1
|
Fitzgerald MJ, Pearson MM, Mobley HLT. Proteus mirabilis UreR coordinates cellular functions required for urease activity. J Bacteriol 2024; 206:e0003124. [PMID: 38534115 PMCID: PMC11025324 DOI: 10.1128/jb.00031-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
A hallmark of Proteus mirabilis infection of the urinary tract is the formation of stones. The ability to induce urinary stone formation requires urease, a nickel metalloenzyme that hydrolyzes urea. This reaction produces ammonia as a byproduct, which can serve as a nitrogen source and weak base that raises the local pH. The resulting alkalinity induces the precipitation of ions to form stones. Transcriptional regulator UreR activates expression of urease genes in a urea-dependent manner. Thus, urease genes are highly expressed in the urinary tract where urea is abundant. Production of mature urease also requires the import of nickel into the cytoplasm and its incorporation into the urease apoenzyme. Urease accessory proteins primarily acquire nickel from one of two nickel transporters and facilitate incorporation of nickel to form mature urease. In this study, we performed a comprehensive RNA-seq to define the P. mirabilis urea-induced transcriptome as well as the UreR regulon. We identified UreR as the first defined regulator of nickel transport in P. mirabilis. We also offer evidence for the direct regulation of the Ynt nickel transporter by UreR. Using bioinformatics, we identified UreR-regulated urease loci in 15 Morganellaceae family species across three genera. Additionally, we located two mobilized UreR-regulated urease loci that also encode the ynt transporter, implying that UreR regulation of nickel transport is a conserved regulatory relationship. Our study demonstrates that UreR specifically regulates genes required to produce mature urease, an essential virulence factor for P. mirabilis uropathogenesis. IMPORTANCE Catheter-associated urinary tract infections (CAUTIs) account for over 40% of acute nosocomial infections in the USA and generate $340 million in healthcare costs annually. A major causative agent of CAUTIs is Proteus mirabilis, an understudied Gram-negative pathogen noted for its ability to form urinary stones via the activity of urease. Urease mutants cannot induce stones and are attenuated in a murine UTI model, indicating this enzyme is essential to P. mirabilis pathogenesis. Transcriptional regulation of urease genes by UreR is well established; here, we expand the UreR regulon to include regulation of nickel import, a function required to produce mature urease. Furthermore, we reflect on the role of urea catalysis in P. mirabilis metabolism and provide evidence for its importance.
Collapse
Affiliation(s)
- Madison J. Fitzgerald
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Melanie M. Pearson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Pearson MM, Shea AE, Pahil S, Smith SN, Forsyth VS, Mobley HLT. Organ agar serves as physiologically relevant alternative for in vivo bacterial colonization. Infect Immun 2023; 91:e0035523. [PMID: 37850748 PMCID: PMC10652904 DOI: 10.1128/iai.00355-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Animal models for host-microbial interactions have proven valuable, yielding physiologically relevant data that may be otherwise difficult to obtain. Unfortunately, such models are lacking or nonexistent for many microbes. Here, we introduce organ agar, a straightforward method to enable the screening of large mutant libraries while avoiding physiological bottlenecks. We demonstrate that growth defects on organ agar were translatable to bacterial colonization deficiencies in a murine model. Specifically, we present a urinary tract infection agar model to interrogate an ordered library of Proteus mirabilis transposon mutants, with accurate prediction of bacterial genes critical for host colonization. Thus, we demonstrate the ability of ex vivo organ agar to reproduce in vivo deficiencies. Organ agar was also useful for identifying previously unknown links between biosynthetic genes and swarming motility. This work provides a readily adoptable technique that is economical and uses substantially fewer animals. We anticipate this method will be useful for a wide variety of microorganisms, both pathogenic and commensal, in a diverse range of model host species.
Collapse
Affiliation(s)
- Melanie M. Pearson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allyson E. Shea
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sapna Pahil
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Valerie S. Forsyth
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Pearson MM, Shea AE, Pahil S, Smith SN, Forsyth VS, Mobley HLT. Organ agar serves as physiologically relevant alternative for in vivo colonization. RESEARCH SQUARE 2023:rs.3.rs-2777869. [PMID: 37293055 PMCID: PMC10246091 DOI: 10.21203/rs.3.rs-2777869/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Animal models for host-microbial interactions have proven valuable, yielding physiologically relevant data that may be otherwise difficult to obtain. Unfortunately, such models are lacking or nonexistent for many microbes. Here, we introduce organ agar, a straightforward method to enable the screening of large mutant libraries while avoiding physiological bottlenecks. We demonstrate that growth defects on organ agar were translatable to colonization deficiencies in a murine model. Specifically, we present a urinary tract infection agar model to interrogate an ordered library of Proteus mirabilis transposon mutants, with accurate prediction of bacterial genes critical for host colonization. Thus, we demonstrate the ability of ex vivo organ agar to reproduce in vivo deficiencies. This work provides a readily adoptable technique that is economical and uses substantially fewer animals. We anticipate this method will be useful for a wide variety of microorganisms, both pathogenic and commensal, in a diverse range of model host species.
Collapse
Affiliation(s)
- Melanie M. Pearson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Valerie S. Forsyth
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Brauer AL, Learman BS, Taddei SM, Deka N, Hunt BC, Armbruster CE. Preferential catabolism of l- vs d-serine by Proteus mirabilis contributes to pathogenesis and catheter-associated urinary tract infection. Mol Microbiol 2022; 118:125-144. [PMID: 35970717 PMCID: PMC9486832 DOI: 10.1111/mmi.14968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 11/29/2022]
Abstract
Proteus mirabilis is a common cause of urinary tract infection, especially in catheterized individuals. Amino acids are the predominant nutrient for bacteria during growth in urine, and our prior studies identified several amino acid import and catabolism genes as fitness factors for P. mirabilis catheter-associated urinary tract infection (CAUTI), particularly those for d- and l-serine. In this study, we sought to determine the hierarchy of amino acid utilization by P. mirabilis and to examine the relative importance of d- vs l-serine catabolism for critical steps in CAUTI development and progression. Herein, we show that P. mirabilis preferentially catabolizes l-serine during growth in human urine, followed by d-serine, threonine, tyrosine, glutamine, tryptophan, and phenylalanine. Independently disrupting catabolism of either d- or l-serine has minimal impact on in vitro phenotypes while completely disrupting both pathways decreases motility, biofilm formation, and fitness due to perturbation of membrane potential and cell wall biosynthesis. In a mouse model of CAUTI, loss of either serine catabolism system decreased fitness, but disrupting l-serine catabolism caused a greater fitness defect than disrupting d-serine catabolism. We, therefore, conclude that the hierarchical utilization of amino acids may be a critical component of P. mirabilis colonization and pathogenesis within the urinary tract.
Collapse
Affiliation(s)
- Aimee L. Brauer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Brian S. Learman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Steven M. Taddei
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Namrata Deka
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Benjamin C. Hunt
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Chelsie E. Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
5
|
Bozzola T, Scalise M, Larsson CU, Newton-Vesty MC, Rovegno C, Mitra A, Cramer J, Wahlgren WY, Radhakrishnan Santhakumari P, Johnsson RE, Schwardt O, Ernst B, Friemann R, Dobson RCJ, Indiveri C, Schelin J, Nilsson UJ, Ellervik U. Sialic Acid Derivatives Inhibit SiaT Transporters and Delay Bacterial Growth. ACS Chem Biol 2022; 17:1890-1900. [PMID: 35675124 PMCID: PMC9295122 DOI: 10.1021/acschembio.2c00321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Antibiotic resistance
is a major worldwide concern, and new drugs
with mechanistically novel modes of action are urgently needed. Here,
we report the structure-based drug design, synthesis, and evaluation
in vitro and in cellular systems of sialic acid derivatives able to
inhibit the bacterial sialic acid symporter SiaT. We designed and
synthesized 21 sialic acid derivatives and screened their affinity
for SiaT by a thermal shift assay and elucidated the inhibitory mechanism
through binding thermodynamics, computational methods, and inhibitory
kinetic studies. The most potent compounds, which have a 180-fold
higher affinity compared to the natural substrate, were tested in
bacterial growth assays and indicate bacterial growth delay in methicillin-resistant Staphylococcus aureus. This study represents the
first example and a promising lead in developing sialic acid uptake
inhibitors as novel antibacterial agents.
Collapse
Affiliation(s)
- Tiago Bozzola
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.,Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Christer U Larsson
- Division of Applied Microbiology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Michael C Newton-Vesty
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, 8140 Christchurch, New Zealand
| | - Caterina Rovegno
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ankita Mitra
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Jonathan Cramer
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-40530 Gothenburg, Sweden
| | - Partha Radhakrishnan Santhakumari
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka 560065, India.,Manipal Academy of Higher Education, Tiger Circle Road, Manipal, Karnataka 576104, India
| | | | - Oliver Schwardt
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Beat Ernst
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Rosmarie Friemann
- Department of Clinical Microbiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, 8140 Christchurch, New Zealand.,Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council-CNR, Via Amendola 122/O, 70126 Bari, Italy
| | - Jenny Schelin
- Division of Applied Microbiology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ellervik
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
6
|
The conserved serine transporter SdaC moonlights to enable self recognition. J Bacteriol 2021; 204:e0034721. [PMID: 34662238 DOI: 10.1128/jb.00347-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells can use self recognition to achieve cooperative behaviors. Self-recognition genes are thought to principally evolve in tandem with partner self-recognition alleles. However, other constraints on protein evolution could exist. Here, we have identified an interaction outside of self-recognition loci that could constrain the sequence variation of a self-recognition protein. We show that during collective swarm expansion in Proteus mirabilis, self-recognition signaling co-opts SdaC, a serine transporter. Serine uptake is crucial for bacterial survival and colonization. Single-residue variants of SdaC reveal that self recognition requires an open conformation of the protein; serine transport is dispensable. A distant ortholog from Escherichia coli is sufficient for self recognition; however, a paralogous serine transporter, YhaO, is not. Thus, SdaC couples self recognition and serine transport, likely through a shared molecular interface. Self recognition proteins may follow the framework of a complex interaction network rather than an isolated two-protein system. Understanding molecular and ecological constraints on self-recognition proteins lays the groundwork for insights into the evolution of self recognition and emergent collective behaviors. Importance Bacteria can receive secret messages from kin during migration. For Proteus mirabilis, these messages are necessary for virulence in multi-species infections. We show that a serine transporter-conserved among gamma-enterobacteria- enables self recognition. Molecular co-option of nutrient uptake could limit the sequence variation of these message proteins. SdaC is the primary transporter for L-serine, a vital metabolite for colonization during disease. Unlike many self-recognition receptors, SdaC is sufficiently conserved between species to achieve recognition. The predicted open conformation is shared by transport and recognition. SdaC reveals the interdependence of communication and nutrient acquisition. As the broader interactions of self-recognition proteins are studied, features shared among microbial self-recognition systems, such as Dictyostelium spp. and Neurospora spp., could emerge.
