1
|
Moitra S, Pawlowic MC, Hsu FF, Zhang K. Phosphatidylcholine synthesis through cholinephosphate cytidylyltransferase is dispensable in Leishmania major. Sci Rep 2019; 9:7602. [PMID: 31110206 PMCID: PMC6527706 DOI: 10.1038/s41598-019-44086-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/09/2019] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylcholine (PC) is a major cell membrane constituent and precursor of important second messengers. In Leishmania parasites, PC synthesis can occur via the choline branch of the Kennedy pathway, the N-methylation of phosphatidylethanolamine (PE), or the remodeling of exogenous phospholipids. To investigate the role of de novo PC synthesis in Leishmania major, we focused on the cholinephosphate cytidylyltransferase (CPCT) which catalyzes the formation of CDP-choline, a key intermediate in the choline branch of the Kennedy pathway. Without CPCT, L. major parasites cannot incorporate choline into PC, yet the CPCT-null mutants contain similar levels of PC and PE as wild type parasites. Loss of CPCT does not affect the growth of parasites in complete medium or their virulence in mice. These results suggest that other mechanisms of PC synthesis can compensate the loss of CPCT. Importantly, CPCT-null parasites exhibited severe growth defects when ethanolamine and exogenous lipids became limited or when they were co-cultured with certain bacteria that are known to be members of sandfly midgut microbiota. These findings suggest that Leishmania employ multiple PC synthesis pathways to utilize a diverse pool of nutrients, which may be crucial for their survival and development in the sandfly.
Collapse
Affiliation(s)
- Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Mattie C Pawlowic
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
- Wellcome Centre for Anti-Infectives Research (WCAIR), Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, 660S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
2
|
Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res 2013; 52:590-614. [PMID: 24007978 DOI: 10.1016/j.plipres.2013.07.002] [Citation(s) in RCA: 621] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 07/31/2013] [Indexed: 01/06/2023]
Abstract
A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described.
Collapse
Affiliation(s)
- Susanne E Horvath
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | | |
Collapse
|
3
|
Inatsugi R, Kawai H, Yamaoka Y, Yu Y, Sekiguchi A, Nakamura M, Nishida I. Isozyme-Specific Modes of Activation of CTP:Phosphorylcholine Cytidylyltransferase in Arabidopsis thaliana at Low Temperature. ACTA ACUST UNITED AC 2009; 50:1727-35. [DOI: 10.1093/pcp/pcp115] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
de Kroon AIPM. Metabolism of phosphatidylcholine and its implications for lipid acyl chain composition in Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:343-52. [PMID: 17010666 DOI: 10.1016/j.bbalip.2006.07.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 07/28/2006] [Accepted: 07/31/2006] [Indexed: 11/29/2022]
Abstract
Phosphatidylcholine (PC) is a very abundant membrane lipid in most eukaryotes including the model organism Saccharomyces cerevisiae. Consequently, the molecular species profile of PC, i.e. the ensemble of PC molecules with acyl chains differing in number of carbon atoms and double bonds, is important in determining the physical properties of eukaryotic membranes, and should be tightly regulated. In this review current insights in the contributions of biosynthesis, turnover, and remodeling by acyl chain exchange to the maintenance of PC homeostasis at the level of the molecular species in yeast are summarized. In addition, the phospholipid class-specific changes in membrane acyl chain composition induced by PC depletion are discussed, which identify PC as key player in a novel regulatory mechanism balancing the proportions of bilayer and non-bilayer lipids in yeast.
