1
|
Harne S, Duret S, Pande V, Bapat M, Béven L, Gayathri P. MreB5 Is a Determinant of Rod-to-Helical Transition in the Cell-Wall-less Bacterium Spiroplasma. Curr Biol 2020; 30:4753-4762.e7. [PMID: 32976813 DOI: 10.1016/j.cub.2020.08.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022]
Abstract
In most rod-shaped bacteria, the spatial coordination of cell wall synthesis machinery by MreBs is the main theme for shape determination and maintenance in cell-walled bacteria [1-9]. However, how rod or spiral shapes are achieved and maintained in cell-wall-less bacteria is currently unknown. Spiroplasma, a helical Mollicute that lacks cell wall synthesis genes, encodes five MreB paralogs and a unique cytoskeletal protein fibril [10, 11]. Here, we show that MreB5, one of the five MreB paralogs, contributes to cell elongation and is essential for the transition from rod-to-helical shape in Spiroplasma. Comparative genomic and proteomic characterization of a helical and motile wild-type Spiroplasma strain and a non-helical, non-motile natural variant helped delineate the specific roles of MreB5. Moreover, complementation of the non-helical strain with MreB5 restored its helical shape and motility by a kink-based mechanism described for Spiroplasma [12]. Earlier studies had proposed that length changes in fibril filaments are responsible for the change in handedness of the helical cell and kink propagation during motility [13]. Through structural and biochemical characterization, we identify that MreB5 exists as antiparallel double protofilaments that interact with fibril and the membrane, and thus potentially assists in kink propagation. In summary, our study provides direct experimental evidence for MreB in maintaining cell length, helical shape, and motility-revealing the role of MreB in sculpting the cell in the absence of a cell wall.
Collapse
Affiliation(s)
- Shrikant Harne
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sybille Duret
- INRAE, University of Bordeaux, UMR 1332 BFP, Villenave d'Ornon, Bordeaux, France
| | - Vani Pande
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Mrinmayee Bapat
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Laure Béven
- INRAE, University of Bordeaux, UMR 1332 BFP, Villenave d'Ornon, Bordeaux, France.
| | - Pananghat Gayathri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| |
Collapse
|
2
|
Transformation of the Drosophila Sex-Manipulative Endosymbiont Spiroplasma poulsonii and Persisting Hurdles for Functional Genetic Studies. Appl Environ Microbiol 2020; 86:AEM.00835-20. [PMID: 32444468 DOI: 10.1128/aem.00835-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 01/07/2023] Open
Abstract
Insects are frequently infected by bacterial symbionts that greatly affect their physiology and ecology. Most of these endosymbionts are, however, barely tractable outside their native host, rendering functional genetics studies difficult or impossible. Spiroplasma poulsonii is a facultative bacterial endosymbiont of Drosophila melanogaster that manipulates the reproduction of its host by killing its male progeny at the embryonic stage. S. poulsonii, although a very fastidious bacterium, is closely related to pathogenic Spiroplasma species that are cultivable and genetically modifiable. In this work, we present the transformation of S. poulsonii with a plasmid bearing a fluorescence cassette, leveraging techniques adapted from those used to modify the pathogenic species Spiroplasma citri We demonstrate the feasibility of S. poulsonii transformation and discuss approaches for mutant selection and fly colonization, which are persisting hurdles that must be overcome to allow functional bacterial genetics studies of this endosymbiont in vivo IMPORTANCE Dozens of bacterial endosymbiont species have been described and estimated to infect about half of all insect species. However, only a few them are tractable in vitro, which hampers our understanding of the bacterial determinants of the host-symbiont interaction. Developing a transformation method for S. poulsonii is a major step toward genomic engineering of this symbiont, which will foster basic research on endosymbiosis. This could also open the way to practical uses of endosymbiont engineering through paratransgenesis of vector or pest insects.
Collapse
|
3
|
Labroussaa F, Lebaudy A, Baby V, Gourgues G, Matteau D, Vashee S, Sirand-Pugnet P, Rodrigue S, Lartigue C. Impact of donor-recipient phylogenetic distance on bacterial genome transplantation. Nucleic Acids Res 2016; 44:8501-11. [PMID: 27488189 PMCID: PMC5041484 DOI: 10.1093/nar/gkw688] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022] Open
Abstract
Genome transplantation (GT) allows the installation of purified chromosomes into recipient cells, causing the resulting organisms to adopt the genotype and the phenotype conferred by the donor cells. This key process remains a bottleneck in synthetic biology, especially for genome engineering strategies of intractable and economically important microbial species. So far, this process has only been reported using two closely related bacteria, Mycoplasma mycoides subsp. capri (Mmc) and Mycoplasma capricolum subsp. capricolum (Mcap), and the main factors driving the compatibility between a donor genome and a recipient cell are poorly understood. Here, we investigated the impact of the evolutionary distance between donor and recipient species on the efficiency of GT. Using Mcap as the recipient cell, we successfully transplanted the genome of six bacteria belonging to the Spiroplasma phylogenetic group but including species of two distinct genera. Our results demonstrate that GT efficiency is inversely correlated with the phylogenetic distance between donor and recipient bacteria but also suggest that other species-specific barriers to GT exist. This work constitutes an important step toward understanding the cellular factors governing the GT process in order to better define and eventually extend the existing genome compatibility limit.
Collapse
Affiliation(s)
- Fabien Labroussaa
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Anne Lebaudy
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Vincent Baby
- Université de Sherbrooke, Département de biologie, 2500 boulevard Université Sherbrooke (Québec), J1K 2R1, Canada
| | - Géraldine Gourgues
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Dominick Matteau
- Université de Sherbrooke, Département de biologie, 2500 boulevard Université Sherbrooke (Québec), J1K 2R1, Canada
| | | | - Pascal Sirand-Pugnet
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Sébastien Rodrigue
- Université de Sherbrooke, Département de biologie, 2500 boulevard Université Sherbrooke (Québec), J1K 2R1, Canada
| | - Carole Lartigue
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| |
Collapse
|
4
|
Renaudin J, Béven L, Batailler B, Duret S, Desqué D, Arricau-Bouvery N, Malembic-Maher S, Foissac X. Heterologous expression and processing of the flavescence dorée phytoplasma variable membrane protein VmpA in Spiroplasma citri. BMC Microbiol 2015; 15:82. [PMID: 25879952 PMCID: PMC4392738 DOI: 10.1186/s12866-015-0417-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/18/2015] [Indexed: 11/21/2022] Open
Abstract
Background Flavescence dorée (FD) of grapevine is a phloem bacterial disease that threatens European vineyards. The disease is associated with a non-cultivable mollicute, a phytoplasma that is transmitted by the grapevine leafhopper Scaphoideus titanus in a persistent, propagative manner. The specificity of insect transmission is presumably mediated through interactions between the host tissues and phytoplasma surface proteins comprising the so-called variable membrane proteins (Vmps). Plant spiroplasmas and phytoplasmas share the same ecological niches, the phloem sieve elements of host plants and the hemocoel of insect vectors. Unlike phytoplasmas, however, spiroplasmas, and Spiroplasma citri in particular, can be grown in cell-free media and genetically engineered. As a new approach for studying phytoplasmas-insect cell interactions, we sought to mimic phytoplasmas through the construction of recombinant spiroplasmas exhibiting FD phytoplasma Vmps at the cell surface. Results Here, we report the expression of the FD phytoplasma VmpA in S. citri. Transformation of S. citri with plasmid vectors in which the vmpA coding sequence was under the control of the S. citri tuf gene promoter resulted in higher accumulation of VmpA than with the native promoter. Expression of VmpA at the spiroplasma surface was achieved by fusing the vmpA coding sequence to the signal peptide sequence of the S. citri adhesin ScARP3d, as revealed by direct colony immunoblotting and immunogold labelling electron microscopy. Anchoring of VmpA to the spiroplasma membrane was further demonstrated by Triton X-114 protein partitioning and Western immunoblotting. Using the same strategy, the secretion of free, functionally active β-lactamase (used as a model protein) into the culture medium by recombinant spiroplasmas was achieved. Conclusions Construction of recombinant spiroplasmas harbouring the FD phytoplasma variable membrane protein VmpA at their surface was achieved, which provides a new biological approach for studying interactions of phytoplasma surface proteins with host cells. Likewise, the secretion of functional β-lactamase by recombinant spiroplasmas established the considerable promise of the S. citri expression system for delivering phytoplasma effector proteins into host cells. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0417-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joël Renaudin
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France.
