1
|
Mathematical modelling of clostridial acetone-butanol-ethanol fermentation. Appl Microbiol Biotechnol 2017; 101:2251-2271. [PMID: 28210797 PMCID: PMC5320022 DOI: 10.1007/s00253-017-8137-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/14/2017] [Accepted: 01/16/2017] [Indexed: 12/24/2022]
Abstract
Clostridial acetone-butanol-ethanol (ABE) fermentation features a remarkable shift in the cellular metabolic activity from acid formation, acidogenesis, to the production of industrial-relevant solvents, solventogensis. In recent decades, mathematical models have been employed to elucidate the complex interlinked regulation and conditions that determine these two distinct metabolic states and govern the transition between them. In this review, we discuss these models with a focus on the mechanisms controlling intra- and extracellular changes between acidogenesis and solventogenesis. In particular, we critically evaluate underlying model assumptions and predictions in the light of current experimental knowledge. Towards this end, we briefly introduce key ideas and assumptions applied in the discussed modelling approaches, but waive a comprehensive mathematical presentation. We distinguish between structural and dynamical models, which will be discussed in their chronological order to illustrate how new biological information facilitates the ‘evolution’ of mathematical models. Mathematical models and their analysis have significantly contributed to our knowledge of ABE fermentation and the underlying regulatory network which spans all levels of biological organization. However, the ties between the different levels of cellular regulation are not well understood. Furthermore, contradictory experimental and theoretical results challenge our current notion of ABE metabolic network structure. Thus, clostridial ABE fermentation still poses theoretical as well as experimental challenges which are best approached in close collaboration between modellers and experimentalists.
Collapse
|
2
|
Activity of Lactobacillus brevis Alcohol Dehydrogenase on Primary and Secondary Alcohol Biofuel Precursors. FERMENTATION-BASEL 2015. [DOI: 10.3390/fermentation1010024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Hari TPA, Labana P, Boileau M, Boddy CN. An evolutionary model encompassing substrate specificity and reactivity of type I polyketide synthase thioesterases. Chembiochem 2014; 15:2656-61. [PMID: 25354333 DOI: 10.1002/cbic.201402475] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Indexed: 11/10/2022]
Abstract
Bacterial polyketides are a rich source of chemical diversity and pharmaceutical agents. Understanding the biochemical basis for their biosynthesis and the evolutionary driving force leading to this diversity is essential to take advantage of the enzymes as biocatalysts and to access new chemical diversity for drug discovery. Biochemical characterization of the thioesterase (TE) responsible for 6-deoxyerythronolide macrocyclization shows that a small, evolutionarily accessible change to the substrate can increase the chemical diversity of products, including macrodiolide formation. We propose an evolutionary model in which TEs are by nature non-selective for the type of chemistry they catalyze, producing a range of metabolites. As one metabolite becomes essential for improving fitness in a particular environment, the TE evolves to enrich for that corresponding reactivity. This hypothesis is supported by our phylogenetic analysis, showing convergent evolution of macrodiolide-forming TEs.
Collapse
Affiliation(s)
- Taylor P A Hari
- Departments of Chemistry and Biology, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1N 6N5 (Canada)
| | | | | | | |
Collapse
|
4
|
Coenzyme A-transferase-independent butyrate re-assimilation in Clostridium acetobutylicum-evidence from a mathematical model. Appl Microbiol Biotechnol 2014; 98:9059-72. [PMID: 25149445 DOI: 10.1007/s00253-014-5987-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/07/2023]
Abstract
The hetero-dimeric CoA-transferase CtfA/B is believed to be crucial for the metabolic transition from acidogenesis to solventogenesis in Clostridium acetobutylicum as part of the industrial-relevant acetone-butanol-ethanol (ABE) fermentation. Here, the enzyme is assumed to mediate re-assimilation of acetate and butyrate during a pH-induced metabolic shift and to faciliate the first step of acetone formation from acetoacetyl-CoA. However, recent investigations using phosphate-limited continuous cultures have questioned this common dogma. To address the emerging experimental discrepancies, we investigated the mutant strain Cac-ctfA398s::CT using chemostat cultures. As a consequence of this mutation, the cells are unable to express functional ctfA and are thus lacking CoA-transferase activity. A mathematical model of the pH-induced metabolic shift, which was recently developed for the wild type, is used to analyse the observed behaviour of the mutant strain with a focus on re-assimilation activities for the two produced acids. Our theoretical analysis reveals that the ctfA mutant still re-assimilates butyrate, but not acetate. Based upon this finding, we conclude that C. acetobutylicum possesses a CoA-tranferase-independent butyrate uptake mechanism that is activated by decreasing pH levels. Furthermore, we observe that butanol formation is not inhibited under our experimental conditions, as suggested by previous batch culture experiments. In concordance with recent batch experiments, acetone formation is abolished in chemostat cultures using the ctfa mutant.
