1
|
2D layered structure-supported imidazole-based metal-organic framework for enhancing the power generation performance of microbial fuel cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
|
3
|
Klare JP, Bordignon E, Engelhard M, Steinhoff HJ. Transmembrane signal transduction in archaeal phototaxis: the sensory rhodopsin II-transducer complex studied by electron paramagnetic resonance spectroscopy. Eur J Cell Biol 2012; 90:731-9. [PMID: 21684631 DOI: 10.1016/j.ejcb.2011.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Archaeal photoreceptors, together with their cognate transducer proteins, mediate phototaxis by regulating cell motility through two-component signal transduction pathways. This sensory pathway is closely related to the bacterial chemotactic system, which has been studied in detail during the past 40 years. Structural and functional studies applying site-directed spin labelling and electron paramagnetic resonance spectroscopy on the sensory rhodopsin II/transducer (NpSRII/NpHtrII) complex of Natronomonas pharaonis have yielded insights into the structure, the mechanisms of signal perception, the signal transduction across the membrane and provided information about the subsequent information transfer within the transducer protein towards the components of the intracellular signalling pathway. Here, we provide an overview about the findings of the last decade, which, combined with the wealth of data from research on the Escherichia coli chemotaxis system, served to understand the basic principles microorganisms use to adapt to their environment. We document the time course of a signal being perceived at the membrane, transferred across the membrane and, for the first time, how this signal modulates the dynamic properties of a HAMP domain, a ubiquitous signal transduction module found in various protein classes.
Collapse
Affiliation(s)
- Johann P Klare
- Faculty of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany
| | | | | | | |
Collapse
|
4
|
Lamanna AC, Ordal GW, Kiessling LL. Large increases in attractant concentration disrupt the polar localization of bacterial chemoreceptors. Mol Microbiol 2005; 57:774-85. [PMID: 16045621 DOI: 10.1111/j.1365-2958.2005.04728.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In bacterial chemotaxis, the chemoreceptors [methyl-accepting chemotaxis proteins (MCPs)] transduce chemotactic signals through the two-component histidine kinase CheA. At low but not high attractant concentrations, chemotactic signals must be amplified. The MCPs are organized into a polar lattice, and this organization has been proposed to be critical for signal amplification. Although evidence in support of this model has emerged, an understanding of how signals are amplified and modulated is lacking. We probed the role of MCP localization under conditions wherein signal amplification must be inhibited. We tested whether a large increase in attractant concentration (a change that should alter receptor occupancy from c. 0% to > 95%) would elicit changes in the chemoreceptor localization. We treated Escherichia coli or Bacillus subtilis with a high level of attractant, exposed cells to the cross-linking agent paraformaldehyde and visualized chemoreceptor location with an anti-MCP antibody. A marked increase in the percentage of cells displaying a diffuse staining pattern was obtained. In contrast, no increase in diffuse MCP staining is observed when cells are treated with a repellent or a low concentration of attractant. For B. subtilis mutants that do not undergo chemotaxis, the addition of a high concentration of attractant has no effect on MCP localization. Our data suggest that interactions between chemoreceptors are decreased when signal amplification is unnecessary.
Collapse
Affiliation(s)
- Allison C Lamanna
- Department of Biochemistry, University of Wisconsin at Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
5
|
Klein C, Garcia-Rizo C, Bisle B, Scheffer B, Zischka H, Pfeiffer F, Siedler F, Oesterhelt D. The membrane proteome ofHalobacterium salinarum. Proteomics 2005; 5:180-97. [PMID: 15619294 DOI: 10.1002/pmic.200400943] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The identification of 114 integral membrane proteins from Halobacterium salinarum was achieved using liquid chromatography/tandem mass spectrometric (LC/MS/MS) techniques, representing 20% of the predicted alpha-helical transmembrane proteins of the genome. For this experiment, a membrane preparation with only minor contamination by soluble proteins was prepared. From this membrane preparation a number of peripheral membrane proteins were identified by the classical two dimensional gel electrophoresis (2-DE) approach, but identification of integral membrane proteins largely failed with only a very few being identified. By use of a fluorescently labeled membrane preparation, we document that this is caused by an irreversible precipitation of the membrane proteins upon isoelectric focusing (IEF). Attempts to overcome this problem by using alternative IEF methods and IEF strip solubilisation techniques were not successful, and we conclude that the classical 2-DE approach is not suited for the identification of integral membrane proteins. Computational analysis showed that the identification of integral membrane proteins is further complicated by the generation of tryptic peptides, which are unfavorable for matrix assisted laser desorption/ionization time of flight mass spectrometric peptide mass fingerprint analysis. Together with the result from the analysis of the cytosolic proteome (see preceding paper), we could identify 34% (943) of all gene products in H. salinarum which can be theoretically expressed. This is a cautious estimate as very stringent criteria were applied for identification. These results are available under www.halolex.mpg.de.