| | - Laure Béven
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France.
| | - Brigitte Batailler
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMS3420, Bordeaux Imaging Center, Bordeaux, France. .,CNRS, Bordeaux Imaging Center, UMS 3420, Bordeaux, France. .,INSERM, Bordeaux Imaging Center, US 004, Bordeaux, France.
| | - Sybille Duret
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France.
| | - Delphine Desqué
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France.
| | - Nathalie Arricau-Bouvery
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France.
| | - Sylvie Malembic-Maher
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France.
| | - Xavier Foissac
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France.
| |
Collapse
|
5
|
Duret S, Batailler B, Dubrana MP, Saillard C, Renaudin J, Béven L, Arricau-Bouvery N. Invasion of insect cells by Spiroplasma citri involves spiralin relocalization and lectin/glycoconjugate-type interactions. Cell Microbiol 2014; 16:1119-32. [PMID: 24438161 DOI: 10.1111/cmi.12265] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
Abstract
Spiroplamas are helical, cell wall-less bacteria belonging to the Class Mollicutes, a group of microorganisms phylogenetically related to low G+C, Gram-positive bacteria. Spiroplasma species are all found associated with arthropods and a few, including Spiroplasma citri are pathogenic to plant. Thus S. citri has the ability to colonize cells of two very distinct hosts, the plant and the insect vector. While spiroplasmal factors involved in transmission by the leafhopper Circulifer haematoceps have been identified, their specific contribution to invasion of insect cells is poorly understood. In this study we provide evidence that the lipoprotein spiralin plays a major role in the very early step of cell invasion. Confocal laser scanning immunomicroscopy revealed a relocalization of spiralin at the contact zone of adhering spiroplasmas. The implication of a role for spiralin in adhesion to insect cells was further supported by adhesion assays showing that a spiralin-less mutant was impaired in adhesion and that recombinant spiralin triggered adhesion of latex beads. We also showed that cytochalasin D induced changes in the surface-exposed glycoconjugates, as inferred from the lectin binding patterns, and specifically improved adhesion of S. citri wild-type but not of the spiralin-less mutant. These results indicate that cytochalasin D exposes insect cell receptors of spiralin that are masked in untreated cells. In addition, competitive adhesion assays with lectins strongly suggest spiralin to exhibit glycoconjugate binding properties similar to that of the Vicia villosa agglutinin (VVA) lectin.
Collapse
Affiliation(s)
- Sybille Duret
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France; Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Breton M, Tardy F, Dordet-Frisoni E, Sagne E, Mick V, Renaudin J, Sirand-Pugnet P, Citti C, Blanchard A. Distribution and diversity of mycoplasma plasmids: lessons from cryptic genetic elements. BMC Microbiol 2012; 12:257. [PMID: 23145790 PMCID: PMC3541243 DOI: 10.1186/1471-2180-12-257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/05/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The evolution of mycoplasmas from a common ancestor with Firmicutes has been characterized not only by genome down-sizing but also by horizontal gene transfer between mycoplasma species sharing a common host. The mechanisms of these gene transfers remain unclear because our knowledge of the mycoplasma mobile genetic elements is limited. In particular, only a few plasmids have been described within the Mycoplasma genus. RESULTS We have shown that several species of ruminant mycoplasmas carry plasmids that are members of a large family of elements and replicate via a rolling-circle mechanism. All plasmids were isolated from species that either belonged or were closely related to the Mycoplasma mycoides cluster; none was from the Mycoplasma bovis-Mycoplasma agalactiae group. Twenty one plasmids were completely sequenced, named and compared with each other and with the five mycoplasma plasmids previously reported. All plasmids share similar size and genetic organization, and present a mosaic structure. A peculiar case is that of the plasmid pMyBK1 from M. yeatsii; it is larger in size and is predicted to be mobilizable. Its origin of replication and replication protein were identified. In addition, pMyBK1 derivatives were shown to replicate in various species of the M. mycoides cluster, and therefore hold considerable promise for developing gene vectors. The phylogenetic analysis of these plasmids confirms the uniqueness of pMyBK1 and indicates that the other mycoplasma plasmids cluster together, apart from the related replicons found in phytoplasmas and in species of the clade Firmicutes. CONCLUSIONS Our results unraveled a totally new picture of mycoplasma plasmids. Although they probably play a limited role in the gene exchanges that participate in mycoplasma evolution, they are abundant in some species. Evidence for the occurrence of frequent genetic recombination strongly suggests they are transmitted between species sharing a common host or niche.
Collapse
Affiliation(s)
- Marc Breton
- University Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, F-33140, Villenave d'Ornon, France
- INRA, UMR 1332 Biologie du Fruit et Pathologie, 71, avenue Edouard Bourlaux, F-33140, Villenave d'Ornon, France
| | - Florence Tardy
- Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, 31 Avenue Tony Garnier, F-69364, Lyon cedex 07, France
| | - Emilie Dordet-Frisoni
- INRA, UMR1225, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, F-31076, Toulouse Cedex 3, France
- Université de Toulouse, INP-ENVT, UMR1225, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, F-31076, Toulouse Cedex 3, France
| | - Eveline Sagne
- INRA, UMR1225, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, F-31076, Toulouse Cedex 3, France
- Université de Toulouse, INP-ENVT, UMR1225, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, F-31076, Toulouse Cedex 3, France
| | - Virginie Mick
- Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, 31 Avenue Tony Garnier, F-69364, Lyon cedex 07, France
| | - Joël Renaudin
- University Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, F-33140, Villenave d'Ornon, France
- INRA, UMR 1332 Biologie du Fruit et Pathologie, 71, avenue Edouard Bourlaux, F-33140, Villenave d'Ornon, France
| | - Pascal Sirand-Pugnet
- University Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, F-33140, Villenave d'Ornon, France
- INRA, UMR 1332 Biologie du Fruit et Pathologie, 71, avenue Edouard Bourlaux, F-33140, Villenave d'Ornon, France
| | - Christine Citti
- INRA, UMR1225, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, F-31076, Toulouse Cedex 3, France
- Université de Toulouse, INP-ENVT, UMR1225, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, F-31076, Toulouse Cedex 3, France
| | - Alain Blanchard
- University Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, F-33140, Villenave d'Ornon, France
- INRA, UMR 1332 Biologie du Fruit et Pathologie, 71, avenue Edouard Bourlaux, F-33140, Villenave d'Ornon, France
- Centre INRA de Bordeaux Aquitaine, UMR 1332 Biologie du Fruit et Pathologie, 71, avenue Edouard Bourlaux, BP81, F-33140, Villenave d'Ornon, France
| |
Collapse
|
7
|
Breton M, Duret S, Béven L, Dubrana MP, Renaudin J. I-SceI-mediated plasmid deletion and intra-molecular recombination in Spiroplasma citri. J Microbiol Methods 2010; 84:216-22. [PMID: 21129414 DOI: 10.1016/j.mimet.2010.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/16/2010] [Accepted: 11/23/2010] [Indexed: 12/27/2022]
Abstract
S. citri wild-type strain GII3 carries six plasmids (pSci1 to -6) that are thought to encode determinants involved in the transmission of the spiroplasma by its leafhopper vector. In this study we report the use of meganuclease I-SceI for plasmid deletion in S. citri. Plasmids pSci1NT-I and pSci6PT-I, pSci1 and pSci6 derivatives that contain the tetM selection marker and a unique I-SceI recognition site were first introduced into S. citri strains 44 (having no plasmid) and GII3 (carrying pSci1-6), respectively. Due to incompatibility of homologous replication regions, propagation of the S. citri GII3 transformant in selective medium resulted in the replacement of the natural pSci6 by pSci6PT-I. The spiroplasmal transformants were further transformed by an oriC plasmid carrying the I-SceI gene under the control of the spiralin gene promoter. In the S. citri 44 transformant, expression of I-SceI resulted in rapid loss of pSciNT-I showing that expression of I-SceI can be used as a counter-selection tool in spiroplasmas. In the case of the S. citri GII3 transformant carrying pSci6PT-I, expression of I-SceI resulted in the deletion of plasmid fragments comprising the I-SceI site and the tetM marker. Delineating the I-SceI generated deletions proved they had occurred though recombination between homologous sequences. To our knowledge this is the first report of I-SceI mediated intra-molecular recombination in mollicutes.