Collapse
|
5
|
Comba González N, Vallejo AF, Sánchez-Gómez M, Montoya D. Protein identification in two phases of 1,3-propanediol production by proteomic analysis. J Proteomics 2013; 89:255-64. [PMID: 23811541 DOI: 10.1016/j.jprot.2013.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 05/04/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED Proteomic analysis by two-dimensional electrophoresis (2D)-mass spectrometry was used to identify differentially expressed proteins in the Clostridium sp. native strain (IBUN 158B) in two phases of the 1,3-propanediol (1,3-PD) production (lag phase and exponential growth phase). Intracellular protein fraction extraction conditions were standardised, as well as the 2D electrophoresis. Differences were found between both of the growth phases evaluated here. Thirty-two of the differentially expressed proteins were chosen to be identified by tandem mass spectrometry (MALDI TOF/TOF). The presence of four enzymes implicated in the 1,3-PD metabolic pathway was recorded: one from the reductive route (1,3-propanediol dehydrogenase) and three from the oxidative route (3-hydroxybutyryl-CoA dehydrogenase, NADPH-dependent butanol dehydrogenase and phosphate butyryl transferase). The following enzymes which have not been previously reported for Clostridium sp., were also identified: phosphoglycerate kinase, glucose 6-phosphate isomerase, deoxyribose phosphate aldolase, transketolase, cysteine synthetase, O-acetylhomoserine sulphhydrylase, glycyl-tRNA ligase, aspartate-β-semialdehyde dehydrogenase, inosine-5-monophosphate dehydrogenase, aconitate hydratase and the PrsA protein. The foregoing provides a novel contribution towards knowledge of the native strain for the purpose of designing genetic manipulation strategies to obtain strains with high production of 1,3-PD. BIOLOGICAL SIGNIFICANCE The article "Protein identification in two phases of 1,3-propanediol production by proteomic analysis" provides a novel contribution towards knowledge regarding the Colombian Clostridium sp. native strain (IBUN 158B) because this is a new approximation in comparative proteomics in two phases of the bacterial growth and 1,3-propanediol (1,3-PD) production conditions. The proteomic studies are very important to identify the enzymes that are expressed at different stages of production and therefore genes of interest in the genetic manipulation strategies; the results can be taken into account in future studies in metabolic engineering when optimising 1,3-PD production, in a cost-effective process having direct industrial applications.
Collapse
Affiliation(s)
- Natalia Comba González
- Bioprocesses and Bioprospecting Group, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | |
Collapse
|
6
|
Tan Y, Liu J, Liu Z, Li F. Characterization of two novel butanol dehydrogenases involved in butanol degradation in syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528. J Basic Microbiol 2013; 54:996-1004. [PMID: 23720212 DOI: 10.1002/jobm.201300046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/24/2013] [Indexed: 11/06/2022]
Abstract
Syngas utilizing bacterium Clostridium ljungdahlii DSM 13528 is a promising platform organism for a whole variety of different biofuels and biochemicals production from syngas. During syngas fermentation, C. ljungdahlii DSM 13528 could convert butanol into butyrate, which significantly reduces productivity of butanol. However, there has been no any enzyme involved in the degradation of butanol characterized in C. ljungdahlii DSM 13528. In this study two genes, CLJU_c24880 and CLJU_c39950, encoding putative butanol dehydrogenase (designated as BDH1 and BDH2) were identified in the genome of C. ljungdahlii DSM 13528 and qRT-PCR analysis showed the expression of bdh1 and bdh2 was significantly upregulated in the presence of 0.25% butanol. And the deduced amino acid sequence for BDH1 and BDH2 showed 69.85 and 68.04% identity with Clostridium acetobutylicum ADH1, respectively. Both BDH1 and BDH2 were oxygen-sensitive and preferred NADP(+) as cofactor and butanol as optimal substrate. The optimal temperature and pH for BDH1 were at 55 °C and pH 7.5 and specific activity was 18.07 ± 0.01 µmol min(-1) mg(-1) . BDH2 was a thermoactive dehydrogenase with maximum activity at 65 °C and at pH 7.0. The specific activity for BDH2 was 11.21 ± 0.02 µmol min(-1) mg(-1) . This study provided important information for understanding the molecular mechanism of butanol degradation and determining the targets for gene knockout to improve the productivity of butanol from syngas in C. ljungdahlii DSM 13528 in future.
Collapse
Affiliation(s)
- Yang Tan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | | | | | | |
Collapse
|
7
|
A shift in the dominant phenotype governs the pH-induced metabolic switch of Clostridium acetobutylicumin phosphate-limited continuous cultures. Appl Microbiol Biotechnol 2013; 97:6451-66. [DOI: 10.1007/s00253-013-4860-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 12/18/2022]
|
8
|
Millat T, Janssen H, Bahl H, Fischer RJ, Wolkenhauer O. Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum in continuous culture. Microb Biotechnol 2013; 6:526-39. [PMID: 23332010 PMCID: PMC3918155 DOI: 10.1111/1751-7915.12033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/10/2012] [Indexed: 11/30/2022] Open
Abstract
In a continuous culture under phosphate limitation the metabolism of Clostridium acetobutylicum depends on the external pH level. By comparing seven steady-state conditions between pH 5.7 and pH 4.5 we show that the switch from acidogenesis to solventogenesis occurs between pH 5.3 and pH 5.0 with an intermediate state at pH 5.1. Here, an integrative study is presented investigating how a changing external pH level affects the clostridial acetone–butanol–ethanol (ABE) fermentation pathway. This is of particular interest as the biotechnological production of n-butanol as biofuel has recently returned into the focus of industrial applications. One prerequisite is the furthering of the knowledge of the factors determining the solvent production and their integrative regulations. We have mathematically analysed the influence of pH-dependent specific enzyme activities of branch points of the metabolism on the product formation. This kinetic regulation was compared with transcriptomic regulation regarding gene transcription and the proteomic profile. Furthermore, both regulatory mechanisms were combined yielding a detailed projection of their individual and joint effects on the product formation. The resulting model represents an important platform for future developments of industrial butanol production based on C. acetobutylicum.