Collapse
|
7
|
Abstract
Many bacterial species employ systems for interference competition with other microorganisms. Some systems are effective without contact (e.g., through secretion of toxins), while other systems (e.g., type VI secretion system [T6SS]) require direct contact between cells. Here, we provide the initial characterization of a novel contact-dependent competition system for Proteus mirabilis. In neonatal mice, a commensal P. mirabilis strain apparently eliminated commensal Escherichia coli. We replicated the phenotype in vitro and showed that P. mirabilis efficiently reduced the viability of several Enterobacteriaceae species but not Gram-positive species or yeast cells. Importantly, P. mirabilis strains isolated from humans also killed E. coli. A reduction of viability occurred from early stationary phase to 24 h of culture and was observed in shaking liquid media as well as on solid media. Killing required contact but was independent of T6SS, which is the only contact-dependent killing system described for P. mirabilis. Expression of the killing system was regulated by osmolarity and components secreted into the supernatant. Stationary-phase P. mirabilis culture supernatant itself did not kill but was sufficient to induce killing in an exponentially growing coculture. In contrast, killing was largely prevented in media with low osmolarity. In summary, we provide the initial characterization of a potentially novel interbacterial competition system used by P. mirabilis. IMPORTANCE The study of bacterial competition systems has received significant attention in recent years. These systems are important in a multitude of polymicrobial environments and collectively shape the composition of complex ecosystems like the mammalian gut. They are also being explored as narrow-spectrum alternatives to specifically eliminate problematic pathogenic species. However, only a small fraction of the estimated number of interbacterial competition systems has been identified. We discovered a competition system that is novel for Proteus mirabilis. Inspired by an observation in infant mice, we confirmed in vitro that P. mirabilis was able to efficiently kill several Enterobacteriaceae species. This killing system might represent a new function of a known competition system or even a novel system, as the observed characteristics do not fit with described contact-dependent competition systems. Further characterization of this system might help understand how P. mirabilis competes with other Enterobacteriaceae in various niches.
Collapse
|
8
|
Lin WY, Liaw SJ. Deacidification by FhlA-dependent hydrogenase is involved in urease activity and urinary stone formation in uropathogenic Proteus mirabilis. Sci Rep 2020; 10:19546. [PMID: 33177598 PMCID: PMC7658346 DOI: 10.1038/s41598-020-76561-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
Proteus mirabilis is an important uropathogen, featured with urinary stone formation. Formate hydrogenlyase (FHL), consisting of formate dehydrogenase H and hydrogenase for converting proton to hydrogen, has been implicated in virulence. In this study, we investigated the role of P. mirabilis FHL hydrogenase and the FHL activator, FhlA. fhlA and hyfG (encoding hydrogenase large subunit) displayed a defect in acid resistance. fhlA and hyfG mutants displayed a delay in medium deacidification compared to wild-type and ureC mutant failed to deacidify the medium. In addition, loss of fhlA or hyfG decreased urease activity in the pH range of 5-8. The reduction of urease activities in fhlA and hyfG mutants subsided gradually over the pH range and disappeared at pH 9. Furthermore, mutation of fhlA or hyfG resulted in a decrease in urinary stone formation in synthetic urine. These indicate fhlA- and hyf-mediated deacidification affected urease activity and stone formation. Finally, fhlA and hyfG mutants exhibited attenuated colonization in mice. Altogether, we found expression of fhlA and hyf confers medium deacidification via facilitating urease activity, thereby urinary stone formation and mouse colonization. The link of acid resistance to urease activity provides a potential strategy for counteracting urinary tract infections by P. mirabilis.
Collapse
Affiliation(s)
- Wen-Yuan Lin
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10016, Taiwan, ROC
| | - Shwu-Jen Liaw
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10016, Taiwan, ROC. .,Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
9
|
Jiang W, Ubhayasekera W, Breed MC, Norsworthy AN, Serr N, Mobley HLT, Pearson MM, Knight SD. MrpH, a new class of metal-binding adhesin, requires zinc to mediate biofilm formation. PLoS Pathog 2020; 16:e1008707. [PMID: 32780778 PMCID: PMC7444556 DOI: 10.1371/journal.ppat.1008707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/21/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Proteus mirabilis, a Gram-negative uropathogen, is a major causative agent in catheter-associated urinary tract infections (CAUTI). Mannose-resistant Proteus-like fimbriae (MR/P) are crucially important for P. mirabilis infectivity and are required for biofilm formation and auto-aggregation, as well as for bladder and kidney colonization. Here, the X-ray crystal structure of the MR/P tip adhesin, MrpH, is reported. The structure has a fold not previously described and contains a transition metal center with Zn2+ coordinated by three conserved histidine residues and a ligand. Using biofilm assays, chelation, metal complementation, and site-directed mutagenesis of the three histidines, we show that an intact metal binding site occupied by zinc is essential for MR/P fimbria-mediated biofilm formation, and furthermore, that P. mirabilis biofilm formation is reversible in a zinc-dependent manner. Zinc is also required for MR/P-dependent agglutination of erythrocytes, and mutation of the metal binding site renders P. mirabilis unfit in a mouse model of UTI. The studies presented here provide important clues as to the mechanism of MR/P-mediated biofilm formation and serve as a starting point for identifying the physiological MR/P fimbrial receptor. Many bacteria use fimbriae to adhere to surfaces, and this function is often essential for pathogens to gain a foothold in the host. In this study, we examine the major virulence-associated fimbrial protein, MrpH, of the bacterial urinary tract pathogen Proteus mirabilis. This species is particularly known for causing catheter-associated urinary tract infections, in which it forms damaging urinary stones and crystalline biofilms that can block the flow of urine through indwelling catheters. MrpH resides at the tip of mannose-resistant Proteus-like (MR/P) fimbriae and is required for MR/P-dependent adherence to surfaces. Although MR/P belongs to a well-known class of adhesive fimbriae encoded by the chaperone-usher pathway, we found that MrpH has a dramatically different structure compared with other tip-located adhesins in this family. Unexpectedly, MrpH was found to bind a zinc cation, which we show is essential for MR/P-mediated biofilm formation and adherence to red blood cells. Furthermore, MR/P-mediated adherence can be modified by controlling zinc levels. These findings have the potential to aid development of better anti-biofilm urinary catheters or other methods to prevent P. mirabilis infection of the urinary tract.
Collapse
Affiliation(s)
- Wangshu Jiang
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Wimal Ubhayasekera
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Michael C. Breed
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Allison N. Norsworthy
- Department of Microbiology, New York University School of Medicine, New York, NY, United States of America
| | - Nina Serr
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Melanie M. Pearson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- * E-mail: (MMP); (SDK)
| | - Stefan D. Knight
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
- * E-mail: (MMP); (SDK)
| |
Collapse
|
10
|
Pearson MM. Culture Methods for Proteus mirabilis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2020; 2021:5-13. [PMID: 31309491 DOI: 10.1007/978-1-4939-9601-8_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Proteus mirabilis is generally easy to culture, but its tendency to swarm on a wide variety of media can interfere with isolation of single colonies or identification of other species in a sample. Therefore, specialized media may be needed to control swarming or to study the bacteria under chemically defined conditions. Here, methods are described for routine culture of P. mirabilis, isolation of P. mirabilis from mixed cultures, and culture of P. mirabilis on physiologically relevant media.
Collapse
Affiliation(s)
- Melanie M Pearson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Tipping MJ, Gibbs KA. Growth Recovery Assay and FACS-based Population Sorting Following Territorial Exclusion in Proteus mirabilis. Bio Protoc 2020; 10:e3543. [PMID: 33659517 PMCID: PMC7842609 DOI: 10.21769/bioprotoc.3543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 11/02/2022] Open
Abstract
Many bacteria take part in self recognition and kin discrimination behavior using contact-dependent effectors. Understanding the effects these effectors cause is important to explain bacterial community formation and population dynamics. Typically, kin discrimination effectors are toxins that kill target cells; their effect is therefore obvious and easily measurable. However, many self-recognition effectors, such as the Proteus mirabilis Ids system, are non-lethal and do not cause obvious physiological changes in target cells. Previously, experimental techniques to probe cells experiencing non-lethal kin recognition have been limited. Here we describe a technique to reliably isolate cells deemed self and non-self through Ids self-recognition for downstream phenotypic analysis. Liquid cultures of fluorescently labeled self-recognition mutants are mixed together and inoculated on swarm-permissive agar. Mixed swarms are harvested, and each strain is isolated through fluorescence-activated cell sorting (FACS). The growth rate of each strain is measured on a plate reader. This protocol is adaptable for other bacterial species. We describe briefly how sorted particles can be used for other analyses such as RNA-Seq library preparation.
Collapse
Affiliation(s)
- Murray J. Tipping
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA
| | - Karine A. Gibbs
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA
| |
Collapse
|
12
|
Deutch CE. Inhibition of urease activity in the urinary tract pathogens Staphylococcus saprophyticus and Proteus mirabilis by dimethylsulfoxide (DMSO). J Appl Microbiol 2019; 128:1514-1523. [PMID: 31860153 DOI: 10.1111/jam.14560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/15/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
AIMS Urease is a virulence factor for the urinary tract pathogens Staphylococcus saprophyticus and Proteus mirabilis. Dimethylsulfoxide (DMSO) is structurally similar to urea, used as a solvent for urease inhibitors, and an effective treatment for interstitial cystitis/bladder pain syndrome (IC/BPS). The aims of this study were to test DMSO as a urease inhibitor and determine its physiological effects on S. saprophyticus and P. mirabilis. METHODS AND RESULTS Urease activity in extracts and whole cells was measured by the formation of ammonium ions. Urease was highly sensitive to noncompetitive inhibition by DMSO (Ki about 6 mmol l-1 ). DMSO inhibited urease activity in whole cells, limited bacterial growth in media containing urea, and slowed the increase in pH which occurred in artificial urine medium. CONCLUSIONS DMSO should be used with caution as a solvent when testing plant extracts or other potential urease inhibitors. Because it can inhibit bacterial growth and delay an increase in pH, it may be an effective treatment for urinary tract infections. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first detailed study of the inhibition of urease by DMSO. Dimethylsulfoxide may be used to treat urinary tract infections that are resistant to antibiotics or herbal remedies.
