1
|
Ryan MP, Carraro N, Slattery S, Pembroke JT. Integrative Conjugative Elements (ICEs) of the SXT/R391 family drive adaptation and evolution in γ-Proteobacteria. Crit Rev Microbiol 2024; 50:105-126. [PMID: 36634159 DOI: 10.1080/1040841x.2022.2161870] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
Integrative Conjugative Elements (ICEs) are mosaics containing functional modules allowing maintenance by site-specific integration and excision into and from the host genome and conjugative transfer to a specific host range. Many ICEs encode a range of adaptive functions that aid bacterial survival and evolution in a range of niches. ICEs from the SXT/R391 family are found in γ-Proteobacteria. Over 100 members have undergone epidemiological and molecular characterization allowing insight into their diversity and function. Comparative analysis of SXT/R391 elements from a wide geographic distribution has revealed conservation of key functions, and the accumulation and evolution of adaptive genes. This evolution is associated with gene acquisition in conserved hotspots and variable regions within the SXT/R391 ICEs catalysed via element-encoded recombinases. The elements can carry IS elements and transposons, and a mutagenic DNA polymerase, PolV, which are associated with their evolution. SXT/R391 ICEs isolated from different niches appear to have retained adaptive functions related to that specific niche; phage resistance determinants in ICEs carried by wastewater bacteria, antibiotic resistance determinants in clinical isolates and metal resistance determinants in bacteria recovered from polluted environments/ocean sediments. Many genes found in the element hotspots are undetermined and have few homologs in the nucleotide databases.
Collapse
Affiliation(s)
- Michael P Ryan
- Department of Applied Sciences, Technological University of the Shannon, Limerick, Ireland
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Shannon Slattery
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick, Ireland
| | - J Tony Pembroke
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick, Ireland
- Bernal Institute, University of Limerick, Ireland
| |
Collapse
|
2
|
Menck CFM, Galhardo RS, Quinet A. The accurate bypass of pyrimidine dimers by DNA polymerase eta contributes to ultraviolet-induced mutagenesis. Mutat Res 2024; 828:111840. [PMID: 37984186 DOI: 10.1016/j.mrfmmm.2023.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Human xeroderma pigmentosum variant (XP-V) patients are mutated in the POLH gene, responsible for encoding the translesion synthesis (TLS) DNA polymerase eta (Pol eta). These patients suffer from a high frequency of skin tumors. Despite several decades of research, studies on Pol eta still offer an intriguing paradox: How does this error-prone polymerase suppress mutations? This review examines recent evidence suggesting that cyclobutane pyrimidine dimers (CPDs) are instructional for Pol eta. Consequently, it can accurately replicate these lesions, and the mutagenic effects induced by UV radiation stem from the deamination of C-containing CPDs. In this model, the deamination of C (forming a U) within CPDs leads to the correct insertion of an A opposite to the deaminated C (or U)-containing dimers. This intricate process results in C>T transitions, which represent the most prevalent mutations detected in skin cancers. Finally, the delayed replication in XP-V cells amplifies the process of C-deamination in CPDs and increases the burden of C>T mutations prevalent in XP-V tumors through the activity of backup TLS polymerases.
Collapse
Affiliation(s)
- C F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| | - R S Galhardo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - A Quinet
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
| |
Collapse
|
3
|
Hurley KE, Banerjee SK, Stephens AC, Scribner MR, Cooper VS, Richardson AR. The contribution of DNA repair pathways to Staphylococcus aureus fitness and fidelity during nitric oxide stress. mBio 2023; 14:e0215623. [PMID: 37948342 PMCID: PMC10746251 DOI: 10.1128/mbio.02156-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Pathogenic bacteria must evolve various mechanisms in order to evade the host immune response that they are infecting. One aspect of the primary host immune response to an infection is the production of an inflammatory effector component, nitric oxide (NO⋅). Staphylococcus aureus has uniquely evolved a diverse array of strategies to circumvent the inhibitory activity of nitric oxide. One such mechanism by which S. aureus has evolved allows the pathogen to survive and maintain its genomic integrity in this environment. For instance, here, our results suggest that S. aureus employs several DNA repair pathways to ensure replicative fitness and fidelity under NO⋅ stress. Thus, our study presents evidence of an additional strategy that allows S. aureus to evade the cytotoxic effects of host NO⋅.
Collapse
Affiliation(s)
- Kelly E. Hurley
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Srijon K. Banerjee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amelia C. Stephens
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michelle R. Scribner
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony R. Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Sato JL, Fonseca DLDH, Galhardo RS. rumAB genes from SXT/R391 ICEs confer UV-induced mutability to Proteus mirabilis hosts and improve conjugation after UV irradiation. DNA Repair (Amst) 2022; 112:103297. [DOI: 10.1016/j.dnarep.2022.103297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/08/2023]
|
5
|
Goodman MF, McDonald JP, Jaszczur MM, Woodgate R. Insights into the complex levels of regulation imposed on Escherichia coli DNA polymerase V. DNA Repair (Amst) 2016; 44:42-50. [PMID: 27236212 DOI: 10.1016/j.dnarep.2016.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is now close to 40 years since the isolation of non-mutable umu/uvm strains of Escherichia coli and the realization that damage induced mutagenesis in E.coli is not a passive process. Early models of mutagenesis envisioned the Umu proteins as accessory factors to the cell's replicase that not only reduced its normally high fidelity, but also allowed the enzyme to traverse otherwise replication-blocking lesions in the genome. However, these models underwent a radical revision approximately 15 years ago, with the discovery that the Umu proteins actually encode for a DNA polymerase, E.coli pol V. The polymerase lacks 3'→5' exonucleolytic proofreading activity and is inherently error-prone when replicating both undamaged and damage DNA. So as to limit any "gratuitous" mutagenesis, the activity of pol V is strictly regulated in the cell at multiple levels. This review will summarize our current understanding of the myriad levels of regulation imposed on pol V including transcriptional control, posttranslational modification, targeted proteolysis, activation of the catalytic activity of pol V through protein-protein interactions and the very recently described intracellular spatial regulation of pol V. Remarkably, despite the multiple levels at which pol V is regulated, the enzyme is nevertheless able to contribute to the genetic diversity and evolutionary fitness of E.coli.
Collapse
Affiliation(s)
- Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, University Park, Los Angeles, CA 90089-2910, USA.