Collapse
Affiliation(s)
- Thomas Millat
- Department of Systems Biology & Bioinformatics, Institute of Computer Science, University of Rostock, University of Rostock, Ulmenstr. 69, 18051, Rostock, Germany.
| | | | | | | | | |
Collapse
|
9
|
Sivagnanam K, Raghavan VGS, Shah M, Hettich RL, Verberkmoes NC, Lefsrud MG. Shotgun proteomic monitoring of Clostridium acetobutylicum during stationary phase of butanol fermentation using xylose and comparison with the exponential phase. ACTA ACUST UNITED AC 2012; 39:949-55. [DOI: 10.1007/s10295-012-1094-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/18/2012] [Indexed: 11/25/2022]
Abstract
Abstract
Economically viable production of solvents through acetone–butanol–ethanol (ABE) fermentation requires a detailed understanding of Clostridium acetobutylicum. This study focuses on the proteomic profiling of C. acetobutylicum ATCC 824 from the stationary phase of ABE fermentation using xylose and compares with the exponential growth by shotgun proteomics approach. Comparative proteomic analysis revealed 22.9% of the C. acetobutylicum genome and 18.6% was found to be common in both exponential and stationary phases. The proteomic profile of C. acetobutylicum changed during the ABE fermentation such that 17 proteins were significantly differentially expressed between the two phases. Specifically, the expression of five proteins namely, CAC2873, CAP0164, CAP0165, CAC3298, and CAC1742 involved in the solvent production pathway were found to be significantly lower in the stationary phase compared to the exponential growth. Similarly, the expression of fucose isomerase (CAC2610), xylulose kinase (CAC2612), and a putative uncharacterized protein (CAC2611) involved in the xylose utilization pathway were also significantly lower in the stationary phase. These findings provide an insight into the metabolic behavior of C. acetobutylicum between different phases of ABE fermentation using xylose.
Collapse
Affiliation(s)
- Kumaran Sivagnanam
- grid.14709.3b 0000000419368649 Department of Bioresource Engineering, Macdonald Campus McGill University Montreal QC Canada
| | - Vijaya G S Raghavan
- grid.14709.3b 0000000419368649 Department of Bioresource Engineering, Macdonald Campus McGill University Montreal QC Canada
| | - Manesh Shah
- grid.135519.a 0000000404462659 Chemical and Life Sciences Divisions Oak Ridge National Laboratory Oak Ridge TN USA
| | - Robert L Hettich
- grid.135519.a 0000000404462659 Chemical and Life Sciences Divisions Oak Ridge National Laboratory Oak Ridge TN USA
| | - Nathan C Verberkmoes
- grid.135519.a 0000000404462659 Chemical and Life Sciences Divisions Oak Ridge National Laboratory Oak Ridge TN USA
| | - Mark G Lefsrud
- grid.14709.3b 0000000419368649 Department of Bioresource Engineering, Macdonald Campus McGill University Montreal QC Canada
| |
Collapse
|
10
|
Huang H, Liu H, Gan YR. Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv 2010; 28:651-7. [DOI: 10.1016/j.biotechadv.2010.05.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Genome sequence of the solvent-producing bacterium Clostridium carboxidivorans strain P7T. J Bacteriol 2010; 192:5554-5. [PMID: 20729368 DOI: 10.1128/jb.00877-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium carboxidivorans strain P7(T) is a strictly anaerobic acetogenic bacterium that produces acetate, ethanol, butanol, and butyrate. The C. carboxidivorans genome contains all the genes for the carbonyl branch of the Wood-Ljungdahl pathway for CO(2) fixation, and it encodes enzymes for conversion of acetyl coenzyme A into butanol and butyrate.
Collapse
|
12
|
Dellomonaco C, Rivera C, Campbell P, Gonzalez R. Engineered respiro-fermentative metabolism for the production of biofuels and biochemicals from fatty acid-rich feedstocks. Appl Environ Microbiol 2010; 76:5067-78. [PMID: 20525863 PMCID: PMC2916504 DOI: 10.1128/aem.00046-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/25/2010] [Indexed: 01/08/2023] Open
Abstract
Although lignocellulosic sugars have been proposed as the primary feedstock for the biological production of renewable fuels and chemicals, the availability of fatty acid (FA)-rich feedstocks and recent progress in the development of oil-accumulating organisms make FAs an attractive alternative. In addition to their abundance, the metabolism of FAs is very efficient and could support product yields significantly higher than those obtained from lignocellulosic sugars. However, FAs are metabolized only under respiratory conditions, a metabolic mode that does not support the synthesis of fermentation products. In the work reported here we engineered several native and heterologous fermentative pathways to function in Escherichia coli under aerobic conditions, thus creating a respiro-fermentative metabolic mode that enables the efficient synthesis of fuels and chemicals from FAs. Representative biofuels (ethanol and butanol) and biochemicals (acetate, acetone, isopropanol, succinate, and propionate) were chosen as target products to illustrate the feasibility of the proposed platform. The yields of ethanol, acetate, and acetone in the engineered strains exceeded those reported in the literature for their production from sugars, and in the cases of ethanol and acetate they also surpassed the maximum theoretical values that can be achieved from lignocellulosic sugars. Butanol was produced at yields and titers that were between 2- and 3-fold higher than those reported for its production from sugars in previously engineered microorganisms. Moreover, our work demonstrates production of propionate, a compound previously thought to be synthesized only by propionibacteria, in E. coli. Finally, the synthesis of isopropanol and succinate was also demonstrated. The work reported here represents the first effort toward engineering microorganisms for the conversion of FAs to the aforementioned products.