Collapse
|
13
|
Tipping MJ, Gibbs KA. Peer pressure from a Proteus mirabilis self-recognition system controls participation in cooperative swarm motility. PLoS Pathog 2019; 15:e1007885. [PMID: 31323074 PMCID: PMC6682164 DOI: 10.1371/journal.ppat.1007885] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/05/2019] [Accepted: 06/03/2019] [Indexed: 11/25/2022] Open
Abstract
Colonies of the opportunistic pathogen Proteus mirabilis can distinguish self from non-self: in swarming colonies of two different strains, one strain excludes the other from the expanding colony edge. Predominant models characterize bacterial kin discrimination as immediate antagonism towards non-kin cells, typically through delivery of toxin effector molecules from one cell into its neighbor. Upon effector delivery, receiving cells must either neutralize it by presenting a cognate anti-toxin as would a clonal sibling, or suffer cell death or irreversible growth inhibition as would a non-kin cell. Here we expand this paradigm to explain the non-lethal Ids self-recognition system, which stops access to a social behavior in P. mirabilis by selectively and transiently inducing non-self cells into a growth-arrested lifestyle incompatible with cooperative swarming. This state is characterized by reduced expression of genes associated with protein synthesis, virulence, and motility, and also causes non-self cells to tolerate previously lethal concentrations of antibiotics. We show that temporary activation of the stringent response is necessary for entry into this state, ultimately resulting in the iterative exclusion of non-self cells as a swarm colony migrates outwards. These data clarify the intricate connection between non-lethal recognition and the lifecycle of P. mirabilis swarm colonies. A resident of animal intestines, Proteus mirabilis is a major cause of catheter-associated urinary tract infections and can cause recurrent, persistent infections. Swarming, which is a collective behavior that promotes centimeter-scale population migration, is implicated in colonization of bladders and kidneys. A regulatory factor of swarming is kin recognition, which involves the transfer of a self-identity protein from one cell into a physically adjacent neighboring cell. However, how kin recognition regulates swarming was previously unclear. We have now shown a mechanism linking kin recognition, swarm migration, and antibiotics tolerance: cells induce a transient antibiotics-tolerant, persister-like state in adjacent non-identical cells which in turn prevents non-identical cells from continuing to participate in collective swarming. These affected non-identical cells continue to exhibit large-scale gene expression suggesting an active shift into a different expression state. These data provide two key insights for the field. First, kin recognition can be a regulatory mechanism that acts with spatial and temporal precision. Second, induction into an antibiotics-tolerant state, instead of occurring stochastically, can be physically and spatially regulated by neighboring cells. These insights highlight the importance of further developing four-dimensional (time and X-, Y-, Z-axes) model systems for interrogating cell-cell signaling and control in microbial populations.
Collapse
Affiliation(s)
- Murray J. Tipping
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Karine A. Gibbs
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Methods for Transposon Mutagenesis in Proteus mirabilis. Methods Mol Biol 2019. [PMID: 31197711 DOI: 10.1007/978-1-4939-9570-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Several methods for transposon mutagenesis have been employed for use in P. mirabilis. The first method involves the use of mini-Tn5 derivatives, which are delivered by conjugation of a suicide plasmid containing this transposon, followed by transposition into the chromosome. A second method is the use of preformed transposon/transposase complexes (transposomes), which are introduced into P. mirabilis cells by electroporation. Each of these methods will be discussed along with the advantages and disadvantages of each.
Collapse
|
15
|
Cell Shape and Population Migration Are Distinct Steps of Proteus mirabilis Swarming That Are Decoupled on High-Percentage Agar. J Bacteriol 2019; 201:JB.00726-18. [PMID: 30858303 DOI: 10.1128/jb.00726-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/08/2019] [Indexed: 01/10/2023] Open
Abstract
Swarming on rigid surfaces requires movement of cells as individuals and as a group of cells. For the bacterium Proteus mirabilis, an individual cell can respond to a rigid surface by elongating and migrating over micrometer-scale distances. Cells can form groups of transiently aligned cells, and the collective population is capable of migrating over centimeter-scale distances. To address how P. mirabilis populations swarm on rigid surfaces, we asked whether cell elongation and single-cell motility are coupled to population migration. We first measured the relationship between agar concentration (a proxy for surface rigidity), single-cell phenotypes, and swarm colony phenotypes. We find that cell elongation and single-cell motility are coupled with population migration on low-percentage hard agar (1% to 2.5%) and become decoupled on high-percentage hard agar (>2.5%). Next, we evaluate how disruptions in lipopolysaccharide (LPS), specifically the O-antigen components, affect responses to hard agar. We find that LPS is not essential for elongation and motility of individual cells, as predicted, and instead functions to broaden the range of agar concentrations on which cell elongation and motility are coupled with population migration. These findings demonstrate that cell elongation and motility are coupled with population migration under a permissive range of surface conditions; increasing agar concentration is sufficient to decouple these behaviors. Since swarm colonies cover greater distances when these steps are coupled than when they are not, these findings suggest that collective interactions among P. mirabilis cells might be emerging as a colony expands outwards on rigid surfaces.IMPORTANCE How surfaces influence cell size, cell-cell interactions, and population migration for robust swarmers like P. mirabilis is not fully understood. Here, we have elucidated how cells change length along a spectrum of sizes that positively correlates with increases in agar concentration, regardless of population migration. Single-cell phenotypes can be decoupled from collective population migration simply by increasing agar concentration. A cell's lipopolysaccharides function to broaden the range of agar conditions under which cell elongation and single-cell motility remain coupled with population migration. In eukaryotes, the physical environment, such as a surface matrix, can impact cell development, shape, and migration. These findings support the idea that rigid surfaces similarly act on swarming bacteria to impact cell shape, single-cell motility, and collective population migration.
Collapse
|
16
|
Armbruster CE, Forsyth VS, Johnson AO, Smith SN, White AN, Brauer AL, Learman BS, Zhao L, Wu W, Anderson MT, Bachman MA, Mobley HLT. Twin arginine translocation, ammonia incorporation, and polyamine biosynthesis are crucial for Proteus mirabilis fitness during bloodstream infection. PLoS Pathog 2019; 15:e1007653. [PMID: 31009518 PMCID: PMC6497324 DOI: 10.1371/journal.ppat.1007653] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/02/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
The Gram-negative bacterium Proteus mirabilis is a common cause of catheter-associated urinary tract infections (CAUTI), which can progress to secondary bacteremia. While numerous studies have investigated experimental infection with P. mirabilis in the urinary tract, little is known about pathogenesis in the bloodstream. This study identifies the genes that are important for survival in the bloodstream using a whole-genome transposon insertion-site sequencing (Tn-Seq) approach. A library of 50,000 transposon mutants was utilized to assess the relative contribution of each non-essential gene in the P. mirabilis HI4320 genome to fitness in the livers and spleens of mice at 24 hours following tail vein inoculation compared to growth in RPMI, heat-inactivated (HI) naïve serum, and HI acute phase serum. 138 genes were identified as ex vivo fitness factors in serum, which were primarily involved in amino acid transport and metabolism, and 143 genes were identified as infection-specific in vivo fitness factors for both spleen and liver colonization. Infection-specific fitness factors included genes involved in twin arginine translocation, ammonia incorporation, and polyamine biosynthesis. Mutants in sixteen genes were constructed to validate both the ex vivo and in vivo results of the transposon screen, and 12/16 (75%) exhibited the predicted phenotype. Our studies indicate a role for the twin arginine translocation (tatAC) system in motility, translocation of potential virulence factors, and fitness within the bloodstream. We also demonstrate the interplay between two nitrogen assimilation pathways in the bloodstream, providing evidence that the GS-GOGAT system may be preferentially utilized. Furthermore, we show that a dual-function arginine decarboxylase (speA) is important for fitness within the bloodstream due to its role in putrescine biosynthesis rather than its contribution to maintenance of membrane potential. This study therefore provides insight into pathways needed for fitness within the bloodstream, which may guide strategies to reduce bacteremia-associated mortality.
Collapse
Affiliation(s)
- Chelsie E. Armbruster
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Valerie S. Forsyth
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Alexandra O. Johnson
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Sara N. Smith
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Ashley N. White
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Aimee L. Brauer
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Brian S. Learman
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Lili Zhao
- Department of Biostatistics; University of Michigan School of Public Health; Ann Arbor, MI, United States of America
| | - Weisheng Wu
- Department of Computational Medicine & Bioinformatics; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Mark T. Anderson
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Michael A. Bachman
- Department of Pathology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| |
Collapse
|
17
|
Abstract
Proteus mirabilis, a Gram-negative rod-shaped bacterium most noted for its swarming motility and urease activity, frequently causes catheter-associated urinary tract infections (CAUTIs) that are often polymicrobial. These infections may be accompanied by urolithiasis, the development of bladder or kidney stones due to alkalinization of urine from urease-catalyzed urea hydrolysis. Adherence of the bacterium to epithelial and catheter surfaces is mediated by 17 different fimbriae, most notably MR/P fimbriae. Repressors of motility are often encoded by these fimbrial operons. Motility is mediated by flagella encoded on a single contiguous 54-kb chromosomal sequence. On agar plates, P. mirabilis undergoes a morphological conversion to a filamentous swarmer cell expressing hundreds of flagella. When swarms from different strains meet, a line of demarcation, a "Dienes line," develops due to the killing action of each strain's type VI secretion system. During infection, histological damage is caused by cytotoxins including hemolysin and a variety of proteases, some autotransported. The pathogenesis of infection, including assessment of individual genes or global screens for virulence or fitness factors has been assessed in murine models of ascending urinary tract infections or CAUTIs using both single-species and polymicrobial models. Global gene expression studies performed in culture and in the murine model have revealed the unique metabolism of this bacterium. Vaccines, using MR/P fimbria and its adhesin, MrpH, have been shown to be efficacious in the murine model. A comprehensive review of factors associated with urinary tract infection is presented, encompassing both historical perspectives and current advances.
Collapse
|
18
|
Abstract
The opportunistic pathogen Proteus mirabilis engages in visually dramatic and dynamic social behaviors. Populations of P. mirabilis can rapidly occupy surfaces, such as high-percentage agar and latex, through a collective surface-based motility termed swarming. When in these surface-occupying swarm colonies, P. mirabilis can distinguish between clonal siblings (self) and foreign P. mirabilis strains (nonself). This ability can be assessed by at least two standard methods: boundary formation, aka a Dienes line, and territorial exclusion. Here we describe methods for quantitative analysis of swarm colony expansion, of boundary formation, and of territorial exclusion. These assays can be employed to assess several aspects of P. mirabilis sociality including collective swarm motility, competition, and self versus nonself recognition.
