein (Hcp), is a predicted soluble protein without a recognizable N-terminal signal peptide. Western blot analysis revealed that A. tumefaciens Hcp is expressed and secreted when cells are grown in both minimal and rich media. Further biochemical and immunoelectron microscopy analysis demonstrated that intracellular Hcp is localized mainly in the cytosol, with a small portion in the membrane system. To investigate the mechanism of secretion of Hcp in A. tumefaciens, we generated mutants with deletions of a conserved gene, icmF, or the entire putative operon encoding a recently identified type VI secretion system (T6SS). Western blot analysis indicated that Hcp was expressed but not secreted into the culture medium in mutants with deletions of icmF or the t6ss operon. The secretion deficiency of Hcp in the icmF mutant was complemented by heterologous trans expression of icmF, suggesting that icmF is required for Hcp secretion. In tumor assays with potato tuber disks, deletion of hcp resulted in approximately 20 to 30% reductions in tumorigenesis efficiency, while no consistent difference was observed when icmF or the t6ss operon was deleted. These results increase our understanding of the conserved T6SS used by both plant- and animal-pathogenic bacteria.
Collapse
|
8
|
Rommens CM, Bougri O, Yan H, Humara JM, Owen J, Swords K, Ye J. Plant-derived transfer DNAs. PLANT PHYSIOLOGY 2005; 139:1338-49. [PMID: 16244143 PMCID: PMC1283770 DOI: 10.1104/pp.105.068692] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The transfer of DNA from Agrobacterium to plant cell nuclei is initiated by a cleavage reaction within the 25-bp right border of Ti plasmids. In an effort to develop all-native DNA transformation vectors, 50 putative right border alternatives were identified in both plant expressed sequence tags and genomic DNA. Efficacy tests in a tobacco (Nicotiana tabacum) model system demonstrated that 14 of these elements displayed at least 50% of the activity of conventional Agrobacterium transfer DNA borders. Four of the most effective plant-derived right border alternatives were found to be associated with intron-exon junctions. Additional elements were embedded within introns, exons, untranslated trailers, and intergenic DNA. Based on the identification of a single right border alternative in Arabidopsis and three in rice (Oryza sativa), the occurrence of this motif was estimated at a frequency of at least 0.8x10(-8). Modification of plasmid DNA sequences flanking the alternative borders demonstrated that both upstream and downstream sequences play an important role in initiating DNA transfer. Optimal DNA transfer required the elements to be preceded by pyrimidine residues interspaced by AC-rich trinucleotides. Alteration of this organization lowered transformation frequencies by 46% to 93%. Despite their weaker resemblance with left borders, right border alternatives also functioned effectively in terminating DNA transfer, if both associated with an upstream A[C/T]T[C/G]A[A/T]T[G/T][C/T][G/T][C/G]A[C/T][C/T][A/T] domain and tightly linked cytosine clusters at their junctions with downstream DNA. New insights in border region requirements were used to construct an all-native alfalfa (Medicago sativa) transfer DNA vector that can be used for the production of intragenic plants.
Collapse
Affiliation(s)
- Caius M Rommens
- J.R. Simplot Company, Simplot Plant Sciences, Boise, IA 83706, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Lee H, Humann JL, Pitrak JS, Cuperus JT, Parks TD, Whistler CA, Mok MC, Ream LW. Translation start sequences affect the efficiency of silencing of Agrobacterium tumefaciens T-DNA oncogenes. PLANT PHYSIOLOGY 2003; 133:966-77. [PMID: 12972655 PMCID: PMC281594 DOI: 10.1104/pp.103.026534] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Revised: 05/30/2003] [Accepted: 06/06/2003] [Indexed: 05/22/2023]
Abstract
Agrobacterium tumefaciens oncogenes cause transformed plant cells to overproduce auxin and cytokinin. Two oncogenes encode enzymes that convert tryptophan to indole-3-acetic acid (auxin): iaaM (tryptophan mono-oxygenase) and iaaH (indole-3-acetamide hydrolase). A third oncogene (ipt) encodes AMP isopentenyl transferase, which produces cytokinin (isopentenyl-AMP). Inactivation of ipt and iaaM (or iaaH) abolishes tumorigenesis. Because adequate means do not exist to control crown gall, we created resistant plants by introducing transgenes designed to elicit posttranscriptional gene silencing (PTGS) of iaaM and ipt. Transgenes that elicit silencing trigger sequence-specific destruction of the inducing RNA and messenger RNAs with related sequences. Although PTGS has proven effective against a variety of target genes, we found that a much higher percentage of transgenic lines silenced iaaM than ipt, suggesting that transgene sequences influenced the effectiveness of PTGS. Sequences required for oncogene silencing included a translation start site. A transgene encoding a translatable sense-strand RNA from the 5' end of iaaM silenced the iaaM oncogene, but deletion of the translation start site abolished the ability of the transgene to silence iaaM. Silencing A. tumefaciens T-DNA oncogenes is a new and effective method to produce plants resistant to crown gall disease.