Collapse
Affiliation(s)
- Anton I P M de Kroon
- Department Biochemistry of Membranes, Bijvoet Institute and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
5
|
Bürgermeister M, Birner-Grünberger R, Heyn M, Daum G. Contribution of different biosynthetic pathways to species selectivity of aminoglycerophospholipids assembled into mitochondrial membranes of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1686:148-60. [PMID: 15522831 DOI: 10.1016/j.bbalip.2004.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 09/08/2004] [Accepted: 09/14/2004] [Indexed: 11/16/2022]
Abstract
In the yeast Saccharomyces cerevisiae, three pathways lead to the formation of cellular phosphatidylethanolamine (PtdEtn), namely the mitochondrial conversion of phosphatidylserine (PtdSer) to PtdEtn catalyzed by phosphatidylserine decarboxylase 1 (Psd1p), the equivalent reaction catalyzed by phosphatidylserine decarboxylase 2 (Psd2p) in the Golgi, and the CDP-ethanolamine branch of the so-called Kennedy pathway which is located to the microsomal fraction. To investigate the contributions of these three pathways to the cellular pattern of PtdEtn species (fatty acid composition) we subjected lipids of wild-type and yeast mutant strains with distinct defects in the respective pathways to mass spectrometric analysis. We also analyzed species of PtdSer and phosphatidylcholine (PtdCho) of these strains because formation of the three aminoglycerophospholipids is linked through their biosynthetic route. We demonstrate that all three pathways involved in PtdEtn synthesis exhibit a preference for the formation of C34:2 and C32:2 species resulting in a high degree of unsaturation in total cellular PtdEtn. In PtdSer, the ratio of unsaturated to saturated fatty acids is much lower than in PtdEtn, suggesting a high species selectivity of PtdSer decarboxylases. Finally, PtdCho is characterized by its higher ratio of C16 to C18 fatty acids compared to PtdSer and PtdEtn. In contrast to biosynthetic steps, import of all three aminoglycerophospholipids into mitochondria of wild-type and mutant cells is not highly specific with respect to species transported. Thus, the species pattern of aminoglycerophospholipids in mitochondria is mainly the result of enzyme specificities, but not of translocation processes involved. Our results support a model that suggests equilibrium transport of aminoglycerophospholipids between mitochondria and microsomes based on membrane contact between the two compartments.
Collapse
Affiliation(s)
- Maria Bürgermeister
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
6
|
Boumann HA, de Kruijff B, Heck AJR, de Kroon AIPM. The selective utilization of substrates in vivo by the phosphatidylethanolamine and phosphatidylcholine biosynthetic enzymes Ept1p and Cpt1p in yeast. FEBS Lett 2004; 569:173-7. [PMID: 15225629 DOI: 10.1016/j.febslet.2004.05.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
In yeast, the aminoalcohol phosphotransferases Ept1p and Cpt1p catalyze the final steps in the CDP-ethanolamine and CDP-choline routes leading to phosphatidylethanolamine (PE) and phosphatidylcholine (PC), respectively. To determine how these enzymes contribute to the molecular species profiles of PE and PC in vivo, wild-type, cpt1Delta, and ept1Delta cells were pulse labeled with deuterated ethanolamine and choline. Analysis of newly synthesized PE and PC using electrospray ionization tandem mass spectrometry revealed that PE and PC produced by Ept1p and Cpt1p have different species compositions, demonstrating that the enzymes consume distinct sets of diacylglycerol species in vivo. Using the characteristic phospholipid species profiles produced by Ept1p and Cpt1p as molecular fingerprints, it was also shown that in vivo CDP-monomethylethanolamine is preferentially used as substrate by Ept1p, whereas CDP-dimethylethanolamine and CDP-propanolamine are converted by Cpt1p.
Collapse
Affiliation(s)
- Henry A Boumann
- Department Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
7
|
Birner R, Daum G. Biogenesis and cellular dynamics of aminoglycerophospholipids. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:273-323. [PMID: 12696595 DOI: 10.1016/s0074-7696(05)25007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aminoglycerophospholipids phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) comprise about 80% of total cellular phospholipids in most cell types. While the major function of PtdCho in eukaryotes and PtdEtn in prokaryotes is that of bulk membrane lipids, PtdSer is a minor component and appears to play a more specialized role in the plasma membrane of eukaryotes, e.g., in cell recognition processes. All three aminoglycerophospholipid classes are essential in mammals, whereas prokaryotes and lower eukaryotes such as yeast appear to be more flexible regarding their aminoglycerophospholipid requirement. Since different subcellular compartments of eukaryotes, namely the endoplasmic reticulum and mitochondria, contribute to the biosynthetic sequence of aminoglycerophospholipid formation, intracellular transport, sorting, and specific function of these lipids in different organelles are of special interest.