Collapse
Affiliation(s)
- Kristin Little
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Karine A Gibbs
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
19
|
Abstract
More than 500 siderophores that bind ferric iron have been characterized and grouped by type based on their chemical structure. The chrome azurol S (CAS) assay is a universal colorimetric method that detects siderophores independent of their structure. In this assay, siderophores scavenge iron from an Fe-CAS-hexadecyltrimethylammonium bromide complex, and subsequent release of the CAS dye results in a color change from blue to orange. Solution-based experiments with CAS result in a quantitative measure of siderophore production, while an observable color change on CAS agar plates can be performed for qualitative detection of siderophores. Cross-feeding assays are another useful method to detect and characterize siderophores produced by bacteria. Under iron-limiting conditions, cross-feeding assays test the ability of an indicator strain to grow when supplied with a specific siderophore (from a test strain) to which it has a cognate receptor required for import into the cell. The cross-feeding assay can be tested with a variety of wild-type strains, siderophore biosynthesis mutants, and siderophore receptor mutants.
Collapse
Affiliation(s)
- Stephanie D Himpsl
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Swarmer Cell Development of the Bacterium Proteus mirabilis Requires the Conserved Enterobacterial Common Antigen Biosynthesis Gene rffG. J Bacteriol 2018; 200:JB.00230-18. [PMID: 29967121 DOI: 10.1128/jb.00230-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/27/2018] [Indexed: 01/01/2023] Open
Abstract
Individual cells of the bacterium Proteus mirabilis can elongate up to 40-fold on surfaces before engaging in a cooperative surface-based motility termed swarming. How cells regulate this dramatic morphological remodeling remains an open question. In this paper, we move forward the understanding of this regulation by demonstrating that P. mirabilis requires the gene rffG for swarmer cell elongation and subsequent swarm motility. The rffG gene encodes a protein homologous to the dTDP-glucose 4,6-dehydratase protein of Escherichia coli, which contributes to enterobacterial common antigen biosynthesis. Here, we characterize the rffG gene in P. mirabilis, demonstrating that it is required for the production of large lipopolysaccharide-linked moieties necessary for wild-type cell envelope integrity. We show that the absence of the rffG gene induces several stress response pathways, including those controlled by the transcriptional regulators RpoS, CaiF, and RcsB. We further show that in rffG-deficient cells, the suppression of the Rcs phosphorelay, via loss of RcsB, is sufficient to induce cell elongation and swarm motility. However, the loss of RcsB does not rescue cell envelope integrity defects and instead results in abnormally shaped cells, including cells producing more than two poles. We conclude that an RcsB-mediated response acts to suppress the emergence of shape defects in cell envelope-compromised cells, suggesting an additional role for RcsB in maintaining cell morphology under stress conditions. We further propose that the composition of the cell envelope acts as a checkpoint before cells initiate swarmer cell elongation and motility.IMPORTANCEProteus mirabilis swarm motility has been implicated in pathogenesis. We have found that cells deploy multiple uncharacterized strategies to handle cell envelope stress beyond the Rcs phosphorelay when attempting to engage in swarm motility. While RcsB is known to directly inhibit the master transcriptional regulator for swarming, we have shown an additional role for RcsB in protecting cell morphology. These data support a growing appreciation that the Rcs phosphorelay is a multifunctional regulator of cell morphology in addition to its role in microbial stress responses. These data also strengthen the paradigm that outer membrane composition is a crucial checkpoint for modulating entry into swarm motility. Furthermore, the rffG-dependent moieties provide a novel attractive target for potential antimicrobials.
Collapse
|
21
|
A Proposed Chaperone of the Bacterial Type VI Secretion System Functions To Constrain a Self-Identity Protein. J Bacteriol 2018; 200:JB.00688-17. [PMID: 29555703 DOI: 10.1128/jb.00688-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/15/2018] [Indexed: 01/01/2023] Open
Abstract
The bacterium Proteus mirabilis can communicate identity through the secretion of the self-identity protein IdsD via the type VI secretion (T6S) system. IdsD secretion is essential for self-versus-nonself recognition behaviors in these populations. Here we provide an answer to the unresolved question of how the activity of a T6S substrate, such as IdsD, is regulated before secretion. We demonstrate that IdsD is found in clusters that form independently of the T6S machinery and activity. We show that the IdsC protein, which is a member of the proposed DUF4123 chaperone family, is essential for the maintenance of these clusters and of the IdsD protein itself. We provide evidence that amino acid disruptions in IdsC are sufficient to disrupt IdsD secretion but not IdsD localization into subcellular clusters, strongly supporting the notion that IdsC functions in at least two different ways: maintaining IdsD levels and secreting IdsD. We propose that IdsC, and likely other DUF4123-containing proteins, functions to regulate T6S substrates in the donor cell both by maintaining protein levels and by mediating secretion at the T6S machinery.IMPORTANCE Understanding the subcellular dynamics of self-identity proteins is crucial for developing models of self-versus-nonself recognition. We directly addressed how a bacterium restricts self-identity information before cell-cell exchange. We resolved two conflicting models for type VI secretion (T6S) substrate regulation by focusing on the self-identity protein IdsD. One model is that a cognate immunity protein binds the substrate, inhibiting activity before transport. Another model proposes that DUF4123 proteins act as chaperones in the donor cell, but no detailed molecular mechanism was previously known. We resolve this discrepancy and propose a model wherein a chaperone couples IdsD sequestration with its localization. Such a molecular mechanism restricts the communication of identity, and possibly other T6S substrates, in producing cells.
Collapse
|
22
|
Alteri CJ, Himpsl SD, Zhu K, Hershey HL, Musili N, Miller JE, Mobley HLT. Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity. PLoS Pathog 2017; 13:e1006729. [PMID: 29155899 PMCID: PMC5714391 DOI: 10.1371/journal.ppat.1006729] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/04/2017] [Accepted: 11/03/2017] [Indexed: 12/01/2022] Open
Abstract
Type VI secretion systems (T6SS) function to deliver lethal payloads into target cells. Many studies have shown that protection against a single, lethal T6SS effector protein requires a cognate antidote immunity protein, both of which are often encoded together in a two-gene operon. The T6SS and an effector-immunity pair is sufficient for both killing and immunity. HereIn this paper we describe a T6SS effector operon that differs from conventional effector-immunity pairs in that eight genes are necessary for lethal effector function, yet can be countered by a single immunity protein. In this study, we investigated the role that the PefE T6SS immunity protein plays in recognition between two strains harboring nearly identical effector operons. Interestingly, despite containing seven of eight identical effector proteins, the less conserved immunity proteins only provided protection against their native effectors, suggesting that specificity and recognition could be dependent on variation within an immunity protein and one effector gene product. The variable effector gene product, PefD, is encoded upstream from pefE, and displays toxic activity that can be countered by PefE independent of T6SS-activity. Interestingly, while the entire pef operon was necessary to exert toxic activity via the T6SS in P. mirabilis, production of PefD and PefE alone was unable to exert this effector activity. Chimeric PefE proteins constructed from two P. mirabilis strains were used to localize immunity function to three amino acids. A promiscuous immunity protein was created using site-directed mutagenesis to change these residues from one variant to another. These findings support the notion that subtle differences between conserved effectors are sufficient for T6SS-mediated kin discrimination and that PefD requires additional factors to function as a T6SS-dependent effector. Bacterial type VI secretion systems (T6SS) function as contractile nanomachines to puncture target cells and deliver lethal effectors. Little is known about the lifestyle or physiology dictating when bacteria normally express their T6SS. Previously, we have reported that discrimination of self during the multicellular swarming behavior of Proteus mirabilis requires the lethal action of the T6SS, T6SS-dependent effectors, and immunity proteins. Bacteria that share common immunity proteins are protected against T6SS killing and recognize each other as self. Here we introduce a new group of T6SS immunity effectors that require eight genes for killing and a single immunity gene that differs from the classical effector-immunity pairs. Variation within an effector operon drives specificity and recognition between strains. We propose that subtle sequence variation in the effector operons contribute to self and non-self recognition in these bacteria.
Collapse
Affiliation(s)
- Christopher J. Alteri
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Stephanie D. Himpsl
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kevin Zhu
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Haley L. Hershey
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ninette Musili
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jessa E. Miller
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
23
|
Saak CC, Zepeda-Rivera MA, Gibbs KA. A single point mutation in a TssB/VipA homolog disrupts sheath formation in the type VI secretion system of Proteus mirabilis. PLoS One 2017; 12:e0184797. [PMID: 28949977 PMCID: PMC5614524 DOI: 10.1371/journal.pone.0184797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/31/2017] [Indexed: 01/21/2023] Open
Abstract
The type VI secretion (T6S) system is a molecular device for the delivery of proteins from one cell into another. T6S function depends on the contractile sheath comprised of TssB/VipA and TssC/VipB proteins. We previously reported on a mutant variant of TssB that disrupts T6S-dependent export of the self-identity protein, IdsD, in the bacterium Proteus mirabilis. Here we determined the mechanism underlying that initial observation. We show that T6S-dependent export of multiple self-recognition proteins is abrogated in this mutant strain. We have mapped the mutation, which is a single amino acid change, to a region predicted to be involved in the formation of the TssB-TssC sheath. We have demonstrated that this mutation does indeed inhibit sheath formation, thereby explaining the global disruption of T6S activity. We propose that this mutation could be utilized as an important tool for studying functions and behaviors associated with T6S systems.
