1
|
Parab L, Romeyer Dherbey J, Rivera N, Schwarz M, Gallie J, Bertels F. Chloramphenicol and gentamicin reduce the evolution of resistance to phage ΦX174 by suppressing a subset of E. coli LPS mutants. PLoS Biol 2025; 23:e3002952. [PMID: 39841243 PMCID: PMC11753469 DOI: 10.1371/journal.pbio.3002952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism. The evolutionary mechanism(s) behind such synergistic interactions remain largely unclear. Here, we show that the presence of antibiotics can affect the evolution of resistance to phage infection, using phage ΦX174 and Escherichia coli C. We use a collection of 34 E. coli C LPS strains, each of which is resistant to ΦX174, and has either a "rough" or "deep rough" LPS phenotype. Growth of the bacterial strains with the deep rough phenotype is inhibited at low concentrations of chloramphenicol and, to a much lesser degree, gentamicin. Treating E. coli C wild type with ΦX174 and chloramphenicol eliminates the emergence of mutants with the deep rough phenotype, and thereby slows the evolution of resistance to phage infection. At slightly lower chloramphenicol concentrations, phage resistance rates are similar to those observed at high concentrations; yet, we show that the diversity of possible mutants is much larger than at higher chloramphenicol concentrations. These data suggest that specific antibiotic concentrations can lead to synergistic phage-antibiotic interactions that disappear at higher antibiotic concentrations. Overall, we show that the change in survival of various ΦX174-resistant E. coli C mutants in the presence of antibiotics can explain the observed phage-antibiotic synergism.
Collapse
Affiliation(s)
- Lavisha Parab
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jordan Romeyer Dherbey
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Norma Rivera
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Michael Schwarz
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jenna Gallie
- Microbial Evolutionary Dynamics Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Frederic Bertels
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
2
|
Sikora F, Budja LVP, Milojevic O, Ziemniewicz A, Dudys P, Görke B. Multiple regulatory inputs including cell envelope stress orchestrate expression of the Escherichia coli rpoN operon. Mol Microbiol 2024; 122:11-28. [PMID: 38770591 DOI: 10.1111/mmi.15280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
The rpoN operon, an important regulatory hub in Enterobacteriaceae, includes rpoN encoding sigma factor σ54, hpf involved in ribosome hibernation, rapZ regulating glucosamine-6-phosphate levels, and two genes encoding proteins of the nitrogen-related phosphotransferase system. Little is known about regulatory mechanisms controlling the abundance of these proteins. This study employs transposon mutagenesis and chemical screens to dissect the complex expression of the rpoN operon. We find that envelope stress conditions trigger read-through transcription into the rpoN operon from a promoter located upstream of the preceding lptA-lptB locus. This promoter is controlled by the envelope stress sigma factor E and response regulator PhoP is required for its full response to a subset of stress signals. σE also stimulates ptsN-rapZ-npr expression using an element downstream of rpoN, presumably by interfering with mRNA processing by RNase E. Additionally, we identify a novel promoter in the 3' end of rpoN that directs transcription of the distal genes in response to ethanol. Finally, we show that translation of hpf and ptsN is individually regulated by the RNA chaperone Hfq, perhaps involving small RNAs. Collectively, our work demonstrates that the rpoN operon is subject to complex regulation, integrating signals related to envelope stress and carbon source quality.
Collapse
Affiliation(s)
- Florian Sikora
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Lara Veronika Perko Budja
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Olja Milojevic
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Amelia Ziemniewicz
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Przemyslaw Dudys
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Boris Görke
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
The Production of Curli Amyloid Fibers Is Deeply Integrated into the Biology of Escherichia coli. Biomolecules 2017; 7:biom7040075. [PMID: 29088115 PMCID: PMC5745457 DOI: 10.3390/biom7040075] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 12/29/2022] Open
Abstract
Curli amyloid fibers are the major protein component of the extracellular matrix produced by Enterobacteriaceae during biofilm formation. Curli are required for proper biofilm development and environmental persistence by Escherichia coli. Here, we present a complete and vetted genetic analysis of functional amyloid fiber biogenesis. The Keio collection of single gene deletions was screened on Congo red indicator plates to identify E. coli mutants that had defective amyloid production. We discovered that more than three hundred gene products modulated curli production. These genes were involved in fundamental cellular processes such as regulation, environmental sensing, respiration, metabolism, cell envelope biogenesis, transport, and protein turnover. The alternative sigma factors, σS and σE, had opposing roles in curli production. Mutations that induced the σE or Cpx stress response systems had reduced curli production, while mutant strains with increased σS levels had increased curli production. Mutations in metabolic pathways, including gluconeogenesis and the biosynthesis of lipopolysaccharide (LPS), produced less curli. Regulation of the master biofilm regulator, CsgD, was diverse, and the screen revealed several proteins and small RNAs (sRNA) that regulate csgD messenger RNA (mRNA) levels. Using previously published studies, we found minimal overlap between the genes affecting curli biogenesis and genes known to impact swimming or swarming motility, underlying the distinction between motile and sessile lifestyles. Collectively, the diversity and number of elements required suggest curli production is part of a highly regulated and complex developmental pathway in E. coli.
Collapse
|
4
|
Novel RpoS-Dependent Mechanisms Strengthen the Envelope Permeability Barrier during Stationary Phase. J Bacteriol 2016; 199:JB.00708-16. [PMID: 27821607 DOI: 10.1128/jb.00708-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Gram-negative bacteria have effective methods of excluding toxic compounds, including a largely impermeable outer membrane (OM) and a range of efflux pumps. Furthermore, when cells become nutrient limited, RpoS enacts a global expression change providing cross-protection against many stresses. Here, we utilized sensitivity to an anionic detergent (sodium dodecyl sulfate [SDS]) to probe changes occurring to the cell's permeability barrier during nutrient limitation. Escherichia coli is resistant to SDS whether cells are actively growing, carbon limited, or nitrogen limited. In actively growing cells, this resistance depends on the AcrAB-TolC efflux pump; however, this pump is not necessary for protection under either carbon-limiting or nitrogen-limiting conditions, suggesting an alternative mechanism(s) of SDS resistance. In carbon-limited cells, RpoS-dependent pathways lessen the permeability of the OM, preventing the necessity for efflux. In nitrogen-limited but not carbon-limited cells, the loss of rpoS can be completely compensated for by the AcrAB-TolC efflux pump. We suggest that this difference simply reflects the fact that nitrogen-limited cells have access to a metabolizable energy (carbon) source that can efficiently power the efflux pump. Using a transposon mutant pool sequencing (Tn-Seq) approach, we identified three genes, sanA, dacA, and yhdP, that are necessary for RpoS-dependent SDS resistance in carbon-limited stationary phase. Using genetic analysis, we determined that these genes are involved in two different envelope-strengthening pathways. These genes have not previously been implicated in stationary-phase stress responses. A third novel RpoS-dependent pathway appears to strengthen the cell's permeability barrier in nitrogen-limited cells. Thus, though cells remain phenotypically SDS resistant, SDS resistance mechanisms differ significantly between growth states. IMPORTANCE Gram-negative bacteria are intrinsically resistant to detergents and many antibiotics due to synergistic activities of a strong outer membrane (OM) permeability barrier and efflux pumps that capture and expel toxic molecules eluding the barrier. When the bacteria are depleted of an essential nutrient, a program of gene expression providing cross-protection against many stresses is induced. Whether this program alters the OM to further strengthen the barrier is unknown. Here, we identify novel pathways dependent on the master regulator of stationary phase that further strengthen the OM permeability barrier during nutrient limitation, circumventing the need for efflux pumps. Decreased permeability of nutrient-limited cells to toxic compounds has important implications for designing new antibiotics capable of targeting Gram-negative bacteria that may be in a growth-limited state.
Collapse
|
5
|
Abstract
The phase variation (reversible on-off switching) of the type 1 fimbrial adhesin of Escherichia coli involves a DNA inversion catalyzed by FimB (switching in either direction) or FimE (on-to-off switching). Here, we demonstrate that RfaH activates expression of a FimB-LacZ protein fusion while having a modest inhibitory effect on a comparable fimB-lacZ operon construct and on a FimE-LacZ protein fusion, indicating that RfaH selectively controls fimB expression at the posttranscriptional level. Further work demonstrates that loss of RfaH enables small RNA (sRNA) MicA inhibition of fimB expression even in the absence of exogenous inducing stress. This effect is explained by induction of σ(E), and hence MicA, in the absence of RfaH. Additional work confirms that the procaine-dependent induction of micA requires OmpR, as reported previously (A. Coornaert et al., Mol. Microbiol. 76:467-479, 2010, doi:10.1111/j.1365-2958.2010.07115.x), but also demonstrates that RfaH inhibition of fimB transcription is enhanced by procaine independently of OmpR. While the effect of procaine on fimB transcription is shown to be independent of RcsB, it was found to require SlyA, another known regulator of fimB transcription. These results demonstrate a complex role for RfaH as a regulator of fimB expression.
Collapse
|
6
|
Experimental identification of Actinobacillus pleuropneumoniae strains L20 and JL03 heptosyltransferases, evidence for a new heptosyltransferase signature sequence. PLoS One 2013; 8:e55546. [PMID: 23383222 PMCID: PMC3559599 DOI: 10.1371/journal.pone.0055546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/30/2012] [Indexed: 11/19/2022] Open
Abstract
We experimentally identified the activities of six predicted heptosyltransferases in Actinobacillus pleuropneumoniae genome serotype 5b strain L20 and serotype 3 strain JL03. The initial identification was based on a bioinformatic analysis of the amino acid similarity between these putative heptosyltrasferases with others of known function from enteric bacteria and Aeromonas. The putative functions of all the Actinobacillus pleuropneumoniae heptosyltrasferases were determined by using surrogate LPS acceptor molecules from well-defined A. hydrophyla AH-3 and A. salmonicida A450 mutants. Our results show that heptosyltransferases APL_0981 and APJL_1001 are responsible for the transfer of the terminal outer core D-glycero-D-manno-heptose (D,D-Hep) residue although they are not currently included in the CAZY glycosyltransferase 9 family. The WahF heptosyltransferase group signature sequence [S(T/S)(GA)XXH] differs from the heptosyltransferases consensus signature sequence [D(TS)(GA)XXH], because of the substitution of D(261) for S(261), being unique.