Collapse
Affiliation(s)
- Marc Breton
- INRA, Génomique Diversité et Pouvoir Pathogéne, Villenave d'Ornon, France
| | | | | | | | | |
Collapse
|
8
|
Sha Y, Melcher U, Davis RE, Fletcher J. Resistance of Spiroplasma citri Lines to the Virus SVTS2 Is Associated with Integration of Viral DNA Sequences into Host Chromosomal and Extrachromosomal DNA. Appl Environ Microbiol 2010; 61:3950-9. [PMID: 16535161 PMCID: PMC1388597 DOI: 10.1128/aem.61.11.3950-3959.1995] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spiroplasmavirus SVTS2, isolated from Spiroplasma melliferum TS2, produces plaques when inoculated onto lawns of Spiroplasma citri M200H, a derivative of the type strain Maroc R8A2. S. citri strains MR2 and MR3, originally selected as colonies growing within plaques on a lawn of M200H inoculated with SVTS2, were resistant to SVTS2. Genomic DNA fingerprints and electrophoretic protein profiles of M200H, MR2, and MR3 were similar, but three proteins present in M200H were missing or significantly reduced in both resistant lines. None of these three polypeptides reacted with antiserum against S. citri membrane proteins, indicating that they probably are not surface-located virus receptors. Electroporation with SVTS2 DNA produced 1.5 x 10(sup5) transfectants per (mu)g of DNA in M200H but none in MR2 or MR3, suggesting that resistance may result from inhibition of viral replication. The digestion patterns of the extrachromosomal double-stranded (ds) DNA of these lines were similar. Three TaqI fragments of MR2 extrachromosomal DNA that were not present in M200H extrachromosomal DNA hybridized strongly to an SVTS2 probe, and two of these fragments plus an additional one hybridized with the MR3 extrachromosomal DNA, indicating that a fragment of SVTS2 DNA was present in the extrachromosomal ds DNA of MR2 and MR3 but not of M200H. When the restricted genomes of all three lines were probed with SVTS2 DNA, strong hybridization to two EcoRI fragments of chromosomal MR2 and MR3 DNA but not M200H DNA indicated that SVTS2 DNA had integrated into the genomes of MR2 and MR3 but not of M200H. When MR3 extrachromosomal ds DNA containing a 2.1-kb SVTS2 DNA fragment was transfected into M200H, the transformed spiroplasmas were resistant to SVTS2. These results suggest that SVTS2 DNA fragments, possibly integrated into the chromosomal or extrachromosomal DNA of a previously susceptible spiroplasma, may function as viral incompatibility elements, providing resistance to superinfection by SVTS2.
Collapse
|
9
|
Sequences essential for transmission of Spiroplasma citri by its leafhopper vector, Circulifer haematoceps, revealed by plasmid curing and replacement based on incompatibility. Appl Environ Microbiol 2010; 76:3198-205. [PMID: 20305023 DOI: 10.1128/aem.00181-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spiroplasma citri GII3 contains highly related low-copy-number plasmids pSci1 to -6. Despite the strong similarities between their replication regions, these plasmids coexist in the spiroplasma cells, indicating that they are mutually compatible. The pSci1 to -6 plasmids encode the membrane proteins known as S. citri adhesion-related proteins (ScARPs) (pSci1 to -5) and the hydrophilic protein P32 (pSci6), which had been tentatively associated with insect transmission, as they were not detected in non-insect-transmissible strains. With the aim of further investigating the role of plasmid-encoded determinants in insect transmission, we have constructed S. citri mutant strains that differ in their plasmid contents by developing a plasmid curing/replacement strategy based on the incompatibility of plasmids having identical replication regions. Experimental transmission of these S. citri plasmid mutants through injection into the leafhopper vector Circulifer haematoceps revealed that pSci6, more precisely, the pSci6_06 coding sequence, encoding a protein of unknown function, was essential for transmission. In contrast, ScARPs and P32 were dispensable for both acquisition and transmission of the spiroplasmas by the leafhopper vector, even though S. citri mutants lacking pSci1 to -5 (encoding ScARPs) were acquired and transmitted at lower efficiencies than the wild-type strain GII3.
Collapse
|
10
|
Breton M, Sagné E, Duret S, Béven L, Citti C, Renaudin J. First report of a tetracycline-inducible gene expression system for mollicutes. MICROBIOLOGY-SGM 2009; 156:198-205. [PMID: 19797362 DOI: 10.1099/mic.0.034074-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inducible promoter systems are powerful tools for studying gene function in prokaryotes but have never been shown to function in mollicutes. In this study we evaluated the efficacy of the tetracycline-inducible promoter Pxyl/tetO(2) from Bacillus subtilis in controlling gene expression in two mollicutes, the plant pathogen Spiroplasma citri and the animal pathogen Mycoplasma agalactiae. An S. citri plasmid carrying the spiralin gene under the control of the xyl/tetO(2) tetracycline-inducible promoter and the TetR repressor gene under the control of a constitutive spiroplasmal promoter was introduced into the spiralin-less S. citri mutant GII3-9a3. In the absence of tetracycline, expression of TetR almost completely abolished expression of spiralin from the xyl/tetO(2) promoter. Adding tetracycline (>50 ng ml(-1)) to the medium induced high-level expression of spiralin. Interestingly, inducible expression of spiralin was also detected in vivo: in S. citri-infected leafhoppers fed on tetracycline-containing medium and in S. citri-infected plants watered with tetracycline. A similar construct was introduced into the M. agalactiae chromosome through transposition. Tetracycline-induced expression of spiralin proved the TetR-Pxyl/tetO(2) system to be functional in the ruminant pathogen, suggesting that this tetracycline-inducible promoter system might be of general use in mollicutes.
Collapse
Affiliation(s)
- Marc Breton
- Université de Bordeaux 2, UMR 1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Evelyne Sagné
- Université de Toulouse, ENVT, UMR 1225 Interactions hôtes agents pathogènes, F-31076 Toulouse, France.,INRA, UMR 1225 Interactions hôtes agents pathogènes, F-31076 Toulouse, France
| | - Sybille Duret
- Université de Bordeaux 2, UMR 1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Laure Béven
- Université de Bordeaux 2, UMR 1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Christine Citti
- Université de Toulouse, ENVT, UMR 1225 Interactions hôtes agents pathogènes, F-31076 Toulouse, France.,INRA, UMR 1225 Interactions hôtes agents pathogènes, F-31076 Toulouse, France
| | - Joël Renaudin
- Université de Bordeaux 2, UMR 1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| |
Collapse
|
11
|
Breton M, Duret S, Arricau-Bouvery N, Béven L, Renaudin J. Characterizing the replication and stability regions of Spiroplasma citri plasmids identifies a novel replication protein and expands the genetic toolbox for plant-pathogenic spiroplasmas. MICROBIOLOGY-SGM 2008; 154:3232-3244. [PMID: 18832328 DOI: 10.1099/mic.0.2008/019562-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spiroplasma citri strain GII3 contains seven plasmids, pSciA and pSci1-6, that share extensive regions of sequence homology and display a mosaic gene organization. Plasmid pSci2 comprises 12 coding sequences (CDS), three of which encode polypeptides homologous to proteins Soj/ParA, involved in chromosome partitioning, and TrsE and Mob/TraG, implicated in the type IV secretion pathway. One CDS encodes the adhesin-like protein ScARP3d whereas the other eight encode polypeptides with no homology to known proteins. The pSci2 CDS pE and soj have counterparts in all seven plasmids. Through successive deletions, various pSci2 derivatives were constructed and assessed for their ability to replicate by transformation of S. citri 44, a strain which has no plasmid. The smallest functional replicon was found to contain a single CDS (pE) and its flanking intergenic regions. Shuttle (S. citri/Escherichia coli) plasmids, in which CDS pE was disrupted, failed to replicate in S. citri, suggesting that PE is the replication protein of the S. citri plasmids. Successive propagations of pSci2-derived transformed spiroplasmas, in the absence of selection pressure, revealed that only pSci2 derivatives having an intact soj gene were stably maintained, indicating that the soj-encoded polypeptide is most likely involved in plasmid partitioning. Upon transformation, pSci2 derivatives, including shuttle (S. citri/E. coli) plasmids, were shown to replicate in all S. citri strains tested regardless of whether the strain possesses endogenous plasmids, such as strain GII3, or not, such as strain R8A2. In addition, the pSci replicons were introduced efficiently into the plant-pathogenic spiroplasmas Spiroplasma kunkelii and Spiroplasma phoeniceum, the transformation of which had never, to our knowledge, been described before. These studies show that, besides their implications for the biology of S. citri, the pSci plasmids hold considerable promise as vectors of general use for genetic studies of plant-pathogenic spiroplasmas. As an example, a HA-tagged S. citri protein was expressed in S. kunkelii. Detection of pE-hybridizing sequences in various group I spiroplasma species indicated that pE replicating plasmids were not restricted to the three plant-pathogenic spiroplasmas.