Collapse
Affiliation(s)
- Christina C. Saak
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Martha A. Zepeda-Rivera
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Karine A. Gibbs
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Armbruster CE, Forsyth-DeOrnellas V, Johnson AO, Smith SN, Zhao L, Wu W, Mobley HLT. Genome-wide transposon mutagenesis of Proteus mirabilis: Essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements. PLoS Pathog 2017; 13:e1006434. [PMID: 28614382 PMCID: PMC5484520 DOI: 10.1371/journal.ppat.1006434] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/26/2017] [Accepted: 05/25/2017] [Indexed: 12/31/2022] Open
Abstract
The Gram-negative bacterium Proteus mirabilis is a leading cause of catheter-associated urinary tract infections (CAUTIs), which are often polymicrobial. Numerous prior studies have uncovered virulence factors for P. mirabilis pathogenicity in a murine model of ascending UTI, but little is known concerning pathogenesis during CAUTI or polymicrobial infection. In this study, we utilized five pools of 10,000 transposon mutants each and transposon insertion-site sequencing (Tn-Seq) to identify the full arsenal of P. mirabilis HI4320 fitness factors for single-species versus polymicrobial CAUTI with Providencia stuartii BE2467. 436 genes in the input pools lacked transposon insertions and were therefore concluded to be essential for P. mirabilis growth in rich medium. 629 genes were identified as P. mirabilis fitness factors during single-species CAUTI. Tn-Seq from coinfection with P. stuartii revealed 217/629 (35%) of the same genes as identified by single-species Tn-Seq, and 1353 additional factors that specifically contribute to colonization during coinfection. Mutants were constructed in eight genes of interest to validate the initial screen: 7/8 (88%) mutants exhibited the expected phenotypes for single-species CAUTI, and 3/3 (100%) validated the expected phenotypes for polymicrobial CAUTI. This approach provided validation of numerous previously described P. mirabilis fitness determinants from an ascending model of UTI, the discovery of novel fitness determinants specifically for CAUTI, and a stringent assessment of how polymicrobial infection influences fitness requirements. For instance, we describe a requirement for branched-chain amino acid biosynthesis by P. mirabilis during coinfection due to high-affinity import of leucine by P. stuartii. Further investigation of genes and pathways that provide a competitive advantage during both single-species and polymicrobial CAUTI will likely provide robust targets for therapeutic intervention to reduce P. mirabilis CAUTI incidence and severity. Proteus mirabilis is a common cause of single-species and polymicrobial catheter-associated urinary tract infections (CAUTIs). Prior studies have uncovered P. mirabilis virulence factors for single-species ascending UTI, but little is known concerning pathogenesis during CAUTI or polymicrobial infection. Using transposon insertion-site sequencing (Tn-Seq), we performed a global assessment of P. mirabilis fitness factors for CAUTI while simultaneously determining how coinfection with another CAUTI pathogen, Providencia stuartii, alters P. mirabilis fitness requirements. This approach provides six important contributions to the field: 1) the first global estimation of P. mirabilis genes essential for growth, 2) validation of a role for known P. mirabilis fitness factors during CAUTI, 3) identification of novel fitness factors, 4) identification of core fitness factors for both single-species and polymicrobial CAUTI, 5) identification of single-species fitness factors that are complemented during polymicrobial infection, and 6) identification of factors that only provide a competitive advantage during polymicrobial infection. We further demonstrate that the CAUTI model can be used to examine the interplay between fitness requirements of both species during coinfection. Investigation of fitness requirements for other pathogens during single-species and polymicrobial CAUTI will elucidate complex interactions that contribute to disease severity and uncover conserved targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chelsie E. Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail: (CEA); (HLTM)
| | - Valerie Forsyth-DeOrnellas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Alexandra O. Johnson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Lili Zhao
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Weisheng Wu
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (CEA); (HLTM)
| |
Collapse
|
25
|
The cytidine repressor participates in the regulatory pathway of indole in Pantoea agglomerans. Res Microbiol 2017; 168:636-643. [PMID: 28483441 DOI: 10.1016/j.resmic.2017.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 11/23/2022]
Abstract
Indole, an important signal molecule in both intraspecies and interspecies, regulates a variety of bacterial behaviors, but its regulatory mechanism is still unknown. Pantoea agglomerans YS19, a preponderant endophytic bacterium isolated from rice, does not produce indole, yet it senses exogenous indole. In this study, a mutant of YS19-Rpr whose target gene expression was downregulated by indole was selected through mTn5 transposon mutagenesis. Using the TAIL-PCR technique, the mutation gene was identified as a cytR homologue, which encodes a cytidine repressor (CytR) protein, a bacterial transcription factor involved in a complex regulation scheme. The negative regulation of indole in cytR, which is equivalent to the mutation in cytR, promotes the expression of a downstream gene deoC, which encodes the key enzyme deoxyribose-phosphate aldolase in participating in pentose metabolism. We found that DeoC is one of the regulatory proteins of P. agglomerans that is involved in counteracting starvation. Furthermore, the expression of deoC was induced by starvation conditions, accompanied by a decrease in cytR expression. This finding suggests that the indole signal and the mutation of cytR relieve inhibition of CytR in the transcription of deoC, facilitating better adaptation of the bacterium to the adverse conditions of the environment.
Collapse
|
26
|
Saak CC, Gibbs KA. The Self-Identity Protein IdsD Is Communicated between Cells in Swarming Proteus mirabilis Colonies. J Bacteriol 2016; 198:3278-3286. [PMID: 27672195 PMCID: PMC5116931 DOI: 10.1128/jb.00402-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/20/2016] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis is a social bacterium that is capable of self (kin) versus nonself recognition. Swarming colonies of this bacterium expand outward on surfaces to centimeter-scale distances due to the collective motility of individual cells. Colonies of genetically distinct populations remain separate, while those of identical populations merge. Ids proteins are essential for this recognition behavior. Two of these proteins, IdsD and IdsE, encode identity information for each strain. These two proteins bind in vitro in an allele-restrictive manner. IdsD-IdsE binding is correlated with the merging of populations, whereas a lack of binding is correlated with the separation of populations. Key questions remained about the in vivo interactions of IdsD and IdsE, specifically, whether IdsD and IdsE bind within single cells or whether IdsD-IdsE interactions occur across neighboring cells and, if so, which of the two proteins is exchanged. Here we demonstrate that IdsD must originate from another cell to communicate identity and that this nonresident IdsD interacts with IdsE resident in the recipient cell. Furthermore, we show that unbound IdsD in recipient cells does not cause cell death and instead appears to contribute to a restriction in the expansion radius of the swarming colony. We conclude that P. mirabilis communicates IdsD between neighboring cells for nonlethal kin recognition, which suggests that the Ids proteins constitute a type of cell-cell communication. IMPORTANCE We demonstrate that self (kin) versus nonself recognition in P. mirabilis entails the cell-cell communication of an identity-encoding protein that is exported from one cell and received by another. We further show that this intercellular exchange affects swarm colony expansion in a nonlethal manner, which adds social communication to the list of potential swarm-related regulatory factors.
Collapse
Affiliation(s)
- Christina C Saak
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Karine A Gibbs
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
27
|
Abstract
Antimicrobial peptides (APs) are ubiquitous in nature and are thought to kill micro-organisms by affecting membrane integrity. These positively charged peptides interact with negative charges in the LPS of Gram-negative bacteria. A common mechanism of resistance to AP killing is LPS modification. These modifications include fatty acid additions, phosphoethanolamine (PEtN) addition to the core and lipid A regions, 4-amino-4-deoxy-L-arabinose (Ara4N) addition to the core and lipid A regions, acetylation of the O-antigen, and possibly hydroxylation of fatty acids. In Salmonella typhimurium, LPS modifications are induced within host tissues by the two-component regulatory systems PhoPQ and PmrAB. PmrAB activation results in AP resistance by Ara4N addition to lipid A through the activation of at least 8 genes, 7 of which are transcribed as an operon. Loss of this operon and, therefore, Ara4N LPS modification, affects S. typhimurium virulence when administered orally. Transposon mutagenesis of Proteus mirabilis also suggests that LPS modifications affect AP resistance and virulence phenotypes. Therefore, LPS modification in Gram-negative bacteria plays a significant role during infection in resistance to host antimicrobial factors, avoidance of immune system recognition, and maintenance of virulence phenotypes.
Collapse
Affiliation(s)
- John S. Gunn
- Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA,
| |
Collapse
|
28
|
Abstract
Proteus mirabilis is a Gram-negative bacterium and is well known for its ability to robustly swarm across surfaces in a striking bulls'-eye pattern. Clinically, this organism is most frequently a pathogen of the urinary tract, particularly in patients undergoing long-term catheterization. This review covers P. mirabilis with a focus on urinary tract infections (UTI), including disease models, vaccine development efforts, and clinical perspectives. Flagella-mediated motility, both swimming and swarming, is a central facet of this organism. The regulation of this complex process and its contribution to virulence is discussed, along with the type VI-secretion system-dependent intra-strain competition, which occurs during swarming. P. mirabilis uses a diverse set of virulence factors to access and colonize the host urinary tract, including urease and stone formation, fimbriae and other adhesins, iron and zinc acquisition, proteases and toxins, biofilm formation, and regulation of pathogenesis. While significant advances in this field have been made, challenges remain to combatting complicated UTI and deciphering P. mirabilis pathogenesis.
Collapse
|
29
|
O'May C, Amzallag O, Bechir K, Tufenkji N. Cranberry derivatives enhance biofilm formation and transiently impair swarming motility of the uropathogen Proteus mirabilis HI4320. Can J Microbiol 2016; 62:464-74. [PMID: 27090825 DOI: 10.1139/cjm-2015-0715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteus mirabilis is a major cause of catheter-associated urinary tract infection (CAUTI), emphasizing that novel strategies for targeting this bacterium are needed. Potential targets are P. mirabilis surface-associated swarming motility and the propensity of these bacteria to form biofilms that may lead to catheter blockage. We previously showed that the addition of cranberry powder (CP) to lysogeny broth (LB) medium resulted in impaired P. mirabilis swarming motility over short time periods (up to 16 h). Herein, we significantly expanded on those findings by exploring (i) the effects of cranberry derivatives on biofilm formation of P. mirabilis, (ii) whether swarming inhibition occurred transiently or over longer periods more relevant to real infections (∼3 days), (iii) whether swarming was also blocked by commercially available cranberry juices, (iv) whether CP or cranberry juices exhibited effects under natural urine conditions, and (v) the effects of cranberry on medium pH, which is an indirect indicator of urease activity. At short time scales (24 h), CP and commercially available pure cranberry juice impaired swarming motility and repelled actively swarming bacteria in LB medium. Over longer time periods more representative of infections (∼3 days), the capacity of the cranberry material to impair swarming diminished and bacteria would start to migrate across the surface, albeit by exhibiting a different motility phenotype to the regular "bull's-eye" swarming phenotype of P. mirabilis. This bacterium did not swarm on urine agar or LB agar supplemented with urea, suggesting that any potential application of anti-swarming compounds may be better suited to settings external to the urine environment. Anti-swarming effects were confounded by the ability of cranberry products to enhance biofilm formation in both LB and urine conditions. These findings provide key insights into the long-term strategy of targeting P. mirabilis CAUTIs.
Collapse
Affiliation(s)
- Che O'May
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.,Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| | - Olivier Amzallag
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.,Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| | - Karim Bechir
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.,Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.,Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| |
Collapse
|
30
|
Proteus mirabilis fimbriae- and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation. Proc Natl Acad Sci U S A 2016; 113:4494-9. [PMID: 27044107 DOI: 10.1073/pnas.1601720113] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The catheter-associated uropathogenProteus mirabilisfrequently causes urinary stones, but little has been known about the initial stages of bladder colonization and stone formation. We found thatP. mirabilisrapidly invades the bladder urothelium, but generally fails to establish an intracellular niche. Instead, it forms extracellular clusters in the bladder lumen, which form foci of mineral deposition consistent with development of urinary stones. These clusters elicit a robust neutrophil response, and we present evidence of neutrophil extracellular trap generation during experimental urinary tract infection. We identified two virulence factors required for cluster development: urease, which is required for urolithiasis, and mannose-resistantProteus-like fimbriae. The extracellular cluster formation byP. mirabilisstands in direct contrast to uropathogenicEscherichia coli, which readily formed intracellular bacterial communities but not luminal clusters or urinary stones. We propose that extracellular clusters are a key mechanism ofP. mirabilissurvival and virulence in the bladder.