Collapse
Affiliation(s)
- Christian Klein
- Abteilung für Membranbiochemie, Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Klare JP, Gordeliy VI, Labahn J, Büldt G, Steinhoff HJ, Engelhard M. The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. FEBS Lett 2004; 564:219-24. [PMID: 15111099 DOI: 10.1016/s0014-5793(04)00193-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 02/04/2004] [Indexed: 11/24/2022]
Abstract
Archaebacterial photoreceptors mediate phototaxis by regulating cell motility through two-component signalling cascades. Homologs of this sensory pathway occur in all three kingdoms of life, most notably in enteric bacteria in which the chemotaxis has been extensively studied. Recent structural and functional studies on the sensory rhodopsin II/transducer complex mediating the photophobic response of Natronomonas pharaonis have yielded new insights into the mechanisms of signal transfer across the membrane. Electron paramagnetic resonance data and the atomic resolution structure of the receptor molecule in complex with the transmembrane segment of its cognate transducer provided a model for signal transfer from the receptor to the cytoplasmic side of the transducer. This mechanism might also be relevant for eubacterial chemoreceptor signalling.
Collapse
Affiliation(s)
- Johann P Klare
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, D-44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Yost CK, Clark KT, Del Bel KL, Hynes MF. Characterization of the nodulation plasmid encoded chemoreceptor gene mcpG from Rhizobium leguminosarum. BMC Microbiol 2003; 3:1. [PMID: 12553885 PMCID: PMC149452 DOI: 10.1186/1471-2180-3-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Accepted: 01/28/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In general, chemotaxis in Rhizobium has not been well characterized. Methyl accepting chemotaxis proteins are sensory proteins important in chemotaxis of numerous bacteria, but their involvement in Rhizobium chemotaxis is unclear and merits further investigation. RESULTS A putative methyl accepting chemotaxis protein gene (mcpG) of Rhizobium leguminosarum VF39SM was isolated and characterized. The gene was found to reside on the nodulation plasmid, pRleVF39d. The predicted mcpG ORF displayed motifs common to known methyl-accepting chemotaxis proteins, such as two transmembrane domains and high homology to the conserved methylation and signaling domains of well-characterized MCPs. Phenotypic analysis of mcpG mutants using swarm plates did not identify ligands for this putative receptor. Additionally, gene knockouts of mcpG did not affect a mutant strain's ability to compete for nodulation with the wild type. Notably, mcpG was found to be plasmid-encoded in all strains of R. leguminosarum and R. etli examined, though it was found on the nodulation plasmid only in a minority of strains. CONCLUSIONS Based on sequence homology R. leguminosarum mcpG gene codes for a methyl accepting chemotaxis protein. The gene is plasmid localized in numerous Rhizobium spp. Although localized to the sym plasmid of VF39SM mcpG does not appear to participate in early nodulation events. A ligand for McpG remains to be found. Apparent McpG orthologs appear in a diverse range of proteobacteria. Identification and characterization of mcpG adds to the family of mcp genes already identified in this organism.
