1
|
Moulding PB, El-Halfawy OM. Chemical-mediated virulence: the effects of host chemicals on microbial virulence and potential new antivirulence strategies. Can J Microbiol 2024; 70:405-425. [PMID: 38905704 DOI: 10.1139/cjm-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The rising antimicrobial resistance rates and declining antimicrobial discovery necessitate alternative strategies to combat multidrug-resistant pathogens. Targeting microbial virulence is an emerging area of interest. Traditionally, virulence factors were largely restricted to bacteria-derived toxins, adhesins, capsules, quorum sensing systems, secretion systems, factors required to sense, respond to, acquire, or synthesize, and utilize trace elements (such as iron and other metals) and micronutrients (such as vitamins), and other factors bacteria use to establish infection, form biofilms, or damage the host tissues and regulatory elements thereof. However, this traditional definition overlooks bacterial virulence that may be induced or influenced by host-produced metabolites or other chemicals that bacteria may encounter at the infection site. This review will discuss virulence from a non-traditional perspective, shedding light on chemical-mediated host-pathogen interactions and outlining currently available mechanistic insight into increased bacterial virulence in response to host factors. This review aims to define a possibly underestimated theme of chemically mediated host-pathogen interactions and encourage future validation and characterization of the contribution of host chemicals to microbial virulence in vivo. From this perspective, we discuss proposed antivirulence compounds and suggest new potential targets for antimicrobials that prevent chemical-mediated virulence. We also explore proposed host-targeting therapeutics reducing the level of host chemicals that induce microbial virulence, serving as virulence attenuators. Understanding the host chemical-mediated virulence may enable new antimicrobial solutions to fight multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Peri B Moulding
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Omar M El-Halfawy
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
2
|
Alvarado-Melendez EI, de Jong H, Hartman JEM, Ong JY, Wösten MMSM, Wennekes T. Glycoengineering with neuraminic acid analogs to label lipooligosaccharides and detect native sialyltransferase activity in gram-negative bacteria. Glycobiology 2024; 34:cwae071. [PMID: 39244665 DOI: 10.1093/glycob/cwae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024] Open
Abstract
Lipooligosaccharides are the most abundant cell surface glycoconjugates on the outer membrane of Gram-negative bacteria. They play important roles in host-microbe interactions. Certain Gram-negative pathogenic bacteria cap their lipooligosaccharides with the sialic acid, N-acetylneuraminic acid (Neu5Ac), to mimic host glycans that among others protects these bacteria from recognition by the hosts immune system. This process of molecular mimicry is not fully understood and remains under investigated. To explore the functional role of sialic acid-capped lipooligosaccharides at the molecular level, it is important to have tools readily available for the detection and manipulation of both Neu5Ac on glycoconjugates and the involved sialyltransferases, preferably in live bacteria. We and others have shown that the native sialyltransferases of some Gram-negative bacteria can incorporate extracellular unnatural sialic acid nucleotides onto their lipooligosaccharides. We here report on the expanded use of native bacterial sialyltransferases to incorporate neuraminic acids analogs with a reporter group into the lipooligosaccharides of a variety of Gram-negative bacteria. We show that this approach offers a quick strategy to screen bacteria for the expression of functional sialyltransferases and the ability to use exogenous CMP-Neu5Ac to decorate their glycoconjugates. For selected bacteria we also show this strategy complements two other glycoengineering techniques, Metabolic Oligosaccharide Engineering and Selective Exo-Enzymatic Labeling, and that together they provide tools to modify, label, detect and visualize sialylation of bacterial lipooligosaccharides.
Collapse
Affiliation(s)
- Erianna I Alvarado-Melendez
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Hanna de Jong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Jet E M Hartman
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Jun Yang Ong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
3
|
Shaughnessy J, Chabeda A, Lewis LA, Ram S. Alternative pathway amplification and infections. Immunol Rev 2023; 313:162-180. [PMID: 36336911 DOI: 10.1111/imr.13160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alternative pathway (AP) is the phylogenetically oldest arm of the complement system and may have evolved to mark pathogens for elimination by phagocytes. Studies using purified AP proteins or AP-specific serum showed that C3b amplification on bacteria commenced following a lag phase of about 5 min and was highly dependent on the concentration of complement. Most pathogens have evolved several elegant mechanisms to evade complement, including expressing proteases that degrade AP proteins and secreting proteins that block function of C3 convertases. In an example of convergent evolution, many microbes recruit the AP inhibitor factor H (FH) using molecular mechanisms that mimic FH interactions with host cells. In most instances, the AP serves to amplify C3b deposited on microbes by the classical pathway (CP). The role of properdin on microbes appears to be restricted to stabilization of C3 convertases; scant evidence exists for its role as an initiator of the AP on pathogens in the context of serum. Therapeutic complement inhibition carries with it an increased risk of infection. Antibody (Ab)-dependent AP activation may be critical for complement activation by vaccine-elicited Ab when the CP is blocked, and its molecular mechanism is discussed.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
4
|
Dudek B, Rybka J, Bugla-Płoskońska G, Korzeniowska-Kowal A, Futoma-Kołoch B, Pawlak A, Gamian A. Biological functions of sialic acid as a component of bacterial endotoxin. Front Microbiol 2022; 13:1028796. [PMID: 36338080 PMCID: PMC9631793 DOI: 10.3389/fmicb.2022.1028796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
Lipopolysaccharide (endotoxin, LPS) is an important Gram-negative bacteria antigen. LPS of some bacteria contains sialic acid (Neu5Ac) as a component of O-antigen (O-Ag), in this review we present an overview of bacteria in which the presence of Neu5Ac has been confirmed in their outer envelope and the possible ways that bacteria can acquire Neu5Ac. We explain the role of Neu5Ac in bacterial pathogenesis, and also involvement of Neu5Ac in bacterial evading the host innate immunity response and molecular mimicry phenomenon. We also highlight the role of sialic acid in the mechanism of bacterial resistance to action of serum complement. Despite a number of studies on involvement of Neu5Ac in bacterial pathogenesis many aspects of this phenomenon are still not understood.
Collapse
Affiliation(s)
- Bartłomiej Dudek
- Department of Microbiology, University of Wrocław, Wrocław, Poland
- *Correspondence: Bartłomiej Dudek,
| | - Jacek Rybka
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Andrzej Gamian,
| |
Collapse
|
5
|
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that is the cause of the sexually transmitted disease gonorrhoea. Recently, there has been a surge in gonorrhoea cases that has been exacerbated by the rapid rise in gonococcal multidrug resistance to all useful antimicrobials resulting in this organism becoming a significant public health burden. Therefore, there is a clear and present need to understand the organism's biology through its physiology and pathogenesis to help develop new intervention strategies. The gonococcus initially colonises and adheres to host mucosal surfaces utilising a type IV pilus that helps with microcolony formation. Other adhesion strategies include the porin, PorB, and the phase variable outer membrane protein Opa. The gonococcus is able to subvert complement mediated killing and opsonisation by sialylation of its lipooligosaccharide and deploys a series of anti-phagocytic mechanisms. N. gonorrhoeae is a fastidious organism that is able to grow on a limited number of primary carbon sources such as glucose and lactate. The utilization of lactate by the gonococcus has been implicated in a number of pathogenicity mechanisms. The bacterium lives mainly in microaerobic environments and can grow both aerobically and anaerobically with the aid of nitrite. The gonococcus does not produce siderophores for scavenging iron but can utilize some produced by other bacteria, and it is able to successful chelate iron from host haem, transferrin and lactoferrin. The gonococcus is an incredibly versatile human pathogen; in the following chapter, we detail the intricate mechanisms used by the bacterium to invade and survive within the host.
Collapse
Affiliation(s)
- Luke R Green
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ernesto Feliz Diaz Parga
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
6
|
McDonald ND, Boyd EF. Structural and Biosynthetic Diversity of Nonulosonic Acids (NulOs) That Decorate Surface Structures in Bacteria. Trends Microbiol 2021; 29:142-157. [PMID: 32950378 PMCID: PMC7855311 DOI: 10.1016/j.tim.2020.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Nonulosonic acids (NulOs) are a diverse family of 9-carbon α-keto acid sugars that are involved in a wide range of functions across all branches of life. The family of NulOs includes the sialic acids as well as the prokaryote-specific NulOs. Select bacteria biosynthesize the sialic acid N-acetylneuraminic acid (Neu5Ac), and the ability to produce this sugar and its subsequent incorporation into cell-surface structures is implicated in a variety of bacteria-host interactions. Furthermore, scavenging of sialic acid from the environment for energy has been characterized across a diverse group of bacteria, mainly human commensals and pathogens. In addition to sialic acid, bacteria have the ability to biosynthesize prokaryote-specific NulOs, of which there are several known isomers characterized. These prokaryotic NulOs are similar in structure to Neu5Ac but little is known regarding their role in bacterial physiology. Here, we discuss the diversity in structure, the biosynthesis pathways, and the functions of bacteria-specific NulOs. These carbohydrates are phylogenetically widespread among bacteria, with numerous structurally unique modifications recognized. Despite the diversity in structure, the NulOs are involved in similar functions such as motility, biofilm formation, host colonization, and immune evasion.