Collapse
|
31
|
Two Proteins Form a Heteromeric Bacterial Self-Recognition Complex in Which Variable Subdomains Determine Allele-Restricted Binding. mBio 2015; 6:e00251. [PMID: 26060269 PMCID: PMC4471559 DOI: 10.1128/mbio.00251-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED Self- versus nonself-recognition in bacteria has been described recently through genetic analyses in multiple systems; however, understanding of the biochemical properties and mechanisms of recognition-determinant proteins remains limited. Here we extend the molecular and biochemical understanding of two recognition-determinant proteins in bacteria. We have found that a heterotypic complex is formed between two bacterial self-recognition proteins, IdsD and IdsE, the genes of which have been shown to genetically encode the determinants for strain-specific identity in the opportunistic bacterial pathogen Proteus mirabilis. This IdsD-IdsE complex forms independently of other P. mirabilis-encoded self-recognition proteins. We have also shown that the binding between IdsD and IdsE is strain- and allele-specific. The specificity for interactions is encoded within a predicted membrane-spanning subdomain within each protein that contains stretches of unique amino acids in each P. mirabilis variant. Finally, we have demonstrated that this in vitro IdsD-IdsE binding interaction correlates to in vivo population identity, suggesting that the binding interactions between IdsD and IdsE are part of a cellular pathway that underpins self-recognition behavior in P. mirabilis and drives bacterial population sociality. IMPORTANCE Here we demonstrate that two proteins, the genes of which were genetically shown to encode determinants of self-identity in bacteria, bind in vitro in an allele-restricted interaction, suggesting that molecular recognition between these two proteins is a mechanism underpinning self-recognition behaviors in P. mirabilis. Binding specificity in each protein is encapsulated in a variable region subdomain that is predicted to span the membrane, suggesting that the interaction occurs in the cell envelope. Furthermore, conversion of binding affinities in vitro correlates with conversion of self-identity in vivo, suggesting that this molecular recognition might help to drive population behaviors.
Collapse
|
32
|
Alteri CJ, Himpsl SD, Mobley HLT. Preferential use of central metabolism in vivo reveals a nutritional basis for polymicrobial infection. PLoS Pathog 2015; 11:e1004601. [PMID: 25568946 PMCID: PMC4287612 DOI: 10.1371/journal.ppat.1004601] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 12/04/2014] [Indexed: 12/04/2022] Open
Abstract
The human genitourinary tract is a common anatomical niche for polymicrobial infection and a leading site for the development of bacteremia and sepsis. Most uncomplicated, community-acquired urinary tract infections (UTI) are caused by Escherichia coli, while another bacterium, Proteus mirabilis, is more often associated with complicated UTI. Here, we report that uropathogenic E. coli and P. mirabilis have divergent requirements for specific central pathways in vivo despite colonizing and occupying the same host environment. Using mutants of specific central metabolism enzymes, we determined glycolysis mutants lacking pgi, tpiA, pfkA, or pykA all have fitness defects in vivo for P. mirabilis but do not affect colonization of E. coli during UTI. Similarly, the oxidative pentose phosphate pathway is required only for P. mirabilis in vivo. In contrast, gluconeogenesis is required only for E. coli fitness in vivo. The remarkable difference in central pathway utilization between E. coli and P. mirabilis during experimental UTI was also observed for TCA cycle mutants in sdhB, fumC, and frdA. The distinct in vivo requirements between these pathogens suggest E. coli and P. mirabilis are not direct competitors within host urinary tract nutritional niche. In support of this, we found that co-infection with E. coli and P. mirabilis wild-type strains enhanced bacterial colonization and persistence of both pathogens during UTI. Our results reveal that complementary utilization of central carbon metabolism facilitates polymicrobial disease and suggests microbial activity in vivo alters the host urinary tract nutritional niche. The human urinary tract is a leading source for polymicrobial infections and for the development of bacteremia and sepsis. Treating these potentially dangerous infections have recently become more challenging due to the appearance of uropathogenic strains that are resistant to the many of the most commonly prescribed antibiotics. The majority of urinary tract infections (UTI) are caused by Escherichia coli, while another bacterium, Proteus mirabilis, is more likely to cause catheter-associated UTI. Here, we report that uropathogenic E. coli and P. mirabilis have divergent nutritional requirements despite growing in the same host environment. This result indicates that E. coli and P. mirabilis do not directly compete for nutrients during UTI. Indeed, we found that persistence of both pathogens is enhanced when they co-colonize the host. This work represents an important step toward understanding the basic nutritional requirements for two major pathogens that cause UTI and shows how mixed infections can change these requirements. Understanding how bacteria grow during infections is fundamental to ultimately uncover new ways to combat increasingly drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Christopher J. Alteri
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Stephanie D. Himpsl
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
33
|
Loss of FliL alters Proteus mirabilis surface sensing and temperature-dependent swarming. J Bacteriol 2014; 197:159-73. [PMID: 25331431 DOI: 10.1128/jb.02235-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Proteus mirabilis is a dimorphic motile bacterium well known for its flagellum-dependent swarming motility over surfaces. In liquid, P. mirabilis cells are 1.5- to 2.0-μm swimmer cells with 4 to 6 flagella. When P. mirabilis encounters a solid surface, where flagellar rotation is limited, swimmer cells differentiate into elongated (10- to 80-μm), highly flagellated swarmer cells. In order for P. mirabilis to swarm, it first needs to detect a surface. The ubiquitous but functionally enigmatic flagellar basal body protein FliL is involved in P. mirabilis surface sensing. Previous studies have suggested that FliL is essential for swarming through its involvement in viscosity-dependent monitoring of flagellar rotation. In this study, we constructed and characterized ΔfliL mutants of P. mirabilis and Escherichia coli. Unexpectedly and unlike other fliL mutants, both P. mirabilis and E. coli ΔfliL cells swarm (Swr(+)). Further analysis revealed that P. mirabilis ΔfliL cells also exhibit an alteration in their ability to sense a surface: e.g., ΔfliL P. mirabilis cells swarm precociously over surfaces with low viscosity that normally impede wild-type swarming. Precocious swarming is due to an increase in the number of elongated swarmer cells in the population. Loss of fliL also results in an inhibition of swarming at <30°C. E. coli ΔfliL cells also exhibit temperature-sensitive swarming. These results suggest an involvement of FliL in the energetics and function of the flagellar motor.
Collapse
|
34
|
Kuan L, Schaffer JN, Zouzias CD, Pearson MM. Characterization of 17 chaperone-usher fimbriae encoded by Proteus mirabilis reveals strong conservation. J Med Microbiol 2014; 63:911-922. [PMID: 24809384 DOI: 10.1099/jmm.0.069971-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteus mirabilis is a Gram-negative enteric bacterium that causes complicated urinary tract infections, particularly in patients with indwelling catheters. Sequencing of clinical isolate P. mirabilis HI4320 revealed the presence of 17 predicted chaperone-usher fimbrial operons. We classified these fimbriae into three groups by their genetic relationship to other chaperone-usher fimbriae. Sixteen of these fimbriae are encoded by all seven currently sequenced P. mirabilis genomes. The predicted protein sequence of the major structural subunit for 14 of these fimbriae was highly conserved (≥ 95% identity), whereas three other structural subunits (Fim3A, UcaA and Fim6A) were variable. Further examination of 58 clinical isolates showed that 14 of the 17 predicted major structural subunit genes of the fimbriae were present in most strains (>85%). Transcription of the predicted major structural subunit genes for all 17 fimbriae was measured under different culture conditions designed to mimic conditions in the urinary tract. The majority of the fimbrial genes were induced during stationary phase, static culture or colony growth when compared to exponential-phase aerated culture. Major structural subunit proteins for six of these fimbriae were detected using MS of proteins sheared from the surface of broth-cultured P. mirabilis, demonstrating that this organism may produce multiple fimbriae within a single culture. The high degree of conservation of P. mirabilis fimbriae stands in contrast to uropathogenic Escherichia coli and Salmonella enterica, which exhibit greater variability in their fimbrial repertoires. These findings suggest there may be evolutionary pressure for P. mirabilis to maintain a large fimbrial arsenal.
Collapse
Affiliation(s)
- Lisa Kuan
- Departments of Microbiology and Urology, New York University Medical Center, New York, NY, USA
| | - Jessica N Schaffer
- Departments of Microbiology and Urology, New York University Medical Center, New York, NY, USA
| | - Christos D Zouzias
- Departments of Microbiology and Urology, New York University Medical Center, New York, NY, USA
| | - Melanie M Pearson
- Departments of Microbiology and Urology, New York University Medical Center, New York, NY, USA
| |
Collapse
|
35
|
The Complete Genome Sequence of Proteus mirabilis Strain BB2000 Reveals Differences from the P. mirabilis Reference Strain. GENOME ANNOUNCEMENTS 2013; 1:1/5/e00024-13. [PMID: 24009111 PMCID: PMC3764406 DOI: 10.1128/genomea.00024-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We announce the complete genome sequence for Proteus mirabilis strain BB2000, a model system for self recognition. This opportunistic pathogen contains a single, circular chromosome (3,846,754 bp). Comparisons between this genome and that of strain HI4320 reveal genetic variations corresponding to previously unknown physiological and self-recognition differences.
Collapse
|
36
|
Two independent pathways for self-recognition in Proteus mirabilis are linked by type VI-dependent export. mBio 2013; 4:mBio.00374-13. [PMID: 23882014 PMCID: PMC3735182 DOI: 10.1128/mbio.00374-13] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Swarming colonies of the bacterium Proteus mirabilis are capable of self-recognition and territorial behavior. Swarms of independent P. mirabilis isolates can recognize each other as foreign and establish a visible boundary where they meet; in contrast, genetically identical swarms merge. The ids genes, which encode self-identity proteins, are necessary but not sufficient for this territorial behavior. Here we have identified two new gene clusters: one (idr) encodes rhs-related products, and another (tss) encodes a putative type VI secretion (T6S) apparatus. The Ids and Idr proteins function independently of each other in extracellular transport and in territorial behaviors; however, these self-recognition systems are linked via this type VI secretion system. The T6S system is required for export of select Ids and Idr proteins. Our results provide a mechanistic and physiological basis for the fundamental behaviors of self-recognition and territoriality in a bacterial model system. IMPORTANCE Our results support a model in which self-recognition in P. mirabilis is achieved by the combined action of two independent pathways linked by a shared machinery for export of encoded self-recognition elements. These proteins together form a mechanistic network for self-recognition that can serve as a foundation for examining the prevalent biological phenomena of territorial behaviors and self-recognition in a simple, bacterial model system.