Collapse
|
7
|
Aquilini E, Azevedo J, Merino S, Jimenez N, Tomás JM, Regué M. Three enzymatic steps required for the galactosamine incorporation into core lipopolysaccharide. J Biol Chem 2010; 285:39739-49. [PMID: 20959463 DOI: 10.1074/jbc.m110.168385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The core lipopolysaccharides (LPS) of Proteus mirabilis as well as those of Klebsiella pneumoniae and Serratia marcescens are characterized by the presence of a hexosamine-galacturonic acid disaccharide (αHexN-(1,4)-αGalA) attached by an α1,3 linkage to L-glycero-D-manno-heptopyranose II (L-glycero-α-D-manno-heptosepyranose II). In K. pneumoniae, S. marcescens, and some P. mirabilis strains, HexN is D-glucosamine, whereas in other P. mirabilis strains, it corresponds to D-galactosamine. Previously, we have shown that two enzymes are required for the incorporation of D-glucosamine into the core LPS of K. pneumoniae; the WabH enzyme catalyzes the incorporation of GlcNAc from UDP-GlcNAc to outer core LPS, and WabN catalyzes the deacetylation of the incorporated GlcNAc. Here we report the presence of two different HexNAc transferases depending on the nature of the HexN in P. mirabilis core LPS. In vivo and in vitro assays using LPS truncated at the level of galacturonic acid as acceptor show that these two enzymes differ in their specificity for the transfer of GlcNAc or GalNAc. By contrast, only one WabN homologue was found in the studied P. mirabilis strains. Similar assays suggest that the P. mirabilis WabN homologue is able to deacetylate both GlcNAc and GalNAc. We conclude that incorporation of d-galactosamine requires three enzymes: Gne epimerase for the generation of UDP-GalNAc from UDP-GlcNAc, N-acetylgalactosaminyltransferase (WabP), and LPS:HexNAc deacetylase.
Collapse
Affiliation(s)
- Eleonora Aquilini
- Departamento de Microbiología y Parasitología Sanitarias, Facultad de Farmacia, Universidad de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Sharma O, Datsenko KA, Ess SC, Zhalnina MV, Wanner BL, Cramer WA. Genome-wide screens: novel mechanisms in colicin import and cytotoxicity. Mol Microbiol 2009; 73:571-85. [PMID: 19650773 DOI: 10.1111/j.1365-2958.2009.06788.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Only two new genes (fkpA and lepB) have been identified to be required for colicin cytotoxicity in the last 25 years. Genome-wide screening using the 'Keio collection' to test sensitivity to colicins (col) A, B, D, E1, E2, E3, E7 and N from groups A and B, allowed identification of novel genes affecting cytotoxicity and provided new information on mechanisms of action. The requirement of lipopolysaccharide for colN cytotoxicity resides specifically in the lipopolysaccharide inner-core and first glucose. ColA cytotoxicity is dependent on gmhB and rffT genes, which function in the biosynthesis of lipopolysaccharide and enterobacterial common antigen. Of the tol genes that function in the cytoplasmic membrane translocon, colE1 requires tolA and tolR but not tolQ for activity. Peptidoglycan-associated lipoprotein, which interacts with the Tol network, is not required for cytotoxicity of group A colicins. Except for TolQRA, no cytoplasmic membrane protein is essential for cytotoxicity of group A colicins, implying that TolQRA provides the sole pathway for their insertion into/through the cytoplasmic membrane. The periplasmic protease that cleaves between the receptor and catalytic domains of colE7 was not identified, implying either that the responsible gene is essential for cell viability, or that more than one gene product has the necessary proteolysis function.
Collapse
Affiliation(s)
- Onkar Sharma
- Department of Biological Sciences, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
9
|
Characterization of an Escherichia coli O157:H7 O-antigen deletion mutant and effect of the deletion on bacterial persistence in the mouse intestine and colonization at the bovine terminal rectal mucosa. Appl Environ Microbiol 2008; 74:5015-22. [PMID: 18552194 DOI: 10.1128/aem.00743-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Escherichia coli O157:H7 causes hemorrhagic colitis and the life-threatening hemolytic-uremic syndrome in humans and transiently colonizes healthy cattle at the terminal rectal mucosa. To investigate the role of the O antigen in persistence and colonization in the animal host, we generated an E. coli O157:H7 mutant defective in the synthesis of the lipopolysaccharide side chain (O antigen) by deletion of a putative perosamine synthetase gene (per) in the rfb cluster. The lack of O antigen was confirmed by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and anti-O157 antibody. The growth rate and cell membrane permeability of the Deltaper mutant were similar to the growth rate and cell membrane permeability of the wild type. Changes in membrane and secreted proteins were observed, but the expression of intimin, EspA, and EspB, implicated in bacterial intestinal colonization, was not altered, as determined by immunoblotting and reverse transcription-PCR. Similar to other O-antigen deletion mutants, the Deltaper mutant was pleiotropic for autoaggregation and motility (it was FliC negative as determined by immunoblotting and flagellum negative as determined by electron microscopy). The abilities of the mutant and the wild type to persist in the murine intestine and to colonize the bovine terminal rectal mucosa were compared. Mice fed the Deltaper mutant shed lower numbers of bacteria (P < 0.05) over a shorter time than mice fed the wild-type or complemented strain. After rectal application in steers, lower numbers of the Deltaper mutant than of the wild type colonized the rectoanal junction mucosa, and the duration of the colonization was shorter (P < 0.05). Our previous work showed that flagella do not influence E. coli O157:H7 colonization at the bovine terminal rectal mucosa, so the current findings suggest that the O antigen contributes to efficient bovine colonization.
Collapse
|
10
|
Carter JA, Blondel CJ, Zaldívar M, Álvarez SA, Marolda CL, Valvano MA, Contreras I. O-antigen modal chain length in Shigella flexneri 2a is growth-regulated through RfaH-mediated transcriptional control of the wzy gene. MICROBIOLOGY-SGM 2007; 153:3499-3507. [PMID: 17906147 DOI: 10.1099/mic.0.2007/010066-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Shigella flexneri 2a 2457T produces lipopolysaccharide (LPS) with two O-antigen (OAg) chain lengths: a short (S-OAg) controlled by WzzB and a very long (VL-OAg) determined by Wzz(pHS-2). This study demonstrates that the synthesis and length distribution of the S. flexneri OAg are under growth-phase-dependent regulation. Quantitative electrophoretic analysis showed that the VL-OAg increased during growth while the S-OAg distribution remained constant. Increased production of VL-OAg correlated with the growth-phase-regulated expression of the transcription elongation factor RfaH, and was severely impaired in a DeltarfaH mutant, which synthesized only low-molecular-mass OAg molecules and a small amount of S-OAg. Real-time RT-PCR revealed a drastic reduction of wzy polymerase gene expression in the DeltarfaH mutant. Complementation of this mutant with the wzy gene cloned into a high-copy-number plasmid restored the bimodal OAg distribution, suggesting that cellular levels of Wzy influence not only OAg polymerization but also chain-length distribution. Accordingly, overexpression of wzy in the wild-type strain resulted in production of a large amount of high-molecular-mass OAg molecules. An increased dosage of either wzzB or wzz(pHS-2) also altered OAg chain-length distribution. Transcription of wzzB and wzz(pHS-2) genes was regulated during bacterial growth but in an RfaH-independent manner. Overall, these findings indicate that expression of the wzy, wzzB and wzz(pHS-2) genes is finely regulated to determine an appropriate balance between the proteins responsible for polymerization and chain-length distribution of S. flexneri OAg.
Collapse
Affiliation(s)
- Javier A Carter
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Carlos J Blondel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Mercedes Zaldívar
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Sergio A Álvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Cristina L Marolda
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Miguel A Valvano
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Inés Contreras
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| |
Collapse
|
11
|
Fresno S, Jiménez N, Canals R, Merino S, Corsaro MM, Lanzetta R, Parrilli M, Pieretti G, Regué M, Tomás JM. A second galacturonic acid transferase is required for core lipopolysaccharide biosynthesis and complete capsule association with the cell surface in Klebsiella pneumoniae. J Bacteriol 2006; 189:1128-37. [PMID: 17142396 PMCID: PMC1797326 DOI: 10.1128/jb.01489-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The core lipopolysaccharide (LPS) of Klebsiella pneumoniae contains two galacturonic acid (GalA) residues, but only one GalA transferase (WabG) has been identified. Data from chemical and structural analysis of LPS isolated from a wabO mutant show the absence of the inner core beta-GalA residue linked to L-glycero-D-manno-heptose III (L,D-Hep III). An in vitro assay demonstrates that the purified WabO is able to catalyze the transfer of GalA from UDP-GalA to the acceptor LPS isolated from the wabO mutant, but not to LPS isolated from waaQ mutant (deficient in l,d-Hep III). The absence of this inner core beta-GalA residue results in a decrease in virulence in a capsule-dependent experimental mouse pneumonia model. In addition, this mutation leads to a strong reduction in cell-bound capsule. Interestingly, a K66 Klebsiella strain (natural isolate) without a functional wabO gene shows reduced levels of cell-bound capsule in comparison to those of other K66 strains. Thus, the WabO enzyme plays an important role in core LPS biosynthesis and determines the level of cell-bound capsule in Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Sandra Fresno
- Departamento de Microbiología, Facultad de Biologia, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang P, Snyder S, Feng P, Azadi P, Zhang S, Bulgheresi S, Sanderson KE, He J, Klena J, Chen T. Role of N-acetylglucosamine within core lipopolysaccharide of several species of gram-negative bacteria in targeting the DC-SIGN (CD209). THE JOURNAL OF IMMUNOLOGY 2006; 177:4002-11. [PMID: 16951363 DOI: 10.4049/jimmunol.177.6.4002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our recent studies have shown that the dendritic cell-specific ICAM nonintegrin CD209 (DC-SIGN) specifically binds to the core LPS of Escherichia coli K12 (E. coli), promoting bacterial adherence and phagocytosis. In this current study, we attempted to map the sites within the core LPS that are directly involved in LPS-DC-SIGN interaction. We took advantage of four sets of well-defined core LPS mutants, which are derived from E. coli, Salmonella enterica serovar Typhimurium, Neisseria gonorrhoeae, and Haemophilus ducreyi and determined interaction of each of these four sets with DC-SIGN. Our results demonstrated that N-acetylglucosamine (GlcNAc) sugar residues within the core LPS in these bacteria play an essential role in targeting the DC-SIGN receptor. Our results also imply that DC-SIGN is an innate immune receptor and the interaction of bacterial core LPS and DC-SIGN may represent a primeval interaction between Gram-negative bacteria and host phagocytic cells.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Biomedical Sciences, College of Medicine, University of Illinois at Chicago, Rockford, IL 61107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hoare A, Bittner M, Carter J, Alvarez S, Zaldívar M, Bravo D, Valvano MA, Contreras I. The outer core lipopolysaccharide of Salmonella enterica serovar Typhi is required for bacterial entry into epithelial cells. Infect Immun 2006; 74:1555-64. [PMID: 16495526 PMCID: PMC1418631 DOI: 10.1128/iai.74.3.1555-1564.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serovar Typhi causes typhoid fever in humans. Central to the pathogenicity of serovar Typhi is its capacity to invade intestinal epithelial cells. The role of lipopolysaccharide (LPS) in the invasion process of serovar Typhi is unclear. In this work, we constructed a series of mutants with defined deletions in genes for the synthesis and polymerization of the O antigen (wbaP, wzy, and wzz) and the assembly of the outer core (waaK, waaJ, waaI, waaB, and waaG). The abilities of each mutant to associate with and enter HEp-2 cells and the importance of the O antigen in serum resistance of serovar Typhi were investigated. We demonstrate here that the presence and proper chain length distribution of the O-antigen polysaccharide are essential for serum resistance but not for invasion of epithelial cells. In contrast, the outer core oligosaccharide structure is required for serovar Typhi internalization in HEp-2 cells. We also show that the outer core terminal glucose residue (Glc II) is necessary for efficient entry of serovar Typhi into epithelial cells. The Glc I residue, when it becomes terminal due to a polar insertion in the waaB gene affecting the assembly of the remaining outer core residues, can partially substitute for Glc II to mediate bacterial entry into epithelial cells. Therefore, we conclude that a terminal glucose in the LPS core is a critical residue for bacterial recognition and internalization by epithelial cells.