Collapse
Affiliation(s)
- Clementina Dellomonaco
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005, Glycos Biotechnologies Inc., 711 Leverkuhn St., Houston, Texas 77007, Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005
| | - Carlos Rivera
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005, Glycos Biotechnologies Inc., 711 Leverkuhn St., Houston, Texas 77007, Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005
| | - Paul Campbell
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005, Glycos Biotechnologies Inc., 711 Leverkuhn St., Houston, Texas 77007, Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005, Glycos Biotechnologies Inc., 711 Leverkuhn St., Houston, Texas 77007, Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005
| |
Collapse
|
13
|
Metabolic pathways of clostridia for producing butanol. Biotechnol Adv 2009; 27:764-781. [DOI: 10.1016/j.biotechadv.2009.06.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 11/18/2022]
|
14
|
Characterization of multiple promoters and transcript stability in the sacB–sacC gene cluster in Zymomonas mobilis. Arch Microbiol 2009; 191:529-41. [DOI: 10.1007/s00203-009-0479-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 04/07/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
|
15
|
Abstract
Clostridium acetobutylicum is an anaerobic, spore-forming bacterium with the ability to ferment starch and sugars into solvents. In the past, it has been used for industrial production of acetone and butanol, until cheap crude oil rendered petrochemical synthesis more economically feasible. Both economic (price of crude oil) and environmental aspects (carbon dioxide emissions) have caused the pendulum to swing back again. Molecular biology has allowed a detailed understanding of genes and enzymes, required for solventogenesis. Thus, construction of strains with improved fermentation ability is now possible. Advances in continuous culture technology and improved downstream processing also add to economic advantages of a new biotechnological process. Two major companies have already committed themselves to biobutanol production as a biofuel additive. Thus, butanol fermentation is on the rise again.
Collapse
Affiliation(s)
- Peter Dürre
- Institut für Mikrobiologie und Biotechnologie, Universität Ulm, 89069 Ulm, Germany.
| |
Collapse
|
16
|
Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 2007; 77:1305-16. [PMID: 18060402 DOI: 10.1007/s00253-007-1257-5] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/24/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
Abstract
A recombinant butanol pathway composed of Clostridium acetobutylicum ATCC 824 genes, thiL, hbd, crt, bcd-etfB-etfA, and adhe1 (or adhe) coding for acetyl-CoA acetyltransferase (THL), beta-hydroxybutyryl-CoA dehydrogenase (HBD), 3-hydroxybutyryl-CoA dehydratase (CRT), butyryl-CoA dehydrogenase (BCD), butyraldehyde dehydrogenase (BYDH), and butanol dehydrogenase (BDH), under the tac promoter control was constructed and was introduced into Escherichia coli. The functional expression of these six enzymes was proved by demonstrating the corresponding enzyme activities using spectrophotometric, high performance liquid chromatography and gas chromatography analyses. The BCD activity, which was not detected in E. coli previously, was shown in the present study by performing the procedure from cell extract preparation to activity measurement under anaerobic condition. Moreover, the etfA and etfB co-expression was found to be essential for the BCD activity. In the case of BYDH activity, the adhe gene product was shown to have higher specificity towards butyryl-CoA compared to the adhe1 product. Butanol production from glucose was achieved by the highly concentrated cells of the butanologenic E. coli strains, BUT1 with adhe1 and BUT2 with adhe, under anaerobic condition, and the BUT1 and BUT2 strains were shown to produce 4 and 16-mM butanol with 6- and 1-mM butyrate as a byproduct, respectively. This study reports the novel butanol production by an aerobically pregrown microorganism possessing the genes of a strict anaerobe, Clostridium acetobutylicum.
Collapse
|
17
|
Thormann K, Feustel L, Lorenz K, Nakotte S, Dürre P. Control of butanol formation in Clostridium acetobutylicum by transcriptional activation. J Bacteriol 2002; 184:1966-73. [PMID: 11889105 PMCID: PMC134926 DOI: 10.1128/jb.184.7.1966-1973.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sol operon of Clostridium acetobutylicum is the essential transcription unit for formation of the solvents butanol and acetone. The recent proposal that transcriptional regulation of this operon is controlled by the repressor Orf5/SolR (R. V. Nair, E. M. Green, D. E. Watson, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol. 181:319-330, 1999) was found to be incorrect. Instead, regulation depends on activation, most probably by the multivalent transcription factor Spo0A. The operon is transcribed from a single promoter. A second signal identified in primer extension studies results from mRNA processing and can be observed only in the natural host, not in a heterologous host. The first structural gene in the operon (adhE, encoding a bifunctional butyraldehyde/butanol dehydrogenase) is translated into two different proteins, the mature AdhE enzyme and the separate butanol dehydrogenase domain. The promoter of the sol operon is preceded by three imperfect repeats and a putative Spo0A-binding motif, which partially overlaps with repeat 3 (R3). Reporter gene analysis performed with the lacZ gene of Thermoanaerobacterium thermosulfurigenes and targeted mutations of the regulatory region revealed that the putative Spo0A-binding motif, R3, and R1 are essential for control. The data obtained also indicate that an additional activator protein is involved.
Collapse
Affiliation(s)
- Kai Thormann
- Mikrobiologie und Biotechnologie, Universität Ulm, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- D Li
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
19
|
Nair RV, Green EM, Watson DE, Bennett GN, Papoutsakis ET. Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J Bacteriol 1999; 181:319-30. [PMID: 9864345 PMCID: PMC103564 DOI: 10.1128/jb.181.1.319-330.1999] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene (orf1, now designated solR) previously identified upstream of the aldehyde/alcohol dehydrogenase gene aad (R. V. Nair, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol. 176:871-885, 1994) was found to encode a repressor of the sol locus (aad, ctfA, ctfB and adc) genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824. Primer extension analysis identified a transcriptional start site 35 bp upstream of the solR start codon. Amino acid comparisons of SolR identified a potential helix-turn-helix DNA-binding motif in the C-terminal half towards the center of the protein, suggesting a regulatory role. Overexpression of SolR in strain ATCC 824(pCO1) resulted in a solvent-negative phenotype owing to its deleterious effect on the transcription of the sol locus genes. Inactivation of solR in C. acetobutylicum via homologous recombination yielded mutants B and H (ATCC 824 solR::pO1X) which exhibited deregulated solvent production characterized by increased flux towards butanol and acetone formation, earlier induction of aad, lower overall acid production, markedly improved yields of solvents on glucose, a prolonged solvent production phase, and increased biomass accumulation compared to those of the wild-type strain.