Collapse
|
37
|
McCall J, Hidalgo G, Asadishad B, Tufenkji N. Cranberry impairs selected behaviors essential for virulence in Proteus mirabilis HI4320. Can J Microbiol 2013; 59:430-6. [PMID: 23750959 DOI: 10.1139/cjm-2012-0744] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteus mirabilis is an etiological agent of complicated urinary tract infections. North American cranberries (Vaccinium macrocarpon) have long been considered to have protective properties against urinary tract infections. This work reports the effects of cranberry powder (CP) on the motility of P. mirabilis HI4320 and its expression of flaA, flhD, and ureD. Our results show that swimming and swarming motilities and swarmer-cell differentiation were inhibited by CP. Additionally, transcription of the flagellin gene flaA and of flhD, the first gene of the flagellar master operon flhDC, decreased during exposure of P. mirabilis to various concentrations of CP. Moreover, using ureD-gfp, a fusion of the urease accessory gene ureD with gfp, we show that CP inhibits urease expression. Because we demonstrate that CP does not inhibit the growth of P. mirabilis, the observed effects are not attributable to toxicity. Taken together, our results demonstrate that CP hinders motility of P. mirabilis and reduces the expression of important virulence factors.
Collapse
Affiliation(s)
- Jennifer McCall
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 2B2, Canada
| | | | | | | |
Collapse
|
38
|
Initiation of swarming motility by Proteus mirabilis occurs in response to specific cues present in urine and requires excess L-glutamine. J Bacteriol 2013; 195:1305-19. [PMID: 23316040 DOI: 10.1128/jb.02136-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Proteus mirabilis, a leading cause of catheter-associated urinary tract infection (CaUTI), differentiates into swarm cells that migrate across catheter surfaces and medium solidified with 1.5% agar. While many genes and nutrient requirements involved in the swarming process have been identified, few studies have addressed the signals that promote initiation of swarming following initial contact with a surface. In this study, we show that P. mirabilis CaUTI isolates initiate swarming in response to specific nutrients and environmental cues. Thirty-three compounds, including amino acids, polyamines, fatty acids, and tricarboxylic acid (TCA) cycle intermediates, were tested for the ability to promote swarming when added to normally nonpermissive media. L-Arginine, L-glutamine, DL-histidine, malate, and DL-ornithine promoted swarming on several types of media without enhancing swimming motility or growth rate. Testing of isogenic mutants revealed that swarming in response to the cues required putrescine biosynthesis and pathways involved in amino acid metabolism. Furthermore, excess glutamine was found to be a strict requirement for swarming on normal swarm agar in addition to being a swarming cue under normally nonpermissive conditions. We thus conclude that initiation of swarming occurs in response to specific cues and that manipulating concentrations of key nutrient cues can signal whether or not a particular environment is permissive for swarming.
Collapse
|
39
|
Activity of Proteus mirabilis FliL is viscosity dependent and requires extragenic DNA. J Bacteriol 2012; 195:823-32. [PMID: 23222728 DOI: 10.1128/jb.02024-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis is a urinary tract pathogen and well known for its ability to move over agar surfaces by flagellum-dependent swarming motility. When P. mirabilis encounters a highly viscous environment, e.g., an agar surface, it differentiates from short rods with few flagella to elongated, highly flagellated cells that lack septa and contain multiple nucleoids. The bacteria detect a surface by monitoring the rotation of their flagellar motors. This process involves an enigmatic flagellar protein called FliL, the first gene in an operon (fliLMNOPQR) that encodes proteins of the flagellar rotor switch complex and flagellar export apparatus. We used a fliL knockout mutant to gain further insight into the function of FliL. Loss of FliL results in cells that cannot swarm (Swr(-)) but do swim (Swm(+)) and produces cells that look like wild-type swarmer cells, termed "pseudoswarmer cells," that are elongated, contain multiple nucleoids, and lack septa. Unlike swarmer cells, pseudoswarmer cells are not hyperflagellated due to reduced expression of flaA (the gene encoding flagellin), despite an increased transcription of both flhD and fliA, two positive regulators of flagellar gene expression. We found that defects in fliL prevent viscosity-dependent sensing of a surface and viscosity-dependent induction of flaA transcription. Studies with fliL cells unexpectedly revealed that the fliL promoter, fliL coding region, and a portion of fliM DNA are needed to complement the Swr(-) phenotype. The data support a dual role for FliL as a critical link in sensing a surface and in the maintenance of flagellar rod integrity.
Collapse
|
40
|
Perturbation of FliL interferes with Proteus mirabilis swarmer cell gene expression and differentiation. J Bacteriol 2011; 194:437-47. [PMID: 22081397 DOI: 10.1128/jb.05998-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proteus mirabilis is a dimorphic, motile bacterium often associated with urinary tract infections. Colonization of urinary tract surfaces is aided by swarmer cell differentiation, which is initiated by inhibition of flagellar rotation when the bacteria first contact a surface. Mutations in fliL, encoding a flagellar structural protein with an enigmatic function, result in the inappropriate production of differentiated swarmer cells, called pseudoswarmer cells, under noninducing conditions, indicating involvement of FliL in the surface sensing pathway. In the present study, we compared the fliL transcriptome with that of wild-type swarmer cells and showed that nearly all genes associated with motility (flagellar class II and III genes) and chemotaxis are repressed. In contrast, spontaneous motile revertants of fliL cells that regained motility yet produced differentiated swarmer cells under noninducing conditions transcribed flagellar class II promoters at consistent levels. Expression of umoA (a known regulator of swarmer cells), flgF, and flgI increased significantly in both swarmer and pseudoswarmer cells, as did genes in a degenerate prophage region situated immediately adjacent to the Rcs phosphorelay system. Unlike swarmer cells, pseudoswarmers displayed increased activity, rather than transcription, of the flagellar master regulatory protein, FlhD(4)C(2), and analyses of the fliL parent strain and its motile revertants showed that they result from mutations altering the C-terminal 14 amino acids of FliL. Collectively, the data suggest a functional role for the C terminus of FliL in surface sensing and implicate UmoA as part of the signal relay leading to the master flagellar regulator FlhD(4)C(2), which ultimately controls swarmer cell differentiation.
Collapse
|
41
|
Abstract
Swarming colonies of independent Proteus mirabilis isolates recognize each other as foreign and do not merge together, whereas apposing swarms of clonal isolates merge with each other. Swarms of mutants with deletions in the ids gene cluster do not merge with their parent. Thus, ids genes are involved in the ability of P. mirabilis to distinguish self from nonself. Here we have characterized expression of the ids genes. We show that idsABCDEF genes are transcribed as an operon, and we define the promoter region upstream of idsA by deletion analysis. Expression of the ids operon increased in late logarithmic and early stationary phases and appeared to be bistable. Approaching swarms of nonself populations led to increased ids expression and increased the abundance of ids-expressing cells in the bimodal population. This information on ids gene expression provides a foundation for further understanding the molecular details of self-nonself discrimination in P. mirabilis.
Collapse
|
42
|
Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression. Infect Immun 2011; 79:2619-31. [PMID: 21505083 DOI: 10.1128/iai.05152-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The enteric bacterium Proteus mirabilis is a common cause of complicated urinary tract infections. In this study, microarrays were used to analyze P. mirabilis gene expression in vivo from experimentally infected mice. Urine was collected at 1, 3, and 7 days postinfection, and RNA was isolated from bacteria in the urine for transcriptional analysis. Across nine microarrays, 471 genes were upregulated and 82 were downregulated in vivo compared to in vitro broth culture. Genes upregulated in vivo encoded mannose-resistant Proteus-like (MR/P) fimbriae, urease, iron uptake systems, amino acid and peptide transporters, pyruvate metabolism enzymes, and a portion of the tricarboxylic acid (TCA) cycle enzymes. Flagella were downregulated. Ammonia assimilation gene glnA (glutamine synthetase) was repressed in vivo, while gdhA (glutamate dehydrogenase) was upregulated in vivo. Contrary to our expectations, ammonia availability due to urease activity in P. mirabilis did not drive this gene expression. A gdhA mutant was growth deficient in minimal medium with citrate as the sole carbon source, and loss of gdhA resulted in a significant fitness defect in the mouse model of urinary tract infection. Unlike Escherichia coli, which represses gdhA and upregulates glnA in vivo and cannot utilize citrate, the data suggest that P. mirabilis uses glutamate dehydrogenase to monitor carbon-nitrogen balance, and this ability contributes to the pathogenic potential of P. mirabilis in the urinary tract.
Collapse
|
43
|
Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection. Infect Immun 2010; 78:2823-33. [PMID: 20385754 DOI: 10.1128/iai.01220-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis, a Gram-negative bacterium, represents a common cause of complicated urinary tract infections in catheterized patients or those with functional or anatomical abnormalities of the urinary tract. ZnuB, the membrane component of the high-affinity zinc (Zn(2+)) transport system ZnuACB, was previously shown to be recognized by sera from infected mice. Since this system has been shown to contribute to virulence in other pathogens, its role in Proteus mirabilis was investigated by constructing a strain with an insertionally interrupted copy of znuC. The znuC::Kan mutant was more sensitive to zinc limitation than the wild type, was outcompeted by the wild type in minimal medium, displayed reduced swimming and swarming motility, and produced less flaA transcript and flagellin protein. The production of flagellin and swarming motility were restored by complementation with znuCB in trans. Swarming motility was also restored by the addition of Zn(2+) to the agar prior to inoculation; the addition of Fe(2+) to the agar also partially restored the swarming motility of the znuC::Kan strain, but the addition of Co(2+), Cu(2+), or Ni(2+) did not. ZnuC contributes to but is not required for virulence in the urinary tract; the znuC::Kan strain was outcompeted by the wild type during a cochallenge experiment but was able to colonize mice to levels similar to the wild-type level during independent challenge. Since we demonstrated a role for ZnuC in zinc transport, we hypothesize that there is limited zinc present in the urinary tract and P. mirabilis must scavenge this ion to colonize and persist in the host.