Collapse
Affiliation(s)
- Anilei Hoare
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, P.O. Box 174, Correo 22, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Fresno S, Jiménez N, Izquierdo L, Merino S, Corsaro MM, De Castro C, Parrilli M, Naldi T, Regué M, Tomás JM. The ionic interaction of Klebsiella pneumoniae K2 capsule and core lipopolysaccharide. Microbiology (Reading) 2006; 152:1807-1818. [PMID: 16735743 DOI: 10.1099/mic.0.28611-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complete structures of LPS core types 1 and 2 fromKlebsiella pneumoniaehave been described by other authors. They are characterized by a lack of phosphoryl residues, but they contain galacturonic acid (GalA) residues, which contribute to the necessary negative charges. The presence of a capsule was determined in core-LPS non-polar mutants from strains 52145 (O1 : K2), DL1 (O1 : K1) and C3 (O8 : K66). O-antigen ligase (waaL) mutants produced a capsule. Core mutants containing the GalA residues were capsulated, while those lacking the residues were non capsulated. Since the proteins involved in the transfer of GalA (WabG) and glucosamine residues (WabH) are known, the chemical basis of the capsular-K2–cell-surface association was studied. Phenol/water extracts fromK. pneumoniae52145ΔwabH waaLand 52145ΔwaaLmutants, but not those from fromK. pneumoniae52145ΔwabG waaLmutant, contained both LPS and capsular polysaccharide, even after hydrophobic chromatography. The two polysaccharides were dissociated by gel-filtration chromatography, eluting with detergent and metal-ion chelators. From these results, it is concluded that the K2 capsular polysaccharide is associated by an ionic interaction to the LPS through the negative charge provided by the carboxyl groups of the GalA residues.
Collapse
Affiliation(s)
- Sandra Fresno
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Natalia Jiménez
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Luis Izquierdo
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Maria Michela Corsaro
- Dipartimento di Chimica e Biochimica, Università Federico II di Napoli, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Cristina De Castro
- Dipartimento di Chimica e Biochimica, Università Federico II di Napoli, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Michelangelo Parrilli
- Dipartimento di Chimica e Biochimica, Università Federico II di Napoli, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Teresa Naldi
- Dipartimento di Chimica e Biochimica, Università Federico II di Napoli, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Miguel Regué
- Departamento de Microbiología y Parasitología Sanitarias, Facultad de Farmacia, Universidad de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| |
Collapse
|
15
|
Regué M, Izquierdo L, Fresno S, Jimenez N, Piqué N, Corsaro MM, Parrilli M, Naldi T, Merino S, Tomás JM. The Incorporation of Glucosamine into Enterobacterial Core Lipopolysaccharide. J Biol Chem 2005; 280:36648-56. [PMID: 16131489 DOI: 10.1074/jbc.m506278200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The core lipopolysaccharide (LPS) of Klebsiella pneumoniae is characterized by the presence of disaccharide alphaGlcN-(1,4)-alphaGalA attached by an alpha1,3 linkage to l-glycero-d-manno-heptopyranose II (ld-HeppII). Previously it has been shown that the WabH enzyme catalyzes the incorporation of GlcNAc from UDP-GlcNAc to outer core LPS. The presence of GlcNAc instead of GlcN and the lack of UDP-GlcN in bacteria indicate that an additional enzymatic step is required. In this work we identified a new gene (wabN) in the K. pneumoniae core LPS biosynthetic cluster. Chemical and structural analysis of K. pneumoniae non-polar wabN mutants showed truncated core LPS with GlcNAc instead of GlcN. In vitro assays using LPS truncated at the level of d-galacturonic acid (GalA) and cell-free extract containing WabH and WabN together led to the incorporation of GlcN, whereas none of them alone were able to do it. This result suggests that the later enzyme (WabN) catalyzes the deacetylation of the core LPS containing the GlcNAc residue. Thus, the incorporation of the GlcN residue to core LPS in K. pneumoniae requires two distinct enzymatic steps. WabN homologues are found in Serratia marcescens and some Proteus strains that show the same disaccharide alphaGlcN-(1,4)-alphaGalA attached by an alpha1,3 linkage to ld-HeppII.
Collapse
Affiliation(s)
- Miguel Regué
- Departamento de Microbiología y Parasitología Sanitarias, Facultad de Farmacia, Universidad de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Regué M, Izquierdo L, Fresno S, Piqué N, Corsaro MM, Naldi T, De Castro C, Waidelich D, Merino S, Tomás JM. A second outer-core region in Klebsiella pneumoniae lipopolysaccharide. J Bacteriol 2005; 187:4198-206. [PMID: 15937181 PMCID: PMC1151721 DOI: 10.1128/jb.187.12.4198-4206.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Up to now only one major type of core oligosaccharide has been found in the lipopolysaccharide of all Klebsiella pneumoniae strains analyzed. Applying a different screening approach, we identified a novel Klebsiella pneumoniae core (type 2). Both Klebsiella core types share the same inner core and the outer-core-proximal disaccharide, GlcN-(1,4)-GalA, but they differ in the GlcN substituents. In core type 2, the GlcpN residue is substituted at the O-4 position by the disaccharide beta-Glcp(1-6)-alpha-Glcp(1, while in core type 1 the GlcpN residue is substituted at the O-6 position by either the disaccharide alpha-Hep(1-4)-alpha-Kdo(2 or a Kdo residue (Kdo is 3-deoxy-D-manno-octulosonic acid). This difference correlates with the presence of a three-gene region in the corresponding core biosynthetic clusters. Engineering of both core types by interchanging this specific region allowed studying the effect on virulence. The replacement of Klebsiella core type 1 in a highly type 2 virulent strain (52145) induces lower virulence than core type 2 in a murine infection model.
Collapse
Affiliation(s)
- Miguel Regué
- Departamento de Microbiología i Parasitología Sanitarias, Facultad de Farmacia, Universidad de Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
De Spiegeleer P, Sermon J, Vanoirbeek K, Aertsen A, Michiels CW. Role of porins in sensitivity of Escherichia coli to antibacterial activity of the lactoperoxidase enzyme system. Appl Environ Microbiol 2005; 71:3512-8. [PMID: 16000755 PMCID: PMC1169026 DOI: 10.1128/aem.71.7.3512-3518.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 01/24/2005] [Indexed: 11/20/2022] Open
Abstract
Lactoperoxidase is an enzyme that contributes to the antimicrobial defense in secretory fluids and that has attracted interest as a potential biopreservative for foods and other perishable products. Its antimicrobial activity is based on the formation of hypothiocyanate (OSCN-) from thiocyanate (SCN-), using H2O2 as an oxidant. To gain insight into the antibacterial mode of action of the lactoperoxidase enzyme system, we generated random transposon insertion mutations in Escherichia coli MG1655 and screened the resultant mutants for an altered tolerance of bacteriostatic concentrations of this enzyme system. Out of the ca. 5,000 mutants screened, 4 showed significantly increased tolerance, and 2 of these had an insertion, one in the waaQ gene and one in the waaO gene, whose products are involved in the synthesis of the core oligosaccharide moiety of lipopolysaccharides. Besides producing truncated lipopolysaccharides and displaying hypersensitivity to novobiocin and sodium dodecyl sulfate (SDS), these mutants were also shown by urea-SDS-polyacrylamide gel electrophoresis analysis to have reduced amounts of porins in their outer membranes. Moreover, they showed a reduced degradation of p-nitrophenyl phosphate and an increased resistance to ampicillin, two indications of a decrease in outer membrane permeability for small hydrophilic solutes. Additionally, ompC and ompF knockout mutants displayed levels of tolerance to the lactoperoxidase system similar to those displayed by the waa mutants. These results suggest that mutations which reduce the porin-mediated outer membrane permeability for small hydrophilic molecules lead to increased tolerance to the lactoperoxidase enzyme system because of a reduced uptake of OSCN-.
