1
|
Structural and Functional Characterization of NadR from Lactococcus lactis. Molecules 2020; 25:molecules25081940. [PMID: 32331317 PMCID: PMC7221760 DOI: 10.3390/molecules25081940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/02/2022] Open
Abstract
NadR is a bifunctional enzyme that converts nicotinamide riboside (NR) into nicotinamide mononucleotide (NMN), which is then converted into nicotinamide adenine dinucleotide (NAD). Although a crystal structure of the enzyme from the Gram-negative bacterium Haemophilus influenzae is known, structural understanding of its catalytic mechanism remains unclear. Here, we purified the NadR enzyme from Lactococcus lactis and established an assay to determine the combined activity of this bifunctional enzyme. The conversion of NR into NAD showed hyperbolic dependence on the NR concentration, but sigmoidal dependence on the ATP concentration. The apparent cooperativity for ATP may be explained because both reactions catalyzed by the bifunctional enzyme (phosphorylation of NR and adenylation of NMN) require ATP. The conversion of NMN into NAD followed simple Michaelis-Menten kinetics for NMN, but again with the sigmoidal dependence on the ATP concentration. In this case, the apparent cooperativity is unexpected since only a single ATP is used in the NMN adenylyltransferase catalyzed reaction. To determine the possible structural determinants of such cooperativity, we solved the crystal structure of NadR from L. lactis (NadRLl). Co-crystallization with NAD, NR, NMN, ATP, and AMP-PNP revealed a ‘sink’ for adenine nucleotides in a location between two domains. This sink could be a regulatory site, or it may facilitate the channeling of substrates between the two domains.
Collapse
|
2
|
Knöppel A, Knopp M, Albrecht LM, Lundin E, Lustig U, Näsvall J, Andersson DI. Genetic Adaptation to Growth Under Laboratory Conditions in Escherichia coli and Salmonella enterica. Front Microbiol 2018; 9:756. [PMID: 29755424 PMCID: PMC5933015 DOI: 10.3389/fmicb.2018.00756] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/04/2018] [Indexed: 11/16/2022] Open
Abstract
Experimental evolution under controlled laboratory conditions is becoming increasingly important to address various evolutionary questions, including, for example, the dynamics and mechanisms of genetic adaptation to different growth and stress conditions. In such experiments, mutations typically appear that increase the fitness under the conditions tested (medium adaptation), but that are not necessarily of interest for the specific research question. Here, we have identified mutations that appeared during serial passage of E. coli and S. enterica in four different and commonly used laboratory media and measured the relative competitive fitness and maximum growth rate of 111 genetically re-constituted strains, carrying different single and multiple mutations. Little overlap was found between the mutations that were selected in the two species and the different media, implying that adaptation occurs via different genetic pathways. Furthermore, we show that commonly occurring adaptive mutations can generate undesired genetic variation in a population and reduce the accuracy of competition experiments. However, by introducing media adaptation mutations with large effects into the parental strain that was used for the evolution experiment, the variation (standard deviation) was decreased 10-fold, and it was possible to measure fitness differences between two competitors as small as |s| < 0.001.
Collapse
Affiliation(s)
- Anna Knöppel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Michael Knopp
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lisa M Albrecht
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Erik Lundin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ulrika Lustig
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joakim Näsvall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Bi J, Wang H, Xie J. Comparative genomics of NAD(P) biosynthesis and novel antibiotic drug targets. J Cell Physiol 2011; 226:331-40. [PMID: 20857400 DOI: 10.1002/jcp.22419] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
NAD(P) is an indispensable cofactor for all organisms and its biosynthetic pathways are proposed as promising novel antibiotics targets against pathogens such as Mycobacterium tuberculosis. Six NAD(P) biosynthetic pathways were reconstructed by comparative genomics: de novo pathway (Asp), de novo pathway (Try), NmR pathway I (RNK-dependent), NmR pathway II (RNK-independent), Niacin salvage, and Niacin recycling. Three enzymes pivotal to the key reactions of NAD(P) biosynthesis are shared by almost all organisms, that is, NMN/NaMN adenylyltransferase (NMN/NaMNAT), NAD synthetase (NADS), and NAD kinase (NADK). They might serve as ideal broad spectrum antibiotic targets. Studies in M. tuberculosis have in part tested such hypothesis. Three regulatory factors NadR, NiaR, and NrtR, which regulate NAD biosynthesis, have been identified. M. tuberculosis NAD(P) metabolism and regulation thereof, potential drug targets and drug development are summarized in this paper.