Collapse
Affiliation(s)
- R V Nair
- Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
The solvent-forming clostridia have attracted interest because of their ability to convert a range of carbohydrates to end-products such as acetone, butanol and ethanol. Polymeric substrates such as cellulose, hemicellulose and starch are degraded by extracellular enzymes. The majority of cellulolytic clostridia, typified by Clostridium thermocellum, produce a multi-enzyme cellulase complex in which the organization of components is critical for activity against the crystalline substrate. A variety of enzymes involved in degradation of hemicellulose and starch have been identified in different strains. The products of degradation, and other soluble substrates, are accumulated via membrane-bound transport systems which are generally poorly characterized. It is clear, however, that the phosphoenolpyruvate-dependent phosphotransferase system (PTS) plays a major role in solute uptake in several species. Accumulated substrates are converted by intracellular enzymes to end-products characteristic of the organism, with production of ATP to support growth. The metabolic pathways have been described, but understanding of mechanisms of regulation of metabolism is incomplete. Synthesis of extracellular enzymes and membrane-bound transport systems is commonly subject to catabolite repression in the presence of a readily metabolized source of carbon and energy. While many genes encoding cellulases, xylanases and amylases have been cloned and sequenced, little is known of control of their expression. Although the mechanism of catabolite repression in clostridia is not understood, some recent findings implicate a role for the PTS as in other low G-C Gram-positive bacteria. Emphasis has been placed on describing the mechanisms underlying the switch of C. acetobutylicum fermentations from acidogenic to solventogenic metabolism at the end of the growth phase. Factors involved include a lowered pH and accumulation of undissociated butyric acid, intracellular concentration of ATP and reduced pyridine nucleotides, nutrient limitation, and the interplay between pathways of carbon and electron flow. Genes encoding enzymes of solvent pathways have been cloned and sequenced, and their expression correlated with the pattern of end-product formation in fermentations. There is evidence that the initiation of solvent formation may be subject to control mechanisms similar to other stationary-phase phenomena, including sporulation. The application of recently developed techniques for genetic manipulation of the bacterium is improving understanding of the regulatory circuits, but a complete molecular description of the control of solvent formation remains elusive. Experimental manipulation of the pathways of electron flow in other species has been shown to influence the range and yield of fermentation end-products. Acid-forming clostridia can, under appropriate conditions, be induced to form atypical solvents as products. While the mechanisms of regulation of gene expression are not at all understood, the capacity to adapt in this way further illustrates the metabolic flexibility of clostridial strains.
Collapse
Affiliation(s)
- W J Mitchell
- Department of Biological Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
21
|
Green EM, Bennett GN. Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. Appl Biochem Biotechnol 1996; 57-58:213-21. [PMID: 8669898 DOI: 10.1007/bf02941702] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A nonreplicative plasmid containing an internal aad gene fragment has been integrated into the chromosome of Clostridium acetobutylicum ATCC 824. Transformation was accomplished by electroporation with relatively high concentrations of methylated plasmid DNA. Southern hybridization experiments revealed that integration occurred by single crossover homologous recombination inactivating the aad gene. Integrants were relatively stable after 25 generations. Inactivation of the aad gene drastically reduced solvent production. This result suggests that aldehyde/alcohol dehydrogenase(AAD) plays a important role in butanol production.
Collapse
Affiliation(s)
- E M Green
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | |
Collapse
|
22
|
Dürre P, Fischer RJ, Kuhn A, Lorenz K, Schreiber W, Stürzenhofecker B, Ullmann S, Winzer K, Sauer U. Solventogenic enzymes of Clostridium acetobutylicum: catalytic properties, genetic organization, and transcriptional regulation. FEMS Microbiol Rev 1995; 17:251-62. [PMID: 7576767 DOI: 10.1111/j.1574-6976.1995.tb00209.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The enzymes acetoacetate decarboxylase and coenzyme A transferase catalyse acetone production from acetoacetyl-CoA in Clostridium acetobutylicum. The adc gene encoding the former enzyme is organized in a monocistronic operon, while the ctf genes form a common transcription unit with the gene (adhE) encoding a probable polyfunctional aldehyde/alcohol dehydrogenase. This genetic arrangement could reflect physiological requirements at the onset of solventogenesis. In addition to AdhE, two butanol dehydrogenase isozymes and a thiolase are involved in butanol synthesis. RNA analyses showed a sequential order of induction for the different butanol dehydrogenase genes, indicating an in vivo function of BdhI in low level butanol formation. The physiological roles of AdhE and BdhII most likely involve high level butanol formation, with AdhE being responsible for the onset of solventogenesis and BdhII ensuring continued butanol production. Addition of methyl viologen results in artificially induced butanol synthesis which seems to be mediated by a still unknown set of enzymes. Although the signal that triggers the shift to solventogenesis has not yet been elucidated, recent investigations suggest a possible function of DNA supercoiling as a transcriptional sensor of the respective environmental stimuli.