Collapse
Affiliation(s)
- Philipp De Spiegeleer
- Department of Food and Microbial Technology, K.U. Leuven, Laboratory of Food Microbiology, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | | | | | | | | |
Collapse
|
18
|
Klena J, Zhang P, Schwartz O, Hull S, Chen T. The core lipopolysaccharide of Escherichia coli is a ligand for the dendritic-cell-specific intercellular adhesion molecule nonintegrin CD209 receptor. J Bacteriol 2005; 187:1710-5. [PMID: 15716442 PMCID: PMC1064026 DOI: 10.1128/jb.187.5.1710-1715.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dendritic-cell-specific intercellular adhesion molecule nonintegrin (DC-SIGN) CD209 is a receptor for Escherichia coli K-12 that promotes bacterial adherence and phagocytosis. However, the ligand of E. coli for DC-SIGN has not yet been identified. In this study, we found that DC-SIGN did not mediate the phagocytosis of several pathogenic strains of E. coli, including enteropathogenic E. coli, enterohemorrhagic E. coli, enterotoxigenic E. coli, and uropathogenic E. coli, in dendritic cells or HeLa cells expressing human DC-SIGN antigen. However, we showed that an outer core lipopolysaccharide (LPS) (rough) mutant, unlike an inner core LPS (deep rough) mutant or O-antigen-expressing recombinant of E. coli K-12 was phagocytosed. These results demonstrate that the host cells expressing DC-SIGN can phagocytose E. coli in part by interacting with the complete core region of the LPS molecule. These results provide a mechanism for how O antigen acts as an antiphagocytic factor.
Collapse
Affiliation(s)
- John Klena
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | | | | | | | | |
Collapse
|
19
|
Ishiwa A, Komano T. PilV Adhesins of Plasmid R64 Thin Pili Specifically Bind to the Lipopolysaccharides of Recipient Cells. J Mol Biol 2004; 343:615-25. [PMID: 15465049 DOI: 10.1016/j.jmb.2004.08.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/11/2004] [Accepted: 08/13/2004] [Indexed: 10/26/2022]
Abstract
IncI1 plasmid R64 encodes type IV pili or thin pili, which contain PilV adhesins. The C-terminal segments of PilV adhesins are exchanged into seven types by shufflon multiple DNA inversion. PilV adhesins determine recipient specificity in R64 liquid matings through the recognition of lipopolysaccharides (LPSs) on the surface of recipient cells. Using various waa mutants of Escherichia coli R1 as recipient cells, liquid mating experiments suggest that PilVA adhesin recognizes the GlcNAc(beta1-3)Glc moiety of E.coli R1 type LPS. The direct binding of PilV adhesins to LPSs of the recipient bacterial strains was demonstrated using filter overlay assays. The specificity of PilV-LPS binding is in close agreement with the recipient specificity determined by R64 liquid matings. The C-terminal segments of PilVA, PilVC, PilVC', and PilVD' adhesins were expressed as fusion proteins with glutathione-S-transferase (GST). GST-A, GST-C, GST-C', and GST-D' proteins bound to their respective LPSs with the specificities identical with those determined in the R64 liquid matings, indicating that the C-terminal segments of PilV adhesins bind to specific moieties of LPS molecules.
Collapse
Affiliation(s)
- Akiko Ishiwa
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
20
|
Coderch N, Piqué N, Lindner B, Abitiu N, Merino S, Izquierdo L, Jimenez N, Tomás JM, Holst O, Regué M. Genetic and structural characterization of the core region of the lipopolysaccharide from Serratia marcescens N28b (serovar O4). J Bacteriol 2004; 186:978-88. [PMID: 14761992 PMCID: PMC344232 DOI: 10.1128/jb.186.4.978-988.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gene cluster (waa) involved in Serratia marcescens N28b core lipopolysaccharide (LPS) biosynthesis was identified, cloned, and sequenced. Complementation analysis of known waa mutants from Escherichia coli K-12, Salmonella enterica, and Klebsiella pneumoniae led to the identification of five genes coding for products involved in the biosynthesis of a shared inner core structure: [L,D-HeppIIIalpha(1-->7)-L,D-HeppIIalpha(1-->3)-L,D-HeppIalpha(1-->5)-KdopI(4<--2)alphaKdopII] (L,D-Hepp, L-glycero-D-manno-heptopyranose; Kdo, 3-deoxy-D-manno-oct-2-ulosonic acid). Complementation and/or chemical analysis of several nonpolar mutants within the S. marcescens waa gene cluster suggested that in addition, three waa genes were shared by S. marcescens and K. pneumoniae, indicating that the core region of the LPS of S. marcescens and K. pneumoniae possesses additional common features. Chemical and structural analysis of the major oligosaccharide from the core region of LPS of an O-antigen-deficient mutant of S. marcescens N28b as well as complementation analysis led to the following proposed structure: beta-Glc-(1-->6)-alpha-Glc-(1-->4))-alpha-D-GlcN-(1-->4)-alpha-D-GalA-[(2<--1)-alpha-D,D-Hep-(2<--1)-alpha-Hep]-(1-->3)-alpha-L,D-Hep[(7<--1)-alpha-L,D-Hep]-(1-->3)-alpha-L,D-Hep-[(4<--1)-beta-D-Glc]-(1-->5)-Kdo. The D configuration of the beta-Glc, alpha-GclN, and alpha-GalA residues was deduced from genetic data and thus is tentative. Furthermore, other oligosaccharides were identified by ion cyclotron resonance-Fourier-transformed electrospray ionization mass spectrometry, which presumably contained in addition one residue of D-glycero-D-talo-oct-2-ulosonic acid (Ko) or of a hexuronic acid. Several ions were identified that differed from others by a mass of +80 Da, suggesting a nonstoichiometric substitution by a monophosphate residue. However, none of these molecular species could be isolated in substantial amounts and structurally analyzed. On the basis of the structure shown above and the analysis of nonpolar mutants, functions are suggested for the genes involved in core biosynthesis.
Collapse
Affiliation(s)
- Núria Coderch
- Departamento de Microbiología y Parasitología Sanitarias, Facultad de Farmacia, Universidada de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Regué M, Hita B, Piqué N, Izquierdo L, Merino S, Fresno S, Benedí VJ, Tomás JM. A gene, uge, is essential for Klebsiella pneumoniae virulence. Infect Immun 2004; 72:54-61. [PMID: 14688080 PMCID: PMC343961 DOI: 10.1128/iai.72.1.54-61.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae strains typically express both smooth lipopolysaccharide (LPS) with O antigen molecules and capsule polysaccharide (K antigen) on the surface. A single mutation in a gene that codes for a UDP galacturonate 4-epimerase (uge) renders a strain with the O-:K- phenotype (lack of capsule and LPS without O antigen molecules and outer core oligosaccharide). The uge gene was present in all the K. pneumoniae strains tested. The K. pneumoniae uge mutants were unable to produce experimental urinary tract infections in rats and were completely avirulent in two different animal models (septicemia and pneumonia). Reintroduction of the single uge wild-type gene in the corresponding mutants completely restored the wild-type phenotype (presence of capsule and smooth LPS) independently of the O or K serotype of the wild type. Furthermore, complemented uge mutants recovered the ability to produce experimental urinary tract infections in rats and virulence in the septicemia and pneumonia animal models.
Collapse
Affiliation(s)
- Miguel Regué
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, 08071 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Izquierdo L, Coderch N, Piqué N, Bedini E, Corsaro MM, Merino S, Fresno S, Tomás JM, Regué M. The Klebsiella pneumoniae wabG gene: role in biosynthesis of the core lipopolysaccharide and virulence. J Bacteriol 2004; 185:7213-21. [PMID: 14645282 PMCID: PMC296265 DOI: 10.1128/jb.185.24.7213-7221.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To determine the function of the wabG gene in the biosynthesis of the core lipopolysaccharide (LPS) of Klebsiella pneumoniae, we constructed wabG nonpolar mutants. Data obtained from the comparative chemical and structural analysis of LPS samples obtained from the wild type, the mutant strain, and the complemented mutant demonstrated that the wabG gene is involved in attachment to alpha-L-glycero-D-manno-heptopyranose II (L,D-HeppII) at the O-3 position of an alpha-D-galactopyranosyluronic acid (alpha-D-GalAp) residue. K. pneumoniae nonpolar wabG mutants were devoid of the cell-attached capsular polysaccharide but were still able to produce capsular polysaccharide. Similar results were obtained with K. pneumoniae nonpolar waaC and waaF mutants, which produce shorter LPS core molecules than do wabG mutants. Other outer core K. pneumoniae nonpolar mutants in the waa gene cluster were encapsulated. K. pneumoniae waaC, waaF, and wabG mutants were avirulent when tested in different animal models. Furthermore, these mutants were more sensitive to some hydrophobic compounds than the wild-type strains. All these characteristics were rescued by reintroduction of the waaC, waaF, and wabG genes from K. pneumoniae.
Collapse
Affiliation(s)
- Luis Izquierdo
- Departamento de Microbiología y Parasitología Sanitarias, División de Ciencias de la Salud, Facultad de Farmacia,Universidad de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ishiwa A, Komano T. Thin pilus PilV adhesins of plasmid R64 recognize specific structures of the lipopolysaccharide molecules of recipient cells. J Bacteriol 2003; 185:5192-9. [PMID: 12923092 PMCID: PMC181018 DOI: 10.1128/jb.185.17.5192-5199.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IncI1 plasmid R64 encodes a type IV pilus called a thin pilus, which includes PilV adhesins. Seven different sequences for the C-terminal segments of PilV adhesins can be produced by shufflon DNA rearrangement. The expression of the seven PilV adhesins determines the recipient specificity in liquid matings of plasmid R64. Salmonella enterica serovar Typhimurium LT2 was recognized by the PilVA' and PilVB' adhesins, while Escherichia coli K-12 was recognized by the PilVA', PilVC, and PilVC' adhesins. Lipopolysaccharide (LPS) on the surfaces of recipient cells was previously shown to be the specific receptor for the seven PilV adhesins. To identify the specific receptor structures of LPS for various PilV adhesins, R64 liquid matings were carried out with recipient cells consisting of various S. enterica serovar Typhimurium LT2 and E. coli K-12 waa mutants and their derivatives carrying various waa genes of different origins. From the mating experiments, including inhibition experiments, we propose that the GlcNAc(alpha1-2)Glc and Glc(alpha1-2)Gal structures of the LPS core of S. enterica serovar Typhimurium LT2 function as receptors for the PilVB' and PilVC' adhesins, respectively, while the PilVC' receptor in the wild-type LT2 LPS core may be masked. We further propose that the GlcNAc(beta1-7)Hep and Glc(alpha1-2)Glc structures of the LPS core of E. coli K-12 function as receptors for the PilVC and PilVC' adhesins, respectively.