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Malgorzata M Jaszczur
- Department of Biological Sciences, University of Southern California, University Park, Los Angeles, CA 90089-2910, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| |
Collapse
|
6
|
Abstract
All living organisms are continually exposed to agents that damage their DNA, which threatens the integrity of their genome. As a consequence, cells are equipped with a plethora of DNA repair enzymes to remove the damaged DNA. Unfortunately, situations nevertheless arise where lesions persist, and these lesions block the progression of the cell's replicase. In these situations, cells are forced to choose between recombination-mediated "damage avoidance" pathways or a specialized DNA polymerase (pol) to traverse the blocking lesion. The latter process is referred to as Translesion DNA Synthesis (TLS). As inferred by its name, TLS not only results in bases being (mis)incorporated opposite DNA lesions but also bases being (mis)incorporated downstream of the replicase-blocking lesion, so as to ensure continued genome duplication and cell survival. Escherichia coli and Salmonella typhimurium possess five DNA polymerases, and while all have been shown to facilitate TLS under certain experimental conditions, it is clear that the LexA-regulated and damage-inducible pols II, IV, and V perform the vast majority of TLS under physiological conditions. Pol V can traverse a wide range of DNA lesions and performs the bulk of mutagenic TLS, whereas pol II and pol IV appear to be more specialized TLS polymerases.
Collapse
|
7
|
Kang A, Tan MH, Ling H, Chang MW. Systems-level characterization and engineering of oxidative stress tolerance in Escherichia coli under anaerobic conditions. MOLECULAR BIOSYSTEMS 2012; 9:285-95. [PMID: 23224080 DOI: 10.1039/c2mb25259g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite many prior studies on microbial response to oxidative stress, our understanding of microbial tolerance against oxidative stress is currently limited to aerobic conditions, and few engineering strategies have been devised to resolve toxicity issues of oxidative stress under anaerobic conditions. Since biological processes, such as anaerobic fermentation, are frequently hampered by toxicity arising from oxidative stress, increased microbial tolerance against oxidative stress improves the overall productivity and yield of biological processes. Here, we show a systems-level analysis of oxidative stress response of Escherichia coli under anaerobic conditions, and present an engineering strategy to improve oxidative stress tolerance. First, we identified essential cellular mechanisms and regulatory factors underlying oxidative stress response under anaerobic conditions using a transcriptome analysis. In particular, we showed that nitrogen metabolisms and respiratory pathways were differentially regulated in response to oxidative stress under anaerobic and aerobic conditions. Further, we demonstrated that among transcription factors with oxidative stress-derived perturbed activity, the deletion of arcA and arcB significantly improved oxidative stress tolerance under aerobic and anaerobic conditions, respectively, whereas fnr was identified as an essential transcription factor for oxidative stress tolerance under anaerobic conditions. Moreover, we showed that oxidative stress increased the intracellular NADH : NAD(+) ratio under aerobic and anaerobic conditions, which indicates a regulatory role of NADH in oxidative stress tolerance. Based on this finding, we demonstrated that increased NADH availability through fdh1 overexpression significantly improved oxidative stress tolerance under aerobic conditions. Our results here provide novel insight into better understanding of cellular mechanisms underlying oxidative stress tolerance under anaerobic conditions, and into developing strain engineering strategies to enhance microbial tolerance against oxidative stress towards improved biological processes.
Collapse
Affiliation(s)
- Aram Kang
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | | | | | | |
Collapse
|
8
|
Karschau J, de Almeida C, Richard MC, Miller S, Booth IR, Grebogi C, de Moura AP. A matter of life or death: modeling DNA damage and repair in bacteria. Biophys J 2011; 100:814-21. [PMID: 21320424 PMCID: PMC3037714 DOI: 10.1016/j.bpj.2010.12.3713] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 01/03/2023] Open
Abstract
DNA damage is a hazard all cells must face, and evolution has created a number of mechanisms to repair damaged bases in the chromosome. Paradoxically, many of these repair mechanisms can create double-strand breaks in the DNA molecule which are fatal to the cell. This indicates that the connection between DNA repair and death is far from straightforward, and suggests that the repair mechanisms can be a double-edged sword. In this report, we formulate a mathematical model of the dynamics of DNA damage and repair, and we obtain analytical expressions for the death rate. We predict a counterintuitive relationship between survival and repair. We can discriminate between two phases: below a critical threshold in the number of repair enzymes, the half-life decreases with the number of repair enzymes, but becomes independent of the number of repair enzymes above the threshold. We are able to predict quantitatively the dependence of the death rate on the damage rate and other relevant parameters. We verify our analytical results by simulating the stochastic dynamics of DNA damage and repair. Finally, we also perform an experiment with Escherichia coli cells to test one of the predictions of our model.
Collapse
Affiliation(s)
- Jens Karschau
- Institute of Complex Systems and Mathematical Biology, SUPA, King's College, University of Aberdeen, Aberdeen, United Kingdom
| | - Camila de Almeida
- Institute of Complex Systems and Mathematical Biology, SUPA, King's College, University of Aberdeen, Aberdeen, United Kingdom
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Morgiane C. Richard
- Institute of Complex Systems and Mathematical Biology, SUPA, King's College, University of Aberdeen, Aberdeen, United Kingdom
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Samantha Miller
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ian R. Booth
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Celso Grebogi
- Institute of Complex Systems and Mathematical Biology, SUPA, King's College, University of Aberdeen, Aberdeen, United Kingdom
| | - Alessandro P.S. de Moura
- Institute of Complex Systems and Mathematical Biology, SUPA, King's College, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
9
|
McDonald JP, Tissier A, Frank EG, Iwai S, Hanaoka F, Woodgate R. DNA polymerase iota and related rad30-like enzymes. Philos Trans R Soc Lond B Biol Sci 2001; 356:53-60. [PMID: 11205331 PMCID: PMC1087691 DOI: 10.1098/rstb.2000.0748] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Until recently, the molecular mechanisms of translesion DNA synthesis (TLS), a process whereby a damaged base is used as a template for continued replication, was poorly understood. This area of scientific research has, however, been revolutionized by the finding that proteins long implicated in TLS are, in fact, DNA polymerases. Members of this so-called UmuC/DinB/Rev1/Rad30 superfamily of polymerases have been identified in prokaryotes, eukaryotes and archaea. Biochemical studies with the highly purified polymerases reveal that some, but not all, can traverse blocking lesions in template DNA. All of them share a common feature, however, in that they exhibit low fidelity when replicating undamaged DNA. Of particular interest to us is the Rad30 subfamily of polymerases found exclusively in eukaryotes. Humans possess two Rad30 paralogs, Rad30A and Rad30B. The RAD30A gene encodes DNA polymerase eta and defects in the protein lead to the xeroderma pigmentosum variant (XP-V) phenotype in humans. Very recently RAD30B has also been shown to encode a novel DNA polymerase, designated as Pol iota. Based upon in vitro studies, it appears that Pol iota has the lowest fidelity of any eukaryotic polymerase studied to date and we speculate as to the possible cellular functions of such a remarkably error-prone DNA polymerase.