Collapse
Affiliation(s)
- Ruth Birner
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | | |
Collapse
|
8
|
Howe AG, Zaremberg V, McMaster CR. Cessation of growth to prevent cell death due to inhibition of phosphatidylcholine synthesis is impaired at 37 degrees C in Saccharomyces cerevisiae. J Biol Chem 2002; 277:44100-7. [PMID: 12200438 DOI: 10.1074/jbc.m206643200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylcholine is the most abundant phospholipid in eukaryotic cells, comprising 50% of total cellular phospholipid, and thus plays a major role in cellular and organellar biogenesis. In this study, we have used both nutritional deprivation as well as a conditional temperature sensitive allele of PCT1 (CTP:phosphocholine cytidylyltransferase) coupled with an inactivated phosphatidylethanolamine methylation pathway to determine how cells respond to inactivation of phosphatidylcholine synthesis. Metabolic studies determined that phosphatidylcholine biosynthesis decreased to negligible levels within 1 h upon shift to the nonpermissive temperature for the temperature-sensitive PCT1 allele. Phosphatidylcholine mass decreased to negligible levels upon removal of choline from the medium or growth at the nonpermissive temperature, with the levels of the other major phospholipids increasing slightly. Cell growth rate visibly slowed upon cessation of phosphatidylcholine synthesis. Cells remained viable for 7-8 h after phosphatidylcholine synthesis was prevented; however, at time points beyond 8 h, viability was significantly reduced but only if the cells had been previously grown at 37 degrees C and not 25 degrees C. The inhibition of phosphatidylcholine synthesis at 37 degrees C did not alter Golgi-derived vesicle transport to the vacuole as monitored by carboxypeptidase Y processing or to the plasma membrane as determined by invertase secretion. Immunofluorescence microscopy localized Pct1p to the nucleus and nuclear membrane. Pct1p activity is regulated by Sec14p, a cytoplasm/Golgi localized phosphatidylcholine/phosphatidylinositol binding protein that regulates Golgi-derived vesicle transport partially through its ligand-dependent regulation of PCT1 derived enzyme activity. Our nuclear localization of Pct1p indicates that the regulation of Pct1p by Sec14p is indirect.
Collapse
Affiliation(s)
- Alicia G Howe
- Department of Pediatrics, Atlantic Research Centre, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | |
Collapse
|
9
|
Inatsugi R, Nakamura M, Nishida I. Phosphatidylcholine biosynthesis at low temperature: differential expression of CTP:phosphorylcholine cytidylyltransferase isogenes in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2002; 43:1342-50. [PMID: 12461134 DOI: 10.1093/pcp/pcf169] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We cloned the gene and a cDNA for a second CTP: phosphorylcholine cytidylyltransferase (CCT, EC 2.7.7.15) annotated in chromosome 4 by the Arabidopsis genome project, and designated the gene AtCCT2 to discriminate it from the isogene AtCCT1 in chromosome 2. When Arabidopsis plants were chilled at 2 degrees C for 12 h, the level of AtCCT2 transcripts in the rosettes increased about 6-fold over that before 2 degrees C treatment. By contrast, no significant change occurred in the level of AtCCT1 transcripts during 7 d of 2 degrees C treatment. Immunoblot analysis revealed that the level of AtCCT2 in the rosettes chilled at 2 degrees C increased, and that the level of AtCCT1 showed minor changes, when compared with those before cold treatment. Total CCT activity measured at 2 degrees C increased in plants subjected to 2 degrees C treatment, and this increase was sufficient to account for lipid changes induced by the 2 degrees C treatment. We therefore concluded that Arabidopsis utilizes two distinct CCT isozymes for CDP-choline synthesis during cold acclimation. Our findings are important in understanding the physiological functions of CCT isozymes in Arabidopsis and will also stimulate efforts to understand the physiological significance of phosphatidylcholine at low temperatures.