Collapse
Affiliation(s)
- Hyewon Lee
- Departments of Microbiology and Horticulture, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 2003; 67:16-37, table of contents. [PMID: 12626681 PMCID: PMC150518 DOI: 10.1128/mmbr.67.1.16-37.2003] [Citation(s) in RCA: 631] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens and related Agrobacterium species have been known as plant pathogens since the beginning of the 20th century. However, only in the past two decades has the ability of Agrobacterium to transfer DNA to plant cells been harnessed for the purposes of plant genetic engineering. Since the initial reports in the early 1980s using Agrobacterium to generate transgenic plants, scientists have attempted to improve this "natural genetic engineer" for biotechnology purposes. Some of these modifications have resulted in extending the host range of the bacterium to economically important crop species. However, in most instances, major improvements involved alterations in plant tissue culture transformation and regeneration conditions rather than manipulation of bacterial or host genes. Agrobacterium-mediated plant transformation is a highly complex and evolved process involving genetic determinants of both the bacterium and the host plant cell. In this article, I review some of the basic biology concerned with Agrobacterium-mediated genetic transformation. Knowledge of fundamental biological principles embracing both the host and the pathogen have been and will continue to be key to extending the utility of Agrobacterium for genetic engineering purposes.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| |
Collapse
|
11
|
Zhu J, Oger PM, Schrammeijer B, Hooykaas PJ, Farrand SK, Winans SC. The bases of crown gall tumorigenesis. J Bacteriol 2000; 182:3885-95. [PMID: 10869063 PMCID: PMC94570 DOI: 10.1128/jb.182.14.3885-3895.2000] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- J Zhu
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
12
|
Dombek P, Ream W. Functional domains of Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J Bacteriol 1997; 179:1165-73. [PMID: 9023198 PMCID: PMC178812 DOI: 10.1128/jb.179.4.1165-1173.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The transferred DNA (T-DNA) portion of the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid enters infected plant cells and integrates into plant nuclear DNA. Direct repeats define the T-DNA ends; transfer begins when the VirD2 endonuclease produces a site-specific nick in the right-hand border repeat and attaches to the 5' end of the nicked strand. Subsequent events liberate the lower strand of the T-DNA from the Ti plasmid, producing single-stranded DNA molecules (T strands) that are covalently linked to VirD2 at their 5' ends. A. tumefaciens appears to transfer T-DNA into plant cells as a T-strand-VirD2 complex. The bacterium also transports VirE2, a cooperative single-stranded DNA-binding protein, into plant cells during infection. Both VirD2 and VirE2 contain nuclear localization signals that may direct these proteins, and bound T strands, into plant nuclei. Here we report the locations of functional regions of VirE2 identified by eight insertions of XhoI linker oligonucleotides, and one deletion mutation, throughout virE2. We examined the effects of these mutations on virulence, single-stranded DNA (ssDNA) binding, and accumulation of VirE2 in A. tumefaciens. Two of the mutations in the C-terminal half of VirE2 eliminated ssDNA binding, whereas two insertions in the N-terminal half altered cooperativity. Four of the mutations, distributed throughout virE2, decreased the stability of VirE2 in A. tumefaciens. In addition, we isolated a mutation in the central region of VirE2 that decreased tumorigenicity but did not affect ssDNA binding or VirE2 accumulation. This mutation may affect export of VirE2 into plant cells or nuclear localization of VirE2, or it may affect an uncharacterized activity of VirE2.
Collapse
Affiliation(s)
- P Dombek
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis 97331, USA
| | | |
Collapse
|
13
|
Sundberg C, Meek L, Carroll K, Das A, Ream W. VirE1 protein mediates export of the single-stranded DNA-binding protein VirE2 from Agrobacterium tumefaciens into plant cells. J Bacteriol 1996; 178:1207-12. [PMID: 8576060 PMCID: PMC177787 DOI: 10.1128/jb.178.4.1207-1212.1996] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Agrobacterium tumefaciens transfers single-stranded DNAs (T strands) into plant cells. VirE1 and VirE2, which is a single-stranded DNA binding protein, are important for tumorigenesis. We show that T strands and VirE2 can enter plant cells independently and that export of VirE2, but not of T strands, depends on VirE1.
Collapse
Affiliation(s)
- C Sundberg
- Program in Molecular Biology, Oregon State University, Corvallis 97331, USA
| | | | | | | | | |
Collapse
|
14
|
Shurvinton CE, Hodges L, Ream W. A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 endonuclease are important for tumor formation. Proc Natl Acad Sci U S A 1992; 89:11837-41. [PMID: 1465407 PMCID: PMC50652 DOI: 10.1073/pnas.89.24.11837] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The T-DNA portion of the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid integrates into plant nuclear DNA. Direct repeats define the T-DNA ends; transfer begins when the VirD2 endonuclease produces a site-specific nick in the right-hand border repeat and attaches to the 5' end of the nicked strand. Subsequent events generate linear single-stranded VirD2-bound DNA molecules that include the entire T-DNA (T-strands). VirD2 protein contains a nuclear localization signal (NLS) near the C terminus and may direct bound T-strands to plant nuclei. We constructed mutations in virD2 and showed that the NLS was important for tumorigenesis, although T-strand production occurred normally in its absence. A tobacco etch virus NLS, substituted for the VirD2 NLS, restored tumor-inducing activity. Amino acids (the omega sequence) at the C terminus of VirD2, outside the NLS and the endonuclease domain, contributed significantly to tumorigenesis, suggesting that VirD2 may serve a third important function in T-DNA transfer.
Collapse
Affiliation(s)
- C E Shurvinton
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331-6502
| | | | | |
Collapse
|