Collapse
Affiliation(s)
- Marc Breton
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Sybille Duret
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Nathalie Arricau-Bouvery
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Laure Béven
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Joël Renaudin
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| |
Collapse
|
12
|
Expression of Mycoplasma proteins carrying an affinity tag in M. pneumoniae allows rapid purification and circumvents problems related to the aberrant genetic code. Appl Environ Microbiol 2007; 73:7799-801. [PMID: 17933931 DOI: 10.1128/aem.01861-07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Mycoplasma pneumoniae and several other mollicutes, the UGA opal codon specifies tryptophan rather than a translation stop. This often makes it difficult to express Mycoplasma proteins in heterologous hosts. In this work, we demonstrate that mollicute proteins can be fused to an affinity tag and be expressed directly in M. pneumoniae. The protein can then be purified by affinity chromatography and be used for biochemical or any other desired analysis.
Collapse
|
13
|
Berho N, Duret S, Danet JL, Renaudin J. Plasmid pSci6 from Spiroplasma citri GII-3 confers insect transmissibility to the non-transmissible strain S. citri 44. Microbiology (Reading) 2006; 152:2703-2716. [PMID: 16946265 DOI: 10.1099/mic.0.29085-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The insect-transmissible strain GII-3 of Spiroplasma citri contains plasmids pSci1–6, five of which (pSci1–5) encode adhesin-like proteins and one (pSci6) encodes protein P32, which has been associated with insect transmissibility. In contrast, S. citri strains ASP-1 and 44, which cannot be transmitted via injection into the leafhopper vector Circulifer haematoceps, lack these proteins and also do not carry plasmids pSci1–6. To further study the apparent relationship between the presence of plasmids and insect transmissibility, plasmids from S. citri GII-3 were introduced into the insect-non-transmissible S. citri strain 44 by electrotransformation using the tetM gene as the selection marker. Tetracycline-resistant transformants were shown to carry one, two or three distinct plasmids. Plasmids pSci1–6 were all detected in the transformants, pSci1 being the most frequently found, alone or together with other plasmids. Selected S. citri 44 transformants having distinct plasmid contents were submitted, separately or in combination, to experimental transmission to periwinkle (Catharanthus roseus) plants via injection into the leafhopper vector. The occurrence of symptomatic plants indicated that, in contrast to S. citri 44, spiroplasmal transformants were transmitted to the host plant, in which they multiplied. Spiroplasma cultures isolated from these infected plants all contained pSci6, leading to the conclusion that, under the experimental conditions used, transformation by pSci6 conferred insect transmissibility to S. citri strain 44. This is believed to be the first report of a phenotypic change associated with transformation of S. citri by natural plasmids.
Collapse
Affiliation(s)
- Nathalie Berho
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA, Université de Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| | - Sybille Duret
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA, Université de Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| | - Jean-Luc Danet
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA, Université de Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| | - Joël Renaudin
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA, Université de Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| |
Collapse
|
14
|
Killiny N, Batailler B, Foissac X, Saillard C. Identification of a Spiroplasma citri hydrophilic protein associated with insect transmissibility. Microbiology (Reading) 2006; 152:1221-1230. [PMID: 16549684 DOI: 10.1099/mic.0.28602-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With the aim of identifyingSpiroplasma citriproteins involved in transmission by the leafhopperCirculifer haematoceps, protein maps of four transmissible and four non-transmissible strains were compared. Total cell lysates of strains were analysed by two-dimensional gel electrophoresis using commercially available immobilized pH gradients (IPGs) covering a pH range of 4–7. Approximately 530 protein spots were visualized by silver staining and the resulting protein spot patterns for the eight strains were found to be highly similar. However, comparison using PDQuest 2-D analysis software revealed two trains of protein spots that were present only in the four transmissible strains. Using MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry and a nearly completeS. citriprotein database, established during the still-ongoingS. citriGII-3-3X genome project, the sequences of both proteins were deduced. One of these proteins was identified in the general databases as adhesion-related protein (P89) involved in the attachment ofS. citrito gut cells of the insect vector. The second protein, with an apparent molecular mass of 32 kDa deduced from the electrophoretic mobility, could not be assigned to a known protein and was named P32. The P32-encoding gene (714 bp) was carried by a large plasmid of 35·3 kbp present in transmissible strains and missing in non-transmissible strains. PCR products with primers designed from thep32gene were obtained only with genomic DNA isolated from transmissible strains. Therefore, P32 has a putative role in the transmission process and it could be considered as a marker forS. citrileafhopper transmissibility. Functional complementation of a non-transmissible strain with thep32gene did not restore the transmissible phenotype, despite the expression of P32 in the complemented strain. Electron microscopic observations of salivary glands of leafhoppers infected with the complemented strain revealed a close contact between spiroplasmas and the plasmalemma of the insect cells. This further suggests that P32 protein contributes to the association ofS. citriwith host membranes.
Collapse
MESH Headings
- Adhesins, Bacterial/analysis
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/physiology
- Animals
- Bacterial Proteins/analysis
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- DNA, Bacterial/analysis
- Electrophoresis, Gel, Two-Dimensional
- Genes, Bacterial
- Genetic Complementation Test
- Genome, Bacterial
- Hemiptera/microbiology
- Microscopy, Electron, Transmission
- Molecular Weight
- Plant Diseases/microbiology
- Plasmids/genetics
- Polymerase Chain Reaction
- Proteome/analysis
- Salivary Glands/microbiology
- Salivary Glands/ultrastructure
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Spiroplasma citri/chemistry
- Spiroplasma citri/genetics
- Spiroplasma citri/physiology
Collapse
Affiliation(s)
- Nabil Killiny
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA et Université Victor Segalen Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon cedex, France
| | - Brigitte Batailler
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA et Université Victor Segalen Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon cedex, France
| | - Xavier Foissac
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA et Université Victor Segalen Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon cedex, France
| | - Colette Saillard
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA et Université Victor Segalen Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon cedex, France
| |
Collapse
|
15
|
Berho N, Duret S, Renaudin J. Absence of plasmids encoding adhesion-related proteins in non-insect-transmissible strains of Spiroplasma citri. Microbiology (Reading) 2006; 152:873-886. [PMID: 16514166 DOI: 10.1099/mic.0.28541-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the plant-pathogenic mollicuteSpiroplasma citri, spiralin is the major lipoprotein at the cell surface and is thought to be one of the components involved in the interactions of the spiroplasma with its insect vector. With the aim of identifying surface proteins other than spiralin, monoclonal antibodies (mAbs) were produced by immunization of mice with the spiralin-defectiveS. citrimutant GII3-9a2. mAb 10G3 was found to react with several polypeptides of 43–47 and 80–95 kDa, all of which were detected in the detergent phase after Triton X-114 partitioning of proteins. Mass spectrometry (MALDI-TOF) analyses of the two major polypeptides P47 and P80 of GII3-9a2, reacting with mAb 10G3, revealed that P47 was a processed product and represented the C-terminal moiety of P80. Search for sequence homologies revealed that P80 shared strong similarities with theS. citriadhesion-related protein P89 (Sarp1) ofS. citriBR3, and is one (named Scarp4a) of the eight Scarps encoded by theS. citriGII-3 genome. The eightscarpgenes are carried by plasmids pSci1–5. Western immunoblotting of proteins with mAb 10G3 revealed that, in contrast to the insect-transmissibleS. citristrain GII-3, the non-insect-transmissible strains ASP-1, R8A2 and 44 did not express Scarps. Southern blot hybridization experiments indicated that these strains possessed noscarpgenes, and did not carry plasmids pSci1–5. However,S. citristrain GII3-5, lacking pSci5, was still efficiently transmitted, showing that, in the genetic background ofS. citriGII-3, the pSci5-encoded genes, and in particularscarp2b,3band5a, are not essential for insect transmission. Whether plasmid-encoded genes are involved in transmission ofS. citriby its leafhopper vector remains to be determined.