Collapse
Affiliation(s)
- Jicai Bi
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | | | | |
Collapse
|
4
|
Rodionov DA, De Ingeniis J, Mancini C, Cimadamore F, Zhang H, Osterman AL, Raffaelli N. Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators. Nucleic Acids Res 2008; 36:2047-59. [PMID: 18276643 PMCID: PMC2330246 DOI: 10.1093/nar/gkn047] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A novel family of transcription factors responsible for regulation of various aspects of NAD synthesis in a broad range of bacteria was identified by comparative genomics approach. Regulators of this family (here termed NrtR for Nudix-related transcriptional regulators), currently annotated as ADP-ribose pyrophosphatases from the Nudix family, are composed of an N-terminal Nudix-like effector domain and a C-terminal DNA-binding HTH-like domain. NrtR regulons were reconstructed in diverse bacterial genomes by identification and comparative analysis of NrtR-binding sites upstream of genes involved in NAD biosynthetic pathways. The candidate NrtR-binding DNA motifs showed significant variability between microbial lineages, although the common consensus sequence could be traced for most of them. Bioinformatics predictions were experimentally validated by gel mobility shift assays for two NrtR family representatives. ADP-ribose, the product of glycohydrolytic cleavage of NAD, was found to suppress the in vitro binding of NrtR proteins to their DNA target sites. In addition to a major role in the direct regulation of NAD homeostasis, some members of NrtR family appear to have been recruited for the regulation of other metabolic pathways, including sugar pentoses utilization and biogenesis of phosphoribosyl pyrophosphate. This work and the accompanying study of NiaR regulon demonstrate significant variability of regulatory strategies for control of NAD metabolic pathway in bacteria.
Collapse
|
5
|
Osterman AL, Begley TP. A subsystems-based approach to the identification of drug targets in bacterial pathogens. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2007; 64:131, 133-70. [PMID: 17195474 DOI: 10.1007/978-3-7643-7567-6_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
This chapter describes a three-stage approach to target identification based upon subsystem analysis. Subsystems analysis focuses on related metabolic pathways as a unit and is a biochemically-informed approach to target selection. The process involves three stages of analysis; the first stage, selection of the target subsystem, is guided by information about its essentiality and on the predicted vulnerability of the targeted pathway or enzyme to inhibition. The second stage involves analysis of the target subsystem by means of comparative genomics, including genome context analysis and metabolic reconstruction. The third stage evaluates the selection of the specific target genes within the subsystem by target prioritization and validation. The whole process allows for a careful consideration of spectrum, drugability, biological rationale and the metabolic role of the specific target within the context of an integrated circuit within a specific metabolic pathway.
Collapse
Affiliation(s)
- Andrei L Osterman
- Burnham Institute for Medical Research, Infectious and Inflammatory Disease Center, La Jolla, California, USA.
| | | |
Collapse
|
6
|
Gerlach G, Reidl J. NAD+ utilization in Pasteurellaceae: simplification of a complex pathway. J Bacteriol 2006; 188:6719-27. [PMID: 16980474 PMCID: PMC1595515 DOI: 10.1128/jb.00432-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Gabriele Gerlach
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Josef Schneider Str. 2, E1, 97080 Würzburg, Germany
| | | |
Collapse
|
7
|
Grose JH, Bergthorsson U, Roth JR. Regulation of NAD synthesis by the trifunctional NadR protein of Salmonella enterica. J Bacteriol 2005; 187:2774-82. [PMID: 15805524 PMCID: PMC1070365 DOI: 10.1128/jb.187.8.2774-2782.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The three activities of NadR were demonstrated in purified protein and assigned to separate domains by missense mutations. The N-terminal domain represses transcription of genes for NAD synthesis and salvage. The C-terminal domain has nicotinamide ribose kinase (NmR-K; EC 2.7.1.22) activity, which is essential for assimilation of NmR, converting it internally to nicotinamide mononucleotide (NMN). The central domain has a weak adenylyltransferase (NMN-AT; EC 2.7.7.1) activity that converts NMN directly to NAD but is physiologically irrelevant. This central domain mediates regulatory effects of NAD on all NadR activities. In the absence of effectors, pure NadR protein binds operator DNA (the default state) and is released by ATP (expected to be present in vivo). NAD allows NadR to bind DNA in the presence of ATP and causes repression in vivo. A superrepressor mutation alters an ATP-binding residue in the central (NMN-AT) domain. This eliminates NMN-AT activity and places the enzyme in its default (DNA binding) state. The mutant protein shows full NmR kinase activity that is 10-fold more sensitive to NAD inhibition than the wild type. It is proposed that NAD and the superrepressor mutation exert their effects by preventing ATP from binding to the central domain.