Collapse
Affiliation(s)
- J P McDonald
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, Bethesda, MD 20892-2725, USA
| | | | | | | | | | | |
Collapse
|
10
|
Kranendonk M, Laires A, Rueff J, Estabrook WR, Vermeulen NP. Heterologous expression of xenobiotic mammalian-metabolizing enzymes in mutagenicity tester bacteria: an update and practical considerations. Crit Rev Toxicol 2000; 30:287-306. [PMID: 10852498 DOI: 10.1080/10408440091159211] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There is an increasing need for metabolic competent cell systems for the mechanistic studies of biotransformation of xenobiotics in toxicology in general and in genotoxicology in particular. These cell systems combine the heterologous expression of a particular mammalian biotransformation enzyme with a specific target/ end point by which a functional analysis of the expressed gene product in the (geno)toxicity of chemicals can be performed. cDNAs of an increasing number of mammalian biotransformation enzymes is being cloned. The construction of specific expression vectors permits their heterologous expression in laboratory bacteria, such as Escherichia coli strains. This development does not only allow biochemical and enzymatic studies of (pure) enzyme preparations but also facilitates the engineering of metabolically competent mutagenicity tester bacteria, thereby providing new tools for genotoxicity testing and for studying of the roles of biotransformation in chemical carcinogenesis. In this review, we describe an update as well as an evaluation of enzymes expressed in mutagenicity tester bacteria. Four types of biotransformation enzymes are now expressed in these bacteria, namely, GSTs, CYPs, NATs, and STs. The expression of these enzymes in the tester bacteria and their subsequent application in mutagenicity assays demonstrates that heterologous expression in this type of bacteria has a number implications for the functionality of the biotransformation enzymes as well as for the functioning of the tester bacteria in mutagenicity detection. We also describe here a number of practical considerations in this regard.
Collapse
Affiliation(s)
- M Kranendonk
- Department of Genetics, Faculty of Medical Sciences, Universidade Nova de Lisboa, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
11
|
Murli S, Opperman T, Smith BT, Walker GC. A role for the umuDC gene products of Escherichia coli in increasing resistance to DNA damage in stationary phase by inhibiting the transition to exponential growth. J Bacteriol 2000; 182:1127-35. [PMID: 10648540 PMCID: PMC94390 DOI: 10.1128/jb.182.4.1127-1135.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The umuDC gene products, whose expression is induced by DNA-damaging treatments, have been extensively characterized for their role in SOS mutagenesis. We have recently presented evidence that supports a role for the umuDC gene products in the regulation of growth after DNA damage in exponentially growing cells, analogous to a prokaryotic DNA damage checkpoint. Our further characterization of the growth inhibition at 30 degrees C associated with constitutive expression of the umuDC gene products from a multicopy plasmid has shown that the umuDC gene products specifically inhibit the transition from stationary phase to exponential growth at the restrictive temperature of 30 degrees C and that this is correlated with a rapid inhibition of DNA synthesis. These observations led to the finding that physiologically relevant levels of the umuDC gene products, expressed from a single, SOS-regulated chromosomal copy of the operon, modulate the transition to rapid growth in E. coli cells that have experienced DNA damage while in stationary phase. This activity of the umuDC gene products is correlated with an increase in survival after UV irradiation. In a distinction from SOS mutagenesis, uncleaved UmuD together with UmuC is responsible for this activity. The umuDC-dependent increase in resistance in UV-irradiated stationary-phase cells appears to involve, at least in part, counteracting a Fis-dependent activity and thereby regulating the transition to rapid growth in cells that have experienced DNA damage. Thus, the umuDC gene products appear to increase DNA damage tolerance at least partially by regulating growth after DNA damage in both exponentially growing and stationary-phase cells.
Collapse
Affiliation(s)
- S Murli
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
12
|
Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 1999; 63:751-813, table of contents. [PMID: 10585965 PMCID: PMC98976 DOI: 10.1128/mmbr.63.4.751-813.1999] [Citation(s) in RCA: 719] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage lambda recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation.
Collapse
Affiliation(s)
- A Kuzminov
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| |
Collapse
|
13
|
McLenigan MP, Kulaeva OI, Ennis DG, Levine AS, Woodgate R. The bacteriophage P1 HumD protein is a functional homolog of the prokaryotic UmuD'-like proteins and facilitates SOS mutagenesis in Escherichia coli. J Bacteriol 1999; 181:7005-13. [PMID: 10559166 PMCID: PMC94175 DOI: 10.1128/jb.181.22.7005-7013.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli umuD and umuC genes comprise an operon and encode proteins that are involved in the mutagenic bypass of normally replication-inhibiting DNA lesions. UmuD is, however, unable to function in this process until it undergoes a RecA-mediated cleavage reaction to generate UmuD'. Many homologs of umuDC have now been identified. Most are located on bacterial chromosomes or on broad-host-range R plasmids. One such putative homolog, humD (homolog of umuD) is, however, found on the bacteriophage P1 genome. Interestingly, humD differs from other umuD homologs in that it encodes a protein similar in size to the posttranslationally generated UmuD' protein and not UmuD, nor is it in an operon with a cognate umuC partner. To determine if HumD is, in fact, a bona fide homolog of the prokaryotic UmuD'-like mutagenesis proteins, we have analyzed the ability of HumD to complement UmuD' functions in vivo as well as examined HumD's physical properties in vitro. When expressed from a high-copy-number plasmid, HumD restored cellular mutagenesis and increased UV survival to normally nonmutable recA430 lexA(Def) and UV-sensitive DeltaumuDC recA718 lexA(Def) strains, respectively. Complementing activity was reduced when HumD was expressed from a low-copy-number plasmid, but this observation is explained by immunoanalysis which indicates that HumD is normally poorly expressed in vivo. In vitro analysis revealed that like UmuD', HumD forms a stable dimer in solution and is able to interact with E. coli UmuC and RecA nucleoprotein filaments. We conclude, therefore, that bacteriophage P1 HumD is a functional homolog of the UmuD'-like proteins, and we speculate as to the reasons why P1 might require the activity of such a protein in vivo.