Collapse
Affiliation(s)
- P Dürre
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen JS. Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia. FEMS Microbiol Rev 1995; 17:263-73. [PMID: 7576768 DOI: 10.1111/j.1574-6976.1995.tb00210.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Alcohol dehydrogenase (ADH) is a key enzyme for the production of butanol, ethanol, and isopropanol by the solvent-producing clostridia. Initial studies of ADH in extracts of several strains of Clostridium acetobutylicum and C. beijerinckii gave conflicting molecular properties. A more coherent picture has emerged because of the following results: (i) identification of ADHs with different coenzyme specificities in these species; (ii) discovery of structurally conserved ADHs (type 3) in three solvent-producing species; (iii) isolation of mutants with deficiencies in butanol production and restoration of butanol production with a cloned alcohol/aldehyde dehydrogenase gene; and (iv) resolution of various 'C. acetobutylicum' cultures into four species. The three ADH isozymes of C. beijerinckii NRRL B592 have high sequence similarities to ADH-1 of Clostridium sp. NCP 262 (formerly C. acetobutylicum P262) and to the ADH domain of the alcohol/aldehyde dehydrogenase of C. acetobutylicum ATCC 824/DSM 792. The NADH-dependent activity of the ADHs from C. beijerinckii NRRL B592 and the BDHs from C. acetobutylicum ATCC 824 is profoundly affected by the pH of the assay, and the relative importance of NADH and NADPH to butanol production may be misappraised when NAD(P)H-dependent activities were measured at different pH values. The primary/secondary ADH of isopropanol-producing C. beijerinckii is a type-1 enzyme and is highly conserved in Thermoanaerobacter brockii (formerly Thermoanaerobium brockii) and Entamoeba histolytica. Several solvent-forming enzymes (primary ADH, aldehyde dehydrogenase, and 3-hydroxybutyryl-CoA dehydrogenase) are very similar between C. beijerinckii and the species represented by Clostridium sp. NCP 262 and NRRL B643. The realization of such relationships will facilitate the elucidation of the roles of different ADHs because each type of ADH can now be studied in an organism most amenable to experimental manipulations.
Collapse
Affiliation(s)
- J S Chen
- Department of Biochemistry and Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061-0305, USA
| |
Collapse
|
24
|
Bahl H, Müller H, Behrens S, Joseph H, Narberhaus F. Expression of heat shock genes in Clostridium acetobutylicum. FEMS Microbiol Rev 1995; 17:341-8. [PMID: 7576772 DOI: 10.1111/j.1574-6976.1995.tb00217.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Characterization of the heat shock response in Clostridium acetobutylicum has indicated that at least 15 proteins are induced by a temperature upshift from 30 to 42 degrees C. These so-called heat shock proteins include DnaK and GroEL, two highly conserved molecular chaperones. Several genes encoding heat shock proteins of C. acetobutylicum have been cloned and analysed. The dnaK operon includes the genes orfA (a heat shock gene with an unknown function), grpE, dnaK, and dnaJ; and the groE operon the genes groES and groEL. The hsp18 gene coding for a member of the small heat shock protein family constitutes a monocistronic operon. Interestingly, the heat shock response in this bacterium is regulated by a mechanism, which is obviously different from that found in Escherichia coli. So far, no evidence for a heat shock-specific sigma factor of the RNA polymerase in C. acetobutylicum has been found. In this bacterium, like in many Gram-positive and several Gram-negative bacteria, a conserved inverted repeat is located upstream of chaperone/chaperonin-encoding stress genes such as dnaK and groEL and may be implicated as a cis-acting regulatory site. The inverted repeat is not present in the promoter region of hsp18. Therefore, in C. acetobutylicum there are at least two classes of heat shock genes with respect to the type of regulation. Evidence has been found that a repressor is involved in the regulation of the heat shock response in C. acetobutylicum. However, this regulation seems to be independent of the inverted repeat motif, and the mechanism by which the inverted repeat motif mediates regulation remains to be elucidated.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Bahl
- Institut für Mikrobiologie, Georg-August-Universität, Göttingen, Germany
| | | | | | | | | |
Collapse
|
25
|
Johnson J, Chen JS. Taxonomic relationships among strains ofClostridium acetobutylicumand other phenotypically similar organisms. FEMS Microbiol Rev 1995. [DOI: 10.1111/j.1574-6976.1995.tb00207.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Abstract
Although the production of acetone and butanol by Clostridium strains was a thriving industrial fermentation process, it is no longer competitive with the chemical synthesis of solvents and has been discontinued. However, studies on the molecular biology of Clostridium strains suggest that genetic engineering for improved solvent production is feasible, and could result in the revival of the industrial fermentation process.
Collapse
Affiliation(s)
- D R Woods
- Microbiology Department, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
27
|
Sauer U, Dürre P. Differential induction of genes related to solvent formation during the shift from acidogenesis to solventogenesis in continuous culture ofClostridium acetobutylicum. FEMS Microbiol Lett 1995. [DOI: 10.1111/j.1574-6968.1995.tb07344.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Nair RV, Papoutsakis ET. Expression of plasmid-encoded aad in Clostridium acetobutylicum M5 restores vigorous butanol production. J Bacteriol 1994; 176:5843-6. [PMID: 8083176 PMCID: PMC196790 DOI: 10.1128/jb.176.18.5843-5846.1994] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mutant M5 of Clostridium acetobutylicum ATCC 824, which produces neither butanol nor acetone and is deficient in butyraldehyde dehydrogenase (BYDH), acetoacetate decarboxylase, and acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase activities, was transformed with plasmid pCAAD, which carries the gene aad (R. V. Nair, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol, 176:871-885, 1994). In batch fermentation studies, aad expression restored butanol formation (84 mM) in mutant M5 without any acetone formation or any significant increase in ethanol production. The corresponding protein (AAD) appeared as a ca. 96-kDa band in a denaturing protein gel. Expression of AAD in M5 resulted in restoration of BYDH activity and small increases in the activities of acetaldehyde dehydrogenase, butanol dehydrogenase, and ethanol dehydrogenase. These findings suggest that BYDH activity in C. acetobutylicum ATCC 824 resides largely in AAD, and that AAD's primary role is in the formation of butanol rather than of ethanol.