Collapse
Affiliation(s)
- Julianne H Grose
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
8
|
Kurnasov OV, Polanuyer BM, Ananta S, Sloutsky R, Tam A, Gerdes SY, Osterman AL. Ribosylnicotinamide kinase domain of NadR protein: identification and implications in NAD biosynthesis. J Bacteriol 2002; 184:6906-17. [PMID: 12446641 PMCID: PMC135457 DOI: 10.1128/jb.184.24.6906-6917.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NAD is an indispensable redox cofactor in all organisms. Most of the genes required for NAD biosynthesis in various species are known. Ribosylnicotinamide kinase (RNK) was among the few unknown (missing) genes involved with NAD salvage and recycling pathways. Using a comparative genome analysis involving reconstruction of NAD metabolism from genomic data, we predicted and experimentally verified that bacterial RNK is encoded within the 3' region of the nadR gene. Based on these results and previous data, the full-size multifunctional NadR protein (as in Escherichia coli) is composed of (i) an N-terminal DNA-binding domain involved in the transcriptional regulation of NAD biosynthesis, (ii) a central nicotinamide mononucleotide adenylyltransferase (NMNAT) domain, and (iii) a C-terminal RNK domain. The RNK and NMNAT enzymatic activities of recombinant NadR proteins from Salmonella enterica serovar Typhimurium and Haemophilus influenzae were quantitatively characterized. We propose a model for the complete salvage pathway from exogenous N-ribosylnicotinamide to NAD which involves the concerted action of the PnuC transporter and NRK, followed by the NMNAT activity of the NadR protein. Both the pnuC and nadR genes were proven to be essential for the growth and survival of H. influenzae, thus implicating them as potential narrow-spectrum drug targets.
Collapse
|
9
|
Kemmer G, Reilly TJ, Schmidt-Brauns J, Zlotnik GW, Green BA, Fiske MJ, Herbert M, Kraiss A, Schlör S, Smith A, Reidl J. NadN and e (P4) are essential for utilization of NAD and nicotinamide mononucleotide but not nicotinamide riboside in Haemophilus influenzae. J Bacteriol 2001; 183:3974-81. [PMID: 11395461 PMCID: PMC95280 DOI: 10.1128/jb.183.13.3974-3981.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae has an absolute requirement for NAD (factor V) because it lacks almost all the biosynthetic enzymes necessary for the de novo synthesis of that cofactor. Factor V can be provided as either nicotinamide adenosine dinucleotide (NAD), nicotinamide mononucleotide (NMN), or nicotinamide riboside (NR) in vitro, but little is known about the source or the mechanism of uptake of these substrates in vivo. As shown by us earlier, at least two gene products are involved in the uptake of NAD, the outer membrane lipoprotein e (P4), which has phosphatase activity and is encoded by hel, and a periplasmic NAD nucleotidase, encoded by nadN. It has also been observed that the latter gene product is essential for H. influenzae growth on media supplemented with NAD. In this report, we describe the functions and substrates of these two proteins as they act together in an NAD utilization pathway. Data are provided which indicate that NadN harbors not only NAD pyrophosphatase but also NMN 5'-nucleotidase activity. The e (P4) protein is also shown to have NMN 5'-nucleotidase activity, recognizing NMN as a substrate and releasing NR as its product. Insertion mutants of nadN or deletion and site-directed mutants of hel had attenuated growth and a reduced uptake phenotype when NMN served as substrate. A hel and nadN double mutant was only able to grow in the presence of NR, whereas no uptake of NMN was observed.