Collapse
Affiliation(s)
- Akiko Ishiwa
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
24
|
Møller AK, Leatham MP, Conway T, Nuijten PJM, de Haan LAM, Krogfelt KA, Cohen PS. An Escherichia coli MG1655 lipopolysaccharide deep-rough core mutant grows and survives in mouse cecal mucus but fails to colonize the mouse large intestine. Infect Immun 2003; 71:2142-52. [PMID: 12654836 PMCID: PMC152069 DOI: 10.1128/iai.71.4.2142-2152.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of E. coli strains to colonize the mouse large intestine has been correlated with their ability to grow in cecal and colonic mucus. In the present study, an E. coli MG1655 strain was mutagenized with a mini-Tn5 Km (kanamycin) transposon, and mutants were tested for the ability to grow on agar plates with mouse cecal mucus as the sole source of carbon and nitrogen. One mutant, designated MD42 (for mucus defective), grew poorly on cecal-mucus agar plates but grew well on Luria agar plates and on glucose minimal-agar plates. Sequencing revealed that the insertion in MD42 was in the waaQ gene, which is involved in lipopolysaccharide (LPS) core biosynthesis. Like "deep-rough" E. coli mutants, MD42 was hypersensitive to sodium dodecyl sulfate (SDS), bile salts, and the hydrophobic antibiotic novobiocin. Furthermore, its LPS core oligosaccharide was truncated, like that of a deep-rough mutant. MD42 initially grew in the large intestines of streptomycin-treated mice but then failed to colonize (<10(2) CFU per g of feces), whereas its parent colonized at levels between 10(7) and 10(8) CFU per g of feces. When mouse cecal mucosal sections were hybridized with an E. coli-specific rRNA probe, MD42 was observed in cecal mucus as clumps 24 h postfeeding, whereas its parent was present almost exclusively as single cells, suggesting that clumping may play a role in preventing MD42 colonization. Surprisingly, MD42 grew nearly as well as its parent during growth in undiluted, highly viscous cecal mucus isolated directly from the mouse cecum and, like its parent, survived well after reaching stationary phase, suggesting that there are no antimicrobials in mucus that prevent MD42 colonization. After mini-mariner transposon mutagenesis, an SDS-resistant suppressor mutant of MD42 was isolated. The mini-mariner insertion was shown to be in the bipA gene, a known regulator of E. coli surface components. When grown in Luria broth, the LPS core of the suppressor mutant remained truncated; however, the LPS core was not truncated when the suppressor mutant was grown in the presence of SDS. Moreover, when the suppressor mutant was grown in the presence of SDS and fed to mice, it colonized the mouse large intestine. Collectively, the data presented here suggest that BipA may play a role in E. coli MG1655 LPS core biosynthesis and that because MD42 forms clumps in intestinal mucus, it is unable to colonize the mouse large intestine.
Collapse
Affiliation(s)
- Annette K Møller
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Bittner M, Saldı As S, Estévez C, Zaldı Var M, Marolda CL, Valvano MA, Contreras I. O-antigen expression in Salmonella enterica serovar Typhi is regulated by nitrogen availability through RpoN-mediated transcriptional control of the rfaH gene. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3789-3799. [PMID: 12480883 DOI: 10.1099/00221287-148-12-3789] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The authors previously reported increased expression of the Salmonella enterica serovar Typhi (S. typhi) rfaH gene when the bacterial cells reach stationary phase. In this study, using a lacZ fusion to the rfaH promoter region, they demonstrate that growth-dependent regulation of rfaH expression occurs at the level of transcription initiation. It was also observed that production of the lipopolysaccharide (LPS) O-antigen by S. typhi Ty2 correlated with the differential expression of rfaH during bacterial growth. This was probably due to the increased cellular levels of RfaH, since expression of the distal gene in the O-antigen gene cluster of S. typhi Ty2, wbaP, was also increased during stationary growth, as demonstrated by RT-PCR analysis. Examination of the sequences upstream of the rfaH coding region revealed homologies to potential binding sites for the RcsB/RcsA dimer of the RcsC/YopJ/RcsB phosphorelay regulatory system and for the RpoN alternative sigma factor. The expression of the rfaH gene in rpoN and rcsB mutants of S. typhi Ty2 was measured. The results indicate that inactivation of rpoN, but not of rcsB, suppresses the growth-phase-dependent induction of rfaH expression. Furthermore, production of beta-galactosidase mediated by the rfaH-lacZ fusion increased approximately fourfold when bacteria were grown in a nitrogen-limited medium. Nitrogen limitation was also shown to increase the expression of the O-antigen by the wild-type S. typhi Ty2, as demonstrated by a similar electrophoretic profile to that observed during the stationary phase of growth in rich media. It is therefore concluded that the relationship between LPS production and nitrogen limitation parallels the pattern of rfaH regulation under the control of RpoN and is consistent with the idea that RpoN modulates LPS formation via its effect on rfaH gene expression during bacterial growth.
Collapse
Affiliation(s)
- Mauricio Bittner
- Departamento de Bioquı́mica y Biologı́a Molecular, Facultad de Ciencias Quı́micas y Farmacéuticas, Universidad de Chile, PO Box 174, Correo 22, Santiago, Chile1
| | - Soledad Saldı As
- Departamento de Bioquı́mica y Biologı́a Molecular, Facultad de Ciencias Quı́micas y Farmacéuticas, Universidad de Chile, PO Box 174, Correo 22, Santiago, Chile1
| | - Claudia Estévez
- Departamento de Bioquı́mica y Biologı́a Molecular, Facultad de Ciencias Quı́micas y Farmacéuticas, Universidad de Chile, PO Box 174, Correo 22, Santiago, Chile1
| | - Mercedes Zaldı Var
- Departamento de Bioquı́mica y Biologı́a Molecular, Facultad de Ciencias Quı́micas y Farmacéuticas, Universidad de Chile, PO Box 174, Correo 22, Santiago, Chile1
| | - Cristina L Marolda
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C12
| | - Miguel A Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C12
| | - Inés Contreras
- Departamento de Bioquı́mica y Biologı́a Molecular, Facultad de Ciencias Quı́micas y Farmacéuticas, Universidad de Chile, PO Box 174, Correo 22, Santiago, Chile1
| |
Collapse
|
26
|
Izquierdo L, Abitiu N, Coderch N, Hita B, Merino S, Gavin R, Tomás JM, Regué M. The inner-core lipopolysaccharide biosynthetic waaE gene: function and genetic distribution among some Enterobacteriaceae. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3485-3496. [PMID: 12427940 DOI: 10.1099/00221287-148-11-3485] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To determine the function of the waaE gene in the biosynthesis of the inner-core LPS of Klebsiella pneumoniae, a waaE non-polar mutant has been constructed. Data obtained from the comparative chemical analysis of LPS samples obtained from the wild-type, the mutant strain and the complemented mutant demonstrated that the waaE gene is involved in substitution of alpha-L-glycero-D-manno-heptopyranose I (L,D-HeppI) at the O-4 position by a beta-D-glucopyranose (beta-D-Glcp) residue. In addition, DNA amplification and nucleotide sequence determination studies revealed that waaE homologues located between the waaA and coaD genes are present in clinical isolates of Enterobacteriaceae containing the structure beta-D-Glcp-(1-->4)-alpha-L,D-HeppI (K. pneumoniae, Proteus mirabilis and Yersinia enterocolitica), as well as in strains of Serratia marcescens and Enterobacter aerogenes of unknown LPS-core structures. Complementation studies using non-polar waaE mutants prove that all the waaE homologues perform the same function. Furthermore, K. pneumoniae, Ser. marcescens and P. mirabilis non-polar waaE mutants showed reduced adhesion and pathogenicity. In addition, the Ser. marcescens and P. murabilis waaE mutants showed reduced swarming motility and ability to form biofilms in vitro. All these characteristics were rescued by reintroduction of the waaE gene independently of its origin. An easy DNA amplification method to detect this gene was established, which also helps in finding the potential presence of this structural feature [beta-D-Glcp-(1-->4)-alpha-L,D-HeppI] in the inner-core LPS of Enterobacteriaceae members with unknown LPS-core structures.
Collapse
Affiliation(s)
- Luis Izquierdo
- Departamento de Microbiologı́a, Facultad de Biologı́a, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain2
| | - Nihal Abitiu
- Departamento de Microbiologı́a y Parasitologı́a Sanitarias, División de Ciencias de la Salud, Facultad de Farmacia, Universidad de Barcelona, Av. Joan XXIII s/n, Barcelona 08028, Spain1
| | - Núria Coderch
- Departamento de Microbiologı́a y Parasitologı́a Sanitarias, División de Ciencias de la Salud, Facultad de Farmacia, Universidad de Barcelona, Av. Joan XXIII s/n, Barcelona 08028, Spain1
| | - Beatriz Hita
- Departamento de Microbiologı́a y Parasitologı́a Sanitarias, División de Ciencias de la Salud, Facultad de Farmacia, Universidad de Barcelona, Av. Joan XXIII s/n, Barcelona 08028, Spain1
| | - Susana Merino
- Departamento de Microbiologı́a, Facultad de Biologı́a, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain2
| | - Rosalina Gavin
- Departamento de Microbiologı́a, Facultad de Biologı́a, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain2
| | - Juan M Tomás
- Departamento de Microbiologı́a, Facultad de Biologı́a, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain2
| | - Miguel Regué
- Departamento de Microbiologı́a y Parasitologı́a Sanitarias, División de Ciencias de la Salud, Facultad de Farmacia, Universidad de Barcelona, Av. Joan XXIII s/n, Barcelona 08028, Spain1
| |
Collapse
|
27
|
Rojas G, Saldías S, Bittner M, Zaldívar M, Contreras I. The rfaH gene, which affects lipopolysaccharide synthesis in Salmonella enterica serovar Typhi, is differentially expressed during the bacterial growth phase. FEMS Microbiol Lett 2001; 204:123-8. [PMID: 11682190 DOI: 10.1111/j.1574-6968.2001.tb10874.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We have cloned and sequenced the rfaH gene from Salmonella enterica serovar Typhi strain Ty2. The gene showed a high degree of similarity to the rfaH genes from Escherichia coli K-12 and S. enterica serovar Typhimurium. A rfaH mutant was constructed by site-directed mutagenesis. This mutant produced a rough lipopolysaccharide (LPS), with an incomplete core region. The defect in LPS expression that results from the rfaH mutation was corrected by a plasmid carrying the intact gene. The plasmid-borne rfaH gene also restored normal LPS synthesis in a rfaH mutant of E. coli. Reverse transcription-polymerase chain reaction analyses were performed to determine the effects of various environmental conditions on the expression of rfaH. The transcription of rfaH showed a growth-phase-dependent regulation, with maximal expression at the late exponential phase. Other environmental conditions, such as temperature or medium osmolarity, did not affect transcription of rfaH.