Collapse
Affiliation(s)
- Nathan D McDonald
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
7
|
John CM, Phillips NJ, Jarvis GA. Predominant phosphorylation patterns in Neisseria meningitidis lipid A determined by top-down MS/MS. J Lipid Res 2020; 61:1437-1449. [PMID: 32839198 DOI: 10.1194/jlr.ra120001014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the virulence factors in Neisseria infections, a major inducer of inflammatory cytokines is the lipooligosaccharide (LOS). The activation of NF-κB via extracellular binding of LOS or lipopolysaccharide (LPS) to the toll-like receptor 4 and its coreceptor, MD-2, results in production of pro-inflammatory cytokines that initiate adaptive immune responses. LOS can also be absorbed by cells and activate intracellular inflammasomes, causing the release of inflammatory cytokines and pyroptosis. Studies of LOS and LPS have shown that their inflammatory potential is highly dependent on lipid A phosphorylation and acylation, but little is known on the location and pattern of these posttranslational modifications. Herein, we report on the localization of phosphoryl groups on phosphorylated meningococcal lipid A, which has two to three phosphate and zero to two phosphoethanolamine substituents. Intact LOS with symmetrical hexa-acylated and asymmetrical penta-acylated lipid A moieties was subjected to high-resolution ion mobility spectrometry MALDI-TOF MS. LOS molecular ions readily underwent in-source decay to give fragments of the oligosaccharide and lipid A formed by cleavage of the ketosidic linkage, which enabled performing MS/MS (pseudo-MS3). The resulting spectra revealed several patterns of phosphoryl substitution on lipid A, with certain species predominating. The extent of phosphoryl substitution, particularly phosphoethanolaminylation, on the 4'-hydroxyl was greater than that on the 1-hydroxyl. The heretofore unrecognized phosphorylation patterns of lipid A of meningococcal LOS that we detected are likely determinants of both pathogenicity and the ability of the bacteria to evade the innate immune system.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nancy J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, CA, USA .,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Kappler K, Hennet T. Emergence and significance of carbohydrate-specific antibodies. Genes Immun 2020; 21:224-239. [PMID: 32753697 PMCID: PMC7449879 DOI: 10.1038/s41435-020-0105-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Carbohydrate-specific antibodies are widespread among all classes of immunoglobulins. Despite their broad occurrence, little is known about their formation and biological significance. Carbohydrate-specific antibodies are often classified as natural antibodies under the assumption that they arise without prior exposure to exogenous antigens. On the other hand, various carbohydrate-specific antibodies, including antibodies to ABO blood group antigens, emerge after the contact of immune cells with the intestinal microbiota, which expresses a vast diversity of carbohydrate antigens. Here we explore the development of carbohydrate-specific antibodies in humans, addressing the definition of natural antibodies and the production of carbohydrate-specific antibodies upon antigen stimulation. We focus on the significance of the intestinal microbiota in shaping carbohydrate-specific antibodies not just in the gut, but also in the blood circulation. The structural similarity between bacterial carbohydrate antigens and surface glycoconjugates of protists, fungi and animals leads to the production of carbohydrate-specific antibodies protective against a broad range of pathogens. Mimicry between bacterial and human glycoconjugates, however, can also lead to the generation of carbohydrate-specific antibodies that cross-react with human antigens, thereby contributing to the development of autoimmune disorders.
Collapse
Affiliation(s)
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Lewis LA, Ram S. Complement interactions with the pathogenic Neisseriae: clinical features, deficiency states, and evasion mechanisms. FEBS Lett 2020; 594:2670-2694. [PMID: 32058583 DOI: 10.1002/1873-3468.13760] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, while Neisseria meningitidis is an important cause of bacterial meningitis and sepsis. Complement is a central arm of innate immune defenses and plays an important role in combating Neisserial infections. Persons with congenital and acquired defects in complement are at a significantly higher risk for invasive Neisserial infections such as invasive meningococcal disease and disseminated gonococcal infection compared to the general population. Of note, Neisseria gonorrhoeae and Neisseria meningitidis can only infect humans, which in part may be related to their ability to evade only human complement. This review summarizes the epidemiologic and clinical aspects of Neisserial infections in persons with defects in the complement system. Mechanisms used by these pathogens to subvert killing by complement and preclinical studies showing how these complement evasion strategies may be used to counteract the global threat of meningococcal and gonococcal infections are discussed.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
10
|
Colicchio R, Pagliuca C, Ricci S, Scaglione E, Grandgirard D, Masouris I, Farina F, Pagliarulo C, Mantova G, Paragliola L, Leib SL, Koedel U, Pozzi G, Alifano P, Salvatore P. Virulence Traits of a Serogroup C Meningococcus and Isogenic cssA Mutant, Defective in Surface-Exposed Sialic Acid, in a Murine Model of Meningitis. Infect Immun 2019; 87:e00688-18. [PMID: 30718288 PMCID: PMC6434112 DOI: 10.1128/iai.00688-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/29/2019] [Indexed: 12/17/2022] Open
Abstract
In serogroup C Neisseria meningitidis, the cssA (siaA) gene codes for an UDP-N-acetylglucosamine 2-epimerase that catalyzes the conversion of UDP-N-acetyl-α-d-glucosamine into N-acetyl-d-mannosamine and UDP in the first step in sialic acid biosynthesis. This enzyme is required for the biosynthesis of the (α2→9)-linked polysialic acid capsule and for lipooligosaccharide (LOS) sialylation. In this study, we have used a reference serogroup C meningococcal strain and an isogenic cssA knockout mutant to investigate the pathogenetic role of surface-exposed sialic acids in a model of meningitis based on intracisternal inoculation of BALB/c mice. Results confirmed the key role of surface-exposed sialic acids in meningococcal pathogenesis. The 50% lethal dose (LD50) of the wild-type strain 93/4286 was about four orders of magnitude lower than that of the cssA mutant. Compared to the wild-type strain, the ability of this mutant to replicate in brain and spread systemically was severely impaired. Evaluation of brain damage evidenced a significant reduction in cerebral hemorrhages in mice infected with the mutant in comparison with the levels in those challenged with the wild-type strain. Histological analysis showed the typical features of bacterial meningitis, including inflammatory cells in the subarachnoid, perivascular, and ventricular spaces especially in animals infected with the wild type. Noticeably, 80% of mice infected with the wild-type strain presented with massive bacterial localization and accompanying inflammatory infiltrate in the corpus callosum, indicating high tropism of meningococci exposing sialic acids toward this brain structure and a specific involvement of the corpus callosum in the mouse model of meningococcal meningitis.
Collapse
Affiliation(s)
- Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Susanna Ricci
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Ilias Masouris
- Department of Neurology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Fabrizio Farina
- Department of Law, Economics, Management and Quantitative Methods, University of Sannio, Benevento, Italy
| | | | - Giuseppe Mantova
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Laura Paragliola
- Department of Integrated Activity of Laboratory Medicine and Transfusion, Complex Operative Unit of Clinical Microbiology, University Hospital Federico II, Naples, Italy
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Uwe Koedel
- Department of Neurology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
- Department of Integrated Activity of Laboratory Medicine and Transfusion, Complex Operative Unit of Clinical Microbiology, University Hospital Federico II, Naples, Italy
- CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| |
Collapse
|
11
|
John CM, Phillips NJ, Stein DC, Jarvis GA. Innate immune response to lipooligosaccharide: pivotal regulator of the pathobiology of invasive Neisseria meningitidis infections. Pathog Dis 2017; 75:3569603. [PMID: 28423169 DOI: 10.1093/femspd/ftx030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/11/2017] [Indexed: 01/05/2023] Open
Abstract
Infections due to Neisseria meningitidis afflict more than one million people worldwide annually and cause death or disability in many survivors. The clinical course of invasive infections has been well studied, but our understanding of the cause of differences in patient outcomes has been limited because these are dependent on multiple factors including the response of the host, characteristics of the bacteria and interactions between the host and the bacteria. The meningococcus is a highly inflammatory organism, and the lipooligosaccharide (LOS) on the outer membrane is the most potent inflammatory molecule it expresses due to the interactions of the lipid A moiety of LOS with receptors of the innate immune system. We previously reported that increased phosphorylation of hexaacylated neisserial lipid A is correlated with greater inflammatory potential. Here we postulate that variability in lipid A phosphorylation can tip the balance of innate immune responses towards homeostatic tolerance or proinflammatory signaling that affects adaptive immune responses, causing disease with meningitis only, or septicemia with or without meningitis, respectively. Furthermore, we propose that studies of the relationship between bacterial virulence and gene expression should consider whether genetic variation could affect properties of biosynthetic enzymes resulting in LOS structural differences that alter disease pathobiology.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Nancy J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Daniel C Stein
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD 20742 USA
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
12
|
Serum Bactericidal Antibody Responses of Adults Immunized with the MenB-4C Vaccine against Genetically Diverse Serogroup B Meningococci. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00430-16. [PMID: 27847367 DOI: 10.1128/cvi.00430-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
MenB-4C is a meningococcal vaccine for the prevention of serogroup B disease. The vaccine contains factor H binding protein (FHbp) and three other antigens that can elicit serum bactericidal antibodies (SBA). For vaccine licensure, efficacy was inferred from the SBA responses against three antigen-specific indicator strains. The relation between those results and broad protection against circulating genetically diverse strains is not known. Twenty adults were immunized with two doses of MenB-4C given 1 to 2 months apart. SBA activity against 3 reference strains and 15 serogroup B test strains (6 from college outbreaks) was measured. Compared to the preimmunization titers, 70%, 95%, and 95% of subjects had ≥4-fold increases in the titers of anti-PorA P1.4, anti-NadA, and anti-FHbp antibodies against the reference strains, respectively. In contrast, only 25 to 45% of the subjects had ≥4-fold increases in responses to 10 of the 15 test strains, including 8 that expressed one to three of the antigens in the vaccine. At 1 month, the majority of subjects with <4-fold titer increases had serum titers of ≥1:4, which are considered sufficient for protection. However, the titers against four strains declined to <1:4 by 4 to 6 months in one-third to greater than 50% of the subjects tested. Clinically relevant isolates are often more resistant to SBA than the indicator strains used to measure antigen-specific SBA. A working model is that the percentage of subjects with titers of ≥1:4 at 1 month postimmunization correlates with short-term protection against that strain, whereas the percentage of subjects with ≥4-fold titer increases represents a more robust response. (The protocol used at the Oxford Vaccine Group has been registered at ClinicalTrials.gov under registration no. NCT02398396.).
Collapse
|
13
|
Granoff DM, Giuntini S, Gowans FA, Lujan E, Sharkey K, Beernink PT. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding. JCI Insight 2016; 1:e88907. [PMID: 27668287 DOI: 10.1172/jci.insight.88907] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens.
Collapse
|
14
|
Brandtzaeg P, Bjerre A, Øvstebø R, Brusletto B, Joø GB, Kierulf P. Invited review: Neisseria meningitidis lipopolysaccharides in human pathology. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519010070060401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neisseria meningitidis causes meningitis, fulminant septicemia or mild meningococcemia attacking mainly children and young adults. Lipopolysaccharides (LPS) consist of a symmetrical hexa-acyl lipid A and a short oligosaccharide chain and are classified in 11 immunotypes. Lipid A is the primary toxic component of N. meningitidis . LPS levels in plasma and cerebrospinal fluid as determined by Limulus amebocyte lysate (LAL) assay are quantitatively closely associated with inflammatory mediators, clinical symptoms, and outcome. Patients with persistent septic shock, multiple organ failure, and severe coagulopathy reveal extraordinarily high levels of LPS in plasma. The cytokine production is compartmentalized to either the circulation or to the subarachnoid space. Mortality related to shock increases from 0% to > 80% with a 10-fold increase of plasma LPS from 10 to 100 endotoxin units/ml. Hemorrhagic skin lesions and thrombosis are caused by up-regulation of tissue factor which induces coagulation, and by inhibition of fibrinolysis by plasminogen activator inhibitor 1 (PAI-1). Effective antibiotic treatment results in a rapid decline of plasma LPS (half-life 1—3 h) and cytokines, and reduced generation of thrombin, and PAI-1. Early antibiotic treatment is mandatory. Three intervention trials to block lipid A have not significantly reduced the mortality of meningococcal septicemia.