Collapse
Affiliation(s)
- M P McLenigan
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2725, USA
| | | | | | | | | |
Collapse
|
14
|
Opperman T, Murli S, Smith BT, Walker GC. A model for a umuDC-dependent prokaryotic DNA damage checkpoint. Proc Natl Acad Sci U S A 1999; 96:9218-23. [PMID: 10430923 PMCID: PMC17760 DOI: 10.1073/pnas.96.16.9218] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The products of the Escherichia coli umuDC operon are required for translesion synthesis, the mechanistic basis of most mutagenesis caused by UV radiation and many chemicals. The UmuD protein shares homology with LexA, the repressor of SOS-regulated loci, and similarly undergoes a facilitated autodigestion on interaction with the RecA/single-stranded DNA nucleoprotein filaments formed after a cell experiences DNA damage. This cleavage, in which Ser-60 of UmuD acts as the nucleophile, produces UmuD', the form active in translesion synthesis. Expression of the noncleavable UmuD(S60A) protein and UmuC was found to increase survival after UV irradiation, despite the inability of the UmuD(S60A) protein to participate in translesion synthesis; this survival increase is uvr(+) dependent. Additional observations that expression of the UmuD(S60A) protein and UmuC delayed the resumption of DNA replication and cell growth after UV irradiation lead us to propose that the uncleaved UmuD protein and UmuC delay the resumption of DNA replication, thereby allowing nucleotide excision repair additional time to repair the damage accurately before replication is attempted. After a UV dose of 20 J/m(2), uncleaved UmuD is the predominant form for approximately 20 min, after which UmuD' becomes the predominant form, suggesting that the umuDC gene products play two distinct and temporally separated roles in DNA damage tolerance, the first in cell-cycle control and the second in translesion synthesis over unrepaired or irreparable lesions. The relationship of these observations to the eukaryotic DNA damage checkpoint is discussed.
Collapse
Affiliation(s)
- T Opperman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
15
|
Runyen-Janecky LJ, Hong M, Payne SM. The virulence plasmid-encoded impCAB operon enhances survival and induced mutagenesis in Shigella flexneri after exposure to UV radiation. Infect Immun 1999; 67:1415-23. [PMID: 10024589 PMCID: PMC96475 DOI: 10.1128/iai.67.3.1415-1423.1999] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon exposure to UV radiation, Shigella flexneri SA100 displayed survival and mutation frequencies comparable to those of Escherichia coli AB1157, which contains a functional UmuDC error-prone DNA repair system. Survival of SA100 after UV irradiation was associated with the presence of the 220-kb virulence plasmid, pVP. This plasmid encodes homologues of ImpA and ImpB, which comprise an error-prone DNA repair system encoded on plasmid TP110 that was initially identified in Salmonella typhimurium, and ImpC, encoded upstream of ImpA and ImpB. Although the impB gene was present in representatives of all four species of Shigella, not all isolates tested contained the gene. Shigella isolates that lacked impB were more sensitive to UV radiation than isolates that contained impB. The nucleotide sequence of a 2.4-kb DNA fragment containing the imp operon from S. flexneri SA100 pVP was 96% identical to the imp operon from the plasmid TP110. An SA100 derivative with a mutation in the impB gene had reduced survival following UV irradiation and less UV-induced mutagenesis relative to the parental strain. We also found that S. flexneri contained a chromosomally encoded umuDC operon; however, the umuDC promoter was not induced by exposure to UV radiation. This suggests that the imp operon but not the umuDC operon contributes to survival and induced mutagenesis in S. flexneri following exposure to UV radiation.
Collapse
Affiliation(s)
- L J Runyen-Janecky
- Department of Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712-1095, USA
| | | | | |
Collapse
|
16
|
Sedliakova M. A non-excision uvr-dependent DNA repair pathway of Escherichia coli (involvement of stress proteins). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1998; 45:75-81. [PMID: 9868797 DOI: 10.1016/s1011-1344(98)00159-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In UV-irradiated excision-proficient (uvr+) Escherichia coli, pre-induced by simultaneous pre-starvation for thymine (T) and amino acids (AAs), and/or a low UV pre-dose applied after prestarvation for AAs, pyrimidine dimer excision (PDE) is reduced without an adequate increase of UV sensitivity and UV mutagenesis. The unexcised lesions are tolerated by a putative repair pathway that is uvr dependent but does not involve excision. The process consists of PDE inhibition, which requires outer membrane protease OmpT, and subsequent pyrimidine dimer (PD) toleration, which may be mediated by interaction with a sister duplex using a number of SOS and stress-inducible proteins.
Collapse
Affiliation(s)
- M Sedliakova
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
17
|
Abstract
The cellular response to DNA damage that has been most extensively studied is the SOS response of Escherichia coli. Analyses of the SOS response have led to new insights into the transcriptional and post-translational regulation of processes that increase cell survival after DNA damage as well as insights into DNA-damage-induced mutagenesis, i.e., SOS mutagenesis. SOS mutagenesis requires the recA and umuDC gene products and has as its mechanistic basis the alteration of DNA polymerase III such that it becomes capable of replicating DNA containing miscoding and noncoding lesions. Ongoing investigations of the mechanisms underlying SOS mutagenesis, as well as recent observations suggesting that the umuDC operon may have a role in the regulation of the E. coli cell cycle after DNA damage has occurred, are discussed.
Collapse
Affiliation(s)
- B T Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
18
|
Ozawa Y, Tanimoto K, Fujimoto S, Tomita H, Ike Y. Cloning and genetic analysis of the UV resistance determinant (uvr) encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pAD1. J Bacteriol 1997; 179:7468-75. [PMID: 9393713 PMCID: PMC179699 DOI: 10.1128/jb.179.23.7468-7475.1997] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The conjugative pheromone-responsive plasmid pAD1 (59.6 kb) of Enterococcus faecalis encodes a UV resistance determinant (uvr) in addition to the hemolysin-bacteriocin determinant. pAD1 enhances the UV resistance of wild-type E. faecalis FA2-2 and E. faecalis UV202, which is a UV-sensitive derivative of E. faecalis JH2-2. A 2.972-kb fragment cloned from between 27.7 and 30.6 kb of the pAD1 map conferred UV resistance function on UV202. Sequence analysis showed that the cloned fragment contained three open reading frames designated uvrA, uvrB, and uvrC. The uvrA gene is located on the pAD1 map between 28.1 and 29.4 kb. uvrB is located between 30.1 and 30.3 kb, and uvrC is located between 30.4 and 30.6 kb on the pAD1 map. The uvrA, uvrB, and uvrC genes encode sequences of 442, 60, and 74 amino acids, respectively. The deduced amino acid sequence of the uvrA-encoded protein showed 20% homology of the identical residues with the E. coli UmuC protein. Tn917 insertion mutagenesis and deletion mutant analysis of the cloned fragment showed that uvrA conferred UV resistance. A palindromic sequence, 5'-GAACNGTTC-3', which is identical to the consensus sequence found within the putative promoter region of the Bacillus subtilis DNA damage-inducible genes, was located within the promoter region of uvrA. Two uvrA transcripts of different lengths (i.e., 1.54 and 2.14 kb) which terminate at different points downstream of uvrA were detected in UV202 carrying the deletion mutant containing uvrA. The longer transcript, 2.14 kb, was not detected in UV202 carrying the deletion mutant containing both uvrA and uvrB, which suggests that uvrB encodes a terminator for the uvrA transcript. The uvrA transcript was not detected in any significant quantity in UV202 carrying the cloned fragment containing uvrA, uvrB, and uvrC; on the other hand, the 1.54-kb uvrA transcript was detected in the strain exposed to mitomycin C, which suggests that the UvrC protein functions as a regulator of uvrA.