Collapse
Affiliation(s)
- Christopher K Yost
- Department of Biological Sciences, University of Calgary, 2500 University Drive SW, Calgary, Alberta, Canada, T2N 1N4
| | - Kirsten T Clark
- Department of Biological Sciences, University of Calgary, 2500 University Drive SW, Calgary, Alberta, Canada, T2N 1N4
| | - Kate L Del Bel
- Department of Biological Sciences, University of Calgary, 2500 University Drive SW, Calgary, Alberta, Canada, T2N 1N4
| | - Michael F Hynes
- Department of Biological Sciences, University of Calgary, 2500 University Drive SW, Calgary, Alberta, Canada, T2N 1N4
| |
Collapse
|
8
|
|
9
|
Lamanna AC, Gestwicki JE, Strong LE, Borchardt SL, Owen RM, Kiessling LL. Conserved amplification of chemotactic responses through chemoreceptor interactions. J Bacteriol 2002; 184:4981-7. [PMID: 12193613 PMCID: PMC135308 DOI: 10.1128/jb.184.18.4981-4987.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Many bacteria concentrate their chemoreceptors at the cell poles. Chemoreceptor location is important in Escherichia coli, since chemosensory responses are sensitive to receptor proximity. It is not known, however, whether chemotaxis in other bacteria is similarly regulated. To investigate the importance of receptor-receptor interactions in other bacterial species, we synthesized saccharide-bearing multivalent ligands that are designed to cluster relevant chemoreceptors. As has been shown with E. coli, we demonstrate that the behaviors of Bacillus subtilis, Spirochaete aurantia, and Vibrio furnissii are sensitive to the valence of the chemoattractant. Moreover, in B. subtilis, chemotactic responses to serine were increased by pretreatment with saccharide-bearing multivalent ligands. This result indicates that, as in E. coli, signaling information is transferred among chemoreceptors in B. subtilis. These results suggest that interreceptor communication may be a general mechanism for modulating chemotactic responses in bacteria.
Collapse
Affiliation(s)
- Allison C Lamanna
- Department of Biochemistry, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Chemotaxis transducers are specialized receptors that microorganisms use in order to sense the environment in directing their motility to favorable niches. The Escherichia coli transducers are models for studying the sensory and signaling events at the molecular level. Extensive studies in other organisms and the arrival of genomics has resulted in the accumulation of sequences of many transducer genes, but they are not fully understood. In silico analysis provides some assistance in classification of various transducers from different species and in predicting their function. All transducers contain two structural modules: a conserved C-terminal multidomain module, which is a signature element of the transducer superfamily, and a variable N-terminal module, which is responsible for the diversity within the superfamily. These structural modules have two distinct functions: the conserved C-terminal module is involved in signaling and adaptation, and the N-terminal module is involved in sensing various stimuli. Both C-terminal and N-terminal modules appear to be mobile genetic elements and subjects of duplication and lateral transfer. Although chemotaxis transducers are found exclusively in prokaryotic organisms that have some type of motility (flagellar, gliding or pili-based), several types of domains that are found in their N-terminal modules are also present in signal transduction proteins from eukaryotes, including humans. This indicates that basic principles of sensory transduction are conserved throughout the phylogenetic tree and that the chemotaxis transducer superfamily is a valuable source of novel sensory elements yet to be discovered.
Collapse
Affiliation(s)
- I B Zhulin
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA.
| |
Collapse
|
11
|
Gestwicki JE, Lamanna AC, Harshey RM, McCarter LL, Kiessling LL, Adler J. Evolutionary conservation of methyl-accepting chemotaxis protein location in Bacteria and Archaea. J Bacteriol 2000; 182:6499-502. [PMID: 11053396 PMCID: PMC94798 DOI: 10.1128/jb.182.22.6499-6502.2000] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methyl-accepting chemotaxis proteins (MCPs) are concentrated at the cell poles in an evolutionarily diverse panel of bacteria and an archeon. In elongated cells, the MCPs are located both at the poles and at regions along the length of the cells. Together, these results suggest that MCP location is evolutionarily conserved.