Collapse
Affiliation(s)
- R V Nair
- Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208-3120
| | | |
Collapse
|
29
|
Vasconcelos I, Girbal L, Soucaille P. Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol 1994; 176:1443-50. [PMID: 8113186 PMCID: PMC205211 DOI: 10.1128/jb.176.5.1443-1450.1994] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The metabolism of Clostridium acetobutylicum was manipulated, at neutral pH and in chemostat culture, by changing the overall degree of reduction of the substrate, using mixtures of glucose and glycerol. Cultures grown on glucose alone produced only acids, and the intracellular enzymatic pattern indicated the absence of butyraldehyde dehydrogenase activity and very low levels of coenzyme A-transferase, butanol, and ethanol dehydrogenase activities. In contrast, cultures grown on mixtures of glucose and glycerol produced mainly alcohols and low levels of hydrogen. The low production of hydrogen was not associated with a change in the hydrogenase level but was correlated with the induction of a ferredoxin-NAD reductase and a decreased level of NADH-ferredoxin reductase. The production of alcohols was related to the induction of a NAD-dependent butyraldehyde dehydrogenase and to higher expression of NAD-dependent ethanol and butanol dehydrogenases. The coenzyme A-transferase was poorly expressed, and thus no acetone was produced. These changes in the enzymatic pattern, obtained with cultures grown on a mixture of glucose and glycerol, were associated with a 7-fold increase of the intracellular level of NADH and a 2.5-fold increase of the level of ATP.
Collapse
Affiliation(s)
- I Vasconcelos
- Centre de Bioingénierie Gilbert Durand, UA-CNRS 544, Institut National des Sciences Appliquées, Toulouse, France
| | | | | |
Collapse
|
30
|
Fischer RJ, Helms J, Dürre P. Cloning, sequencing, and molecular analysis of the sol operon of Clostridium acetobutylicum, a chromosomal locus involved in solventogenesis. J Bacteriol 1993; 175:6959-69. [PMID: 8226639 PMCID: PMC206823 DOI: 10.1128/jb.175.21.6959-6969.1993] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A DNA region of Clostridium acetobutylicum contiguous with the adc operon has been cloned and sequenced. Structural genes encoding the acetoacetyl coenzyme A:acetate/butyrate:coenzyme A transferase (ctfB and ctfA) and an alcohol/aldehyde dehydrogenase (adhE) could be identified. These three genes together with a small open reading frame (ORF) of unknown function (upstream of adhE) formed an operon (sol operon), as shown by mRNA analyses. The complete sol operon was transcriptionally induced or derepressed before the onset of solventogenesis, thus confirming earlier results of Northern hybridizations with a ctfB gene probe (U. Gerischer and P. Dürre, J. Bacteriol. 174:426-433, 1992). Upstream of the sol operon, we identified two putative promoters that were located in regions with possible stem-loop structures formed by several inverted repeats. The distal promoter P1 showed only minor transcription initiation in solventogenic C. acetobutylicum cells but was recognized in Escherichia coli, presumably because of its high similarity to the sigma 70 consensus sequence. The adhE-proximal promoter P2 directed the major transcription start point in solventogenic C. acetobutylicum but was not recognized in E. coli. The clostridial AdhE showed high similarity to a novel family (type III) of alcohol dehydrogenases. Two other ORFs (ORF 5 and ORF 6) were found on the cloned DNA region that showed no significant similarity to sequences in various available data bases. mRNA studies revealed that ORF 5 formed a monocistronic operon and showed increased expression before onset of solventogenesis.
Collapse
MESH Headings
- Alcohol Dehydrogenase/genetics
- Aldehyde Dehydrogenase/genetics
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Base Sequence
- Chromosomes, Bacterial
- Cloning, Molecular
- Clostridium/genetics
- Clostridium/metabolism
- Coenzyme A-Transferases
- Consensus Sequence
- DNA Primers
- DNA, Bacterial/isolation & purification
- DNA, Bacterial/metabolism
- Genes, Bacterial
- Genomic Library
- Molecular Sequence Data
- Open Reading Frames
- Operon
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Sequence Homology, Amino Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- R J Fischer
- Institut für Mikrobiologie, Georg-August-Universität, Göttingen, Germany
| | | | | |
Collapse
|
31
|
Walter KA, Bennett GN, Papoutsakis ET. Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes. J Bacteriol 1992; 174:7149-58. [PMID: 1385386 PMCID: PMC207405 DOI: 10.1128/jb.174.22.7149-7158.1992] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A 4-kb segment of DNA containing two previously cloned butanol dehydrogenase (BDH) isozyme genes (D. Petersen, R. Welch, F. Rudolph, and G. Bennett, J. Bacteriol. 173:1831-1834, 1991) was sequenced. Two complete open reading frames (ORFs) were identified (bdhA and bdhB), along with a third truncated ORF (ORF1). The translation products of bdhA and bdhB corresponded to the N-terminal sequences of the purified BDH I and BDH II proteins, respectively. The two isozymes had a high amino acid identity (73%) and showed homology to a newly described class of alcohol dehydrogenases. Northern blots revealed that bdhA and bdhB did not form an operon. Primer extension experiments located single transcriptional start sites 37 and 58 bp upstream of the start codons of bdhA and bdhB, respectively. The -10 and -35 promoter regions for these genes were almost identical. bdhA and bdhB were found to be induced or derepressed immediately prior to significant butanol production in controlled pH 5.0 batch fermentations.