Collapse
Affiliation(s)
- Petter Brandtzaeg
- Department of Pediatrics, UllevÅl University Hospital, University of Oslo, Oslo, Norway,
| | - Anna Bjerre
- Department of Pediatrics, UllevÅl University Hospital, University of Oslo, Oslo, Norway, Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| | - Reidun Øvstebø
- Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| | - Berit Brusletto
- Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| | - Gun Britt Joø
- Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| | - Peter Kierulf
- Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Ram S, Shaughnessy J, DeOliveira RB, Lewis LA, Gulati S, Rice PA. Utilizing complement evasion strategies to design complement-based antibacterial immunotherapeutics: Lessons from the pathogenic Neisseriae. Immunobiology 2016; 221:1110-23. [PMID: 27297292 DOI: 10.1016/j.imbio.2016.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/27/2016] [Indexed: 12/30/2022]
Abstract
Novel therapies are urgently needed to combat the global threat of multidrug-resistant pathogens. Complement forms an important arm of innate defenses against infections. In physiological conditions, complement activation is tightly controlled by soluble and membrane-associated complement inhibitors, but must be selectively activated on invading pathogens to facilitate microbial clearance. Many pathogens, including Neisseria gonorrhoeae and N. meningitidis, express glycans, including N-acetylneuraminic acid (Neu5Ac), that mimic host structures to evade host immunity. Neu5Ac is a negatively charged 9-cabon sugar that inhibits complement, in part by enhancing binding of the complement inhibitor factor H (FH) through C-terminal domains (19 and 20) on FH. Other microbes also bind FH, in most instances through FH domains 6 and 7 or 18-20. Here we describe two strategies to target complement activation on Neisseriae. First, microbial binding domains of FH were fused to IgG Fc to create FH18-20/Fc (binds gonococci) and FH6,7/Fc (binds meningococci). A point mutation in FH domain 19 eliminated hemolysis caused by unmodified FH18-20, but retained binding to gonococci. FH18-20/Fc and FH6,7/Fc mediated complement-dependent killing in vitro and showed efficacy in animal models of gonorrhea and meningococcal bacteremia, respectively. The second strategy utilized CMP-nonulosonate (CMP-NulO) analogs of sialic acid that were incorporated into LOS and prevented complement inhibition by physiologic CMP-Neu5Ac and resulted in attenuated gonococcal infection in mice. While studies to establish the safety of these agents are needed, enhancing complement activation on microbes may represent a promising strategy to treat antimicrobial resistant organisms.
Collapse
Affiliation(s)
- Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosane B DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
16
|
Granoff DM, Costa I, Konar M, Giuntini S, Van Rompay KKA, Beernink PT. Binding of Complement Factor H (FH) Decreases Protective Anti-FH Binding Protein Antibody Responses of Infant Rhesus Macaques Immunized With a Meningococcal Serogroup B Vaccine. J Infect Dis 2015; 212:784-92. [PMID: 25676468 DOI: 10.1093/infdis/jiv081] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/05/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The meningococcal vaccine antigen, factor H (FH)-binding protein (FHbp), binds human complement FH. In human FH transgenic mice, binding decreased protective antibody responses. METHODS To investigate the effect of primate FH binding, we immunized rhesus macaques with a 4-component serogroup B vaccine (4CMenB). Serum FH in 6 animals bound strongly to FHbp (FHbp-FH(high)) and, in 6 animals, bound weakly to FHbp (FHbp-FH(low)). RESULTS There were no significant differences between the respective serum bactericidal responses of the 2 groups against meningococcal strains susceptible to antibody to the NadA or PorA vaccine antigens. In contrast, anti-FHbp bactericidal titers were 2-fold lower in FHbp-FH(high) macaques against a strain with an exact FHbp match to the vaccine (P = .08) and were ≥4-fold lower against 4 mutants with other FHbp sequence variants (P ≤ .005, compared with FHbp-FH(low) macaques). Unexpectedly, postimmunization sera from all 12 macaques enhanced FH binding to meningococci. In contrast, serum anti-FHbp antibodies elicited by 4CMenB in mice whose mouse FH did not bind to the vaccine antigen inhibited FH binding. CONCLUSIONS Binding of FH to FHbp decreases protective anti-FHbp antibody responses of macaques to 4CMenB. Even low levels of FH binding skew the antibody repertoire to FHbp epitopes outside of the FH-binding site, which enhance FH binding.
Collapse
Affiliation(s)
- Dan M Granoff
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute
| | - Isabella Costa
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute
| | - Monica Konar
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute
| | - Serena Giuntini
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California-Davis, California
| | - Peter T Beernink
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute
| |
Collapse
|
17
|
α-2,3-sialyltransferase expression level impacts the kinetics of lipooligosaccharide sialylation, complement resistance, and the ability of Neisseria gonorrhoeae to colonize the murine genital tract. mBio 2015; 6:mBio.02465-14. [PMID: 25650401 PMCID: PMC4324315 DOI: 10.1128/mbio.02465-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae modify the terminal lacto-N-neotetraose moiety of their lipooligosaccharide (LOS) with sialic acid. N. gonorrhoeae LOS sialylation blocks killing by complement, which is mediated at least in part by enhanced binding of the complement inhibitor factor H (FH). The role of LOS sialylation in resistance of N. meningitidis to serum killing is less well defined. Sialylation in each species is catalyzed by the enzyme LOS α-2,3-sialyltransferase (Lst). Previous studies have shown increased Lst activity in N. gonorrhoeae compared to N. meningitidis due to an ~5-fold increase in lst transcription. Using isogenic N. gonorrhoeae strains engineered to express gonococcal lst from either the N. gonorrhoeae or N. meningitidislst promoter, we show that decreased expression of lst (driven by the N. meningitidis promoter) reduced LOS sialylation as determined by less incorporation of tritium-labeled cytidine monophospho-N-acetylneuraminic acid (CMP-NANA; the donor molecule for sialic acid). Diminished LOS sialylation resulted in reduced rates of FH binding and increased pathway activation compared to N. gonorrhoeae promoter-driven lst expression. The N. meningitidislst promoter generated sufficient Lst to sialylate N. gonorrhoeae LOS in vivo, and the level of sialylation after 24 h in the mouse genital tract was sufficient to mediate resistance to human serum ex vivo. Despite demonstrable LOS sialylation in vivo, gonococci harboring the N. meningitidislst promoter were outcompeted by those with the N. gonorrhoeaelst promoter during coinfection of the vaginal tract of estradiol-treated mice. These data highlight the importance of high lst expression levels for gonococcal pathogenesis. Neisseria gonorrhoeae has become resistant to nearly every therapeutic antibiotic used and is listed as an “urgent threat” by the Centers for Disease Control and Prevention. Novel therapies are needed to combat drug-resistant N. gonorrhoeae. Gonococci express an α-2,3-sialyltransferase (Lst) that can scavenge sialic acid from the host and use it to modify lipooligosaccharide (LOS). Sialylation of gonococcal LOS converts serum-sensitive strains to serum resistance, decreases antibody binding, and combats killing by neutrophils and antimicrobial peptides. Mutant N. gonorrhoeae that lack Lst (cannot sialylate LOS) are attenuated in a mouse model. Lst expression levels differ among N. gonorrhoeae strains, and N. gonorrhoeae typically expresses more Lst than Neisseria meningitidis. Here we examined the significance of differential lst expression levels and determined that the level of LOS sialylation is critical to the ability of N. gonorrhoeae to combat the immune system and survive in an animal model. LOS sialylation may be an ideal target for novel therapies.
Collapse
|
18
|
Binding of complement factor H to PorB3 and NspA enhances resistance of Neisseria meningitidis to anti-factor H binding protein bactericidal activity. Infect Immun 2015; 83:1536-45. [PMID: 25644002 DOI: 10.1128/iai.02984-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Among 25 serogroup B Neisseria meningitidis clinical isolates, we identified four (16%) with high factor H binding protein (FHbp) expression that were resistant to complement-mediated bactericidal activity of sera from mice immunized with recombinant FHbp vaccines. Two of the four isolates had evidence of human FH-dependent complement downregulation independent of FHbp. Since alternative complement pathway recruitment is critical for anti-FHbp bactericidal activity, we hypothesized that in these two isolates binding of FH to ligands other than FHbp contributes to anti-FHbp bactericidal resistance. Knocking out NspA, a known meningococcal FH ligand, converted both resistant isolates to anti-FHbp susceptible isolates. The addition of a nonbactericidal anti-NspA monoclonal antibody to the bactericidal reaction also increased anti-FHbp bactericidal activity. To identify a role for FH ligands other than NspA or FHbp in resistance, we created double NspA/FHbp knockout mutants. Mutants from both resistant isolates bound 10-fold more recombinant human FH domains 6 and 7 fused to Fc than double knockout mutants prepared from two sensitive meningococcal isolates. In light of recent studies showing functional FH-PorB2 interactions, we hypothesized that PorB3 from the resistant isolates recruited FH. Allelic exchange of porB3 from a resistant isolate to a sensitive isolate increased resistance of the sensitive isolate to anti-FHbp bactericidal activity (and vice versa). Thus, some PorB3 variants functionally bind human FH, which in the presence of NspA enhances anti-FHbp resistance. Combining anti-NspA antibodies with anti-FHbp antibodies can overcome resistance. Meningococcal vaccines that target both NspA and FHbp are likely to confer greater protection than either antigen alone.