Collapse
Affiliation(s)
- J E Gestwicki
- Departments of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
12
|
Hou S, Larsen RW, Boudko D, Riley CW, Karatan E, Zimmer M, Ordal GW, Alam M. Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature 2000; 403:540-4. [PMID: 10676961 DOI: 10.1038/35000570] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Haem-containing proteins such as haemoglobin and myoglobin play an essential role in oxygen transport and storage. Comparison of the amino-acid sequences of globins from Bacteria and Eukarya suggests that they share an early common ancestor, even though the proteins perform different functions in these two kingdoms. Until now, no members of the globin family have been found in the third kingdom, Archaea. Recent studies of biological signalling in the Bacteria and Eukarya have revealed a new class of haem-containing proteins that serve as sensors. Until now, no haem-based sensor has been described in the Archaea. Here we report the first myoglobin-like, haem-containing protein in the Archaea, and the first haem-based aerotactic transducer in the Bacteria (termed HemAT-Hs for the archaeon Halobacterium salinarum, and HemAT-Bs for Bacillus subtilis). These proteins exhibit spectral properties similar to those of myoglobin and trigger aerotactic responses.
Collapse
Affiliation(s)
- S Hou
- Department of Microbiology, University of Hawaii, Honolulu 96822, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
In the late 1970s, on the basis of rRNA phylogeny, Archaea (archaebacteria) was identified as a distinct domain of life besides Bacteria (eubacteria) and Eucarya. Though forming a separate domain, Archaea display an enormous diversity of lifestyles and metabolic capabilities. Many archaeal species are adapted to extreme environments with respect to salinity, temperatures around the boiling point of water, and/or extremely alkaline or acidic pH. This has posed the challenge of studying the molecular and mechanistic bases on which these organisms can cope with such adverse conditions. This review considers our cumulative knowledge on archaeal mechanisms of primary energy conservation, in relationship to those of bacteria and eucarya. Although the universal principle of chemiosmotic energy conservation also holds for Archaea, distinct features have been discovered with respect to novel ion-transducing, membrane-residing protein complexes and the use of novel cofactors in bioenergetics of methanogenesis. From aerobically respiring Archaea, unusual electron-transporting supercomplexes could be isolated and functionally resolved, and a proposal on the organization of archaeal electron transport chains has been presented. The unique functions of archaeal rhodopsins as sensory systems and as proton or chloride pumps have been elucidated on the basis of recent structural information on the atomic scale. Whereas components of methanogenesis and of phototrophic energy transduction in halobacteria appear to be unique to Archaea, respiratory complexes and the ATP synthase exhibit some chimeric features with respect to their evolutionary origin. Nevertheless, archaeal ATP synthases are to be considered distinct members of this family of secondary energy transducers. A major challenge to future investigations is the development of archaeal genetic transformation systems, in order to gain access to the regulation of bioenergetic systems and to overproducers of archaeal membrane proteins as a prerequisite for their crystallization.
Collapse
Affiliation(s)
- G Schäfer
- Institut für Biochemie, Medizinische Universität zu Lübeck, Lübeck, Germany.
| | | | | |
Collapse
|
14
|
Abstract
Recent biochemical and structural studies have provided many new insights into the structure and function of bacterial chemoreceptors. Aspects of their ligand binding, conformational changes, and interactions with other members of the signaling pathway are being defined at the structural level. It is anticipated that the combined effort will soon provide a detailed, unified view of an entire response system.
Collapse
Affiliation(s)
- S L Mowbray
- Department of Molecular Biology, Swedish Agricultural University, Upsala, Sweden.
| | | |
Collapse
|
15
|
Greene SR, Stamm LV. Molecular characterization of Treponema pallidum mcp2, a putative chemotaxis protein gene. Infect Immun 1998; 66:2999-3002. [PMID: 9596781 PMCID: PMC108303 DOI: 10.1128/iai.66.6.2999-3002.1998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/1998] [Accepted: 03/20/1998] [Indexed: 02/07/2023] Open
Abstract
The nucleotide sequence of the Treponema pallidum mcp2 gene was determined. mcp2 encodes a 45.8-kDa protein whose deduced amino acid sequence has significant homology with the C-terminal region of bacterial methyl-accepting chemotaxis proteins (MCPs). The Mcp2 N terminus lacks the hydrophobic transmembrane regions present in most MCPs. An Mcp2 fusion protein was strongly reactive with antibody (HC23) to the highly conserved domain of MCPs and with rabbit syphilitic serum. Antibody HC23 reacted with six T. pallidum proteins, including a 45-kDa protein that may correspond to Mcp2. This protein was present in the aqueous phase from T. pallidum cells that were solubilized with Triton X-114 and phase partitioned.