Collapse
|
44
|
Abstract
Swarming motility by the urinary tract pathogen Proteus mirabilis has been a long-studied but little understood phenomenon. On agar, a P. mirabilis colony grows outward in a bull's-eye pattern formed by consecutive waves of rapid swarming followed by consolidation into shorter cells. To examine differential gene expression in these growth phases, a microarray was constructed based on the completed genome sequence and annotation. RNA was extracted from broth-cultured, swarming, and consolidation-phase cells to assess transcription during each of these growth states. A total of 587 genes were differentially expressed in broth-cultured cells versus swarming cells, and 527 genes were differentially expressed in broth-cultured cells versus consolidation-phase cells (consolidate). Flagellar genes were highly upregulated in both swarming cells and consolidation-phase cells. Fimbriae were downregulated in swarming cells, while genes involved in cell division and anaerobic growth were upregulated in broth-cultured cells. Direct comparison of swarming cells to consolidation-phase cells found that 541 genes were upregulated in consolidate, but only nine genes were upregulated in swarm cells. Genes involved in flagellar biosynthesis, oligopeptide transport, amino acid import and metabolism, cell division, and phage were upregulated in consolidate. Mutation of dppA, oppB, and cysJ, upregulated during consolidation compared to during swarming, revealed that although these genes play a minor role in swarming, dppA and cysJ are required during ascending urinary tract infection. Swarming on agar to which chloramphenicol had been added suggested that protein synthesis is not required for swarming. These data suggest that the consolidation phase is a state in which P. mirabilis prepares for the next wave of swarming.
Collapse
|
45
|
Characterization of UDP-glucose dehydrogenase and UDP-glucose pyrophosphorylase mutants of Proteus mirabilis: defectiveness in polymyxin B resistance, swarming, and virulence. Antimicrob Agents Chemother 2010; 54:2000-9. [PMID: 20160049 DOI: 10.1128/aac.01384-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Proteus mirabilis is known to be highly resistant to the action of polymyxin B (PB). However, the mechanism underlying PB resistance is not clear. In this study, we used Tn5 transposon mutagenesis to identify genes that may affect PB resistance in P. mirabilis. Two genes, ugd and galU, which may encode UDP-glucose dehydrogenase (Ugd) and UDP-glucose pyrophosphorylase (GalU), respectively, were identified. Knockout mutants of ugd and galU were found to be extremely sensitive to PB, presumably because of alterations in lipopolysaccharide (LPS) structure and cell surface architecture in these mutants. These mutants were defective in swarming, expressed lower levels of virulence factor hemolysin, and had lower cell invasion ability. Complementation of the ugd or galU mutant with the full-length ugd or galU gene, respectively, led to the restoration of wild-type phenotypic traits. Interestingly, we found that the expression of Ugd and GalU was induced by PB through RppA, a putative response regulator of the bacterial two-component system that we identified previously. Mutation in either ugd or galU led to activation of RpoE, an extracytoplasmic function sigma factor that has been shown to be activated by protein misfolding and alterations in cell surface structure in other bacteria. Activation of RpoE or RpoE overexpression was found to cause inhibition of FlhDC and hemolysin expression. To our knowledge, this is the first report describing the roles and regulation of Ugd and GalU in P. mirabilis.
Collapse
|
46
|
Proteus mirabilis pmrI, an RppA-regulated gene necessary for polymyxin B resistance, biofilm formation, and urothelial cell invasion. Antimicrob Agents Chemother 2010; 54:1564-71. [PMID: 20123999 DOI: 10.1128/aac.01219-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis is naturally resistant to polymyxin B (PB). To investigate the underlying mechanisms, Tn5 mutagenesis was performed, and a mutant exhibiting increased PB susceptibility was isolated. The mutant was found to have Tn5 inserted into the PpmrI (Proteus pmrI) gene, a gene which may encode a UDP-glucuronic acid decarboxylase. In other bacteria, pmrI belongs to the seven-gene pmrF operon, which is involved in lipopolysaccharide (LPS) modification. While the PpmrI knockout mutant had a wild-type LPS profile and produced amounts of LPS similar to those produced by the wild type, LPS of the knockout mutant had higher PB-binding activity than that of the wild type. PB could induce alterations of LPS in the wild type but not in the PpmrI knockout mutant. Moreover, the PpmrI knockout mutant exhibited decreased abilities in biofilm formation and urothelial cell invasion. Complementation of the PpmrI mutant with the full-length PpmrI gene led to restoration of the wild-type phenotypic traits. Previously we identified RppA, a response regulator of the bacterial two-component system, as a regulator of PB susceptibility and virulence factor expression in P. mirabilis. Here we showed that RppA could mediate the induction of PpmrI expression by PB. An electrophoretic mobility shift assay further demonstrated that RppA could bind directly to the putative PpmrI promoter. Together, these results provide a new insight into the regulatory mechanism underlying PB resistance and virulence expression in P. mirabilis.
Collapse
|
47
|
Oxygen-limiting conditions enrich for fimbriate cells of uropathogenic Proteus mirabilis and Escherichia coli. J Bacteriol 2008; 191:1382-92. [PMID: 19114498 DOI: 10.1128/jb.01550-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
MR/P fimbriae of uropathogenic Proteus mirabilis undergo invertible element-mediated phase variation whereby an individual bacterium switches between expressing fimbriae (phase ON) and not expressing fimbriae (phase OFF). Under different conditions, the percentage of fimbriate bacteria within a population varies and could be dictated by either selection (growth advantage of one phase) or signaling (preferentially converting one phase to the other in response to external signals). Expression of MR/P fimbriae increases in a cell-density dependent manner in vitro and in vivo. However, rather than the increased cell density itself, this increase in fimbrial expression is due to an enrichment of fimbriate bacteria under oxygen limitation resulting from increased cell density. Our data also indicate that the persistence of MR/P fimbriate bacteria under oxygen-limiting conditions is a result of both selection (of MR/P fimbrial phase variants) and signaling (via modulation of expression of the MrpI recombinase). Furthermore, the mrpJ transcriptional regulator encoded within the mrp operon contributes to phase switching. Type 1 fimbriae of Escherichia coli, which are likewise subject to phase variation via an invertible element, also increase in expression during reduced oxygenation. These findings provide evidence to support a mechanism for persistence of fimbriate bacteria under oxygen limitation, which is relevant to disease progression within the oxygen-restricted urinary tract.
Collapse
|
48
|
Himpsl SD, Lockatell CV, Hebel JR, Johnson DE, Mobley HLT. Identification of virulence determinants in uropathogenic Proteus mirabilis using signature-tagged mutagenesis. J Med Microbiol 2008; 57:1068-1078. [PMID: 18719175 DOI: 10.1099/jmm.0.2008/002071-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Gram-negative bacterium Proteus mirabilis causes urinary tract infections (UTIs) in individuals with long-term indwelling catheters or those with functional or structural abnormalities of the urinary tract. Known virulence factors include urease, haemolysin, fimbriae, flagella, DsbA, a phosphate transporter and genes involved in cell-wall synthesis and metabolism, many of which have been identified using the technique of signature-tagged mutagenesis (STM). To identify additional virulence determinants and to increase the theoretical coverage of the genome, this study generated and assessed 1880 P. mirabilis strain HI4320 mutants using this method. Mutants with disruptions in genes vital for colonization of the CBA mouse model of ascending UTI were identified after performing primary and secondary in vivo screens in approximately 315 CBA mice, primary and secondary in vitro screens in both Luria broth and minimal A medium to eliminate mutants with minor growth deficiencies, and co-challenge competition experiments in approximately 500 CBA mice. After completion of in vivo screening, a total of 217 transposon mutants were attenuated in the CBA mouse model of ascending UTI. Following in vitro screening, this number was reduced to 196 transposon mutants with a probable role in virulence. Co-challenge competition experiments confirmed significant attenuation for 37 of the 93 transposon mutants tested, being outcompeted by wild-type HI4320. Following sequence analysis of the 37 mutants, transposon insertions were identified in genes including the peptidyl-prolyl isomerases surA and ppiA, glycosyltransferase cpsF, biopolymer transport protein exbD, transcriptional regulator nhaR, one putative fimbrial protein, flagellar M-ring protein fliF and hook protein flgE, and multiple metabolic genes.
Collapse
Affiliation(s)
- Stephanie D Himpsl
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - C Virginia Lockatell
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - J Richard Hebel
- Department of Epidemiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David E Johnson
- Research Service, Department of Veteran Affairs, Baltimore, MD 21201, USA.,Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
49
|
Gibbs KA, Urbanowski ML, Greenberg EP. Genetic determinants of self identity and social recognition in bacteria. Science 2008; 321:256-9. [PMID: 18621670 DOI: 10.1126/science.1160033] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The bacterium Proteus mirabilis is capable of movement on solid surfaces by a type of motility called swarming. Boundaries form between swarming colonies of different P. mirabilis strains but not between colonies of a single strain. A fundamental requirement for boundary formation is the ability to discriminate between self and nonself. We have isolated mutants that form boundaries with their parent. The mutations map within a six-gene locus that we term ids for identification of self. Five of the genes in the ids locus are required for recognition of the parent strain as self. Three of the ids genes are interchangeable between strains, and two encode specific molecular identifiers.
Collapse
Affiliation(s)
- Karine A Gibbs
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
50
|
Role of RppA in the regulation of polymyxin b susceptibility, swarming, and virulence factor expression in Proteus mirabilis. Infect Immun 2008; 76:2051-62. [PMID: 18316383 DOI: 10.1128/iai.01557-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Proteus mirabilis, a human pathogen that frequently causes urinary tract infections, is intrinsically highly resistant to cationic antimicrobial peptides, such as polymyxin B (PB). To explore the mechanisms underlying P. mirabilis resistance to PB, a mutant which displayed increased (> 160-fold) sensitivity to PB was identified by transposon mutagenesis. This mutant was found to have Tn5 inserted into a novel gene, rppA. Sequence analysis indicated that rppA may encode a response regulator of the two-component system and is located upstream of the rppB gene, which may encode a membrane sensor kinase. An rppA knockout mutant of P. mirabilis had an altered lipopolysaccharide (LPS) profile. The LPS purified from the rppA knockout mutant could bind more PB than the LPS purified from the wild type. These properties of the rppA knockout mutant may contribute to its PB-sensitive phenotype. The rppA knockout mutant exhibited greater swarming motility and cytotoxic activity and expressed higher levels of flagellin and hemolysin than the wild type, suggesting that RppA negatively regulates swarming, hemolysin expression, and cytotoxic activity in P. mirabilis. PB could modulate LPS synthesis and modification, swarming, hemolysin expression, and cytotoxic activity in P. mirabilis through an RppA-dependent pathway, suggesting that PB could serve as a signal to regulate RppA activity. Finally, we demonstrated that the expression of rppA was up-regulated by a low concentration of PB and down-regulated by a high concentration of Mg2+. Together, these data highlight the essential role of RppA in regulating PB susceptibility and virulence functions in P. mirabilis.
Collapse
|