Collapse
Affiliation(s)
- Rie Inatsugi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | | | | |
Collapse
|
10
|
Howe AG, McMaster CR. Regulation of vesicle trafficking, transcription, and meiosis: lessons learned from yeast regarding the disparate biologies of phosphatidylcholine. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1534:65-77. [PMID: 11786293 DOI: 10.1016/s1388-1981(01)00181-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phosphatidylcholine (PtdCho) is the major phospholipid present in eukaryotic cell membranes generally comprising 50% of the phospholipid mass of most cells and their requisite organelles. PtdCho has a major structural role in maintaining cell and organelle integrity, and thus its synthesis must be tightly monitored to ensure appropriate PtdCho levels are present to allow for its coordination with cell growth regulatory mechanisms. One would also expect that there needs to be coordinated regulation of PtdCho synthesis with its transport from its site of synthesis to cellular organelles to ensure organellar structures and functions are maintained. Each of these processes need to be intimately coordinated with cellular growth decision making processes. To this end, it has recently been revealed that ongoing PtdCho synthesis is required for global transcriptional regulation of phospholipid synthesis. PtdCho is also a major component of intracellular transport vesicles and the synthesis of PtdCho is intimately involved in the regulation of vesicle transport from the Golgi apparatus to the cell surface and the vacuole (yeast equivalent of the mammalian lysosome). This review details some of the more recent advances in our knowledge concerning the role of PtdCho in the regulation of global lipid homeostasis through (i) its restriction of the trafficking of intracellular vesicles that distribute lipids and proteins from their sites of synthesis to their ultimate cellular destinations, (ii) its regulation of specific transcriptional processes that coordinate lipid biosynthetic pathways, and (iii) the role of PtdCho catabolism in the regulation of meiosis. Combined, these regulatory roles for PtdCho ensure vesicular, organellar, and cellular membrane biogenesis occur in a coordinated manner.
Collapse
Affiliation(s)
- A G Howe
- Departments of Pediatrics and Biochemistry and Molecular Biology, Atlantic Research Centre, IWK Health Centre, Dalhousie University, 5849 University Avenue, Halifax, NS B3H 4H7, Canada
| | | |
Collapse
|
11
|
Friesen JA, Park YS, Kent C. Purification and kinetic characterization of CTP:phosphocholine cytidylyltransferase from Saccharomyces cerevisiae. Protein Expr Purif 2001; 21:141-8. [PMID: 11162399 DOI: 10.1006/prep.2000.1354] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) regulates the biosynthesis of phosphatidylcholine in mammalian cells. In order to understand the mechanism by which this enzyme controls phosphatidylcholine synthesis, we have initiated studies of CCT from the model genetic system, the yeast Saccharomyces cerevisiae. The yeast CCT gene was isolated from genomic DNA using the polymerase chain reaction and was found to encode tyrosine at position 192 instead of histidine, as originally reported. Levels of expression of yeast CCT activity in Escherichia coli or in the yeast, Pichia pastoris, were somewhat low. Expression of yeast CCT in a baculovirus system as a 6x-His-tag fusion protein was higher and was used to purify yeast CCT by a procedure that included delipidation. Kinetic characterization revealed that yeast CCT was activated approximately 20-fold by 20 microM phosphatidylcholine:oleate vesicles, a level 5-fold lower than that necessary for maximal activation of rat CCT. The k(cat) value was 31.3 s(-1) in the presence of lipid and 1.5 s(-1) in the absence of lipid. The K(m) values for the substrates CTP and phosphocholine did not change significantly upon activation by lipids; K(m) values in the presence of lipid were 0.80 mM for phosphocholine and 1.4 mM for CTP while K(m) values in the absence of lipid were 1.2 mM for phosphocholine and 0.8 mM for CTP. Activation of yeast CCT, therefore, appears to be due to an increase in the k(cat) value upon lipid binding.