Collapse
Affiliation(s)
- Nathalie Berho
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA et Université de Bordeaux 2, IBVM, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| | - Sybille Duret
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA et Université de Bordeaux 2, IBVM, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| | - Joël Renaudin
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA et Université de Bordeaux 2, IBVM, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| |
Collapse
|
16
|
Duret S, André A, Renaudin J. Specific gene targeting in Spiroplasma citri: improved vectors and production of unmarked mutations using site-specific recombination. MICROBIOLOGY-SGM 2005; 151:2793-2803. [PMID: 16079355 DOI: 10.1099/mic.0.28123-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Spiroplasma citri, where homologous recombination is inefficient, specific gene targeting could only be achieved by using replicative, oriC plasmids. To improve the probability of selecting rare recombination events without fastidious, extensive passaging of the transformants, a new targeting vector was constructed, which was used to inactivate the crr gene encoding the IIA component of the glucose phosphotransferase system (PTS) permease. Selection of recombinants was based on a two-step strategy using two distinct selection markers, one of which could only be expressed once recombination had occurred through one single crossover at the target gene. According to this strategy, spiroplasmal transformants were screened and multiplied in the presence of gentamicin before the crr recombinants were selected for their resistance to tetracycline. In contrast to the wild-type strain GII-3, the crr-disrupted mutant GII3-gt1 used neither glucose nor trehalose, indicating that in S. citri the glucose and trehalose PTS permeases function with a single IIA component. In addition, the feasibility of using the transposon gammadelta TnpR/res recombination system to produce unmarked mutations in S. citri was demonstrated. In an arginine deiminase (arcA-disrupted) mutant, the tetM gene flanked by the res sequences was efficiently excised from the chromosome through expression of the TnpR resolvase from a replicative oriC plasmid. Due to oriC incompatibility, plasmid loss occurred spontaneously when selection pressure was removed. This approach will be helpful for constructing unmarked mutations and generating multiple mutants with the same selection marker in S. citri. It should also be relevant to other species of mollicutes.
Collapse
Affiliation(s)
- Sybille Duret
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA, Université de Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| | - Aurélie André
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA, Université de Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| | - Joël Renaudin
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA, Université de Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| |
Collapse
|
17
|
Hames C, Halbedel S, Schilling O, Stülke J. Multiple-mutation reaction: a method for simultaneous introduction of multiple mutations into the glpK gene of Mycoplasma pneumoniae. Appl Environ Microbiol 2005; 71:4097-100. [PMID: 16000825 PMCID: PMC1169063 DOI: 10.1128/aem.71.7.4097-4100.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Mycoplasma pneumoniae, the UGA opal codon specifies tryptophan rather than a translation stop site. This often makes it difficult to express Mycoplasma proteins in E. coli isolates. In this work, we developed a strategy for the one-step introduction of several mutations. This method, the multiple-mutation reaction, is used to simultaneously replace nine opal codons in the M. pneumoniae glpK gene.
Collapse
Affiliation(s)
- Claudine Hames
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
18
|
André A, Maucourt M, Moing A, Rolin D, Renaudin J. Sugar import and phytopathogenicity of Spiroplasma citri: glucose and fructose play distinct roles. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:33-42. [PMID: 15672816 DOI: 10.1094/mpmi-18-0033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We have shown previously that the glucose PTS (phosphotransferase system) permease enzyme II of Spiroplasma citri is split into two distinct polypeptides, which are encoded by two separate genes, crr and ptsG. A S. citri mutant was obtained by disruption of ptsG through homologous recombination and was proved unable to import glucose. The ptsG mutant (GII3-glc1) was transmitted to periwinkle (Catharanthus roseus) plants through injection to the leaf-hopper vector. In contrast to the previously characterized fructose operon mutant GMT 553, which was found virtually nonpathogenic, the ptsG mutant GII3-glc1 induced severe symptoms similar to those induced by the wild-type strain GII-3. These results, indicating that fructose and glucose utilization were not equally involved in pathogenicity, were consistent with biochemical data showing that, in the presence of both sugars, S. citri used fructose preferentially. Proton nuclear magnetic resonance analyses of carbohydrates in plant extracts revealed the accumulation of soluble sugars, particularly glucose, in plants infected by S. citri GII-3 or GII3-glc1 but not in those infected by GMT 553. From these data, a hypothetical model was proposed to establish the relationship between fructose utilization by the spiroplasmas present in the phloem sieve tubes and glucose accumulation in the leaves of S. citri infected plants.
Collapse
Affiliation(s)
- Aurélie André
- UMR 1090 Génomique Développement et Pouvoir Pathogene, INRA, Université de Bordeaux 2, Centre INRA de Bordeaux, B.P. 81, 33883 Villenave d'Ornon Cedex, France
| | | | | | | | | |
Collapse
|
19
|
Boutareaud A, Danet JL, Garnier M, Saillard C. Disruption of a gene predicted to encode a solute binding protein of an ABC transporter reduces transmission of Spiroplasma citri by the leafhopper Circulifer haematoceps. Appl Environ Microbiol 2004; 70:3960-7. [PMID: 15240270 PMCID: PMC444794 DOI: 10.1128/aem.70.7.3960-3967.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spiroplasma citri is transmitted from plant to plant by phloem-feeding leafhoppers. In an attempt to identify mechanisms involved in transmission, mutants of S. citri affected in their transmission must be available. For this purpose, transposon (Tn4001) mutagenesis was used to produce mutants which have been screened for their ability to be transmitted by the leafhopper vector Circulifer haematoceps to periwinkle plants. With one mutant (G76) which multiplied in leafhoppers as efficiently as S. citri wild-type (wt) strain GII-3, the plants showed symptoms 4 to 5 weeks later than those infected with wt GII-3. Thirty to fifty percent of plants exposed to leafhoppers injected with G76 remained symptomless, whereas for wt GII-3, all plants exposed to the transmission showed severe symptoms. This suggests that the mutant G76 was injected into plants by the leafhoppers less efficiently than wt GII-3. To check this possibility, the number of spiroplasma cells injected by a leafhopper through a Parafilm membrane into SP4 medium was determined. Thirty times less mutant G76 than wt GII-3 was transmitted through the membrane. These results suggest that mutant G76 was affected either in its capacity to penetrate the salivary glands and/or to multiply within them. In mutant G76, transposon Tn4001 was shown to be inserted into a gene encoding a putative lipoprotein (Sc76) In the ABCdb database Sc76 protein was noted as a solute binding protein of an ABC transporter of the family S1_b. Functional complementation of the G76 mutant with the Sc76 gene restored the wild phenotype, showing that Sc76 protein is involved in S. citri transmission by the leafhopper vector C. haematoceps.
Collapse
Affiliation(s)
- A Boutareaud
- UMR Génomique Développement et Pouvoir Pathogène, INRA et Université Victor Ségalen, 33883 Villenave d'Ornon cedex, France
| | | | | | | |
Collapse
|
20
|
Lartigue C, Blanchard A, Renaudin J, Thiaucourt F, Sirand-Pugnet P. Host specificity of mollicutes oriC plasmids: functional analysis of replication origin. Nucleic Acids Res 2004; 31:6610-8. [PMID: 14602921 PMCID: PMC275544 DOI: 10.1093/nar/gkg848] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently, artificial oriC plasmids containing the chromosomal dnaA gene and surrounding DnaA box sequences were obtained for the mollicutes Spiroplasma citri and Mycoplasma pulmonis. In order to study the specificity of these plasmids among mollicutes, a set of similar oriC plasmids was developed for three mycoplasmas belonging to the mycoides cluster, Mycoplasma mycoides subsp. mycoides LC (MmmLC), M.mycoides subsp. mycoides SC (MmmSC) and Mycoplasma capricolum subsp. capricolum. Mycoplasmas from the mycoides cluster, S.citri and M.pulmonis were used as recipients for transformation experiments by homologous and heterologous oriC plasmids. All five mollicutes were successfully transformed by homologous plasmids, suggesting that the dnaA gene region represents the functional replication origin of the mollicute chromosomes. However, the ability of mollicutes to replicate heterologous oriC plasmids was found to vary noticeably with the species. For example, the oriC plasmid from M.capricolum did not replicate in the closely related species MmmSC and MmmLC. In contrast, plasmids harbouring the oriC from MmmSC, MmmLC and the more distant species S.citri were all found to replicate in M.capricolum. Our results suggest that the cis-elements present in oriC sequences are not the only determinants of this host specificity.