Collapse
|
19
|
Lattová E, Perreault H. The usefulness of hydrazine derivatives for mass spectrometric analysis of carbohydrates. MASS SPECTROMETRY REVIEWS 2013; 32:366-385. [PMID: 23345114 DOI: 10.1002/mas.21367] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 06/01/2023]
Abstract
Over the last years, extensive studies have evaluated glycans from different biological samples and validated the importance of glycosylation as one of the most important post-translational modifications of proteins. Although a number of new methods for carbohydrate analysis have been published and there has been significant progress in their identification, the development of new approaches to study these biomolecules and understand their role in living systems are still vivid challenges that intrigue glycobiologists. In the last decade, the success in analyses of oligosaccharides has been driven mainly by the development of innovative, highly sensitive mass spectrometry techniques. For enhanced mass spectrometry detection, carbohydrate molecules are often derivatized. Besides, the type of labeling can influence the fragmentation pattern and make the structural analysis less complicated. In this regard, in 2003 we introduced the low scale, simple non-reductive tagging of glycans employing phenylhydrazine (PHN) as the derivatizing reagent. PHN-labeled glycans showed increased detection and as reported previously they can be analyzed by HPLC, ESI, or MALDI immediately after derivatization. Under tandem mass spectrometry conditions, PHN-derivatives produced useful data for the structural elucidation of oligosaccharides. This approach of analysis has helped to reveal new isomeric structures for glycans of known/unknown composition and has been successfully applied for the profiling of N-glycans obtained from serum samples and cancer cells. The efficacy of this labeling has also been evaluated for different substituted hydrazine reagents. This review summarizes all types of reducing-end labeling based on hydrazone-linkage that have been used for mass spectrometric analyses of oligosaccharides. This review is also aimed at correcting some past misconceptions or interpretations reported in the literature.
Collapse
Affiliation(s)
- Erika Lattová
- Chemistry Department, University of Manitoba, 144 Dysart Road, Winnipeg, MB, Canada R3T 2N2.
| | | |
Collapse
|
20
|
Giuntini S, Vu DM, Granoff DM. fH-dependent complement evasion by disease-causing meningococcal strains with absent fHbp genes or frameshift mutations. Vaccine 2013; 31:4192-9. [PMID: 23791680 DOI: 10.1016/j.vaccine.2013.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/30/2013] [Accepted: 06/03/2013] [Indexed: 01/21/2023]
Abstract
Meningococci bind human fH to down-regulate complement, which enhances survival of the bacteria in serum. A major fH ligand is the vaccine candidate, factor H-binding protein (fHbp). Although fHbp has been considered an essential meningococcal virulence factor, rarely, invasive isolates with absent fHbp genes or frameshift mutations have been identified. In previous studies fH binding to these isolates was not detected. The aim of the present study was to investigate fH binding and complement evasion by invasive meningococcal serogroup B clinical isolates with absent fHbp genes or frameshift mutations. Four of the seven isolates tested bound human fH by flow cytometry and survived in IgG-depleted human serum. In all four, fH binding was decreased after inactivating the gene encoding NspA. Binding of fH to fHbp and NspA is specific for human fH. To investigate fH-dependent evasion of host defenses, human fH transgenic infant rats, or control littermates negative for human fH, were challenged IP with 10(3)-10(4)CFU of two of the isolates with no detectable fH binding by flow cytometry. At 6h, bacteremia caused by both strains was higher in human fH transgenic rats than in control rats (P<0.002). In conclusion, six of the seven isolates had evidence of fH binding and/or human fH-dependent complement evasion in transgenic rats. In four, NspA was as an alternative fH ligand. fHbp vaccination may select for mutants that do not require fHbp for complement evasion. Inclusion of additional target antigens in vaccines containing fHbp may delay emergence of these mutants.
Collapse
Affiliation(s)
- Serena Giuntini
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | | | | |
Collapse
|
21
|
Piek S, Kahler CM. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis. Front Cell Infect Microbiol 2012; 2:162. [PMID: 23267440 PMCID: PMC3526765 DOI: 10.3389/fcimb.2012.00162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/01/2012] [Indexed: 01/13/2023] Open
Abstract
The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism.
Collapse
Affiliation(s)
- Susannah Piek
- Department of Pathology and Laboratory Medicine, The University of Western Australia Perth, WA, Australia
| | | |
Collapse
|
22
|
Quattroni P, Li Y, Lucchesi D, Lucas S, Hood DW, Herrmann M, Gabius HJ, Tang CM, Exley RM. Galectin-3 binds Neisseria meningitidis and increases interaction with phagocytic cells. Cell Microbiol 2012; 14:1657-75. [PMID: 22827322 PMCID: PMC3749814 DOI: 10.1111/j.1462-5822.2012.01838.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 11/27/2022]
Abstract
Galectin-3 is expressed and secreted by immune cells and has been implicated in multiple aspects of the inflammatory response. It is a glycan binding protein which can exert its functions within cells or exogenously by binding cell surface ligands, acting as a molecular bridge or activating signalling pathways. In addition, this lectin has been shown to bind to microorganisms. In this study we investigated the interaction between galectin-3 and Neisseria meningitidis, an important extracellular human pathogen, which is a leading cause of septicaemia and meningitis. Immunohistochemical analysis indicated that galectin-3 is expressed during meningococcal disease and colocalizes with bacterial colonies in infected tissues from patients. We show that galectin-3 binds to N. meningitidis and we demonstrate that this interaction requiresfull-length, intact lipopolysaccharide molecules. We found that neither exogenous nor endogenous galectin-3 contributes to phagocytosis of N. meningitidis; instead exogenous galectin-3 increases adhesion to monocytes and macrophages but not epithelial cells. Finally we used galectin-3 deficient (Gal-3(-/-) ) mice to evaluate the contribution of galectin-3 to meningococcal bacteraemia. We found that Gal-3(-/-) mice had significantly lower levels of bacteraemia compared with wild-type mice after challenge with live bacteria, indicating that galectin-3 confers an advantage to N. meningitidis during systemic infection.
Collapse
Affiliation(s)
- Paola Quattroni
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Yanwen Li
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Davide Lucchesi
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Sebastian Lucas
- Department of Histopathology, KCL School of Medicine, North Wing, St. Thomas’s Hospital, Lambeth Palace Road, London SE1 7EH, United Kingdom
| | - Derek W. Hood
- Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Martin Herrmann
- Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nuremberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
| | - Hans-Joachim Gabius
- Chair of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstrasse 13, D-80539 Munich, Germany
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Rachel M. Exley
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| |
Collapse
|
23
|
Johswich KO, Zhou J, Law DKS, St. Michael F, McCaw SE, Jamieson FB, Cox AD, Tsang RSW, Gray-Owen SD. Invasive potential of nonencapsulated disease isolates of Neisseria meningitidis. Infect Immun 2012; 80:2346-53. [PMID: 22508859 PMCID: PMC3416473 DOI: 10.1128/iai.00293-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 04/03/2012] [Indexed: 01/07/2023] Open
Abstract
The capsule of Neisseria meningitidis is the major virulence factor that enables this bacterium to overcome host immunity elicited by complement and phagocytes, rendering it capable of surviving in blood. As such, nonencapsulated N. meningitidis isolates are generally considered nonpathogenic. Here, we consider the inherent virulence of two nonencapsulated N. meningitidis isolates obtained from our national surveillance of infected blood cultures in Canada. Capsule deficiency of both strains was confirmed by serology and PCR for the ctrA to ctrD genes and siaA to siaC genes, as well as siaD genes specific to serogroups B, C, Y, and W135. In both strains, the capsule synthesis genes were replaced by the capsule null locus, cnl-2. In accordance with a lack of capsule, both strains were fully susceptible to killing by both human and baby rabbit complement. However, in the presence of cytidine-5' monophospho-N-acetylneuraminic acid (CMP-NANA), allowing for lipooligosaccharide (LOS) sialylation, a significant increase of resistance to complement killing was observed. Mass spectrometry of purified LOS did not reveal any uncommon modifications that would explain their invasive phenotype. Finally, in a mouse intraperitoneal challenge model, these nonencapsulated isolates displayed enhanced virulence relative to an isogenic mutant of serogroup B strain MC58 lacking capsule (MC58ΔsiaD). Virulence of all nonencapsulated isolates tested was below that of encapsulated serogroup B strains MC58 and B16B6. However, whereas no mortality was observed with MC58ΔsiaD, 5/10 mice succumbed to infection with strain 2275 and 2/11 mice succumbed to strain 2274. Our results suggest the acquisition of a new virulence phenotype by these nonencapsulated strains.
Collapse
Affiliation(s)
- Kay O. Johswich
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jianwei Zhou
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Dennis K. S. Law
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Frank St. Michael
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | - Shannon E. McCaw
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Andrew D. Cox
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | - Raymond S. W. Tsang
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Scholl D, Gebhart D, Williams SR, Bates A, Mandrell R. Genome sequence of E. coli O104:H4 leads to rapid development of a targeted antimicrobial agent against this emerging pathogen. PLoS One 2012; 7:e33637. [PMID: 22432037 PMCID: PMC3303846 DOI: 10.1371/journal.pone.0033637] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/17/2012] [Indexed: 12/29/2022] Open
Abstract
A recent widespread outbreak of Escherichia coli O104:H4 in Germany demonstrates the dynamic nature of emerging and re-emerging food-borne pathogens, particularly STECs and related pathogenic E. coli. Rapid genome sequencing and public availability of these data from the German outbreak strain allowed us to identify an O-antigen-specific bacteriophage tail spike protein encoded in the genome. We synthesized this gene and fused it to the tail fiber gene of an R-type pyocin, a phage tail-like bacteriocin, and expressed the novel bacteriocin such that the tail fiber fusion was incorporated into the bacteriocin structure. The resulting particles have bactericidal activity specifically against E. coli strains that produce the O104 lipopolysaccharide antigen, including the outbreak strain. This O-antigen tailspike-R-type pyocin strategy provides a platform to respond rapidly to emerging pathogens upon the availability of the pathogen's genome sequence.
Collapse
Affiliation(s)
- Dean Scholl
- AvidBiotics Corporation, South San Francisco, California, United States of America.
| | | | | | | | | |
Collapse
|
25
|
Lagergård T, Bölin I, Lindholm L. On the evolution of the sexually transmitted bacteria Haemophilus ducreyi and Klebsiella granulomatis. Ann N Y Acad Sci 2012; 1230:E1-E10. [PMID: 22239475 DOI: 10.1111/j.1749-6632.2011.06193.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Haemophilus ducreyi and Klebsiella (Calymmatobacterium) granulomatis are sexually transmitted bacteria that cause characteristic, persisting ulceration on external genitals called chancroid and granuloma inguinale, respectively. Those ulcers are endemic in developing countries or exist, as does granuloma inguinale, only in some geographic "hot spots."H. ducreyi is placed in the genus Haemophilus (family Pasteurellacae); however, this phylogenetic position is not obvious. The multiple ways in which the bacterium may be adapted to its econiche through specialized nutrient acquisitions; defenses against the immune system; and virulence factors that increase attachment, fitness, and persistence within genital tissue are discussed below. The analysis of K. granulomatis phylogeny demonstrated a high degree of identity with other Klebsiella species, and the name K. granulomatis comb. nov. was proposed. Because of the difficulty in growing this bacterium on artificial media, its characteristics have not been sufficiently defined. More studies are needed to understand bacterial genetics related to the pathogenesis and evolution of K. granulomatis.