Collapse
Affiliation(s)
- G Kemmer
- Zentrum für Infektionsforschung, Universität Würzburg, 97070 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Raffaelli N, Lorenzi T, Mariani PL, Emanuelli M, Amici A, Ruggieri S, Magni G. The Escherichia coli NadR regulator is endowed with nicotinamide mononucleotide adenylyltransferase activity. J Bacteriol 1999; 181:5509-11. [PMID: 10464228 PMCID: PMC94063 DOI: 10.1128/jb.181.17.5509-5511.1999] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first identification and characterization of a catalytic activity associated with NadR protein is reported. A computer-aided search for sequence similarity revealed the presence in NadR of a 29-residue region highly conserved among known nicotinamide mononucleotide adenylyltransferases. The Escherichia coli nadR gene was cloned into a T7-based vector and overexpressed. In addition to functionally specific DNA binding properties, the homogeneous recombinant protein catalyzes NAD synthesis from nicotinamide mononucleotide and ATP.
Collapse
Affiliation(s)
- N Raffaelli
- Istituto di Biochimica, Facoltà di Medicina, Università di Ancona, 60131 Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Magni G, Amici A, Emanuelli M, Raffaelli N, Ruggieri S. Enzymology of NAD+ synthesis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1999; 73:135-82, xi. [PMID: 10218108 DOI: 10.1002/9780470123195.ch5] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Beyond its role as an essential coenzyme in numerous oxidoreductase reactions as well as respiration, there is growing recognition that NAD+ fulfills many other vital regulatory functions both as a substrate and as an allosteric effector. This review describes the enzymes involved in pyridine nucleotide metabolism, starting with a detailed consideration of the anaerobic and aerobic pathways leading to quinolinate, a key precursor of NAD+. Conversion of quinolinate and 5'-phosphoribosyl-1'-pyrophosphate to NAD+ and diphosphate by phosphoribosyltransferase is then explored before proceeding to a discussion the molecular and kinetic properties of NMN adenylytransferase. The salient features of NAD+ synthetase as well as NAD+ kinase are likewise presented. The remainder of the review encompasses the metabolic steps devoted to (a) the salvaging of various niacin derivatives, including the roles played by NAD+ and NADH pyrophosphatases, nicotinamide deamidase, and NMN deamidase, and (b) utilization of niacins by nicotinate phosphoribosyltransferase and nicotinamide phosphoribosyltransferase.
Collapse
Affiliation(s)
- G Magni
- Istituto di Biochimica, Facoltà di Medicina, Università di Ancona, Italy
| | | | | | | | | |
Collapse
|
12
|
Bork P, Holm L, Koonin EV, Sander C. The cytidylyltransferase superfamily: identification of the nucleotide-binding site and fold prediction. Proteins 1995; 22:259-66. [PMID: 7479698 DOI: 10.1002/prot.340220306] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The crystal structure of glycerol-3-phosphate cytidylyltransferase from B. subtilis (TagD) is about to be solved. Here, we report a testable structure prediction based on the identification by sequence analysis of a superfamily of functionally diverse but structurally similar nucleotide-binding enzymes. We predict that TagD is a member of this family. The most conserved region in this superfamily resembles the ATP-binding HiGH motif of class I aminoacyl-tRNA synthetases. The predicted secondary structure of cytidylyltransferase and its homologues is compatible with the alpha/beta topography of the class I aminoacyl-tRNA synthetases. The hypothesis of similarity of fold is strengthened by sequence-structure alignment and 3D model building using the known structure of tyrosyl tRNA synthetase as template. The proposed 3D model of TagD is plausible both structurally, with a well packed hydrophobic core, and functionally, as the most conserved residues cluster around the putative nucleotide binding site. If correct, the model would imply a very ancient evolutionary link between class I tRNA synthetases and the novel cytidylyltransferase superfamily.
Collapse
Affiliation(s)
- P Bork
- EMBL, Heidelberg, Germany
| | | | | | | |
Collapse
|
13
|
Burland V, Plunkett G, Sofia HJ, Daniels DL, Blattner FR. Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res 1995; 23:2105-19. [PMID: 7610040 PMCID: PMC306997 DOI: 10.1093/nar/23.12.2105] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The 338.5 kb of the Escherichia coli genome described here together with previously described segments bring the total of contiguous finished sequence of this genome to > 1 Mb. Of 319 open reading frames (ORFs) found in this 338.5 kb segment, 147 (46%) are potential new genes. The positions of several genes which had been previously located here by mapping or partial sequencing have been confirmed. Several ORFs have functions suggested by similarities to other characterised genes but cannot be assigned with certainty. Fifteen of the ORFs of unknown function had been previously sequenced. Eight transfer RNAs are encoded in the region and there are two grey holes in which no features were found. The attachment site for phage P4 and three insertion sequences were located. The region was also analysed for chi sites, bend sites, REP elements and other repeats. A computer search identified potential promoters and tentative transcription units were assigned. The occurrence of the rare tetramer CTAG was analysed in 1.6 Mb of contiguous E.coli sequence. Hypotheses addressing the rarity and distribution of CTAG are discussed.