Collapse
Affiliation(s)
- G Rojas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, P.O. Box 174, Correo 22, Santiago, Chile
| | | | | | | | | |
Collapse
|
28
|
Regué M, Climent N, Abitiu N, Coderch N, Merino S, Izquierdo L, Altarriba M, Tomás JM. Genetic characterization of the Klebsiella pneumoniae waa gene cluster, involved in core lipopolysaccharide biosynthesis. J Bacteriol 2001; 183:3564-73. [PMID: 11371519 PMCID: PMC95232 DOI: 10.1128/jb.183.12.3564-3573.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A recombinant cosmid containing genes involved in Klebsiella pneumoniae C3 core lipopolysaccharide biosynthesis was identified by its ability to confer bacteriocin 28b resistance to Escherichia coli K-12. The recombinant cosmid contains 12 genes, the whole waa gene cluster, flanked by kbl and coaD genes, as was found in E. coli K-12. PCR amplification analysis showed that this cluster is conserved in representative K. pneumoniae strains. Partial nucleotide sequence determination showed that the same genes and gene order are found in K. pneumoniae subsp. ozaenae, for which the core chemical structure is known. Complementation analysis of known waa mutants from E. coli K-12 and/or Salmonella enterica led to the identification of genes involved in biosynthesis of the inner core backbone that are shared by these three members of the Enterobacteriaceae. K. pneumoniae orf10 mutants showed a two-log-fold reduction in a mice virulence assay and a strong decrease in capsule amount. Analysis of a constructed K. pneumoniae waaE deletion mutant suggests that the WaaE protein is involved in the transfer of the branch beta-D-Glc to the O-4 position of L-glycero-D-manno-heptose I, a feature shared by K. pneumoniae, Proteus mirabilis, and Yersinia enterocolitica.
Collapse
Affiliation(s)
- M Regué
- Departamento de Microbiología y Parasitología Sanitarias, División de Ciéncias de la Salud, Facultad de Farmacia, Universidad de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ogura T, Inoue K, Tatsuta T, Suzaki T, Karata K, Young K, Su LH, Fierke CA, Jackman JE, Raetz CR, Coleman J, Tomoyasu T, Matsuzawa H. Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol Microbiol 1999; 31:833-44. [PMID: 10048027 DOI: 10.1046/j.1365-2958.1999.01221.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The suppressor mutation, named sfhC21, that allows Escherichia coli ftsH null mutant cells to survive was found to be an allele of fabZ encoding R-3-hydroxyacyl-ACP dehydrase, involved in a key step of fatty acid biosynthesis, and appears to upregulate the dehydrase. The ftsH1(Ts) mutation increased the amount of lipopolysaccharide at 42 degrees C. This was accompanied by a dramatic increase in the amount of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase [the IpxC (envA) gene product] involved in the committed step of lipid A biosynthesis. Pulse-chase experiments and in vitro assays with purified components showed that FtsH, the AAA-type membrane-bound metalloprotease, degrades the deacetylase. Genetic evidence also indicated that the FtsH protease activity for the deacetylase might be affected when acyl-ACP pools were altered. The biosynthesis of phospholipids and the lipid A moiety of lipopolysaccharide, both of which derive their fatty acyl chains from the same R-3-hydroxyacyl-ACP pool, is regulated by FtsH.
Collapse
Affiliation(s)
- T Ogura
- Department of Molecular Cell Biology, Kumamoto University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
31
|
Wang L, Jensen S, Hallman R, Reeves PR. Expression of the O antigen gene cluster is regulated by RfaH through the JUMPstart sequence. FEMS Microbiol Lett 1998; 165:201-6. [PMID: 9711858 DOI: 10.1111/j.1574-6968.1998.tb13147.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
O antigen genes are clustered, with a JUMPstart sequence located upstream. JUMPstart is a 39-bp sequence, present upstream of many polysaccharide gene clusters and also upstream of haemolysin and F factor gene clusters. RfaH is known to regulate the expression of E. coli group II capsule, haemolysin, F factor and the outer core of lipopolysaccharide all of which have the JUMPstart sequence, and has been shown to function as a transcriptional antiterminator in some cases. Using lacZ fusions to genes in the O antigen gene cluster of Salmonella enterica serovar Typhimurium, we found that RfaH also regulates the expression of O antigen. We showed that RfaH enhances expression of the 18-kb O antigen gene cluster, with promoter-distal genes affected more dramatically. We also showed that the JUMPstart sequence was required for RfaH function.
Collapse
Affiliation(s)
- L Wang
- Department of Microbiology, University of Sydney, Australia
| | | | | | | |
Collapse
|
32
|
Marolda CL, Valvano MA. Promoter region of the Escherichia coli O7-specific lipopolysaccharide gene cluster: structural and functional characterization of an upstream untranslated mRNA sequence. J Bacteriol 1998; 180:3070-9. [PMID: 9620955 PMCID: PMC107806 DOI: 10.1128/jb.180.12.3070-3079.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We report the identification of the promoter region of the Escherichia coli O7-specific lipopolysaccharide (LPS) gene cluster (wbEcO7). Typical -10 and -35 sequences were found to be located in the intervening region between galF and rlmB, the first gene of the wbEcO7 cluster. Data from RNase protection experiments revealed the existence of an untranslated leader mRNA segment of 173 bp, including the JUMPStart and two ops sequences. We characterized the structure of this leader mRNA by using the program Mfold and a combination of nested and internal deletions transcriptionally fused to a promoterless lac operon. Our results indicated that the leader mRNA may fold into a series of complex stem-loop structures, one of which includes the JUMPStart element. We have also found that one of the ops sequences resides on the predicted stem and the other resides on the loop region, and we confirmed that these sequences are essential for the RfaH-mediated regulation of the O polysaccharide cluster. A very similar stem-loop structure could be predicted in the promoter region of the LPS core operon encoding the waaQGPSBIJYZK genes. We observed another predicted stem-loop, located immediately downstream from the wbEcO7 transcription initiation site, which appeared to be involved in premature termination of transcription. This putative stem-loop is common to many other O polysaccharide gene clusters but is not present in core oligosaccharide genes. wbEcO7-lac transcriptional fusions in single copy numbers were also used to determine the effects of various environmental cues in the transcriptional regulation of O polysaccharide synthesis. No effects were detected with temperature, osmolarity, Mg2+ concentration, and drugs inducing changes in DNA supercoiling. We therefore conclude that the wbEcO7 promoter activity may be constitutive and that regulation takes place at the level of elongation of the mRNA in a RfaH-mediated manner.
Collapse
Affiliation(s)
- C L Marolda
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | | |
Collapse
|
33
|
Leeds JA, Welch RA. Enhancing transcription through the Escherichia coli hemolysin operon, hlyCABD: RfaH and upstream JUMPStart DNA sequences function together via a postinitiation mechanism. J Bacteriol 1997; 179:3519-27. [PMID: 9171395 PMCID: PMC179143 DOI: 10.1128/jb.179.11.3519-3527.1997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli hlyCABD operons encode the polypeptide component (HlyA) of an extracellular cytolytic toxin as well as proteins required for its acylation (HlyC) and sec-independent secretion (HlyBD). The E. coli protein RfaH is required for wild-type hemolysin expression at the level of hlyCABD transcript elongation (J. A. Leeds and R. A. Welch, J. Bacteriol. 178:1850-1857, 1996). RfaH is also required for the transcription of wild-type levels of mRNA from promoter-distal genes in the rfaQ-K, traY-Z, and rplK-rpoC gene clusters, supporting the role for RfaH in transcriptional elongation. All or portions of a common 39-bp sequence termed JUMPStart are present in the untranslated regions of RfaH-enhanced operons. In this study, we tested the model that the JUMPStart sequence and RfaH are part of the same functional pathway. We examined the effect of JUMPStart deletion mutations within the untranslated leader of a chromosomally derived hlyCABD operon on hly RNA and HlyA protein levels in either wild-type or rfaH null mutant E. coli. We also provide in vivo physical evidence that is consistent with RNA polymerase pausing at the wild-type JUMPStart sequences.
Collapse
Affiliation(s)
- J A Leeds
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison 53706, USA
| | | |
Collapse
|
34
|
Holst O, Ulmer AJ, Brade H, Flad HD, Rietschel ET. Biochemistry and cell biology of bacterial endotoxins. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1996; 16:83-104. [PMID: 8988390 DOI: 10.1111/j.1574-695x.1996.tb00126.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- O Holst
- Research Center Borstel, Center for Medicine and Biosciences, Germany
| | | | | | | | | |
Collapse
|
35
|
Simpson DA, Hammarton TC, Roberts IS. Transcriptional organization and regulation of expression of region 1 of the Escherichia coli K5 capsule gene cluster. J Bacteriol 1996; 178:6466-74. [PMID: 8932302 PMCID: PMC178532 DOI: 10.1128/jb.178.22.6466-6474.1996] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The transcriptional organization and regulation of region 1 expression of the Escherichia coli K5 capsule gene cluster were studied. Region 1 was transcribed as an 8.0-kb polycistronic mRNA which was processed to form a separate 1.3-kb transcript encoding the 3'-most gene kpsS. Transcription of region 1 of the E. coli K5 capsule gene cluster was directed from a single promoter 225 bp upstream of a previously unidentified gene, kpsF. The promoter had -35 and -10 consensus sequences typical of an E. coli sigma 70 promoter, with no similarities to binding sites for other sigma factors. Two integration host factor (IHF) binding site consensus sequences were identified 110 bp upstream and 130 bp downstream of the transcription start site. In addition, two AT-rich regions separated by 16 bp identified upstream of the region 1 promoter were conserved upstream of the region 3 promoter. The kpsF gene was 98.8% identical with the kpsF gene identified in the E. coli K1 antigen gene cluster and confirms that the kpsF gene is conserved among group II capsule gene clusters. An intragenic Rho-dependent transcriptional terminator was discovered within the kpsF gene. No essential role for KpsF in the expression of the K5 antigen could be established. The temperature regulation of region 1 expression was at the level of transcription, with no transcription detectable in cells grown at 18 degrees C. Mutations in regulatory genes known to control temperature-dependent expression of a number of virulence genes had no effect on the temperature regulation of region 1 expression. Likewise, RfaH, which is known to regulate expression of E. coli group II capsules had no effect on the expression of region 1. Mutations in the himA and himD genes which encode the subunits of the IHF led to a fivefold reduction in the expression of KpsE at 37 degrees C, confirming a regulatory role for IHF in the expression of region 1 genes.