Collapse
Affiliation(s)
- Y Ozawa
- Department of Microbiology, Gunma University School of Medicine, Maebashi, Japan
| | | | | | | | | |
Collapse
|
19
|
Wood ER, Ghané F, Grogan DW. Genetic responses of the thermophilic archaeon Sulfolobus acidocaldarius to short-wavelength UV light. J Bacteriol 1997; 179:5693-8. [PMID: 9294423 PMCID: PMC179455 DOI: 10.1128/jb.179.18.5693-5698.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The archaea which populate geothermal environments are adapted to conditions that should greatly destabilize the primary structure of DNA, yet the basic biological aspects of DNA damage and repair remain unexplored for this group of prokaryotes. We used auxotrophic mutants of the extremely thermoacidophilic archaeon Sulfolobus acidocaldarius to assess genetic and physiological effects of a well-characterized DNA-damaging agent, short-wavelength UV light. Simple genetic assays enabled quantitative dose-response relationships to be determined and correlated for survival, phenotypic reversion, and the formation of genetic recombinants. Dose-response relationships were also determined for survival and phenotypic reversion of the corresponding Escherichia coli auxotrophs with the same equipment and procedures. The results showed S. acidocaldarius to be about twice as UV sensitive as E. coli and to be equally UV mutable on a surviving-cell basis. Furthermore, UV irradiation significantly increased the frequency of recombinants recovered from genetic-exchange assays of S. acidocaldarius. The observed UV effects were due to the short-wavelength (i.e., UV-C) portion of the spectrum and were effectively reversed by subsequent illumination of S. acidocaldarius cells with visible light (photoreactivation). Thus, the observed responses are probably initiated by the formation of pyrimidine dimers in the S. acidocaldarius chromosome. To our knowledge, these results provide the first evidence of error-prone DNA repair and genetic recombination induced by DNA damage in an archaeon from geothermal habitats.
Collapse
Affiliation(s)
- E R Wood
- Department of Biological Sciences, University of Cincinnati, Ohio 54221-0006, USA
| | | | | |
Collapse
|
20
|
Kulaeva OI, Koonin EV, McDonald JP, Randall SK, Rabinovich N, Connaughton JF, Levine AS, Woodgate R. Identification of a DinB/UmuC homolog in the archeon Sulfolobus solfataricus. Mutat Res 1996; 357:245-53. [PMID: 8876701 DOI: 10.1016/0027-5107(96)00164-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To date, eight closely related homologs of the Escherichia coli UmuC protein have been identified. All of these homologs appear to play critical roles in damage-inducible mutagenesis in enterobacteriaceae. Recently, a distantly related UmuC-homolog, DinB, has also been identified in E. coli. Using the polymerase chain reaction together with degenerate primers designed against conserved regions found in UmuC-like proteins, we have identified a new member of the UmuC-superfamily in the archeon Sulfolobus solfataricus. This new homolog shows high sequence similarity to DinB and a lower level of similarity to UmuC. As a consequence, we have called this new gene dbh (dinB homolog). Analysis of approximately 2.7 kb DNA encompassing the dbh region revealed several open reading frames (orfs). One, encoding a putative ribokinase, was located immediately upstream of dbh. This orf overlaps the dbh gene by 4 bp suggesting that both proteins might be coordinately expressed. Further upstream of the ribokinase-dbh locus was another orf encoding a potential ATPase homologous to two uncharacterized S. cerevisiae proteins (YD9346.02c and SC38KCXVI_20) and another E. coli DNA repair protein, RuvB. While this is the first report of a UmuC-like homolog in an archeon, we detected additional homologs using protein sequence comparisons in Gram-positive bacteria, cyanobacteria, and among potential human EST products, indicating that UmuC-related proteins comprise a ubiquitous superfamily of proteins probably involved in DNA repair and mutagenesis.
Collapse
Affiliation(s)
- O I Kulaeva
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Opperman T, Murli S, Walker GC. The genetic requirements for UmuDC-mediated cold sensitivity are distinct from those for SOS mutagenesis. J Bacteriol 1996; 178:4400-11. [PMID: 8755866 PMCID: PMC178205 DOI: 10.1128/jb.178.15.4400-4411.1996] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The umuDC operon of Escherichia coli, a member of the SOS regulon, is required for SOS mutagenesis. Following the posttranslational processing of UmuD to UmuD' by RecA-mediated cleavage, UmuD' acts in concert with UmuC, RecA, and DNA polymerase III to facilitate the process of translesion synthesis, which results in the introduction of mutations. Constitutive expression of the umuDC operon causes an inhibition of growth at 30 degrees C (cold sensitivity). The umuDC-dependent physiological phenomenon manifested as cold-sensitive growth is shown to differ from SOS mutagenesis in two respects. Intact UmuD, the form inactive in SOS mutagenesis, confers a significantly higher degree of cold sensitivity in combination with UmUC than does UmuD'. In addition, umuDC-mediated cold sensitivity, unlike SOS mutagenesis, does not require recA function. Since the RecA protein mediates the autodigestion of UnmD to UmuD', this finding supports the conclusion that intact UmuD is capable of conferring cold sensitivity in the presence of UmuC. The degree of inhibition of growth at 30 degrees C correlates with the levels of UmuD and UmuC, which are the only two SOS-regulated proteins required to observe cold sensitivity. Analysis of the cellular morphology of strains that exhibit cold sensitivity for growth led to the finding that constitutive expression of the umuDC operon causes a novel form of sulA- and sfiC-independent filamentation at 30 degrees C. This filamentation is observed in a strain constitutively expressing the single, chromosomal copy of umuDC and can be suppressed by overexpression of the ftsQAZ operon.
Collapse
Affiliation(s)
- T Opperman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | |
Collapse
|
22
|
Oda N, Levin JD, Spoonde AY, Frank EG, Levine AS, Woodgate R, Ackerman EJ. Arrested DNA replication in Xenopus and release by Escherichia coli mutagenesis proteins. Science 1996; 272:1644-6. [PMID: 8658137 DOI: 10.1126/science.272.5268.1644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Xenopus oocytes and oocyte nuclear extracts repair ultraviolet photoproducts on double-stranded (ds) DNA and replicate single-stranded (ss) to ds DNA. M13 ss DNA molecules containing cyclobutane pyrimidine dimers were maintained but not replicated in Xenopus oocytes yet were replicated in progesterone-matured oocytes. The replication arrest functioned only in cis. The replication arrest was alleviated by injection into oocytes of messenger RNAs encoding the prokaryotic mutagenesis proteins UmuD'C or MucA'B. These results may help explain how cells stabilize repair or replication events on DNA with unrepairable lesions.