Collapse
Affiliation(s)
- Teresa Lagergård
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
26
|
Cheng H, Yang Z, Estabrook MM, John CM, Jarvis GA, McLaughlin S, Griffiss JM. Human lipooligosaccharide IGG that prevents endemic meningococcal disease recognizes an internal lacto-N-neotetraose structure. J Biol Chem 2011; 286:43622-43633. [PMID: 22027827 DOI: 10.1074/jbc.m111.291583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibodies that initiate complement-mediated killing of Neisseria meningitidis as they enter the bloodstream from the oropharynx protect against disseminated disease. Human IgGs that bind the neisserial L7 lipooligosaccharide (LOS) are bactericidal for L3,7 and L2,4 meningococci in the presence of human complement. These strains share a lacto-N-neotetraose (nLc4) LOS α chain. We used a set of mutants that have successive saccharide deletions from the nLc4 α chain to characterize further the binding and bactericidal activity of nLc4 LOS IgG. We found that the nLc4 α chain conforms at least four different antigens. We separately purified IgG that required the nLc4 (non-reducing) terminal galactose (Gal) for binding and IgG that bound the truncated nLc3 α chain that lacks this Gal residue. IgG that bound the internal nLc3 α chain killed both L3,7 and L2,4 strains, whereas IgG that required the nLc4 terminal Gal residue for binding killed L2,4 stains but not L3,7 strains. These results show that the diversity of LOS antibodies in human serum is as much a function of the conformation of multiple antigens by a single glycoform as of the production of multiple glycoforms. Differences in sensitivity to killing by human nLc4 LOS IgG may account for the fact that fully two-thirds of endemic group B meningococcal disease in infants and children is caused by L3,7 strains, but only 20% is caused by L2,4 stains.
Collapse
Affiliation(s)
- Hui Cheng
- Department of Veterans Affairs Medical Center, San Francisco, California 94121
| | - Zhijie Yang
- Department of Veterans Affairs Medical Center, San Francisco, California 94121
| | - Michele M Estabrook
- Department of Veterans Affairs Medical Center, San Francisco, California 94121; Department of Pediatrics, University of California, San Francisco, California 94121
| | - Constance M John
- Department of Veterans Affairs Medical Center, San Francisco, California 94121
| | - Gary A Jarvis
- Department of Veterans Affairs Medical Center, San Francisco, California 94121; Department of Laboratory Medicine, University of California, San Francisco, California 94121
| | | | - J McLeod Griffiss
- Department of Veterans Affairs Medical Center, San Francisco, California 94121; Department of Laboratory Medicine, University of California, San Francisco, California 94121.
| |
Collapse
|
27
|
Importance of antibodies to lipopolysaccharide in natural and vaccine-induced serum bactericidal activity against Neisseria meningitidis group B. Infect Immun 2011; 79:4146-56. [PMID: 21768280 DOI: 10.1128/iai.05125-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of the specificity of bactericidal antibodies in normal, convalescent, and postvaccination human sera is important in understanding human immunity to meningococcal infections and can aid in the design of an effective group B vaccine. A collection of human sera, including group C and group B convalescent-phase sera, normal sera with naturally occurring cross-reactive bactericidal activity, and some postvaccination sera, was analyzed to determine the specificity of cross-reactive bactericidal antibodies. Analysis of human sera using a bactericidal antibody depletion assay demonstrated that a significant portion of the bactericidal activity could be removed by purified lipopolysaccharide (LPS). LPS homologous to that expressed on the bactericidal test strain was most effective, but partial depletion by heterologous LPS suggested the presence of antibodies with various degrees of cross-reactivity. Binding of anti-L3,7 LPS bactericidal antibodies was affected by modification of the core structure, suggesting that these functional antibodies recognized epitopes consisting of both core structures and lacto-N-neotetraose (LNnT). When the target strain was grown with 5'-cytidinemonophospho-N-acetylneuraminic acid (CMP-NANA) to increase LPS sialylation, convalescent-phase serum bactericidal titers were decreased by only 2- to 4-fold, and most remaining bactericidal activity was still depleted by LPS. Highly sialylated LPS was ineffective in depleting bactericidal antibodies. We conclude that natural infections caused by strains expressing L3,7 LPS induce persistent, protective bactericidal antibodies and appear to be directed against nonsialylated bacterial epitopes. Additionally, subsets of these bactericidal antibodies are cross-reactive, binding to several different LPS immunotypes, which is a useful characteristic for an effective group B meningococcal vaccine antigen.
Collapse
|
28
|
Lewis LA, Ngampasutadol J, Wallace R, Reid JEA, Vogel U, Ram S. The meningococcal vaccine candidate neisserial surface protein A (NspA) binds to factor H and enhances meningococcal resistance to complement. PLoS Pathog 2010; 6:e1001027. [PMID: 20686663 PMCID: PMC2912398 DOI: 10.1371/journal.ppat.1001027] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 06/30/2010] [Indexed: 12/13/2022] Open
Abstract
Complement forms an important arm of innate immunity against invasive meningococcal infections. Binding of the alternative complement pathway inhibitor factor H (fH) to fH-binding protein (fHbp) is one mechanism meningococci employ to limit complement activation on the bacterial surface. fHbp is a leading vaccine candidate against group B Neisseria meningitidis. Novel mechanisms that meningococci employ to bind fH could undermine the efficacy of fHbp-based vaccines. We observed that fHbp deletion mutants of some meningococcal strains showed residual fH binding suggesting the presence of a second receptor for fH. Ligand overlay immunoblotting using membrane fractions from one such strain showed that fH bound to a ∼17 kD protein, identified by MALDI-TOF analysis as Neisserial surface protein A (NspA), a meningococcal vaccine candidate whose function has not been defined. Deleting nspA, in the background of fHbp deletion mutants, abrogated fH binding and mAbs against NspA blocked fH binding, confirming NspA as a fH binding molecule on intact bacteria. NspA expression levels vary among strains and expression correlated with the level of fH binding; over-expressing NspA enhanced fH binding to bacteria. Progressive truncation of the heptose (Hep) I chain of lipooligosaccharide (LOS), or sialylation of lacto-N-neotetraose LOS both increased fH binding to NspA-expressing meningococci, while expression of capsule reduced fH binding to the strains tested. Similar to fHbp, binding of NspA to fH was human-specific and occurred through fH domains 6–7. Consistent with its ability to bind fH, deleting NspA increased C3 deposition and resulted in increased complement-dependent killing. Collectively, these data identify a key complement evasion mechanism with important implications for ongoing efforts to develop meningococcal vaccines that employ fHbp as one of its components. Neisseria meningitidis is an important cause of bacterial meningitis and sepsis worldwide. The complement system is a family of proteins that is critical for innate immune defenses against this pathogen. In order to successfully colonize humans and cause disease, the meningococcus must escape killing by the complement system. In this study we show that meningococci can use one of its surface proteins called Neisserial surface protein A (NspA) to bind to a host complement inhibitory protein called factor H (fH). NspA is a protein vaccine candidate against group B meningococcal disease. Binding of fH limits complement activation on the bacterial surface and enhances the ability of the meningococcus to resist complement-dependent killing. Capsular polysaccharide expression decreases fH binding to NspA, while truncation of the core glycan chain of lipooligosaccharide increases fH binding to meningococcal NspA. Loss of NspA results in enhanced complement activation on the bacterial surface and increased complement-dependent killing of meningococci. Our findings have disclosed a novel function for NspA and sheds further light on how this pathogen evades killing by the complement system.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The human species is the only natural host of Neisseria meningitidis, an important cause of bacterial meningitis globally, and, despite its association with devastating diseases, N. meningitidis is a commensal organism found frequently in the respiratory tract of healthy individuals. To date, antibiotic resistance is relatively uncommon in N. meningitidis isolates but, due to the rapid onset of disease in susceptible hosts, the mortality rate remains approx. 10%. Additionally, patients who survive meningococcal disease often endure numerous debilitating sequelae. N. meningitidis strains are classified primarily into serogroups based on the type of polysaccharide capsule expressed. In total, 13 serogroups have been described; however, the majority of disease is caused by strains belonging to one of only five serogroups. Although vaccines have been developed against some of these, a universal meningococcal vaccine remains a challenge due to successful immune evasion strategies of the organism, including mimicry of host structures as well as frequent antigenic variation. N. meningitidis express a range of virulence factors including capsular polysaccharide, lipopolysaccharide and a number of surface-expressed adhesive proteins. Variation of these surface structures is necessary for meningococci to evade killing by host defence mechanisms. Nonetheless, adhesion to host cells and tissues needs to be maintained to enable colonization and ensure bacterial survival in the niche. The aims of the present review are to provide a brief outline of meningococcal carriage, disease and burden to society. With this background, we discuss several bacterial strategies that may enable its survival in the human respiratory tract during colonization and in the blood during infection. We also examine several known meningococcal adhesion mechanisms and conclude with a section on the potential processes that may operate in vivo as meningococci progress from the respiratory niche through the blood to reach the central nervous system.
Collapse
|
30
|
Mechanisms of avoidance of host immunity by Neisseria meningitidis and its effect on vaccine development. THE LANCET. INFECTIOUS DISEASES 2009; 9:418-27. [PMID: 19555901 DOI: 10.1016/s1473-3099(09)70132-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neisseria meningitidis remains an important cause of severe sepsis and meningitis worldwide. The bacterium is only found in human hosts, and so must continually coexist with the immune system. Consequently, N meningitidis uses multiple mechanisms to avoid being killed by antimicrobial proteins, phagocytes, and, crucially, the complement system. Much remains to be learnt about the strategies N meningitidis employs to evade aspects of immune killing, including mimicry of host molecules by bacterial structures such as capsule and lipopolysaccharide, which poses substantial problems for vaccine design. To date, available vaccines only protect individuals against subsets of meningococcal strains. However, two promising vaccines are currently being assessed in clinical trials and appear to offer good prospects for an effective means of protecting individuals against endemic serogroup B disease, which has proven to be a major challenge in vaccine research.