Collapse
Affiliation(s)
- V Burland
- Laboratory of Genetics, University of Wisconsin, Madison 53706, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
We present edition VIII of the genetic map of Salmonella typhimurium LT2. We list a total of 1,159 genes, 1,080 of which have been located on the circular chromosome and 29 of which are on pSLT, the 90-kb plasmid usually found in LT2 lines. The remaining 50 genes are not yet mapped. The coordinate system used in this edition is neither minutes of transfer time in conjugation crosses nor units representing "phage lengths" of DNA of the transducing phage P22, as used in earlier editions, but centisomes and kilobases based on physical analysis of the lengths of DNA segments between genes. Some of these lengths have been determined by digestion of DNA by rare-cutting endonucleases and separation of fragments by pulsed-field gel electrophoresis. Other lengths have been determined by analysis of DNA sequences in GenBank. We have constructed StySeq1, which incorporates all Salmonella DNA sequence data known to us. StySeq1 comprises over 548 kb of nonredundant chromosomal genomic sequences, representing 11.4% of the chromosome, which is estimated to be just over 4,800 kb in length. Most of these sequences were assigned locations on the chromosome, in some cases by analogy with mapped Escherichia coli sequences.
Collapse
Affiliation(s)
- K E Sanderson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
15
|
DeVries CA, Hassett DJ, Flynn JL, Ohman DE. Genetic linkage in Pseudomonas aeruginosa of algT and nadB: mutation in nadB does not affect NAD biosynthesis or alginate production. Gene X 1995; 156:63-7. [PMID: 7737518 DOI: 10.1016/0378-1119(95)00028-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The 68-min region of the chromosome of Pseudomonas aeruginosa (Pa) contains the gene algT, encoding a putative alternate sigma factor similar to sigma E in Escherichia coli, that is required for the expression of several genes in the alginate biosynthetic regulon. Sequences immediately upstream from algT were found to contain a divergently expressed open reading frame encoding a 60-kDa protein with 64 and 36% identity to the nadB gene products of E. coli and Bacillus subtilis, respectively. The nadB gene encodes L-aspartate oxidase and has been shown in several bacteria to be essential for de novo nicotinamide-adenine dinucleotide (NAD) biosynthesis. Pa nadB complemented the growth requirement for nicotinic acid in a nadB mutant strain of E. coli, suggesting that this gene encodes a functional homologue of L-aspartate oxidase. A nadB::Tn501 mutant was constructed by gene replacement in the alginate-producing strain, Pa FRD. This NadB- mutant still produced alginate and appeared normal with respect to the regulation of alginate synthesis. Interestingly, the NadB- mutant did not have an auxotrophic phenotype for nicotinic acid, indicating that this nadB was not essential for NAD biosynthesis in Pa. These results suggest the possibility that Pa has an alternate mechanism for de novo NAD biosynthesis.
Collapse
Affiliation(s)
- C A DeVries
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | | | |
Collapse
|
16
|
Foster JW, Penfound T. The bifunctional NadR regulator of Salmonella typhimurium: location of regions involved with DNA binding, nucleotide transport and intramolecular communication. FEMS Microbiol Lett 1993; 112:179-83. [PMID: 8405960 DOI: 10.1111/j.1574-6968.1993.tb06445.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
NadR is the repressor protein that controls the expression of genes for NAD synthesis. It is also believed to be involved in nucleotide transport. Point mutations conferring different phenotypes were localized to six different regions within the nadR gene. That mutations affecting repression and transport all mapped within nadR confirms the bifunctional model for NadR action. The clustering of these mutations and 2 fusions revealed that those affecting repression lie in the amino terminal while those affecting transport occur in the carboxy-terminal. Mutations resulting in superrepression occurred within a central region of NadR that probably senses NAD concentrations. This region is predicted to direct the transition between NadR transport and repressor conformations.