Collapse
Affiliation(s)
- S R Greene
- Program in Infectious Diseases, Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, North Carolina 27599-7400, USA
| | | |
Collapse
|
16
|
Brooun A, Bell J, Freitas T, Larsen RW, Alam M. An archaeal aerotaxis transducer combines subunit I core structures of eukaryotic cytochrome c oxidase and eubacterial methyl-accepting chemotaxis proteins. J Bacteriol 1998; 180:1642-6. [PMID: 9537358 PMCID: PMC107073 DOI: 10.1128/jb.180.7.1642-1646.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/1997] [Accepted: 12/30/1997] [Indexed: 02/07/2023] Open
Abstract
Signal transduction in the archaeon Halobacterium salinarum is mediated by three distinct subfamilies of transducer proteins. Here we report the complete htrVIII gene sequence and present analysis of the encoded primary structure and its functional features. HtrVIII is a 642-amino-acid protein and belongs to halobacterial transducer subfamily B. At the N terminus, the protein contains six transmembrane segments that exhibit homology to the heme-binding sites of the eukaryotic cytochrome c oxidase. The C-terminal domain has high homology with the eubacterial methyl-accepting chemotaxis protein. The HtrVIII protein mediates aerotaxis: a strain with a deletion of the htrVIII gene loses aerotaxis, while an overproducing strain exhibits stronger aerotaxis. We also demonstrate that HtrVIII is a methyl-accepting protein and demethylates during the aerotaxis response.
Collapse
Affiliation(s)
- A Brooun
- Department of Microbiology, University of Hawaii, Honolulu 96822, USA
| | | | | | | | | |
Collapse
|
17
|
Hoff WD, Jung KH, Spudich JL. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1997; 26:223-58. [PMID: 9241419 DOI: 10.1146/annurev.biophys.26.1.223] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two sensory rhodopsins (SRI and SRII) mediate color-sensitive phototaxis responses in halobacteria. These seven-helix receptor proteins, structurally and functionally similar to animal visual pigments, couple retinal photoisomerization to receptor activation and are complexed with membrane-embedded transducer proteins (HtrI and HtrII) that modulate a cytoplasmic phosphorylation cascade controlling the flagellar motor. The Htr proteins resemble the chemotaxis transducers from Escherichia coli. The SR-Htr signaling complexes allow studies of the biophysical chemistry of signal generation and relay, from the photobiophysics of initial excitation of the receptors to the final output at the level of the flagellar motor switch, revealing fundamental principles of sensory transduction and more broadly the nature of dynamic interactions between membrane proteins. We review here recent advances that have led to new insights into the molecular mechanism of signaling by these membrane complexes.
Collapse
Affiliation(s)
- W D Hoff
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030-1501, USA
| | | | | |
Collapse
|
18
|
Rudolph J, Nordmann B, Storch KF, Gruenberg H, Rodewald K, Oesterhelt D. A family of halobacterial transducer proteins. FEMS Microbiol Lett 1996; 139:161-8. [PMID: 8674984 DOI: 10.1111/j.1574-6968.1996.tb08197.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A DNA probe to the signaling domain of a halobacterial transducer for phototaxis (HtrI) was used to clone and sequence four members of a new family of transducer proteins (Htps) in Halobacterium salinarium potentially involved in chemo- or phototactic signal transduction. The signaling domains in these proteins have 31-43% identity when compared with each other or with their bacterial analogs, the methyl-accepting chemotaxis proteins. An additional region of homology found in three of the Htps has 31-43% identity with HtrI. The Htps contain from 0 to 3 transmembrane helices and Western blotting showed that HtpIII is soluble. The arrangement of the domains in these Htps suggests a modular architecture in their construction.