Collapse
|
31
|
John CM, Liu M, Jarvis GA. Natural phosphoryl and acyl variants of lipid A from Neisseria meningitidis strain 89I differentially induce tumor necrosis factor-alpha in human monocytes. J Biol Chem 2009; 284:21515-25. [PMID: 19531474 DOI: 10.1074/jbc.m109.004887] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The native lipooligosaccharide (LOS) from Neisseria meningitidis strain 89I was analyzed by matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry and the spectrum compared with that of the LOS after O-deacylation and hydrogen fluoride treatment. The data are consistent with the presence of natural variations in the LOS, which include a triphosphorylated lipid A (LA) with and without a phosphoethanolamine group, and both hexa- and pentaacylated LA molecules. Thin-layer chromatography was performed on 89I LA produced by hydrolysis of the LOS, and the purified LA molecules were analyzed by MALDI-TOF and tested for their relative ability to induce the secretion of tumor necrosis factor-alpha by human monocytic THP-1 cells and primary human monocytes. The potency of tumor necrosis factor-alpha induction varied by approximately 2-10-fold, depending on the state of acylation and phosphorylation. The results highlight the significance of phosphorylation along with acylation of the LA component of LOS in stimulation of inflammatory signaling, and suggest that natural strain variation in these moieties may be a feature of meningococcal bacteria, which is of critical importance to the progression of the infection.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | | | | |
Collapse
|
32
|
John CM, Liu M, Jarvis GA. Profiles of structural heterogeneity in native lipooligosaccharides of Neisseria and cytokine induction. J Lipid Res 2008; 50:424-438. [PMID: 18832773 DOI: 10.1194/jlr.m800184-jlr200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fine differences in the phosphorylation and acylation of lipooligosaccharide (LOS) from Neisseria species are thought to profoundly influence the virulence of the organisms and the innate immune responses of the host, such as signaling through toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells (TREM). MALDI time-of-flight (TOF) mass spectrometry was used to characterize heterogeneity in the native LOS from Neisseria gonorrheae and N. meningitidis. A sample preparation methodology previously reported for Escherichia coli lipopolysaccharide (LPS) employing deposition of untreated LOS on a thin layer of a film composed of 2,4,6-trihydroxyacetophenone and nitrocellulose was used. Prominent peaks were observed corresponding to molecular ions and to fragment ions primarily formed by cleavage between the 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and the lipid A (LA). Analyses of these data and comparison with spectra of the corresponding O-deacylated or hydrogen fluoride-treated LOS enabled the detection of novel species that apparently differed by the expression of up to three phosphates with one or more phosphoethanolamine (PEA) groups on the LA. We found that the heterogeneity profile of acylation and phosphorylation correlates with the induction of proinflammatory cytokines in THP-1 monocytic cells. This methodology enabled us to rapidly profile components of structural variants of native LOS that are of importance biologically.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121
| | - Mingfeng Liu
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121; Department of Laboratory Medicine, University of California, San Francisco, CA 94143.
| |
Collapse
|
33
|
Smith H, Tang CM, Exley RM. Effect of host lactate on gonococci and meningococci: new concepts on the role of metabolites in pathogenicity. Infect Immun 2007; 75:4190-8. [PMID: 17562766 PMCID: PMC1951187 DOI: 10.1128/iai.00117-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Harry Smith
- The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | |
Collapse
|
34
|
Swanson KV, Griffiss JM. Separation and identification of neisserial lipooligosaccharide oligosaccharides using high-performance anion-exchange chromatography with pulsed amperometric detection. Carbohydr Res 2005; 341:388-96. [PMID: 16360127 DOI: 10.1016/j.carres.2005.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 11/18/2005] [Accepted: 11/18/2005] [Indexed: 11/18/2022]
Abstract
We determined the optimal conditions for high-performance anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD) of oligosaccharides (OS) released from neisserial lipooligosaccharides (LOS) by mild acid hydrolysis. We efficiently obtained detailed composition, sequence, and linkage information about high Mr LOS. We found that HPAE-PAD can discriminate isobaric (same Mr) molecules of different structure, for example, nLc4 and Gb4, distinguish alpha from beta chain extensions, and determine the number of phosphoethanolamine (PEA) substituents. HPAE-PAD provided quantitative information that could be used to compare the relative abundances of OS. We used HPAE-PAD to identify all of the known LOS alpha chain antennae. When used with antibody-binding profiles and exoglycosidase digestion results, HPAE-PAD can provide nearly complete structures rapidly.
Collapse
Affiliation(s)
- Karen V Swanson
- Centre for Immunochemistry, VA Medical Center (111W1), Department of Laboratory Medicine, University of California San Francisco, 4150 Clement Street, San Francisco, CA 94121, USA
| | | |
Collapse
|
35
|
Jarva H, Ram S, Vogel U, Blom AM, Meri S. Binding of the complement inhibitor C4bp to serogroup B Neisseria meningitidis. THE JOURNAL OF IMMUNOLOGY 2005; 174:6299-307. [PMID: 15879129 DOI: 10.4049/jimmunol.174.10.6299] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neisseria meningitidis (meningococcus) is an important cause of meningitis and sepsis. Currently, there is no effective vaccine against serogroup B meningococcal infection. Host defense against neisseriae requires the complement system (C) as indicated by the fact that individuals deficient in properdin or late C components (C6-9) have an increased susceptibility to recurrent neisserial infections. Because the classical pathway (CP) is required to initiate efficient complement activation on neisseriae, meningococci should be able to evade it to cause disease. To test this hypothesis, we studied the interactions of meningococci with the major CP inhibitor C4b-binding protein (C4bp). We tested C4bp binding to wild-type group B meningococcus strain (H44/76) and to 11 isogenic mutants thereof that differed in capsule expression, lipo-oligosaccharide sialylation, and/or expression of either porin (Por) A or PorB3. All strains expressing PorA bound radiolabeled C4bp, whereas the strains lacking PorA bound significantly less C4bp. Increased binding was observed under hypotonic conditions. Deleting PorB3 did not influence C4bp binding, but the presence of polysialic acid capsule reduced C4bp binding by 50%. Bound C4bp remained functionally active in that it promoted the inactivation of C4b by factor I. PorA-expressing strains were also more resistant to C lysis than PorA-negative strains in a serum bactericidal assay. Binding of C4bp thus helps Neisseria meningitidis to escape CP complement activation.
Collapse
Affiliation(s)
- Hanna Jarva
- Haartman Institute, Department of Bacteriology and Immunology, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | |
Collapse
|
36
|
Vogel U, Claus H, von Müller L, Bunjes D, Elias J, Frosch M. Bacteremia in an immunocompromised patient caused by a commensal Neisseria meningitidis strain harboring the capsule null locus (cnl). J Clin Microbiol 2004; 42:2898-901. [PMID: 15243035 PMCID: PMC446252 DOI: 10.1128/jcm.42.7.2898-2901.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 03/18/2004] [Accepted: 04/15/2004] [Indexed: 01/15/2023] Open
Abstract
We recently described the capsule null locus (cnl) of constitutively unencapsulated Neisseria meningitidis clonal lineages. cnl meningococci were recovered from healthy carriers at high frequency. We here report on the first case of invasive disease caused by cnl meningococci in a severely immunosuppressed patient with chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplantation. The sequence type 845 strain was extensively typed and, furthermore, shown to be sensitive to serum bactericidal activity.
Collapse
Affiliation(s)
- Ulrich Vogel
- National Reference Laboratory for Meningococci, Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Braun JM, Beuth J, Blackwell CC, Giersen S, Higgins PG, Tzanakaki G, Unverhau H, Weir DM. Neisseria meningitidis, Neisseria lactamica and Moraxella catarrhalis share cross-reactive carbohydrate antigens. Vaccine 2004; 22:898-908. [PMID: 15040943 DOI: 10.1016/j.vaccine.2003.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Carriage of commensal bacteria species is associated with the development of natural immunity to meningococcal disease, with lipo-oligosaccharides (LOS) of meningococci being one of the main virulence factors associated with severity of meningococcal disease. Meningococcal reference strains and isolates from the commensal species Neisseria lactamica and Moraxella catarrhalis were assessed for the presence of cross-reactive glycoconjugate antigens. Binding of human blood group antibodies of the P and Ii system to meningococcal immunotype reference strains were in accordance with the presence of known LOS carbohydrate structures. Binding studies with meningococcal immunotyping antibodies and blood group phenotyping antibodies to N. lactamica strains from different European countries showed, that a greater number of isolates obtained from native Greek and Scottish adults and children bound anti-meningococcal L(3, 7, 9) immunotyping (P < 0.001), pK (P = 0.035) and paragloboside (P < 0.001) blood group typing antibodies compared to isolates obtained from children of Russian immigrants in Greece. A greater number of M. catarrhalis strains isolated from children in Scotland bound anti-L(3, 7, 9) antibodies (38.2%) compared to strains isolated from adults (22.2%) (P = 0.017). These findings provide evidence that blood group like glycoconjugate antigens found on the commensal species N. lactamica and M. catarrhalis might be involved in the development of natural immunity to meningococcal endotoxins during childhood, and might be exploited as anti-meningococcal vaccine candidates.
Collapse
Affiliation(s)
- Jan M Braun
- Institute for Scientific Evaluation of Naturopathy, University of Cologne, Robert Koch Str. 10, 50931 Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Shakhnovich EA, King SJ, Weiser JN. Neuraminidase expressed by Streptococcus pneumoniae desialylates the lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae: a paradigm for interbacterial competition among pathogens of the human respiratory tract. Infect Immun 2002; 70:7161-4. [PMID: 12438402 PMCID: PMC133026 DOI: 10.1128/iai.70.12.7161-7164.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Both Neisseria meningitidis and Haemophilus influenzae are capable of mimicking host structures by decorating their lipopolysaccharides with sialic acid. We show that a neuraminidase expressed by Streptococcus pneumoniae (NanA) is able to desialylate the cell surfaces of both these species, which reside in and possibly compete for the same host niche.