Collapse
Affiliation(s)
- D A Simpson
- Department of Microbiology and Immunology, University of Leicester, United Kingdom
| | | | | |
Collapse
|
36
|
Guasch JF, Piqué N, Climent N, Ferrer S, Merino S, Rubires X, Tomas JM, Regué M. Cloning and characterization of two Serratia marcescens genes involved in core lipopolysaccharide biosynthesis. J Bacteriol 1996; 178:5741-7. [PMID: 8824620 PMCID: PMC178414 DOI: 10.1128/jb.178.19.5741-5747.1996] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacteriocin 28b from Serratia marcescens binds to Escherichia coli outer membrane proteins OmpA and OmpF and to lipopolysaccharide (LPS) core (J. Enfedaque, S. Ferrer, J. F. Guasch, J. Tomás, and M. Requé, Can. J. Microbiol. 42:19-26, 1996). A cosmid-based genomic library of S. marcescens was introduced into E. coli NM554, and clones were screened for bacteriocin 28b resistance phenotype. One clone conferring resistance to bacteriocin 28b and showing an altered LPS core mobility in polyacrylamide gel electrophoresis was found. Southern blot experiments using DNA fragments containing E. coli rfa genes as probes suggested that the recombinant cosmid contained S. marcescens genes involved in LPS core biosynthesis. Subcloning, isolation of subclones and Tn5tac1 insertion mutants, and sequencing allowed identification of two apparently cotranscribed genes. The deduced amino acid sequence from the upstream gene showed 80% amino acid identity to the KdtA protein from E. coli, suggesting that this gene codes for the 3-deoxy-manno-octulosonic acid transferase of S. marcescens. The downstream gene (kdtX) codes for a protein showing 20% amino acid identity to the Haemophilus influenzae kdtB gene product. The S. marcescens KdtX protein is unrelated to the KdtB protein of E. coli K-12. Expression of the kdtX gene from S. marcescens in E. coli confers resistance to bacteriocin 28b.
Collapse
Affiliation(s)
- J F Guasch
- Department of Microbiology and Parasitology, Health Sciences Division, Faculty of Pharmacy, University of Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Escherichia coli hlyCABD operons encode the polypeptide component (Hly A) of an extracellular cytolytic toxin, as well as proteins required for its acylation (HlyC) and sec-independent secretion (HlyBD). Previous reports suggested that the E. coli protein RfaH is required for wild-type hemolysin expression, either by positively activating hly transcript initiation (M. J. A. Bailey, V. Koronakis, T. Schmoll, and C. Hughes, Mol. Microbiol. 6:1003-1012, 1992) or by promoting proper insertion of hemolysin export machinery in the E. coli outer membrane (C. Wandersman and S. Letoffe, Mol. Microbiol. 7:141-150, 1993). RfaH is also required for wild-type levels of mRNA transcribed from promoter-distal genes in the rfaQ-K, traY-Z, and rplK-rpoC gene clusters, suggesting that RfaH is a transcriptional antiterminator. We tested these models by analyzing the effects of rfaH mutations on hlyCABD mRNA synthesis and decay, HlyA protein levels, and hemolytic activity. The model system included a uropathogenic strain of E. coli harboring hlyCABD on the chromosome and E. coli K-12 transformed with the hlyCABD operon on a recombinant plasmid. Our results suggest that RfaH enhances hlyCABD transcript elongation, consistent with the model of RfaH involvement in transcriptional antitermination in E. coli. We also demonstrated that RfaH increases toxin efficacy. Modulation of hemolysin activity may be an indirect effect of RfaH-dependent E. coli outer membrane chemotype, which is consistent with the model of lipopolysaccharide involvement in hemolytic activity.
Collapse
Affiliation(s)
- J A Leeds
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison 53706, USA
| | | |
Collapse
|
38
|
Lukomski S, Hull RA, Hull SI. Identification of the O antigen polymerase (rfc) gene in Escherichia coli O4 by insertional mutagenesis using a nonpolar chloramphenicol resistance cassette. J Bacteriol 1996; 178:240-7. [PMID: 8550424 PMCID: PMC177645 DOI: 10.1128/jb.178.1.240-247.1996] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Computer analysis of the O4 polysaccharide gene cluster of Escherichia coli revealed the presence of two open reading frames (ORFs) encoding strongly hydrophobic polypeptides. O antigen polymerase, which is encoded by the rfc gene, is a potential membrane protein and therefore should be hydrophobic. To identify the rfc gene, these two ORFs were subjected to insertional mutagenesis. A chloramphenicol resistance cassette was designed which, when properly inserted, does not cause a polar effect in downstream genes. Each of two ORFs, cloned into a plasmid vector, was inactivated with this cassette. Two types of mutants bearing chromosomal insertions of the cassettes in each ORF were constructed by homologous recombination. These mutants were characterized by PCR, Southern blotting, and transverse-alternating-field electrophoresis. Only one class of mutants exhibited the expected O polymerase-deficient phenotype; they produced O4-specific, semirough lipopolysaccharide. Therefore, this ORF was identified as the rfc gene. The chromosomal rfc mutation was complemented in trans by the rfc gene expressed from a plasmid vector.
Collapse
Affiliation(s)
- S Lukomski
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
39
|
Gadó I, Pászti J, László VG. Effect of precultivation conditions on colicin susceptibility in Escherichia coli. J Chemother 1995; 7:100-5. [PMID: 7545223 DOI: 10.1179/joc.1995.7.2.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effect of 20 colicins and cloacin was studied after various precultivations. Nutrient agar supplemented with subinhibitory concentration of EDTA used for precultivation or elevating the growth-temperature of the inoculum from 37 degrees C to 42 degrees C increased the susceptibility of wild-type (smooth) Escherichia coli strains to the inhibitory action of some colicins. There were great differences among the colicins in respect to these effects. In case of rough mutants, their sensitivities did not change or eventually decrease after EDTA or heat pretreatment. The LPS pattern in SDS-PAGE of smooth cells grown in EDTA-containing nutrient medium changed in some degree towards the rough character. In case of precultivation at 42 degrees C this change was less considerable. It is supposed that both factors applied during precultivation have influence on colicin sensitivity by means of the change of receptor activity caused by LPS modification.
Collapse
Affiliation(s)
- I Gadó
- B. Johan National Institute of Hygiene, Budapest, Hungary
| | | | | |
Collapse
|
40
|
Stevens MP, Hänfling P, Jann B, Jann K, Roberts IS. Regulation of Escherichia coli K5 capsular polysaccharide expression: evidence for involvement of RfaH in the expression of group II capsules. FEMS Microbiol Lett 1994; 124:93-8. [PMID: 8001774 DOI: 10.1111/j.1574-6968.1994.tb07267.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Expression of the Escherichia coli K5 antigen was used as a model system to study the role of known regulators of gene expression on production of group II capsules in E. coli. Only mutations in the rfaH gene had an effect on production of the K5 antigen, abolishing the expression of any detectable capsule at 37 degrees C. None of the mutations studied induced capsule expression at 18 degrees C. A sequence, termed JUMPstart, found in group II capsule gene clusters and upstream of a number of polysaccharide biosynthesis genes in enteric bacteria is homologous to sequences found in RfaH regulated operons. This may indicate a common mode of regulation of these polysaccharide biosynthesis genes by RfaH.
Collapse
Affiliation(s)
- M P Stevens
- Department of Microbiology and Immunology, University of Leicester, UK
| | | | | | | | | |
Collapse
|
41
|
Anthony KG, Sherburne C, Sherburne R, Frost LS. The role of the pilus in recipient cell recognition during bacterial conjugation mediated by F-like plasmids. Mol Microbiol 1994; 13:939-53. [PMID: 7854127 DOI: 10.1111/j.1365-2958.1994.tb00486.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of defined mutations in the lipopolysaccharide (LPS) and the outer membrane protein OmpA of the recipient cell on mating-pair formation in liquid media by the transfer systems of the F-like plasmids pOX38 (F), ColB2 and R100-1 were investigated. Transfer of all three plasmids was affected differently by mutations in the rfa (LPS) locus of the recipient cell, the F plasmid being most sensitive to mutations that affected rfaP gene expression which is responsible for the addition of pyrophosphorylethanolamine (PPEA) to heptose I of the inner core of the LPS. ColB2 transfer was more strongly affected by mutations in the heptose II-heptose III region of the LPS (rfaF) whereas R100-1 was not strongly affected by any of the rfa mutations tested. ompA but not rfa mutations further decreased the mating efficiency of an F plasmid carrying a mutation in the mating-pair stabilization protein TraN. An F derivative with a chloramphenicol acetyltransferase (CAT) cassette interrupting the traA pilin gene was constructed and pilin genes from F-like plasmids (F, ColB2, R100-1) were used to complement this mutation. Unexpectedly, the results suggested that the differences in the pilin sequences were not responsible for recognizing specific groups in the LPS, OmpA or the TraT surface exclusion protein. Other corroborating evidence is presented suggesting the presence of an adhesin at the F pilus tip.
Collapse
Affiliation(s)
- K G Anthony
- Department of Microbiology, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
42
|
Klena JD, Schnaitman CA. Genes for TDP-rhamnose synthesis affect the pattern of lipopolysaccharide heterogeneity in Escherichia coli K-12. J Bacteriol 1994; 176:4003-10. [PMID: 7517388 PMCID: PMC205598 DOI: 10.1128/jb.176.13.4003-4010.1994] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The rough lipopolysaccharide (LPS) of commonly used strains of Escherichia coli K-12 has two distinctly different band patterns when analyzed by high-resolution polyacrylamide gel electrophoresis. The LPS of ancestral strains such as W1485F- consists primarily of a single broad gel band. In contrast, the LPS of strains derived from strain Y10 such as AB1133 or C600 gives three sharp gel bands. Complementation studies using DNA fragments from the rfb gene cluster of Shigella dysenteriae 1 indicated that the difference between the two gel patterns is due to a mutation in the gene encoding the TDP-rhamnose synthetase, the final enzyme involved in TDP-rhamnose biosynthesis. This mutation arose during the construction of strain Y10, and not in strain 679-680 as previously thought. The requirement for the rfaS gene for synthesis of the broad major band seen in W1485F- LPS and the shift in gel migration of a component of this band when an rfaQ mutation was introduced indicated that this broad band contained the unique form of rough E. coli LPS which has been termed lipooligosaccharide. This finding indicates that lipooligosaccharide is likely to contain rhamnose and suggests a model in which one of the functions of partial substituents such as rhamnose may be to direct core synthesis into different pathways to produce alternative forms of LPS.