Collapse
Affiliation(s)
- N Oda
- Office of Scientific Director, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Koch WH, Kopsidas G, Meffle B, Levine AS, Woodgate R. Analysis of chimeric UmuC proteins: identification of regions in Salmonella typhimurium UmuC important for mutagenic activity. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:121-9. [PMID: 8668121 DOI: 10.1007/bf02172909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Unlike Escherichia coli, the closely related bacterium Salmonella typhimurium is relatively unresponsive to the mutagenic effects of DNA-damaging agents. Previous experiments have suggested that these phenotypic differences might result from reduced activity of the S. typhimurium UmuC protein. To investigate this possibility, we have taken advantage of the high degree of homology between the UmuC proteins of E. coli and S. typhimurium and have constructed a series of plasmid-encoded chimeric proteins. The possibility that the phenotypic differences might be due to differential expression of the respective UmuC proteins was eliminated by constructing chimeric proteins that retained the first 25 N-terminal amino acids of either of the UmuC proteins (and presumably the same translational signals), but substituting the remaining 397 C-terminal amino acids with the corresponding segments from the reciprocal operon. Constructs expressing mostly E. coli UmuC were moderately proficient for mutagenesis whereas those expressing mostly S. typhimurium UmuC exhibited much lower frequencies of mutation, indicating that the activity of the UmuC protein of S. typhimurium is indeed curtailed. The regions responsible for this phenotype were more precisely localized by introducing smaller segments of the S. typhimurium UmuC protein into the UmuC protein of E. coli. While some regions could be interchanged with few or no phenotypic effects, substitution of residues 212-395 and 396-422 of E. coli UmuC with those from S. typhimurium resulted in reduced mutability, while substitution of residues 26-59 caused a dramatic loss of activity. We suggest, therefore, that the primary cause for the poor mutability of S. typhimurium can be attributed to mutations located within residues 26-59 of the S. typhimurium UmuC protein.
Collapse
Affiliation(s)
- W H Koch
- Molecular Biology Branch, Food and Drug Administration, Washington, DC 20204, USA
| | | | | | | | | |
Collapse
|
24
|
Doyle N, Strike P. The spectra of base substitutions induced by the impCAB, mucAB and umuDC error-prone DNA repair operons differ following exposure to methyl methanesulfonate. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:735-41. [PMID: 7616965 DOI: 10.1007/bf00290405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have used the lacZ reversion assay to study the mutation spectra induced by the Escherichia coli chromosomal umuDC operon and of its two plasmid-borne analogues impCAB and mucAB following exposure of cells to UV light and methyl methanesulfonate (MMS). We have shown that the impCAB, mucAB and umuDC operons all produce a similar response to UV light which results almost exclusively in AT-->GC transitions. However, we found that the three operons produced different responses to alkylating agents. We found that with MMS the chromosomal umuDC operon produced almost exclusively AT-->GC transitions, whilst both mucAB and impCAB produced predominantly transversions. In the case of the impCAB operon the mutation spectrum contained more AT-->TA than GC-->TA transversions; this balance was reversed with mucAB. The effect of the copy number of the error-prone DNA repair operons upon the mutagenic spectra was also studied. The results obtained suggest that the copy number of the imp operon does not greatly affect the specificity of base substitutions observed. However, an increase in the copy number of the umuDC operon greatly affected the specificity of base substitution, such that virtually no transitions were produced and the spectrum was dominated by GC/AT-->TA transversions. It appears that the three error-prone DNA repair operons impCAB, mucAB and umuDC, despite showing strong structural and functional homologies, can display major differences in the spectrum of base changes induced during mutagenesis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N Doyle
- University of Liverpool, Department of Genetics and Microbiology, Donnan Laboratories, UK
| | | |
Collapse
|
25
|
Abstract
We present edition VIII of the genetic map of Salmonella typhimurium LT2. We list a total of 1,159 genes, 1,080 of which have been located on the circular chromosome and 29 of which are on pSLT, the 90-kb plasmid usually found in LT2 lines. The remaining 50 genes are not yet mapped. The coordinate system used in this edition is neither minutes of transfer time in conjugation crosses nor units representing "phage lengths" of DNA of the transducing phage P22, as used in earlier editions, but centisomes and kilobases based on physical analysis of the lengths of DNA segments between genes. Some of these lengths have been determined by digestion of DNA by rare-cutting endonucleases and separation of fragments by pulsed-field gel electrophoresis. Other lengths have been determined by analysis of DNA sequences in GenBank. We have constructed StySeq1, which incorporates all Salmonella DNA sequence data known to us. StySeq1 comprises over 548 kb of nonredundant chromosomal genomic sequences, representing 11.4% of the chromosome, which is estimated to be just over 4,800 kb in length. Most of these sequences were assigned locations on the chromosome, in some cases by analogy with mapped Escherichia coli sequences.
Collapse
Affiliation(s)
- K E Sanderson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
26
|
Kranendonk M, Ruas M, Laires A, Rueff J. Isolation and prevalidation of an Escherichia coli tester strain for the use in mechanistic and metabolic studies of genotoxins. Mutat Res 1994; 312:99-109. [PMID: 7510836 DOI: 10.1016/0165-1161(94)90014-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have isolated an Escherichia coli tester strain for the use in mechanistic and metabolic studies of genotoxins. We started with one of the more used and better characterized E. coli K-12 laboratory strains, AB1157. We isolated a lipopolysaccharide defective mutant of strain AB1886 which is an excision repair deficient derivative of AB1157 and introduced a newly constructed plasmid pKR11, encoding mucAB, resulting in strain MR2101/pKR11. A genotoxicity assay was designed, monitoring the reversion to arginine prototrophy and a preliminary validation was carried out against Ames tester strain TA100 with a set of diagnostic compounds. The results seem to indicate that strain MR2101/pKR11 is an adequate tester strain which can be a useful tool in mechanistic studies. Moreover, this strain can serve as mother strain to isolate improved and more specialized tester strains.
Collapse
Affiliation(s)
- M Kranendonk
- Department of Genetics, Faculty of Medical Sciences, UNL, Lisbon, Portugal
| | | | | | | |
Collapse
|
27
|
Abstract
In Escherichia coli, UV and many chemicals appear to cause mutagenesis by a process of translesion synthesis that requires some form of DNA polymerase III and the SOS-regulated proteins UmuD, UmuC and RecA. An analysis of SOS mutagenesis offers insights into the molecular basis of induced mutagenesis and into mechanisms of DNA damage tolerance.