Collapse
Affiliation(s)
- Elizabeth A Shakhnovich
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | |
Collapse
|
39
|
Inzana TJ, Glindemann G, Cox AD, Wakarchuk W, Howard MD. Incorporation of N-acetylneuraminic acid into Haemophilus somnus lipooligosaccharide (LOS): enhancement of resistance to serum and reduction of LOS antibody binding. Infect Immun 2002; 70:4870-9. [PMID: 12183531 PMCID: PMC128230 DOI: 10.1128/iai.70.9.4870-4879.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Haemophilus somnus isolates from cases of thrombotic meningoencephalitis, pneumonia, and other disease sites are capable of undergoing a high rate of phase variation in the oligosaccharide component of their lipooligosaccharides (LOS). In contrast, the LOS of commensal strains isolated from the normal reproductive tract phase vary little or not at all. In addition, the LOS of H. somnus shares conserved epitopes with LOS from Neisseria gonorrhoeae, Haemophilus influenzae, and other species that can incorporate sialic acid into their LOS. We now report that growth of disease isolates of H. somnus with CMP-N-acetylneuraminic acid (CMP-NeuAc) or NeuAc added to the medium resulted in incorporation of NeuAc into the LOS. However, NeuAc was not incorporated into the LOS of commensal isolates and one disease isolate following growth in medium containing CMP-NeuAc or NeuAc. Sialylated LOS was detected by an increase in the molecular size or an increase in the amount of the largest-molecular-size LOS electrophoretic bands, which disappeared following treatment with neuraminidase. Sialylated LOS could also be detected by reactivity with Limax flavus agglutinin lectin, which is specific for sialylated species, by dot blot assay; this reactivity was also reversed by neuraminidase treatment. H. somnus strain 2336 LOS was found to contain some sialic acid when grown in medium lacking CMP-NeuAc or NeuAc, although supplementation enhanced NeuAc incorporation. In contrast strain 738, an LOS phase variant of strain 2336, was less extensively sialylated when the growth medium was supplemented with CMP-NeuAc or NeuAc, as determined by electrophoretic profiles and electrospray mass spectrometry. The sialyltransferase of H. somnus strain 738 was confirmed to preferentially sialylate the Gal(beta)-(1-3)-GlcNAc component of the lacto-N-tetraose structure by capillary electrophoresis assay. Enhanced sialylation of the strain 2336 LOS inhibited the binding of monoclonal antibodies to LOS by enzyme immunoassay and Western blotting. Furthermore, sialylation of the LOS enhanced the resistance of H. somnus to the bactericidal action of antiserum to LOS. Sialylation and increased resistance to killing by normal serum also occurred in a deletion mutant that was deficient in the terminal Gal-GlcNAc disaccharide. LOS sialylation may therefore be an important virulence mechanism to protect H. somnus against the host immune system.
Collapse
Affiliation(s)
- Thomas J Inzana
- Center for Molecular Medicine and Infectious Diseases, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061-0342, USA.
| | | | | | | | | |
Collapse
|
40
|
Cox AD, Hood DW, Martin A, Makepeace KM, Deadman ME, Li J, Brisson JR, Moxon ER, Richards JC. Identification and structural characterization of a sialylated lacto-N-neotetraose structure in the lipopolysaccharide of Haemophilus influenzae. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4009-19. [PMID: 12180977 DOI: 10.1046/j.1432-1033.2002.03090.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A sialylated lacto-N-neotetraose (Sial-lNnT) structural unit was identified and structurally characterized in the lipopolysaccharide (LPS) from the genome-sequenced strain Rd [corrected] (RM118) of the human pathogen Haemophilus influenzae grown in the presence of sialic acid. A combination of molecular genetics, MS and NMR spectroscopy techniques showed that this structural unit extended from the proximal heptose residue of the inner core region of the LPS molecule. The structure of the Sial-lNnT unit was identical to that found in meningococcal LPS, but glycoforms containing truncations of the Sial-lNnT unit, comprising fewer residues than the complete oligosaccharide component, were not detected. The finding of sialylated glycoforms that were either fully extended or absent suggests a novel biosynthetic feature for adding the terminal tetrasaccharide unit of the Sial-lNnT to the glycose acceptor at the proximal inner core heptose.
Collapse
Affiliation(s)
- Andrew D Cox
- Institute for Biological Sciences, National Research Council, Ottawa, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chaffin DO, McKinnon K, Rubens CE. CpsK of Streptococcus agalactiae exhibits alpha2,3-sialyltransferase activity in Haemophilus ducreyi. Mol Microbiol 2002; 45:109-22. [PMID: 12100552 DOI: 10.1046/j.1365-2958.2002.02988.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Streptococcus agalactiae (GBS) is a major cause of serious newborn bacterial infections. Crucial to GBS evasion of host immunity is the production of a capsular polysaccharide (CPS) decorated with sialic acid, which inactivates the alternative complement pathway. The CPS operons of serotypes Ia and III GBS have been described, but the CPS sialyltransferase gene was not identified. We identified cpsK, an open reading frame in the CPS operon of most serotypes, which was homologous to the lipooligosaccharide (LOS) sialyltransferase gene, lst, of Haemophilus ducreyi. To determine if cpsK might encode a sialyltransferase, we complemented a H. ducreyi lst mutant with cpsK. CpsK was expressed in H. ducreyi and LOS was isolated and analysed for sialic acid content by SDS-PAGE and high-performance liquid chromatography (HPLC). Sialo-LOS was seen in the wild-type, cpsK- or lst-complemented mutant strains, but not in the mutant without cpsK. Addition of Neu5Ac to the LOS was confirmed by mass spectroscopy. Lectin binding studies detected terminal Neu5Ac(alpha 2-->3)Gal(beta 1- on LOS produced by the wild-type, cpsK or lst-complemented mutant strain LOS, compared with the mutant alone. Our data characterize the first sialyltransferase gene from a Gram- positive bacterium and provide compelling evidence that its product catalyses the alpha2,3 addition of Neu5Ac to H. ducreyi LOS and therefore the terminal side-chain of GBS CPS. Phylogenetic studies further indicated that lst and cpsK are related but distinct from sialyltransferases of most other bacteria and, along with their similar codon usage bias and G + C content, suggests acquisition by lateral transfer from an ancestral low G + C organism.
Collapse
Affiliation(s)
- Donald O Chaffin
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital and Regional Medical Center/University of Washington, Seattle, 98105, USA
| | | | | |
Collapse
|
42
|
Smith H. Discovery of the anthrax toxin: the beginning of studies of virulence determinants regulated in vivo. Int J Med Microbiol 2002; 291:411-7. [PMID: 11890538 DOI: 10.1078/1438-4221-00147] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anthrax kills many animal species. It was used to prove Koch's Postulates in 1876. Soon after that the classical bacterial toxins were produced in vitro, but up to 1950, a lethal toxin had not been demonstrated in either anthrax bacilli or filtrates from laboratory cultures. The cause of death had been an enigma for seventy years. During the 1950's, a toxin was recognized by examining bacteria and their products obtained from guinea pigs dying of anthrax. The toxin was found in their plasma and shown to contain two components. It was then produced in vitro and a third component recognized. The work reawakened interest in bacterial toxins after a period of dormancy and showed that toxins could be multicomponent. It demonstrated that previously unknown determinants of bacterial pathogenicity could be revealed by examining organisms grown in vivo. It was the beginning of such studies, which took a long time to evolve, but have now expanded greatly with the development of many new methods for examining bacterial activities in vivo. This paper is a personal account of the early work.
Collapse
Affiliation(s)
- Harry Smith
- Medical School, University of Birmingham, UK
| |
Collapse
|
43
|
Tsai CM, Kao G, Zhu P. Influence of the length of the lipooligosaccharide alpha chain on its sialylation in Neisseria meningitidis. Infect Immun 2002; 70:407-11. [PMID: 11748209 PMCID: PMC127647 DOI: 10.1128/iai.70.1.407-411.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sialylation of lipooligosaccharide (LOS) in Neisseria meningitidis plays a role in the resistance of the organism to killing by normal human serum. The length of the alpha chain extending out from the heptose I [Hep (I)] moiety of LOS influenced sialylation of N. meningitidis LOS in vitro and in vivo. The alpha chain required a terminal Gal and a trisaccharide or longer oligosaccharide to serve as an acceptor for sialylation. The disaccharide lactose (Galbeta1-4Glc) in the alpha chain of immunotype L8 LOS could not function as an acceptor for the sialyltransferase, probably due to steric hindrance imposed by the neighboring Hep (II) with phosphorylethanolamine and another group attached.
Collapse
Affiliation(s)
- Chao-Ming Tsai
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
44
|
Verduin CM, Hol C, Fleer A, van Dijk H, van Belkum A. Moraxella catarrhalis: from emerging to established pathogen. Clin Microbiol Rev 2002; 15:125-44. [PMID: 11781271 PMCID: PMC118065 DOI: 10.1128/cmr.15.1.125-144.2002] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis (formerly known as Branhamella catarrhalis) has emerged as a significant bacterial pathogen of humans over the past two decades. During this period, microbiological and molecular diagnostic techniques have been developed and improved for M. catarrhalis, allowing the adequate determination and taxonomic positioning of this pathogen. Over the same period, studies have revealed its involvement in respiratory (e.g., sinusitis, otitis media, bronchitis, and pneumonia) and ocular infections in children and in laryngitis, bronchitis, and pneumonia in adults. The development of (molecular) epidemiological tools has enabled the national and international distribution of M. catarrhalis strains to be established, and has allowed the monitoring of nosocomial infections and the dynamics of carriage. Indeed, such monitoring has revealed an increasing number of B-lactamase-positive M. catarrhalis isolates (now well above 90%), underscoring the pathogenic potential of this organism. Although a number of putative M. catarrhalis virulence factors have been identified and described in detail, their relationship to actual bacterial adhesion, invasion, complement resistance, etc. (and ultimately their role in infection and immunity), has been established in a only few cases. In the past 10 years, various animal models for the study of M. catarrhalis pathogenicity have been described, although not all of these models are equally suitable for the study of human infection. Techniques involving the molecular manipulation of M. catarrhalis genes and antigens are also advancing our knowledge of the host response to and pathogenesis of this bacterial species in humans, as well as providing insights into possible vaccine candidates. This review aims to outline our current knowledge of M. catarrhalis, an organism that has evolved from an emerging to a well-established human pathogen.