Collapse
Affiliation(s)
- J W Foster
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile 36688
| | | |
Collapse
|
17
|
Neuwald AF, Berg DE, Stauffer GV. Mutational analysis of the Escherichia coli serB promoter region reveals transcriptional linkage to a downstream gene. Gene 1992; 120:1-9. [PMID: 1327967 DOI: 10.1016/0378-1119(92)90002-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Genes encoding proteins with unrelated functions can be cotranscribed, and this may be used by cells to coordinate different metabolic pathways during growth. We describe a gene, designated sms, which is downstream from the serine biosynthetic gene serB in Escherichia coli but does not appear to be involved in amino acid (aa) biosynthesis. The sms gene is 1380 bp long. The Sms product migrates at 55 kDa on sodium dodecyl sulfate(SDS)-polyacrylamide gels and has a M(r) of 49472 (460 aa residues) calculated from the nucleotide sequence. The deduced Sms aa sequence shares regions of similarity with two ATP-dependent proteases, Lon and RecA, and contains two motifs: a C-x(2)-C-x(n)-C-x(2)-C motif, which is found in some nucleic acid binding proteins, and an ATP/GTP binding site motif. Insertional inactivation of sms led to increased sensitivity to the alkylating agent methylmethane sulfonate, but not to a requirement for serine or other metabolites. Several promoter mutations were isolated and characterized, which suggest that serB has a typical promoter recognized by sigma 70. After the serB coding sequence there is a 48-bp region with no obvious promoter sequence preceding the sms translation start codon. Analyses using sms'-lacZ fusions cloned downstream from wild-type and mutant serB promoters showed that sms is cotranscribed with serB.
Collapse
Affiliation(s)
- A F Neuwald
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
18
|
Somerville R. The Trp repressor, a ligand-activated regulatory protein. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 42:1-38. [PMID: 1574585 DOI: 10.1016/s0079-6603(08)60572-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- R Somerville
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
19
|
Hughes KT, Roth JR, Olivera BM. A genetic characterization of the nadC gene of Salmonella typhimurium. Genetics 1991; 127:657-70. [PMID: 2029967 PMCID: PMC1204394 DOI: 10.1093/genetics/127.4.657] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The nadC gene of Salmonella encodes the pyridine biosynthetic enzyme PRPP-quinolinate phosphoribosyltransferase. Using a combination of genetic techniques, a deletion map for the Salmonella nadC gene has been generated which includes over 100 point mutants and 18 deletion intervals. The nadC alleles obtained by hydroxylamine mutagenesis include those suppressed by either amber, ochre, or UGA nonsense suppressors as well as alleles suppressed by the missense suppressor, sumA. Deletions were obtained by three separate protocols including spontaneous selection for loss of the nearby aroP gene, recombination between aroP::MudA and nadC::MudA insertion alleles, and selection for spontaneous loss of tetracycline resistance in a nearby guaC::Tn10dTc insertion mutant allele. The nadC mutants comprise one complementation group and the nadC+ allele is dominant to simple, nadC auxotrophic mutant alleles. Intragenic complementation of two nadC alleles, nadC493 and nadC494, mapping to deletion intervals 17 and 18, respectively, suggests that nadC encodes a multimeric enzyme. Both nadC and the nearby aroP locus are transcribed counterclockwise on the standard genetic map of Salmonella, in opposite orientation to the direction of chromosome replication.
Collapse
Affiliation(s)
- K T Hughes
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
20
|
Activity of the nicotinamide mononucleotide transport system is regulated in Salmonella typhimurium. J Bacteriol 1991; 173:1311-20. [PMID: 1991724 PMCID: PMC207256 DOI: 10.1128/jb.173.3.1311-1320.1991] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transport of nicotinamide mononucleotide (NMN) requires two functions, NadI(T) and PnuC. The PnuC protein is membrane associated, as judged by isolation of active TnphoA gene fusions and demonstration that the fusion protein is membrane associated. The PnuC function appears to be the major component of the transport system, since mutant alleles of the pnuC gene permit NMN transport in the absence of NadI(T) function. We present evidence that the activity of the NMN transport system varies in response to internal pyridine levels (presumably NAD). This control mechanism requires NadI(T) function, which is provided by a bifunctional protein encoded by the nadI gene (called nadR by Foster and co-workers [J. W. Foster, Y. K. Park, T. Fenger, and M. P. Spector, J. Bacteriol. 172:4187-4196]). The nadI protein regulates transcription of the nadA and nadB biosynthetic genes and modulates activity of the NMN permease; both regulatory activities respond to the internal pyridine nucleotide level.
Collapse
|