Collapse
Affiliation(s)
- S Murli
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
28
|
Ho C, Kulaeva OI, Levine AS, Woodgate R. A rapid method for cloning mutagenic DNA repair genes: isolation of umu-complementing genes from multidrug resistance plasmids R391, R446b, and R471a. J Bacteriol 1993; 175:5411-9. [PMID: 8366028 PMCID: PMC206596 DOI: 10.1128/jb.175.17.5411-5419.1993] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Genetic and physiological experiments have demonstrated that the products of the umu-like operon are directly required for mutagenic DNA repair in enterobacteria. To date, five such operons have been cloned and studied at the molecular level. Given the apparent wide occurrence of these mutagenic DNA repair genes in enterobacteria, it seems likely that related genes will be identified in other bacterial species and perhaps even in higher organisms. We are interested in identifying such genes. However, standard methods based on either DNA or protein cross-hybridization are laborious and, given the overall homology between previously identified members of this family (41 to 83% at the protein level), would probably have limited success. To facilitate the rapid identification of more diverse umu-like genes, we have constructed two Escherichia coli strains that allow us to identify umu-like genes after phenotypic complementation assays. With these two strains, we have cloned novel umu-like genes from three R plasmids, the IncJ plasmid R391 and two IncL/M plasmids, R446b and R471a.
Collapse
Affiliation(s)
- C Ho
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
29
|
Thomas SM. Extreme cold sensitivity of Salmonella typhimurium umu clones, effects of the umu region and flanking sequences. Mutat Res 1993; 285:95-9. [PMID: 7678139 DOI: 10.1016/0027-5107(93)90056-l] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The umuDC operons of both Salmonella typhimurium and Escherichia coli encode proteins which are essential for mutagenesis following exposure to ultraviolet radiation or a variety of chemicals. However S. typhimurium is less mutable and its umu operon appears to be less active for reasons that are unknown. This study shows that pBR322-based plasmids carrying cloned umuDC operons of either species confer cold sensitivity on both an E. coli umuC strain and a S. typhimurium pSLT- strain. Both S. typhimurium and E. coli umu clones make these lexA+ strains moderately cold-sensitive, but sensitivity produced by the cloned S. typhimurium umuDC operon is extreme when flanking regions of the chromosome are also present. Such instability might be significant in terms of explaining the polymorphisms seen in the regions of the chromosomes of Enterobacteriaceae surrounding the umuDC operon. In S. typhimurium this extreme cold sensitivity was almost certainly responsible for the delayed recognition of a chromosomal umuDC operon.
Collapse
Affiliation(s)
- S M Thomas
- School of Biological Sciences, Flinders University of South Australia, Bedford Park
| |
Collapse
|
30
|
Herrera G, Urios A, Aleixandre V, Blanco M. Mutability by polycyclic hydrocarbons is improved in derivatives of Escherichia coli WP2 uvrA with increased permeability. Mutat Res 1993; 301:1-5. [PMID: 7677937 DOI: 10.1016/0165-7992(93)90048-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Escherichia coli B, unlike both E. coli K12 and Salmonella typhimurium, is sensitive to the rough-specific phage C21. This sensitivity is probably due to the incomplete lipopolysaccharide core of the E. coli B cells, which confers on them a partial permeability to large molecules. Derivatives of WP2 uvrA, a tryptophan-requiring E. coli B strain, were rendered still more permeable by selecting for C21-resistant clones. The new permeable strains, when tested for mutagenesis induced by polycyclic hydrocarbons, showed a mutagenic response higher than that of the parental strains.
Collapse
Affiliation(s)
- G Herrera
- Instituto de Investigaciones Citológicas, Fundación Valenciana de Investigaciones Biomédicas, Spain
| | | | | | | |
Collapse
|
31
|
Livneh Z, Cohen-Fix O, Skaliter R, Elizur T. Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Crit Rev Biochem Mol Biol 1993; 28:465-513. [PMID: 8299359 DOI: 10.3109/10409239309085136] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
On UV irradiation of Escherichia coli cells, DNA replication is transiently arrested to allow removal of DNA damage by DNA repair mechanisms. This is followed by a resumption of DNA replication, a major recovery function whose mechanism is poorly understood. During the post-UV irradiation period the SOS stress response is induced, giving rise to a multiplicity of phenomena, including UV mutagenesis. The prevailing model is that UV mutagenesis occurs by the filling in of single-stranded DNA gaps present opposite UV lesions in the irradiated chromosome. These gaps can be formed by the activity of DNA replication or repair on the damaged DNA. The gap filling involves polymerization through UV lesions (also termed bypass synthesis or error-prone repair) by DNA polymerase III. The primary source of mutations is the incorporation of incorrect nucleotides opposite lesions. UV mutagenesis is a genetically regulated process, and it requires the SOS-inducible proteins RecA, UmuD, and UmuC. It may represent a minor repair pathway or a genetic program to accelerate evolution of cells under environmental stress conditions.
Collapse
Affiliation(s)
- Z Livneh
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
32
|
Rahman MS, Pal AK, Chatterjee SN. Induction of SOS like responses by nitrofurantoin in Vibrio cholerae el tor cells. Arch Microbiol 1993; 159:98-100. [PMID: 8427549 DOI: 10.1007/bf00244270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Treatment of Vibrio cholerae el tor strain SLH22(J) with nitrofurantoin induced dose-dependent prophage 'kappa', the maximum induction being 6-fold the spontaneous induction level. UV-inactivated 'kappa' phages were Weigle reactivated, the maximum Weigle factor being 1.8 and 2.0 respectively in nitrofurantoin and UV pretreated el tor strain H218 Smr. Nitrofurantoin treatment also caused significant filamentation of the el tor strain H218 Smr and mutation of these cells from ampicillin sensitivity to ampicillin resistance. The levels of the four SOS-like responses induced by this drug were low but significant.
Collapse
Affiliation(s)
- M S Rahman
- Biophysics Division, Saha Institute of Nuclear Physics, Calcutta, India
| | | | | |
Collapse
|
33
|
Nohmi T, Yamada M, Watanabe M, Murayama SY, Sofuni T. Roles of Salmonella typhimurium umuDC and samAB in UV mutagenesis and UV sensitivity. J Bacteriol 1992; 174:6948-55. [PMID: 1400244 PMCID: PMC207374 DOI: 10.1128/jb.174.21.6948-6955.1992] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Expression of the umuDC operon is required for UV mutagenesis and most chemical mutagenesis in Escherichia coli. The closely related species Salmonella typhimurium has two sets of umuDC-like operons; the samAB operon is located in a 60-MDa cryptic plasmid, while the S. typhimurium umuDC (umuDCST) operon resides in a chromosome. The roles of these two umuDC-like operons in UV mutagenesis and UV sensitivity of S. typhimurium were investigated. A pBR322-derived plasmid carrying the samAB operon more efficiently restored UV mutability to a umuD44 strain and a umuC122::Tn5 strain of E. coli than a plasmid carrying the umuDCST operon did. When the umuDCST operon was specifically deleted from the chromosome of S. typhimurium TA2659, the resulting strain was not UV mutable and was more sensitive to the killing effect of UV irradiation than the parent strain was. Curing of the 60-MDa cryptic plasmid carrying the samAB operon did not influence the UV mutability of strain TA2659 but did increase its resistance to UV killing. A pSC101-derived plasmid carrying the samAB operon did not restore UV mutability to a umuD44 strain of E. coli, whereas pBR322- or pBluescript-derived plasmids carrying the samAB operon efficiently did restore UV mutability. We concluded that the umuDCST operon plays a major role in UV mutagenesis in S. typhimurium and that the ability of the samAB operon to promote UV mutagenesis is strongly affected by gene dosage. Possible reasons for the poor ability of samAB to promote UV mutagenesis when it is present on low-copy-number plasmids are discussed.