Collapse
Affiliation(s)
- J A Friesen
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109-0606, USA
| | | | | |
Collapse
|
12
|
Carman GM, Henry SA. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res 1999; 38:361-99. [PMID: 10793889 DOI: 10.1016/s0163-7827(99)00010-7] [Citation(s) in RCA: 250] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this review, we have discussed recent progress in the study of the regulation that controls phospholipid metabolism in S. cerevisiae. This regulation occurs on multiple levels and is tightly integrated with a large number of other cellular processes and related metabolic and signal transduction pathways. Progress in deciphering this complex regulation has been very rapid in the last few years, aided by the availability of the sequence of the entire Saccharomyces genome. The assignment of functions to the remaining unassigned open reading frames, as well as ascertainment of remaining gene-enzyme relationships in phospholipid biosynthesis in yeast, promises to provide detailed understanding of the genetic regulation of a crucial area of metabolism in a key eukaryotic model system. Since the processes of lipid metabolism, secretion, and signal transduction show fundamental similarities in all eukaryotes, the dissection of this regulation in yeast promises to have wide application to our understanding of metabolic control in all eukaryotes.
Collapse
Affiliation(s)
- G M Carman
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick 08901, USA.
| | | |
Collapse
|
13
|
de Rudder KE, Sohlenkamp C, Geiger O. Plant-exuded choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. J Biol Chem 1999; 274:20011-6. [PMID: 10391951 DOI: 10.1074/jbc.274.28.20011] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylcholine is a major lipid of eukaryotic membranes, but found in only few prokaryotes. Enzymatic methylation of phosphatidylethanolamine by phospholipid N-methyltransferase was thought to be the only biosynthetic pathway to yield phosphatidylcholine in bacteria. However, mutants of the microsymbiotic soil bacterium Sinorhizobium (Rhizobium) meliloti, defective in phospholipid N-methyltransferase, form phosphatidylcholine in wild type amounts when choline is provided in the growth medium. Here we describe a second bacterial pathway for phosphatidylcholine biosynthesis involving the novel enzymatic activity, phosphatidylcholine synthase, that forms phosphatidylcholine directly from choline and CDP-diacylglycerol in cell-free extracts of S. meliloti. We further demonstrate that roots of host plants of S. meliloti exude choline and that the amounts of exuded choline are sufficient to allow for maximal phosphatidylcholine biosynthesis in S. meliloti via the novel pathway.
Collapse
Affiliation(s)
- K E de Rudder
- Institute of Biotechnology, Technical University of Berlin, Seestrasse 13, D-13353 Berlin, Germany
| | | | | |
Collapse
|
14
|
|
15
|
Abstract
The yeast Saccharomyces cerevisiae is a powerful experimental system to study biochemical, cell biological and molecular biological aspects of lipid synthesis. Most but not all genes encoding enzymes involved in fatty acid, phospholipid, sterol or sphingolipid biosynthesis of this unicellular eukaryote have been cloned, and many gene products have been functionally characterized. Less information is available about genes and gene products governing the transport of lipids between organelles and within membranes, turnover and degradation of complex lipids, regulation of lipid biosynthesis, and linkage of lipid metabolism to other cellular processes. Here we summarize current knowledge about lipid biosynthetic pathways in S. cerevisiae and describe the characteristic features of the gene products involved. We focus on recent discoveries in these fields and address questions on the regulation of lipid synthesis, subcellular localization of lipid biosynthetic steps, cross-talk between organelles during lipid synthesis and subcellular distribution of lipids. Finally, we discuss distinct functions of certain key lipids and their possible roles in cellular processes.