Collapse
Affiliation(s)
- Carole Lartigue
- UMR GDPP, INRA-Université Victor Segalen Bordeaux 2, BP 81, 33883 Villenave d'Ornon Cedex, France
| | | | | | | | | |
Collapse
|
21
|
Duret S, Berho N, Danet JL, Garnier M, Renaudin J. Spiralin is not essential for helicity, motility, or pathogenicity but is required for efficient transmission of Spiroplasma citri by its leafhopper vector Circulifer haematoceps. Appl Environ Microbiol 2003; 69:6225-34. [PMID: 14532084 PMCID: PMC201218 DOI: 10.1128/aem.69.10.6225-6234.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Accepted: 07/15/2003] [Indexed: 11/20/2022] Open
Abstract
Spiralin is the most abundant protein at the surface of the plant pathogenic mollicute Spiroplasma citri and hence might play a role in the interactions of the spiroplasma with its host plant and/or its insect vector. To study spiralin function, mutants were produced by inactivating the spiralin gene through homologous recombination. A spiralin-green fluorescent protein (GFP) translational fusion was engineered and introduced into S. citri by using an oriC-based targeting vector. According to the strategy used, integration of the plasmid by a single-crossover recombination at the spiralin gene resulted in the expression of the spiralin-GFP fusion protein. Two distinct mutants were isolated. Western and colony immunoblot analyses showed that one mutant (GII3-9a5) did produce the spiralin-GFP fusion protein, which was found not to fluoresce, whereas the other (GII3-9a2) produced neither the fusion protein nor the wild-type spiralin. Both mutants displayed helical morphology and motility, similarly to the wild-type strain GII-3. Genomic DNA analyses revealed that GII3-9a5 was unstable and that GII3-9a2 was probably derived from GII3-9a5 by a double-crossover recombination between plasmid sequences integrated into the GII3-9a5 chromosome and free plasmid. When injected into the leafhopper vector Circulifer haematoceps, the spiralinless mutant GII3-9a2 multiplied to high titers in the insects (1.1 x 10(6) to 2.8 x 10(6) CFU/insect) but was transmitted to the host plant 100 times less efficiently than the wild-type strain. As a result, not all plants were infected, and symptom production in these plants was delayed for 2 to 4 weeks compared to that in the wild-type strain. In the infected plants however, the mutant multiplied to high titers (1.2 x 10(6) to 1.4 x 10(7) CFU/g of midribs) and produced the typical symptoms of the disease. These results indicate that spiralin is not essential for pathogenicity but is required for efficient transmission of S. citri by its insect vector.
Collapse
Affiliation(s)
- Sybille Duret
- UMR Génomique Développement et Pouvoir Pathogène, IBVM, Centre INRA de Bordeaux, 33883 Villenave d'Ornon Cedex, France
| | | | | | | | | |
Collapse
|
22
|
Bové JM, Renaudin J, Saillard C, Foissac X, Garnier M. Spiroplasma citri, a plant pathogenic molligute: relationships with its two hosts, the plant and the leafhopper vector. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:483-500. [PMID: 12730387 DOI: 10.1146/annurev.phyto.41.052102.104034] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Spiroplasma citri, the type species of the genus Spiroplasma (Spiroplasmataceae, Mollicutes), is restricted to the phloem sieve tubes and transmitted by phloem sap-feeding insects, as is characteristic of the phytopathogenic mollicutes. The spiroplasmas are the only mollicutes showing motility and helical morphology, apparently mediated by a contractile fibrillar cytoskeleton bound to the inner surface of the spiroplasmal membrane. MreB genes, which are involved in cell-shape determination, have been identified in S. citri. Identified genes of other functional groups are those involved in the transmission of S. citri by the leafhoppers and genes coding for lipoproteins, including spiralin, bound to the outer surface of the spiroplasma membrane. S. citri mutants that are unable to use fructose induce only mild and delayed symptoms. Fructose utilization by the sieve tube-restricted wild-type spiroplasmas is postulated to deprive the companion cells of fructose, thereby impairing sucrose loading into the sieve tubes.
Collapse
Affiliation(s)
- Joseph M Bové
- Laboratoire de Biologie Cellulaire et Moleculaire, INRA & Universite de Bordeaux 2, BP 81 33883 Villenave d'Ornon cedex, France.
| | | | | | | | | |
Collapse
|
23
|
Lartigue C, Duret S, Garnier M, Renaudin J. New plasmid vectors for specific gene targeting in Spiroplasma citri. Plasmid 2002; 48:149-59. [PMID: 12383732 DOI: 10.1016/s0147-619x(02)00121-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In Spiroplasma citri gene inactivation through homologous recombination has been achieved by using the replicative, oriC plasmid pBOT1 as the disruption vector. However, plasmid recombination required extensive passaging of the transformants and, in most cases, recombination occurred at oriC rather than at the target gene. In the current study, we describe a new vector, in which the oriC fragment was reduced to the minimal sequences able to promote plasmid replication. Using this vector to inactivate the motility gene scm1 showed that size reduction of the oriC fragment did increase the frequency of recombination at the target gene. Furthermore, to avoid extensive passaging of the transformants, we developed a strategy in which the selective, tetracycline resistance phenotype can only be expressed once the plasmid has integrated into the chromosome by one single crossover recombination at the target gene. As an example, targeting of the spiralin gene is described.
Collapse
Affiliation(s)
- Carole Lartigue
- UMR Génomique Développement et Pouvoir Pathogène, I.B.V.M., Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, B.P. 81, 33883 Villenave d'Ornon Cedex, France
| | | | | | | |
Collapse
|
24
|
Verdin E, Kobisch M, Bové JM, Garnier M, Saillard C. Use of an internal control in a nested-PCR assay for Mycoplasma hyopneumoniae detection and quantification in tracheobronchiolar washings from pigs. Mol Cell Probes 2000; 14:365-72. [PMID: 11090266 DOI: 10.1006/mcpr.2000.0326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported a nested PCR assay for the detection of Mycoplasma hyopneumoniae directly in tracheobronchiolar washings from living pigs in field conditions. Here, we describe the construction and use of an internal control to monitor the presence of PCR inhibitors. A PCR modified target DNA was constructed by insertion of a small DNA fragment into the M. hyopneumoniae specific DNA target. We have demonstrated that the internal control failed to be amplified in only three tracheobronchiolar washings samples out of the 362 tested. This control molecule was inserted in a Spiroplasma citri derived plasmid vector and introduced into S. citri cells by electroporation. After a few passages we ensured that the recombinant plasmid became inserted into the genome of S. citri. PCR amplification of the DNA of this transformed S. citri strain using nested PCR primers led to amplification of a 900-bp fragment which can be discriminated from the M. hyopneumoniae PCR product 700 bp. The S. citri transformants with the integrated internal control were added to the tracheobronchiolar washings prior to PCR and used as an internal control to check the efficiency of sample processing, and to demonstrate the presence of inhibitors. Furthermore, we have been able to estimate the number of mycoplasma cells in the tracheobronchiolar washings. Quantitation was performed by comparing the PCR signal intensity of the specific M. hyopneumoniae template with known concentrations of the S. citri competitor. The titer in tracheobronchiolar washings ranged approximatively from 10(4)to 10(8)M. hyopneumoniae cells per ml of clinical specimen. Quantitative PCR can be a useful tool for monitoring the progression of M. hyopneumoniae in the disease process.