Collapse
Affiliation(s)
- T Nohmi
- Division of Genetics and Mutagenesis, National Institute of Hygienic Sciences, Tokyo, Japan
| | | | | | | | | |
Collapse
|
34
|
Hauser J, Levine AS, Ennis DG, Chumakov KM, Woodgate R. The enhanced mutagenic potential of the MucAB proteins correlates with the highly efficient processing of the MucA protein. J Bacteriol 1992; 174:6844-51. [PMID: 1400235 PMCID: PMC207361 DOI: 10.1128/jb.174.21.6844-6851.1992] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Inducible mutagenesis in Escherichia coli requires the direct action of the chromosomally encoded UmuDC proteins or functional homologs found on certain naturally occurring plasmids. Although structurally similar, the five umu-like operons that have been characterized at the molecular level vary in their ability to enhance cellular and phage mutagenesis; of these operons, the mucAB genes from the N-group plasmid pKM101 are the most efficient at promoting mutagenesis. During the mutagenic process, UmuD is posttranslationally processed to an active form, UmuD'. To explain the more potent mutagenic efficiency of mucAB compared with that of umuDC it has been suggested that unlike UmuD, intact MucA is functional for mutagenesis. To examine this possibility, we have overproduced and purified the MucA protein. Although functionally similar to UmuD, MucA was cleaved much more rapidly both in vitro and in vivo than UmuD. In vivo, restoration of mutagenesis functions to normally nonmutable recA430, recA433, recA435, or recA730 delta(umuDC)595::cat strains by either MucA+ or mutant MucA protein correlated with the appearance of the cleavage product, MucA'. These results suggest that most of the differences in mutagenic phenotype exhibited by MucAB and UmuDC correlate with the efficiency of posttranslational processing of MucA and UmuD rather than an inherent activity of the unprocessed proteins.
Collapse
Affiliation(s)
- J Hauser
- Section on Viruses and Cellular Biology, National Institute of Child Health and Human Development, Bethesda, Maryland
| | | | | | | | | |
Collapse
|
35
|
Abstract
The popular image of a world full of pollutants mutating DNA is only partly true since there are relatively few agents which can subtly and directly change base coding; for example, some alkylating agents alter guanine so that it pairs like adenine. Many more mutagens are less subtle and simply destroy coding altogether rather than changing it. Such mutagens include ultraviolet light, X-rays, DNA cross-linkers and other agents which make DNA breaks or large adducts. In Escherichia coli, mutagenesis by these agents occurs during a DNA repair process which increases cell survival but with an inherent possibility of changing the original sequence. Such mutagenic DNA repair is, in part, encoded by the E. coli umuDC operon. This article reviews the structure, function, regulation and evolution of the umuDC operon and similar genes found both in other species and on naturally occurring plasmids.
Collapse
Affiliation(s)
- R Woodgate
- Section on Viruses and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
36
|
Koch WH, Cebula TA, Foster PL, Eisenstadt E. UV mutagenesis in Salmonella typhimurium is umuDC dependent despite the presence of samAB. J Bacteriol 1992; 174:2809-15. [PMID: 1569012 PMCID: PMC205931 DOI: 10.1128/jb.174.9.2809-2815.1992] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We investigated the role of the umuDC and samAB operons in the UV mutability of Salmonella typhimurium. umuDC is located on the chromosome, whereas samAB resides on the virulence plasmid pSLT. Using allele replacement and plasmid curing techniques, we found that UV mutability was eliminated when any of three different umuDC alleles (umuD1, umuC1, or umuD1 umuC1) were on the chromosome even when samAB was present. We conclude that samAB normally does not complement umuDC function in S. typhimurium.
Collapse
Affiliation(s)
- W H Koch
- Molecular Biology Branch, Food and Drug Administration, Washington, D.C. 20204
| | | | | | | |
Collapse
|
37
|
Abstract
Using a specialized transducing lambda phage, the umuDC operon of Escherichia coli was deleted and replaced with the chloramphenicol acetyltransferase gene. The delta (umuDC)595::cat mutation was subsequently transferred by generalized P1 transduction into a variety of genetic backgrounds. It is concluded that the UmuDC proteins, which are normally required for inducible mutagenesis, are not essential for cell survival.
Collapse
Affiliation(s)
- R Woodgate
- Section on Viruses and Cellular Biology, National Institute of Child Health and Human Development, Bethesda, MD 20892
| |
Collapse
|
38
|
Woodgate R, Levine AS, Koch WH, Cebula TA, Eisenstadt E. Induction and cleavage of Salmonella typhimurium UmuD protein. MOLECULAR & GENERAL GENETICS : MGG 1991; 229:81-5. [PMID: 1910151 DOI: 10.1007/bf00264216] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SOS mutagenesis in prokaryotes is dependent upon the inducible activity of the chromosomally encoded UmuDC proteins, or homologous proteins such as MucAB or ImpCAB which are found on naturally occurring plasmids. Relative to Escherichia coli, however, Salmonella typhimurium is much less responsive to the mutagenic effects of DNA-damaging agents, despite the fact that it possesses both chromosomally and plasmid encoded umu-like operons. In E. coli, activation of the UmuD mutagenesis protein to UmuD' via RecA-mediated proteolysis is a critical step in the mutation fixation pathway. We have used a polyclonal antiserum raised against the E. coli UmuD and UmuD' proteins to show that S. typhimurium expresses cross-reacting material only after treatment with the DNA-damaging agent mitomycin C. The S. typhimurium umuDC operon, therefore, appears to be regulated by mechanisms similar to the E. coli umuDC operon. After induction, the S. typhimurium UmuD protein was processed to UmuD' in both S. typhimurium and E. coli. However, the S. typhimurium UmuD protein appears to be cleaved more efficiently than the E. coli UmuD protein under similar conditions. The data suggest that conversion of UmuD to the mutagenically active UmuD' is not the rate-limiting factor accounting for the weakly mutable phenotype of S. typhimurium.
Collapse
Affiliation(s)
- R Woodgate
- Section on Viruses and Cellular Biology, National Institute of Child Health and Human Development, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|