Collapse
Affiliation(s)
- G Daum
- Institut für Biochemie und Lebensmittelchemie, Technische Universität, Petersgasse, Graz, Austria.
| | | | | | | |
Collapse
|
16
|
Nakashima A, Hosaka K, Nikawa J. Cloning of a human cDNA for CTP-phosphoethanolamine cytidylyltransferase by complementation in vivo of a yeast mutant. J Biol Chem 1997; 272:9567-72. [PMID: 9083101 DOI: 10.1074/jbc.272.14.9567] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
CTP-phosphoethanolamine cytidylyltransferase (ET) is the enzyme that catalyzes the formation of CDP-ethanolamine in the phosphatidylethanolamine biosynthetic pathway from ethanolamine. We constructed a Saccharomyces cerevisiae mutant of which the ECT1 gene, putatively encoding ET, was disrupted. This mutant showed a growth defect on ethanolamine-containing medium and a decrease of ET activity. A cDNA clone was isolated from a human glioblastoma cDNA expression library by complementation of the yeast mutant. Introduction of this cDNA into the yeast mutant clearly restored the formation of CDP-ethanolamine and phosphatidylethanolamine in cells. ET activity in transformants was higher than that in wild-type cells. The deduced protein sequence exhibited homology with the yeast, rat, and human CTP-phosphocholine cytidylyltransferases, as well as yeast ET. The cDNA gene product was expressed as a fusion with glutathione S-transferase in Escherichia coli and shown to have ET activity. These results clearly indicate that the cDNA obtained here encodes human ET.
Collapse
Affiliation(s)
- A Nakashima
- Department of Biochemical Engineering and Science, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820, Japan
| | | | | |
Collapse
|
17
|
|
18
|
Nishida I, Swinhoe R, Slabas AR, Murata N. Cloning of Brassica napus CTP: phosphocholine cytidylyltransferase cDNAs by complementation in a yeast cct mutant. PLANT MOLECULAR BIOLOGY 1996; 31:205-211. [PMID: 8756587 DOI: 10.1007/bf00021784] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
CTP:phosphocholine cytidylyltransferase is a rate-limiting enzyme in biosynthesis of phosphatidylcholine in plant cells. We have isolated four cDNAs for the cytidylyltransferase from a root cDNA library of Brassica napus by complementation in a yeast cct mutant. The deduced amino-acid sequences of the B. napus enzymes resembled rat and yeast enzymes in the central domain. Although all cytidylyltransferases ever cloned from B. napus and other organisms were predicted to be structurally hydrophilic, the yeast cct mutant transformed with one of the B. napus cDNA clones restored the cytidylyltransferase activity in the microsomal fraction as well as in the soluble fraction. These results are consistent with a recent view that yeast cells contained a machinery for targeting the yeast cytidylyltransferase to membranes, and may indicate that the B. napus enzyme was compatible with the machinery.
Collapse
Affiliation(s)
- I Nishida
- National Institute for Basic Biology, Okazaki, Japan
| | | | | | | |
Collapse
|
19
|
Greenberg ML, Lopes JM. Genetic regulation of phospholipid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 1996; 60:1-20. [PMID: 8852893 PMCID: PMC239415 DOI: 10.1128/mr.60.1.1-20.1996] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M L Greenberg
- Department of Molecular and Cellular Biochemistry and Program in Molecular Biology, Loyola University of Chicago, Maywood, Illinois 60153, USA
| | | |
Collapse
|
20
|
Yeo HJ, Sri Widada J, Mercereau-Puijalon O, Vial HJ. Molecular cloning of CTP:phosphocholine cytidylyltransferase from Plasmodium falciparum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:62-72. [PMID: 7588775 DOI: 10.1111/j.1432-1033.1995.062_1.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) is the rate-limiting and regulatory enzyme in the synthesis of phosphatidylcholine, the major membrane phospholipid, in Plasmodium. The structural gene encoding CCT was isolated from the human malaria parasite Plasmodium falciparum. This was achieved using the PCR to amplify genomic DNA with degenerate primers constructed on the basis of conserved regions identified within yeast and rat liver CCT molecules, and using the PCR product to screen a genomic library. The P. falciparum CCT gene encodes a protein of 370 amino acids (42. 6 kDa) and displays 41-43% similarity (28-29% identity) to CCT molecules of the other organisms cloned to date. The central domain of CCT, proposed as the catalytic domain of the CTP-transfer reaction, shows 68-72% similarity and 48-55% identity among P. falciparum, human, rat and yeast enzymes. This gene is present in a single copy, as determined by Southern-blotting of genomic DNA, and located on chromosome 13 of P. falciparum. Large transcripts were detected by Northern analysis and indicate that this gene is expressed in the asexual intraerythrocytic stages. The coding region of the P. falciparum CCT gene was inserted into an Escherichia coli expression vector to confirm the function of the CCT product. The recombinant CCT expressed in E. coli is catalytically active, as evidenced by the conversion of phosphocholine to CDP-choline.