Collapse
Affiliation(s)
- Cees M Verduin
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center Rotterdam EMCR, 3015 GD Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
45
|
Bauer SH, Månsson M, Hood DW, Richards JC, Moxon ER, Schweda EK. A rapid and sensitive procedure for determination of 5-N-acetyl neuraminic acid in lipopolysaccharides of Haemophilus influenzae: a survey of 24 non-typeable H. influenzae strains. Carbohydr Res 2001; 335:251-60. [PMID: 11595219 DOI: 10.1016/s0008-6215(01)00242-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In view of the importance of 5-N-acetyl neuraminic acid in bacterial pathogenesis, a sensitive, reproducible and reliable method for the determination of 5-N-acetyl neuraminic acid levels in lipopolysaccharide (LPS) is described and applied to 24 different non-typeable Haemophilus influenzae (NTHi) strains. The method involves analysis by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) of terminal 5-N-acetyl neuraminic acid residues released by neuraminidase treatment of O-deacylated LPS. The procedure is relatively fast and the instrumental effort is moderate. The results of the procedure were compared with data obtained by 1H NMR and electrospray ionisation-mass spectrometry (ESI-MS). The analysis of LPS from 24 NTHi strains showed that 5-N-acetyl neuraminic acid was found to be a common constituent of LPS in NTHi. Only one strain (NTHi 432) did not show any sialylation. Molar ratios (LPS/5-N-acetyl neuraminic acid) ranged between 5/1 and 500/1. Several strains in which no 5-N-acetyl neuraminic acid could be determined by other methods including 1H NMR and ESI-MS were shown to contain 5-N-acetyl neuraminic acid by this HPAEC-PAD procedure. The method was applied to determine levels of terminal 5-N-acetyl neuraminic acid in LPS from NTHi strains grown under different conditions and mutant strains containing inactive LPS biosynthetic genes.
Collapse
Affiliation(s)
- S H Bauer
- Clinical Research Centre, Karolinska Institutet and University College of South Stockholm, NOVUM, S-141 86 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Pérez O, Lastre M, Lapinet J, Bracho G, Díaz M, Zayas C, Taboada C, Sierra G. Immune response induction and new effector mechanisms possibly involved in protection conferred by the Cuban anti-meningococcal BC vaccine. Infect Immun 2001; 69:4502-8. [PMID: 11401992 PMCID: PMC98525 DOI: 10.1128/iai.69.7.4502-4508.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Accepted: 03/28/2001] [Indexed: 11/20/2022] Open
Abstract
This report explores the participation of some afferent mechanisms in the immune response induced by the Cuban anti-meningococcal vaccine VA-MENGOC-BC. The induction of delayed-type hypersensitivity in nursing babies and lymphocyte proliferation after immunization is demonstrated. The presence of gamma interferon IFN-gamma and interleukin-2 (IL-2) mRNAs but absence of IL-4, IL-5, and IL-10 mRNAs were observed in peripheral blood mononuclear cells from immunized subjects after in vitro challenge with outer membrane vesicles. In addition, some effector functions were also explored. The presence of opsonic activity was demonstrated in sera from vaccinees. The role of neutrophils as essential effector cells was shown. In conclusion, we have shown that, at least in the Cuban adult population, VA-MENGOC-BC induces mechanisms with a T-helper 1 pattern in the afferent and effector branches of the immune response.
Collapse
Affiliation(s)
- O Pérez
- Department of Basic and Clinical Immunology, Finlay Institute, Havana City, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Global control and prevention of meningococcal disease depends on the further development of vaccines that overcome the limitations of the current polysaccharide vaccines. Protein-polysaccharide conjugate vaccines likely will address the marginal protective antibody responses and short duration of immunity in young children derived from the A, C, Y, and W-135 capsular polysaccharides, but they will be expensive to produce and purchase, and may not offer a practical solution to the countries with greatest need. In addition, OMP vaccines have been tested extensively in humans and hold some promise in the development of a serogroup B vaccine, but are limited by the antigenic variability of these subcapsular antigens and the resulting strain-specific protection. Elimination of meningococcal disease likely will require a novel approach to vaccine development, ideally incorporating a safe and effective antigen or antigens common to all meningoccocal serogroups. As a solely human pathogen, however, N. meningitidis has developed many tools with which to evade the human immune system, and likely will pose a formidable challenge for years to come.
Collapse
Affiliation(s)
- N E Rosenstein
- Meningitis and Special Pathogens Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | |
Collapse
|
48
|
Tsai CM. Molecular Mimicry of Host Structures by Lipooligosaccharides of Neisseria Meningitidis: Characterization of Sialylated and Nonsialylated Lacto-N-Neotetraose (Galß1-4GlcNAcß1-3Galβ1-4Glc) Structures in Lipooligosaccharides Using Monoclonal Antibodies and Specific Lectins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 491:525-42. [PMID: 14533820 DOI: 10.1007/978-1-4615-1267-7_35] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neisseria meningitidis lipooligosaccharides (LOSs) are classified into 12 immunotypes. Most LOSs are heterogeneous in having a few components by SDS-PAGE analysis that differ antigenically and chemically. We have utilized a monoclonal antibody that recognizes lacto-N-neotetraose (LNnT) and the lectin, Maackia amurensis leukoagglutinin (MAL), which is specific for NeuNAcalpha2-3Galbeta1-4GlcNAc trisacchride sequence to characterize the 12 N. meningitidis LOSs. Using the combination of ELISA, SDS-PAGE, Western blotting, and other chemical analyses, we have shown that the LNnT (Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc) sequence was present in the 4.0-kDa LOS components of seven immunotype LOSs seen on SDS-PAGE. Six of the seven LNnT-containing LOSs also bound the MAL lectin indicating that N-acetylneuraminic acid (NeuNAc) was alpha2,3-linked to the LNnT sequence in the LOSs. Sialylation of the terminal Gal of LNnT-containing 4.0-kDa component caused only a slight increase in its apparent MW to 4100 on SDS-PAGE. The one LOS with the LNnT-containing component, but not MAL-binding, was from a Group A N. meningitidis, which does not synthesize CMP-NeuNAc, the substrate needed for LOS sialylation. Thus, it is concluded (1) a common LNnT sequence is present in seven immunotype LOSs in addition to their immunotype epitopes, and (2) NeuNAc is alpha2 --> 3 linked to the terminal Gal of LNnT if a organism synthesizes CMP-NeuNAc such as Groups B and C organisms. The above conclusions are consistent with the published structures of N. meningitidis LOSs. The results also demonstrate that specific carbohydrate-binding lectins and monoclonal antibodies can be used as simple yet effective tools to characterize specific carbohydrate sequences in a bacterial LOS or LPS such as N. meningitidis LOS. It is intriguing that N. meningitidis LOSs mimic certain glycosphingolipids, such as paragloboside (LNnT-ceramide) and sialylparagloboside, and some glycoproteins of the host in having LNnT and N-acetyllactosamine sequences respectively with or without alpha2 --> 3 linked NeuNAc. Epidemiological studies of N. meningitidis suggest that the molecular mimicry of host structures by its LOS plays a role in the pathogenesis of N. meningitidis by helping the organism to evade host immune defenses in man. The molecular mimicry of host structures by LOS or LPS is also found in other human pathogens such as N. gonorrhoeae, Haemophilus ducreyi, H. influenaze, Moraxella catarrhalis, Campylobacter jejuni, and Helicobacter pylori.
Collapse
Affiliation(s)
- C M Tsai
- Division of Bacterial Products, Center for Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| |
Collapse
|
49
|
Pericone CD, Overweg K, Hermans PW, Weiser JN. Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect Immun 2000; 68:3990-7. [PMID: 10858213 PMCID: PMC101678 DOI: 10.1128/iai.68.7.3990-3997.2000] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An inverse correlation between colonization of the human nasopharynx by Streptococcus pneumoniae and Haemophilus influenzae, both common upper respiratory pathogens, has been reported. Studies were undertaken to determine if either of these organisms produces substances which inhibit growth of the other. Culture supernatants from S. pneumoniae inhibited growth of H. influenzae, whereas culture supernatants from H. influenzae had no effect on the growth of S. pneumoniae. Moreover, coculture of S. pneumoniae and H. influenzae led to a rapid decrease in viable counts of H. influenzae. The addition of purified catalase prevented killing of H. influenzae in coculture experiments, suggesting that hydrogen peroxide may be responsible for this bactericidal activity. H. influenzae was killed by concentrations of hydrogen peroxide similar to that produced by S. pneumoniae. Hydrogen peroxide is produced by the pneumococcus through the action of pyruvate oxidase (SpxB) under conditions of aerobic growth. Both an spxB mutant and a naturally occurring variant of S. pneumoniae, which is downregulated in SpxB expression, were unable to kill H. influenzae. A catalase-reversible inhibitory effect of S. pneumoniae on the growth of the respiratory tract pathogens Moraxella catarrhalis and Neisseria meningitidis was also observed. Elevated hydrogen peroxide production, therefore, may be a means by which S. pneumoniae is able to inhibit a variety of competing organisms in the aerobic environment of the upper respiratory tract.
Collapse
Affiliation(s)
- C D Pericone
- Departments of Pediatrics and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
50
|
McLeod Griffiss J, Brandt BL, Saunders NB, Zollinger W. Structural relationships and sialylation among meningococcal L1, L8, and L3,7 lipooligosaccharide serotypes. J Biol Chem 2000; 275:9716-24. [PMID: 10734124 DOI: 10.1074/jbc.275.13.9716] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eighteen of 34 endemic meningococcal case strains were of the L8 lipooligosaccharide (LOS) type; four of these were both L3 and L7 (L3,7), and seven were L1. L1 structures arose by alternative terminal Gal substitutions of lactosyl diheptoside L8 structures, as determined by electrospray ionization and other mass spectrometric techniques, and enzymatic and chemical degradations (Structures L1 and L1a). [see text for structure] The more abundant molecule, designated L1, had a trihexose globosyl alpha chain; the less abundant one, designated L1a, had a beta-lactosyl alpha chain and a parallel alpha-lactosaminyl gamma chain. A P(k) globoside (Galalpha1-->4Galbeta1-->4 Glc-R) monoclonal antibody bound 9/10 L1 strains, but a P(1) globoside (Galalpha1-->4Galbeta1-->4GlcNAc-R) mAb bound none of them. alpha-Galactosidase caused loss of both L1 structures and creation of L8 structures; beta-galactosidase caused loss of the L8 determinant. The L1/P(k) glycose was partially sialylated. Some LOS also had unsubstituted basal beta-GlcNAc additions. These structural relationships explain co-expression of L8, L1, and L3,7 serotypes.
Collapse
Affiliation(s)
- J McLeod Griffiss
- Centre for Immunochemistry and Department of Laboratory Medicine, University of California, San Francisco, California 94121, USA.
| | | | | | | |
Collapse
|