Collapse
Affiliation(s)
- J Rudolph
- Max-Planck-Institut for Biochemistry, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Osorio G, Jerez CA. Adaptive response of the archaeon Sulfolobus acidocaldarius BC65 to phosphate starvation. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 6):1531-1536. [PMID: 8704993 DOI: 10.1099/13500872-142-6-1531] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The adaptive response of the archaeon Sulfolobus acidocaldarius BC65 to phosphate starvation was studied. When cells were subjected to phosphate limitation, their growth was affected. In addition, the levels of synthesis and/or the degree of phosphorylation of several proteins changed, as detected by two-dimensional nonequilibrium pH gradient electrophoresis of cells labelled in vivo with [35S]methionine and [35S]cysteine, or H3 32PO4. After another growth-restricting treatment, a heat shock, a general inhibition of protein synthesis was observed. Under phosphate starvation conditions, a 36 kDa protein became phosphorylated without its synthesis being significantly modified, suggesting a probable regulatory role during adaptation of the cell to the change in the external environment. In Southern blot analysis with specific probes from very conserved regions of the phoR and phoB genes from Escherichia coli, a positive hybridization with S. acidocaldarius BC65 chromosomal DNA fragments was found. This suggested the presence in S. acidocaldarius BC65 of genes related to the E. coli genes involved in the phosphate starvation response system. This appears to be the first evidence of the possible existence of a two-component sensory system in a micro-organism from the archaeal kingdom Crenarchaeota.
Collapse
Affiliation(s)
- Gonzalo Osorio
- Departamento de Bioquímica, Facultad de Medicina, Universidad de Chile, Casilla 70086, Santiago-7, Chile
| | - Carlos A Jerez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de Chile, Casilla 70086, Santiago-7, Chile
| |
Collapse
|
20
|
Zhang W, Brooun A, McCandless J, Banda P, Alam M. Signal transduction in the archaeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins. Proc Natl Acad Sci U S A 1996; 93:4649-54. [PMID: 8643458 PMCID: PMC39333 DOI: 10.1073/pnas.93.10.4649] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Eubacterial transducers are transmembrane, methyl-accepting proteins central to chemotaxis systems and share common structural features. We identified a large family of transducer proteins in the Archaeon Halobacterium salinarium using a site-specific multiple antigenic peptide antibody raised against 23 amino acids, representing the highest homology region of eubacterial transducers. This immunological observation was confirmed by isolating 13 methyl-accepting taxis genes using a 27-mer oligonucleotide probe, corresponding to conserved regions between the eubacterial and first halobacterial phototaxis transducer gene htrI. On the basis of the comparison of the predicted structural domains of these transducers, we propose that at least three distinct subfamilies of transducers exist in the Archaeon H. salinarium: (i) a eubacterial chemotaxis transducer type with two hydrophobic membrane-spanning segments connecting sizable domains in the periplasm and cytoplasm; (ii) a cytoplasmic domain and two or more hydrophobic transmembrane segments without periplasmic domains; and (iii) a cytoplasmic domain without hydrophobic transmembrane segments. We fractionated the halobacterial cell lysate into soluble and membrane fractions and localized different halobacterial methyl-accepting taxis proteins in both fractions.