Collapse
Affiliation(s)
- E Verdin
- UMR GDPP, Laboratoire de Biologie Cellulaire et Moléculaire, IBVM, Centre INRA de Bordeaux, 33883 Villenave dOrnon, France
| | | | | | | | | |
Collapse
|
25
|
Gaurivaud P, Laigret F, Verdin E, Garnier M, Bové JM. Fructose operon mutants of Spiroplasma citri. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 9):2229-2236. [PMID: 10974110 DOI: 10.1099/00221287-146-9-2229] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fructose-negative mutants of Spiroplasma citri wild-type strain GII-3 were selected by two methods. The first method is based on the selection of spontaneous xylitol-resistant mutants, xylitol being a toxic fructose analogue. Five such mutants were obtained, but only one, xyl3, was unable to use fructose and had no phosphoenolpuryvate:fructose phosphotransferase system (fructose-PTS) activity. Amplification and sequencing of the fructose permease gene of mutant xyl3 revealed the presence of an adenylic insertion leading to a truncated permease. The second method is based on inactivation of fruA and/or fruK by homologous recombination involving one crossing-over between the chromosomal genes and inactivated genes carried by replicative plasmids. Fructose-negative mutants were obtained at a frequency of about 10%. Fructose-PTS activity and 1-phosphofructokinase activity were not detected in four representative mutants that were characterized (H31, H45, E38 and E53). In strain H31, Southern blot analysis and PCR showed that the result of homologous recombination was, as expected, the presence in the chromosome of two mutated fruA-fruK copies with the plasmid sequence in between. Only the mutated copy, under control of the fructose operon promoter, was transcribed. This work describes for the first time the use of two methods to obtain fructose-auxotrophic mutants of S. citri. The method involving homologous recombination is a general procedure for gene disruption in S. citri.
Collapse
Affiliation(s)
- Patrice Gaurivaud
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut de Biologie Végétale Moléculaire, Institut National de la Recherche Agronomique and Université Victor Segalen Bordeaux 2, Domaine de la Grande Ferrade, BP 81, 33883 Villenave d'Ornon cedex, France1
| | - Frédéric Laigret
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut de Biologie Végétale Moléculaire, Institut National de la Recherche Agronomique and Université Victor Segalen Bordeaux 2, Domaine de la Grande Ferrade, BP 81, 33883 Villenave d'Ornon cedex, France1
| | - Eric Verdin
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut de Biologie Végétale Moléculaire, Institut National de la Recherche Agronomique and Université Victor Segalen Bordeaux 2, Domaine de la Grande Ferrade, BP 81, 33883 Villenave d'Ornon cedex, France1
| | - Monique Garnier
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut de Biologie Végétale Moléculaire, Institut National de la Recherche Agronomique and Université Victor Segalen Bordeaux 2, Domaine de la Grande Ferrade, BP 81, 33883 Villenave d'Ornon cedex, France1
| | - Joseph M Bové
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut de Biologie Végétale Moléculaire, Institut National de la Recherche Agronomique and Université Victor Segalen Bordeaux 2, Domaine de la Grande Ferrade, BP 81, 33883 Villenave d'Ornon cedex, France1
| |
Collapse
|
26
|
Duret S, Danet JL, Garnier M, Renaudin J. Gene disruption through homologous recombination in Spiroplasma citri: an scm1-disrupted motility mutant is pathogenic. J Bacteriol 1999; 181:7449-56. [PMID: 10601200 PMCID: PMC94200 DOI: 10.1128/jb.181.24.7449-7456.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine whether homologous recombination could be used to inactivate selected genes in Spiroplasma citri, plasmid constructs were designed to disrupt the motility gene scm1. An internal scm1 gene fragment was inserted into plasmid pKT1, which replicates in Escherichia coli but not in S. citri, and into the S. citri oriC plasmid pBOT1, which replicates in spiroplasma cells as well as in E. coli. Electrotransformation of S. citri with the nonreplicative, recombinant plasmid pKTM1 yielded no transformants. In contrast, spiroplasmal transformants were obtained with the replicative, pBOT1-derived plasmid pCJ32. During passaging of the transformants, the plasmid was found to integrate into the chromosome by homologous recombination either at the oriC region or at the scm1 gene. In the latter case, plasmid integration by a single crossover between the scm1 gene fragment carried by the plasmid and the full-length scm1 gene carried by the chromosome led to a nonmotile phenotype. Transmission of the scm1-disrupted mutant to periwinkle (Catharanthus roseus) plants through injection into the leafhopper vector (Circulifer haematoceps) showed that the motility mutant multiplied in the insects and was efficiently transmitted to plants, in which it induced symptoms similarly to the wild-type S. citri strain. These results suggest that the spiroplasmal motility may not be essential for pathogenicity and that, more broadly, the S. citri oriC plasmids can be considered promising tools for specific gene disruption by promoting homologous recombination in S. citri, a mollicute which probably lacks a functional RecA protein.
Collapse
Affiliation(s)
- S Duret
- Laboratoire de Biologie Cellulaire et Moléculaire, INRA et Université Victor Segalen Bordeaux 2, 33883 Villenave d'Ornon Cedex, France
| | | | | | | |
Collapse
|
27
|
Jacob C, Nouzières F, Duret S, Bové JM, Renaudin J. Isolation, characterization, and complementation of a motility mutant of Spiroplasma citri. J Bacteriol 1997; 179:4802-10. [PMID: 9244268 PMCID: PMC179327 DOI: 10.1128/jb.179.15.4802-4810.1997] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The helical mollicute Spiroplasma citri, when growing on low-agar medium, forms fuzzy colonies with occasional surrounding satellite colonies due to the ability of the spiroplasmal cells to move through the agar matrix. In liquid medium, these helical organisms flex, twist, and rotate rapidly. By using Tn4001 insertion mutagenesis, a motility mutant was isolated on the basis of its nondiffuse, sharp-edged colonies. Dark-field microscopy observations revealed that the organism flexed at a low frequency and had lost the ability to rotate about the helix axis. In this mutant, the transposon was shown to be inserted into an open reading frame encoding a putative polypeptide of 409 amino acids for which no significant homology with known proteins was found. The corresponding gene, named scm1, was recovered from the wild-type strain and introduced into the motility mutant by using the S. citri oriC plasmid pBOT1 as the vector. The appearance of fuzzy colonies and the observation that spiroplasma cells displayed rotatory and flexional movements showed the motile phenotype to be restored in the spiroplasmal transformants. The functional complementation of the motility mutant proves the scm1 gene product to be involved in the motility mechanism of S. citri.
Collapse
Affiliation(s)
- C Jacob
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut National de la Recherche Agronomique and Université Victor Segalen Bordeaux 2, Villenave d'Ornon, France
| | | | | | | | | |
Collapse
|
28
|
Marais A, Bove JM, Renaudin J. Characterization of the recA gene regions of Spiroplasma citri and Spiroplasma melliferum. J Bacteriol 1996; 178:7003-9. [PMID: 8955327 PMCID: PMC178606 DOI: 10.1128/jb.178.23.7003-7009.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In previous studies (A. Marais, J. M. Bove, and J. Renaudin, J. Bacteriol. 178:862-870, 1996), we have shown that the recA gene of Spiroplasma citri R8A2 was restricted to the first 390 nucleotides of the N-terminal part. PCR amplification and sequencing studies of five additional strains of S. citri have revealed that these strains had the same organization at the recA region as the R8A2 strain. In contrast to S. citri, Spiroplasma melliferum was found to contain a full-length recA gene. However, in all five S. melliferum strains tested, a TAA stop codon was found within the N-terminal region of the recA reading frame. Our results suggest that S. melliferum, as well as S. citri, is RecA deficient. In agreement with the recA mutant genotype of S. citri and S. melliferum, we have shown that these organisms are highly sensitive to UV irradiation.