Collapse
Affiliation(s)
- J D Klena
- Department of Microbiology, Arizona State University, Tempe 85287-2701
| | | |
Collapse
|
43
|
Frost LS, Ippen-Ihler K, Skurray RA. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 1994; 58:162-210. [PMID: 7915817 PMCID: PMC372961 DOI: 10.1128/mr.58.2.162-210.1994] [Citation(s) in RCA: 275] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial conjugation results in the transfer of DNA of either plasmid or chromosomal origin between microorganisms. Transfer begins at a defined point in the DNA sequence, usually called the origin of transfer (oriT). The capacity of conjugative DNA transfer is a property of self-transmissible plasmids and conjugative transposons, which will mobilize other plasmids and DNA sequences that include a compatible oriT locus. This review will concentrate on the genes required for bacterial conjugation that are encoded within the transfer region (or regions) of conjugative plasmids. One of the best-defined conjugation systems is that of the F plasmid, which has been the paradigm for conjugation systems since it was discovered nearly 50 years ago. The F transfer region (over 33 kb) contains about 40 genes, arranged contiguously. These are involved in the synthesis of pili, extracellular filaments which establish contact between donor and recipient cells; mating-pair stabilization; prevention of mating between similar donor cells in a process termed surface exclusions; DNA nicking and transfer during conjugation; and the regulation of expression of these functions. This review is a compendium of the products and other features found in the F transfer region as well as a discussion of their role in conjugation. While the genetics of F transfer have been described extensively, the mechanism of conjugation has proved elusive, in large part because of the low levels of expression of the pilus and the numerous envelope components essential for F plasmid transfer. The advent of molecular genetic techniques has, however, resulted in considerable recent progress. This summary of the known properties of the F transfer region is provided in the hope that it will form a useful basis for future comparison with other conjugation systems.
Collapse
Affiliation(s)
- L S Frost
- Department of Microbiology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
44
|
Schlecht S, Mayer H. The influence of low growth temperature on the amount of free R lipopolysaccharide, on the expression of R-core determinants and on O-chain lengths in Salmonella S forms. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1994; 280:448-57. [PMID: 8061405 DOI: 10.1016/s0934-8840(11)80504-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ten Salmonella strains belonging to five serological groups were cultivated both at 37 degrees C and close to their individual temperature minima at 12-14 degrees C and the composition of their cell wall lipopolysaccharides (LPS) was compared. When grown at low temperature, the proportion of unsubstituted (free) R-LPS in the total LPS moiety increased significantly in 6 strains, whereas in the other strains, no change or even a slight decrease in the R-LPS proportion was observed as judged from the analyses by SDS-PAGE. In the immunoblot, the R-LPSs from 9 out of 10 strains showed a modified reactivity against a set of specific Salmonella R antisera (anti-Ra, anti-Rb1, anti-Rb2, anti-Rc). In most cases, the decrease in Rb1 reactivity was paralleled by an increase in Rb2 reactivity and also by an increase in the total amount of free R-LPS. The electrophoretic mobility of free R-LPS was changed in 7 out of 10 strains, although the changes were not unidirectional. All changes occurred only in the range of the Ra-Rb1 chemotypes and no significant correlation to the serological grouping of the strains was evident. When grown at low temperature, the average number of O-repeating units was reduced in the majority of cases and in some cases, also the banding profile in SDS-PAGE in the S-LPS region was modified. The fatty acid spectra showed some changes which were in accordance with previous results, namely a decrease in the content of C-12:0 and C-16:0 and an increase in that of C-14:0 and C-16:1. The different influences of the growth temperature on the LPS biosynthesis of different Salmonella strains may be a result of the genetic diversity of this group of microorganisms.
Collapse
Affiliation(s)
- S Schlecht
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | | |
Collapse
|
45
|
|
46
|
Abstract
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome.
Collapse
Affiliation(s)
- M Riley
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
47
|
Stanley PL, Diaz P, Bailey MJ, Gygi D, Juarez A, Hughes C. Loss of activity in the secreted form of Escherichia coli haemolysin caused by an rfaP lesion in core lipopolysaccharide assembly. Mol Microbiol 1993; 10:781-7. [PMID: 7934840 DOI: 10.1111/j.1365-2958.1993.tb00948.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A transposon mutant of Escherichia coli 5K was isolated which reduced 10- to 50-fold the secreted extracellular haemolytic activity of cells carrying the complete hlyCABD operon while leaving unaffected the intracellular haemolytic activity and the levels of intracellular and extracellular haemolysin protein, HlyA. The transposon insertion was identified within the rfaP gene (required for attachment of phosphate-containing substituents to the lipopolysaccharide inner core), and extracellular haemolytic activity was restored in trans by the intact rfaP gene. The loss in cytolytic activity of the secreted HlyA protein was not related to the HlyC-directed acylation of the protoxin. Activity of the secreted toxin was restored by chaotropic agents and during rate-zonal centrifugation the mutant-secreted HlyA migrated as a larger species than the wild type. The results indicate that the rfaP mutation affects the aggregation behaviour of the active toxin during or following the signal peptide-independent secretion process.
Collapse
Affiliation(s)
- P L Stanley
- Cambridge University Department of Pathology, UK
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
From a historical perspective, the study of both the biochemistry and the genetics of lipopolysaccharide (LPS) synthesis began with the enteric bacteria. These organisms have again come to the forefront as the blocks of genes involved in LPS synthesis have been sequenced and analyzed. A number of new and unanticipated genes were found in these clusters, indicating a complexity of the biochemical pathways which was not predicted from the older studies. One of the most dramatic areas of LPS research has been the elucidation of the lipid A biosynthetic pathway. Four of the genes in this pathway have now been identified and sequenced, and three of them are located in a complex operon which also contains genes involved in DNA and phospholipid synthesis. The rfa gene cluster, which contains many of the genes for LPS core synthesis, includes at least 17 genes. One of the remarkable findings in this cluster is a group of several genes which appear to be involved in the synthesis of alternate rough core species which are modified so that they cannot be acceptors for O-specific polysaccharides. The rfb gene clusters which encode O-antigen synthesis have been sequenced from a number of serotypes and exhibit the genetic polymorphism anticipated on the basis of the chemical complexity of the O antigens. These clusters appear to have originated by the exchange of blocks of genes among ancestral organisms. Among the large number of LPS genes which have now been sequenced from these rfa and rfb clusters, there are none which encode proteins that appear to be secreted across the cytoplasmic membrane and surprisingly few which encode integral membrane proteins or proteins with extensive hydrophobic domains. These data, together with sequence comparison and complementation experiments across strain and species lines, suggest that the LPS biosynthetic enzymes may be organized into clusters on the inner surface of the cytoplasmic membrane which are organized around a few key membrane proteins.
Collapse
Affiliation(s)
- C A Schnaitman
- Department of Microbiology, Arizona State University, Tempe 85287-2701
| | | |
Collapse
|
49
|
Abstract
From a historical perspective, the study of both the biochemistry and the genetics of lipopolysaccharide (LPS) synthesis began with the enteric bacteria. These organisms have again come to the forefront as the blocks of genes involved in LPS synthesis have been sequenced and analyzed. A number of new and unanticipated genes were found in these clusters, indicating a complexity of the biochemical pathways which was not predicted from the older studies. One of the most dramatic areas of LPS research has been the elucidation of the lipid A biosynthetic pathway. Four of the genes in this pathway have now been identified and sequenced, and three of them are located in a complex operon which also contains genes involved in DNA and phospholipid synthesis. The rfa gene cluster, which contains many of the genes for LPS core synthesis, includes at least 17 genes. One of the remarkable findings in this cluster is a group of several genes which appear to be involved in the synthesis of alternate rough core species which are modified so that they cannot be acceptors for O-specific polysaccharides. The rfb gene clusters which encode O-antigen synthesis have been sequenced from a number of serotypes and exhibit the genetic polymorphism anticipated on the basis of the chemical complexity of the O antigens. These clusters appear to have originated by the exchange of blocks of genes among ancestral organisms. Among the large number of LPS genes which have now been sequenced from these rfa and rfb clusters, there are none which encode proteins that appear to be secreted across the cytoplasmic membrane and surprisingly few which encode integral membrane proteins or proteins with extensive hydrophobic domains. These data, together with sequence comparison and complementation experiments across strain and species lines, suggest that the LPS biosynthetic enzymes may be organized into clusters on the inner surface of the cytoplasmic membrane which are organized around a few key membrane proteins.
Collapse
|
50
|
Klena JD, Schnaitman CA. Function of the rfb gene cluster and the rfe gene in the synthesis of O antigen by Shigella dysenteriae 1. Mol Microbiol 1993; 9:393-402. [PMID: 7692219 DOI: 10.1111/j.1365-2958.1993.tb01700.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A plasmid that included both an 8.9 kb chromosomal DNA insert containing genes from the rfb cluster of Shigella dysenteriae 1 and a smaller insert containing the rfp gene from a S. dysenteriae 1 multicopy plasmid resulted in efficient expression of O antigen in an rfb-deleted strain of Escherichia coli K-12. Eight genes were identified in the rfb fragment: the rfbB-CAD cluster which encodes dTDP-rhamnose synthesis, rfbX which encodes a hydrophobic protein involved in assembly of the O antigen, rfc which encodes the O antigen polymerase, and two sugar transferase genes. The production of an O antigen also required the E. coli K-12 rfe gene, which is known to encode a transferase which adds N-acetylglucosamine phosphate to the carrier lipid undecaprenol phosphate. Thus Rfe protein appears to function as an analogue of the Salmonella RfbP protein to provide the first sugar of the O unit. Functional analysis of the other genes was facilitated by the fact that partial O units of one, two or three sugars were efficiently transferred to the lipopolysaccharide core. This analysis indicated that the plasmid-encoded Rfp protein is the transferase that adds the second sugar of the O unit while the two rfb transferases add the distal sugars to make an O antigen whose structure is (Rha-Rha-Gal-GlcNAc)n. The use of the rfe gene product as the transferase that adds the first sugar of an O unit is a novel mechanism which may be used for the synthesis of other enteric O antigens.
Collapse
Affiliation(s)
- J D Klena
- Department of Microbiology, Arizona State University, Tempe 85287
| | | |
Collapse
|