Collapse
Affiliation(s)
- H J Yeo
- CNRS URA 1856, Département Biologie-Santé, Université Montpellier II, France
| | | | | | | |
Collapse
|
21
|
McGee TP, Skinner HB, Bankaitis VA. Functional redundancy of CDP-ethanolamine and CDP-choline pathway enzymes in phospholipid biosynthesis: ethanolamine-dependent effects on steady-state membrane phospholipid composition in Saccharomyces cerevisiae. J Bacteriol 1994; 176:6861-8. [PMID: 7961445 PMCID: PMC197054 DOI: 10.1128/jb.176.22.6861-6868.1994] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It has been established that yeast membrane phospholipid content is responsive to the inositol and choline content of the growth medium. Alterations in the levels of transcription of phospholipid biosynthetic enzymes contribute significantly to this response. We now describe conditions under which ethanolamine can exert significant influence on yeast membrane phospholipid composition. We demonstrate that mutations which block a defined subset of the reactions required for the biosynthesis of phosphatidylcholine (PC) via the CDP-choline pathway cause ethanolamine-dependent effects on the steady-state levels of bulk PC in yeast membranes. Such an ethanolamine-dependent reduction in bulk membrane PC content was observed for both choline kinase (cki) and choline phosphotransferase (cpt1) mutants, but it was not observed for mutants defective in cholinephosphate cytidylyltransferase, the enzyme that catalyzes the penultimate reaction of the CDP-choline pathway for PC biosynthesis. Moreover, the ethanolamine effect observed for cki and cpt1 mutants was independent of the choline content of the growth medium. Finally, we found that haploid yeast strains defective in the activity of both the choline and ethanolamine phosphotransferases experienced an ethanolamine-insensitive reduction in steady-state PC content, an effect which was not observed in strains defective in either one of these activities alone. The collective data indicate that specific enzymes of the CDP-ethanolamine pathway for phosphatidylethanolamine biosynthesis, while able to contribute to PC synthesis when yeast cells are grown under conditions of ethanolamine deprivation, do not do so when yeast cells are presented with this phospholipid headgroup precursor.
Collapse
Affiliation(s)
- T P McGee
- Department of Cell Biology, University of Alabama at Birmingham 35294-0005
| | | | | |
Collapse
|
22
|
McMaster CR, Bell RM. Phosphatidylcholine biosynthesis in Saccharomyces cerevisiae. Regulatory insights from studies employing null and chimeric sn-1,2-diacylglycerol choline- and ethanolaminephosphotransferases. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46888-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
23
|
Phosphatidylcholine biosynthesis via the CDP-choline pathway in Saccharomyces cerevisiae. Multiple mechanisms of regulation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36692-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Clancey CJ, Chang SC, Dowhan W. Cloning of a gene (PSD1) encoding phosphatidylserine decarboxylase from Saccharomyces cerevisiae by complementation of an Escherichia coli mutant. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74506-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|