Collapse
Affiliation(s)
- W Zhang
- Department of Microbiology, University of Hawaii, Honolulu, 96822, USA
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Spudich JL. Color sensing in the Archaea: a eukaryotic-like receptor coupled to a prokaryotic transducer. J Bacteriol 1993; 175:7755-61. [PMID: 8253663 PMCID: PMC206949 DOI: 10.1128/jb.175.24.7755-7761.1993] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- J L Spudich
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030
| |
Collapse
|
23
|
Krebs MP, Spudich EN, Khorana HG, Spudich JL. Synthesis of a gene for sensory rhodopsin I and its functional expression in Halobacterium halobium. Proc Natl Acad Sci U S A 1993; 90:3486-90. [PMID: 8475097 PMCID: PMC46325 DOI: 10.1073/pnas.90.8.3486] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have designed, synthesized, and expressed in Halobacterium halobium a gene encoding sensory rhodopsin I (SR-I). The gene has been optimized for cassette mutagenesis by incorporating 30 unique restriction sites with uniform spacing throughout the 720-bp coding region. For expression, the coding region was placed downstream of the promoter and translation initiation region of the bacterioopsin gene on a selectable vector. This construct encodes SR-I with an extended N terminus that includes the 13-amino acid leader sequence and the 8-amino acid N terminus of bacterioopsin. To obtain a SR-I- H. halobium strain for expressing the synthetic gene, we used homologous recombination to delete the chromosomal gene encoding SR-I, sopI. The deletion strain was transformed with the synthetic sopI expression vector. Using antibody directed against the C-terminal region of SR-I, we detected in transformant membranes a protein with the electrophoretic mobility expected for SR-I with a processed N-terminal extension. The synthetic gene product was functionally identical to SR-I. Its flash-induced absorption difference spectrum and photochemical reaction cycle in membrane envelope vesicles were characteristic of SR-I. The protein fully restored phototaxis responses in the deletion strain.
Collapse
Affiliation(s)
- M P Krebs
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
24
|
Zhulin IB, Armitage JP. Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense. J Bacteriol 1993; 175:952-8. [PMID: 8432718 PMCID: PMC193006 DOI: 10.1128/jb.175.4.952-958.1993] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Observations of free-swimming and antibody-tethered Azospirillum brasilense cells showed that their polar flagella could rotate in both clockwise and counterclockwise directions. Rotation in a counterclockwise direction caused forward movement of free-swimming cells, whereas the occasional change in the direction of rotation to clockwise caused a brief reversal in swimming direction. The addition of a metabolizable chemoattractant, e.g., malate or proline, had two distinct effects on the swimming behavior of the bacteria: (i) a short-term decrease in reversal frequency from 0.33 to 0.17 s-1 and (ii) a long-term increase in the mean population swimming speed from 13 to 23 microns s-1. A. brasilense therefore shows both chemotaxis and chemokinesis in response to temporal gradients of some chemoeffectors. Chemokinesis was dependent on the growth state of the cells and may depend on an increase in the electrochemical proton gradient above a saturation threshold. Analysis of behavior of a methionine auxotroph, assays of in vivo methylation, and the use of specific antibodies raised against the sensory transducer protein Tar of Escherichia coli all failed to demonstrate the methylation-dependent pathway for chemotaxis in A. brasilense. The range of chemicals to which A. brasilense shows chemotaxis and the lack of true repellents indicate an alternative chemosensory pathway probably based on metabolism of chemoeffectors.
Collapse
Affiliation(s)
- I B Zhulin
- Department of Biochemistry, University of Oxford, England
| | | |
Collapse
|
25
|
Oesterhelt D, Marwa W. Chapter 5 Signal transduction in halobacteria. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
26
|
Morgan DG, Baumgartner JW, Hazelbauer GL. Proteins antigenically related to methyl-accepting chemotaxis proteins of Escherichia coli detected in a wide range of bacterial species. J Bacteriol 1993; 175:133-40. [PMID: 8416890 PMCID: PMC196106 DOI: 10.1128/jb.175.1.133-140.1993] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The four methyl-accepting chemotaxis proteins of Escherichia coli, often called transducers, are transmembrane receptor proteins that exhibit substantial identity among the sequences of their cytoplasmic domains. Thus, antiserum raised to one of these proteins recognizes the others and might be expected to recognize related proteins in other bacteria. We used antiserum raised to the transducer Trg in immunoblot experiments to probe a wide range of bacterial species for the presence of antigenically related proteins. Such proteins were detected in over 20 different species, representing 6 of the 11 eubacterial phyla defined by analysis of rRNA sequences as well as one archaebacterial group. Species containing proteins antigenically related to the transducers of E. coli included members of all four subdivisions of the phylum in which E. coli is placed, members of four of the six subdivisions of spirochetes, and two gliding bacteria. These observations provide substantial support for the notion that methyl-accepting taxis proteins are widely distributed among the diversity of bacterial species.