Collapse
Affiliation(s)
- A Marais
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut National de la Recherche Agronomique and Université de Bordeaux II, Villenave d'Ornon, France
| | | | | |
Collapse
|
29
|
Marais A, Bové JM, Renaudin J. Spiroplasma citri virus SpV1-derived cloning vector: deletion formation by illegitimate and homologous recombination in a spiroplasmal host strain which probably lacks a functional recA gene. J Bacteriol 1996; 178:862-70. [PMID: 8550524 PMCID: PMC177736 DOI: 10.1128/jb.178.3.862-870.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have previously described the use of the replicative form (RF) of Spiroplasma citri virus SpV1 as a vector for expressing an epitope of the P1 adhesin protein from Mycoplasma pneumoniae in S. citri (A. Marais, J. M. Bové, S.F. Dallo, J. B. Baseman, and J. Renaudin, J. Bacteriol. 175:2783-2787, 1993). We have now studied the structural instability of the recombinant RF leading to loss of the DNA insert. Analyses of viral clones with deletions have shown that both illegitimate and homologous recombination were involved in deletion formation. For one such clone, deletion has occurred via a double crossing-over exchange between the circular free viral RF and SpV1 viral sequences present in the S. citri host chromosome. The homologous recombination process usually requires the RecA protein. However, characterization of the recA gene of the S. citri R8A2 host strain revealed that over two-thirds of the open reading frame of the recA gene was deleted from the C-terminal part, indicating that this particular strain is probably RecA deficient.
Collapse
Affiliation(s)
- A Marais
- Laboratoire de Biologie Cellulaire et Moléculaire Institut National de la Recherche Agronomique, Domaine de la Grande Ferrade, Villenave d'Omon, France
| | | | | |
Collapse
|
30
|
Renaudin J, Marais A, Verdin E, Duret S, Foissac X, Laigret F, Bové JM. Integrative and free Spiroplasma citri oriC plasmids: expression of the Spiroplasma phoeniceum spiralin in Spiroplasma citri. J Bacteriol 1995; 177:2870-7. [PMID: 7751299 PMCID: PMC176961 DOI: 10.1128/jb.177.10.2870-2877.1995] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The replication region (oriC) of the Spiroplasma citri chromosome has been recently sequenced, and a 2-kbp DNA fragment was characterized as an autonomously replicating sequence (F. Ye, J. Renaudin, J. M. Bové, and F. Laigret, Curr. Microbiol. 29:23-29, 1994). In the present studies, we have combined this DNA fragment, containing the dnaA gene and the flanking dnaA boxes, with a ColE1-derived Escherichia coli replicon and the Tet M determinant, which confers resistance to tetracycline. The recombinant plasmid, named pBOT1, was introduced into S. citri cells, in which it replicated. Plasmid pBOT1 was shuttled from E. coli to S. citri and back to E. coli. In S. citri, replication of pBOT1 did not require the presence of a functional dnaA gene on the plasmid. However, the dnaA box region downstream of the dnaA gene was essential. Upon passaging of the S. citri transformants, the plasmid integrated into the spiroplasmal host chromosome by recombination at the replication origin. The integration process led to duplication of the oriC sequences. In contrast to the integrative pBOT1, plasmid pOT1, which does not contain the E. coli replicon, was stably maintained as a free extrachromosomal element. Plasmid pOT1 was used as a vector to introduce into S. citri the G fragment of the cytadhesin P1 gene of Mycoplasma pneumoniae and the spiralin gene of Spiroplasma phoeniceum. The recombinant plasmids, pOTPG with the G fragment and pOTPS with the spiralin gene, were stably maintained in spiroplasmal transformants. Expression of the heterologous S. phoeniceum spiralin in S. citri was demonstrated by Western immunoblotting.
Collapse
Affiliation(s)
- J Renaudin
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut National de la Recherche Agronomique, Villenave d'Ornon, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Ye F, Renaudin J, Bové JM, Laigret F. Cloning and sequencing of the replication origin (oriC) of the Spiroplasma citri chromosome and construction of autonomously replicating artificial plasmids. Curr Microbiol 1994; 29:23-9. [PMID: 7764984 DOI: 10.1007/bf01570187] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A 5.6-kbp fragment of Spiroplasma citri DNA containing the dnaA gene has been cloned and sequenced. Nucleotide sequence analysis shows that this fragment harbors the genes for the replication initiator protein (dnaA), the beta subunit of DNA polymerase III (dnaN), and the DNA gyrase subunits A and B (gyrA and gyrB). The arrangement of these genes, dnaA-dnaN-gyrB-gyrA, is similar to that found in all Gram-positive bacterial genomes studied so far, except that no recF gene was found between dnaN and gyrB. Several DnaA-box consensus sequences were found upstream of dnaA and in the dnaA-dnaN intergenic region. The dnaA region with the flanking DnaA-boxes and the tetracycline resistance determinant, tetM, were linked into a circular recombinant DNA. This DNA was able to replicate autonomously when introduced by electroporation into S. citri cells. These experiments show that the dnaA region with the DnaA-boxes is the origin of replication of S. citri and can be used to construct gene vectors.
Collapse
Affiliation(s)
- F Ye
- Laboratory of Cellular and Molecular Biology, National Institute of Agronomy Research, Villenave d'Ornon, France
| | | | | | | |
Collapse
|
32
|
Cao J, Kapke PA, Minion FC. Transformation of Mycoplasma gallisepticum with Tn916, Tn4001, and integrative plasmid vectors. J Bacteriol 1994; 176:4459-62. [PMID: 8021232 PMCID: PMC205662 DOI: 10.1128/jb.176.14.4459-4462.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mycoplasma gallisepticum causes respiratory disease in avian species, but little is known about its mechanism(s) of pathogenesis. These studies were undertaken in order to develop genetic systems for analysis of potential virulence factors. M. gallisepticum was transformed with plasmids containing one of the gram-positive transposons Tn916 or Tn4001, which inserted randomly into the mycoplasmal chromosome. Plasmids containing cloned chromosomal DNA were also constructed and tested for integration into regions of DNA homology derived either from chromosomal fragments or from the gentamicin resistance marker from Tn4001. These studies demonstrate that M. gallisepticum is amenable to transformation with both transposons and integrative vectors.
Collapse
Affiliation(s)
- J Cao
- Department of Micrlbiology, Immunology and Preventive Medicine, Iowa State University, Ames 50011
| | | | | |
Collapse
|
33
|
Renaudin J, Bové JM. SpV1 and SpV4, spiroplasma viruses with circular, single-stranded DNA genomes, and their contribution to the molecular biology of spiroplasmas. Adv Virus Res 1994; 44:429-463. [PMID: 7817879 DOI: 10.1016/s0065-3527(08)60335-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Renaudin
- Laboratoire de Biologie Cellulaire et Moléculaire, INRA et Université de Bordeaux II, Villenave d'Ornon, France
| | | |
Collapse
|
34
|
Marais A, Bove JM, Dallo SF, Baseman JB, Renaudin J. Expression in Spiroplasma citri of an epitope carried on the G fragment of the cytadhesin P1 gene from Mycoplasma pneumoniae. J Bacteriol 1993; 175:2783-7. [PMID: 7683022 PMCID: PMC204586 DOI: 10.1128/jb.175.9.2783-2787.1993] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have previously described the use of the replicative form (RF) of Spiroplasma citri virus SpV1 as a vector for cloning and expressing foreign genes in S. citri, an organism which reads UGA as a tryptophan codon (C. Stamburski, J. Renaudin, and J.M. Bové, J. Bacteriol. 173:2225-2230, 1991). We now report cloning and expression in S. citri of the G fragment of cytadhesin P1 gene from Mycoplasma pneumoniae. The G fragment was inserted in the SpV1 RF downstream of a synthetic ribosome binding site and introduced into S. citri by electroporation. Northern (RNA) blot analyses showed that in S. citri, the G fragment was transcribed from an SpV1 RF promoter as a 1.2-kb mRNA. The translation product was detected by Western blotting (immunoblotting) with a rabbit antiserum raised against total proteins from M. pneumoniae (strain FH) and was proved to be P1 specific by using monoclonal antibodies specific for the G region of the P1 protein. The apparent molecular mass of the polypeptide (24.5 kDa) indicates that in S. citri, the G fragment was fully translated in spite of the seven UGA codons present in the reading frame.
Collapse
Affiliation(s)
- A Marais
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut National de la Recherche Agronomique, Villenave d'Ornon, France
| | | | | | | | | |
Collapse
|
35
|
Stamburski C, Renaudin J, Bové JM. Mutagenesis of a tryptophan codon from TGG to TGA in the cat gene does not prevent its expression in the helical mollicute Spiroplasma citri. Gene 1992; 110:133-4. [PMID: 1544572 DOI: 10.1016/0378-1119(92)90458-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- C Stamburski
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut National de la Recherche Agronomique, Villenave d'Ornon, France
| | | | | |
Collapse
|