Collapse
MESH Headings
- Alcohol Oxidoreductases/genetics
- Alcohol Oxidoreductases/isolation & purification
- Alcohol Oxidoreductases/metabolism
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- Clostridium/enzymology
- Clostridium/genetics
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Genes, Bacterial
- Isoenzymes/genetics
- Isoenzymes/isolation & purification
- Isoenzymes/metabolism
- Kinetics
- Molecular Sequence Data
- Oligonucleotide Probes
- Open Reading Frames
- Protein Biosynthesis
- RNA, Bacterial/genetics
- RNA, Bacterial/isolation & purification
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- K A Walter
- Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208
| | | | | |
Collapse
|
32
|
Narberhaus F, Giebeler K, Bahl H. Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene. J Bacteriol 1992; 174:3290-9. [PMID: 1577695 PMCID: PMC205998 DOI: 10.1128/jb.174.10.3290-3299.1992] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The dnaK gene region of Clostridium acetobutylicum was cloned in Escherichia coli by using the pBluescript SK+ and pUC18 vectors. By using the E. coli dnaK gene as a probe and by in vivo chromosome walking, three positive clones harboring the recombinant plasmids pKG1, pKG2, and pKG3 containing 1.2-kbp HindIII, 3.55-kbp EcoRV, and 1.2-kbp PstI fragments of the chromosome of C. acetobutylicum, respectively, were isolated. The cloned fragments partially overlapped, and together they spanned 4,083 bp of the clostridial genome that were completely sequenced. On one strand, four open reading frames of which the last was obviously truncated were identified. The last three genes showed high homology to the grpE, dnaK, and dnaJ heat shock genes of E. coli, respectively. They were preceded by an open reading frame (orfA) without any homology to sequences available in the EMBL or GenBank data bases. Typical translational start sites could be found in front of all four genes. Northern (RNA) blot analysis revealed transcripts of this region with a maximum length of 5.0 kb. Thus, these genes are probably organized in an operon. A transcription terminator could be found between the dnaK and dnaJ genes. By primer extension analysis, a major heat-inducible transcription start site was identified 49 bases upstream of orfA. This site was preceded by a region (5'-TTGACA[17 bp]TATTTT) that exhibited high homology to the consensus promoter sequences of gram-positive bacteria as well as sigma 70-dependent E. coli. Between this promoter and the initiation codon of orfA, a hairpin-loop structure with a possible regulatory role in the expression of these genes was found. Additional heat-inducible transcription start sites were located 69 bases upstream of orfA and 87 bases upstream of grpE; the corresponding promoter regions showed less similarity to other known promoter sequences. Maximum mRNA levels of this heat shock operon were found about 15 min after a heat shock from 30 to 42 degrees C. Our results indicate that orfA codes for an unknown heat shock protein.
Collapse
Affiliation(s)
- F Narberhaus
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | | | |
Collapse
|
33
|
Welch RW, Clark SW, Bennett GN, Rudolph FB. Effects of rifampicin and chloramphenicol on product and enzyme levels of the acid- and solvent-producing pathways of Clostridium acetobutylicum (ATCC 824). Enzyme Microb Technol 1992. [DOI: 10.1016/0141-0229(92)90151-d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Gerischer U, Dürre P. mRNA analysis of the adc gene region of Clostridium acetobutylicum during the shift to solventogenesis. J Bacteriol 1992; 174:426-33. [PMID: 1370288 PMCID: PMC205733 DOI: 10.1128/jb.174.2.426-433.1992] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using primer extension analysis, we located the transcription start point of the acetoacetate decarboxylase (adc) gene of Clostridium acetobutylicum 90 nucleotides upstream from the initiation codon with A as the first transcribed nucleotide. From this site the promoter structure TTTACT(18 bp)TATAAT was identified; it shows high homology to the consensus sequences of gram-positive bacteria and Escherichia coli. Northern blot experiments revealed a length of 850 bases for the transcript of the adc gene. It thus represents a monocistronic operon. Transcription of adc was induced by conditions necessary for the onset of solvent formation. Induction occurred long before the respective fermentation product (acetone) could be detected in the medium. Transcription of the operon containing the genes for acetoacetyl coenzyme A:acetate/butyrate:coenzyme A transferase (designated ctf) downstream of the adc gene but divergently transcribed is also induced by conditions necessary for the onset of solvent formation. The length of the respective RNA transcript, 4.1 kb, indicates additional coding capacity, since the genes for the two subunits of the coenzyme A transferase cover only approximately 1.5 kb. No distinct transcripts for the other open reading frames of the adc gene region, ORF1 and ORF2, could be detected. Computer analysis indicated that ORF1, which showed significant similarity to the alpha-amylase gene of Bacillus subtilis (U. Gerischer and P. Dürre, J. Bacteriol. 172:6907-6918, 1990), probably is indeed a coding region. ORF2, however, does not seem to have a coding function.
Collapse
Affiliation(s)
- U Gerischer
- Institut für Mikrobiologie, Universität Göttingen, Germany
| | | |
Collapse
|
35
|
Petersen DJ, Bennett GN. Cloning of the Clostridium acetobutylicum ATCC 824 acetyl coenzyme A acetyltransferase (thiolase; EC 2.3.1.9) gene. Appl Environ Microbiol 1991; 57:2735-41. [PMID: 1685080 PMCID: PMC183649 DOI: 10.1128/aem.57.9.2735-2741.1991] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Thiolase (acetyl coenzyme A acetyltransferase; EC 2.3.1.9) from Clostridium acetobutylicum is a key enzyme in the production of acids and solvents in this organism. The purification and properties of the enzyme have already been described (D. P. Wiesenborn, F. B. Rudolph, and E.T. Papoutsakis, Appl. Environ. Microbiol. 54:2717-2722, 1988). The thl gene encoding the thiolase has been cloned by using primary antibodies raised to the purified enzyme. A bacteriophage lambda EMBL3 library of C. acetobutylicum DNA was prepared and screened by immunoblots with the antithiolase antibodies. Phage DNA was purified from positive plaques, and restriction enzyme digests identified an approximately 4.8-kb AccI fragment common to all positive plaques. A corresponding fragment was also found in AccI digests of C. acetobutylicum chromosomal DNA. The fragment was purified and EcoRI linkers were attached before being subcloned into pUC19. Maxicell analysis showed the production of an approximately 42-kDa protein, whose size corresponded to the molecular size of the purified thiolase, from the clostridial insert. Enzyme activity assays and Western blot (immunoblot) analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated whole-cell extracts of Escherichia coli harboring the cloned thl confirmed the presence of the thiolase encoded within the cloned DNA.
Collapse
Affiliation(s)
- D J Petersen
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251
| | | |
Collapse
|