Collapse
Affiliation(s)
- D G Morgan
- Department of Biochemistry/Biophysics, Washington State University, Pullman 99164-4660
| | | | | |
Collapse
|
27
|
Yao VJ, Spudich JL. Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I. Proc Natl Acad Sci U S A 1992; 89:11915-9. [PMID: 1465418 PMCID: PMC50668 DOI: 10.1073/pnas.89.24.11915] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A methylated membrane protein of 97 kDa was suggested on the basis of mutant analysis to transduce signals from the phototaxis receptor sensory rhodopsin I to the flagellar motor in Halobacterium halobium. Here we report isolation of the proposed transducer protein, cloning of its gene based on partial protein sequences, the complete gene sequence, and analysis of the encoded primary structure. The 1611-base-pair gene termination codon overlaps the initiator ATG of the sopI gene, which encodes the sensory rhodopsin I apoprotein. The predicted size of 57 kDa for the methylated protein indicates an aberrant electrophoretic migration on SDS/polyacrylamide gels, as occurs with other acidic halophilic proteins. Putative promotor elements are located in an A+T-rich region upstream of the gene. Comparison of the translated nucleotide sequence with N-terminal sequence of the purified protein shows the protein is synthesized without a processed leader peptide and the N-terminal methionine is removed in the mature protein. The deduced protein sequence predicts two transmembrane helices near the N terminal that would anchor the protein to the membrane. Beyond this hydrophobic region of 46 residues, the remainder of the protein (536-amino acid residues total) is hydrophilic. The C-terminal 270 residues contain a region homologous to the signaling domains of eubacterial transducers (e.g., Escherichia coli Tsr protein), flanked by two regions homologous to the methylation domains of the transducer family. The protein differs from E. coli Tsr in that it does not have an extramembranous-receptor binding domain but instead has a more extended cytoplasmic region. Coexpression of the methyl-accepting protein gene (designated htrI) and sopI restores sensory rhodopsin I phototaxis to a mutant (Pho81) that contains a deletion in the htrI/sopI region. These results extend the eubacterial transducer family to the archaebacteria and substantiate the proposal that the methylated membrane protein functions as a signal-transducing relay between sensory rhodopsin I and cytoplasmic sensory-pathway components.
Collapse
Affiliation(s)
- V J Yao
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
28
|
|
29
|
Dolla A, Fu R, Brumlik MJ, Voordouw G. Nucleotide sequence of dcrA, a Desulfovibrio vulgaris Hildenborough chemoreceptor gene, and its expression in Escherichia coli. J Bacteriol 1992; 174:1726-33. [PMID: 1548224 PMCID: PMC205772 DOI: 10.1128/jb.174.6.1726-1733.1992] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The amino acid sequence of DcrA (Mr = 73,000), deduced from the nucleotide sequence of the dcrA gene from the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, indicates a structure similar to the methyl-accepting chemotaxis proteins from Escherichia coli, including a periplasmic NH2-terminal domain (Mr = 20,700) separated from the cytoplasmic COOH-terminal domain (Mr = 50,300) by a hydrophobic, membrane-spanning sequence of 20 amino acid residues. The sequence homology of DcrA and these methyl-accepting chemotaxis proteins is limited to the COOH-terminal domain. Analysis of dcrA-lacZ fusions in E. coli by Western blotting (immunoblotting) and activity measurements indicated a low-level synthesis of a membrane-bound fusion protein of the expected size (Mr = approximately 137,000). Expression of the dcrA gene under the control of the Desulfovibrio cytochrome c3 gene promoter and ribosome binding site allowed the identification of both full-length DcrA and its NH2-terminal domain in E. coli maxicells.
Collapse
Affiliation(s)
- A Dolla
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|