1
|
Palit K, Das S. Cellulolytic potential of mangrove bacteria Bacillus haynesii DS7010 and the effect of anthropogenic and environmental stressors on bacterial survivability and cellulose metabolism. ENVIRONMENTAL RESEARCH 2024; 252:118774. [PMID: 38552827 DOI: 10.1016/j.envres.2024.118774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Cellulose degrading bacterial diversity of Bhitarkanika mangrove ecosystem, India, was uncovered and the cellulose degradation mechanism in Bacillus haynesii DS7010 under the modifiers such as pH (pCO2), salinity and lead (Pb) was elucidated in the present study. The abundance of cellulose degrading heterotrophic bacteria was found to be higher in mangrove sediment than in water. The most potential strain, B. haynesii DS7010 showed the presence of endoglucanase, exoglucanase and β-glucosidase with the maximum degradation recorded at 48 h of incubation, with 1% substrate concentration at 41 °C incubation temperature. Two glycoside hydrolase genes, celA and celB were confirmed in this bacterium. 3D structure prediction of the translated CelA and CelB proteins showed maximum similarities with glycoside hydrolase 48 (GH48) and glycoside hydrolase 5 (GH5) respectively. Native PAGE followed by zymogram assay unveiled the presence of eight isoforms of cellulase ranged from 78 kDa to 245 kDa. Among the stressors, most adverse effect was observed under Pb stress at 1400 ppm concentration, followed by pH at pH 4. This was indicated by prolonged lag phase growth, higher reactive oxygen species (ROS) production, lower enzyme activity and downregulation of celA and celB gene expressions. Salinity augmented bacterial metabolism up to 3% NaCl concentration. Mangrove leaf litter degradation by B. haynesii DS7010 indicated a substantial reduction in cellulolytic potential of the bacterium in response to the synergistic effect of the stressors. Microcosm set up with the stressors exhibited 0.97% decrease in total carbon (C%) and 0.02% increase in total nitrogen (N%) after 35 d of degradation while under natural conditions, the reduction in C and the increase in N were 4.05% and 0.2%, respectively. The findings of the study suggest the cellulose degradation mechanism of a mangrove bacterium and its resilience to the future consequences of environmental pollution and climate change.
Collapse
Affiliation(s)
- Krishna Palit
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
2
|
Escuder-Rodríguez JJ, DeCastro ME, Cerdán ME, Rodríguez-Belmonte E, Becerra M, González-Siso MI. Cellulases from Thermophiles Found by Metagenomics. Microorganisms 2018; 6:microorganisms6030066. [PMID: 29996513 PMCID: PMC6165527 DOI: 10.3390/microorganisms6030066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 01/05/2023] Open
Abstract
Cellulases are a heterogeneous group of enzymes that synergistically catalyze the hydrolysis of cellulose, the major component of plant biomass. Such reaction has biotechnological applications in a broad spectrum of industries, where they can provide a more sustainable model of production. As a prerequisite for their implementation, these enzymes need to be able to operate in the conditions the industrial process requires. Thus, cellulases retrieved from extremophiles, and more specifically those of thermophiles, are likely to be more appropriate for industrial needs in which high temperatures are involved. Metagenomics, the study of genes and gene products from the whole community genomic DNA present in an environmental sample, is a powerful tool for bioprospecting in search of novel enzymes. In this review, we describe the cellulolytic systems, we summarize their biotechnological applications, and we discuss the strategies adopted in the field of metagenomics for the discovery of new cellulases, focusing on those of thermophilic microorganisms.
Collapse
Affiliation(s)
- Juan-José Escuder-Rodríguez
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - María-Eugenia DeCastro
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - María-Esperanza Cerdán
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - Esther Rodríguez-Belmonte
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - Manuel Becerra
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| |
Collapse
|
3
|
Molecular and biochemical analyses of the GH44 module of CbMan5B/Cel44A, a bifunctional enzyme from the hyperthermophilic bacterium Caldicellulosiruptor bescii. Appl Environ Microbiol 2012; 78:7048-59. [PMID: 22843537 DOI: 10.1128/aem.02009-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A large polypeptide encoded in the genome of the thermophilic bacterium Caldicellulosiruptor bescii was determined to consist of two glycoside hydrolase (GH) modules separated by two carbohydrate-binding modules (CBMs). Based on the detection of mannanase and endoglucanase activities in the N-terminal GH5 and the C-terminal GH44 module, respectively, the protein was designated CbMan5B/Cel44A. A GH5 module with >99% identity from the same organism was characterized previously (X. Su, R. I. Mackie, and I. K. Cann, Appl. Environ. Microbiol. 78:2230-2240, 2012); therefore, attention was focused on CbMan5A/Cel44A-TM2 (or TM2), which harbors the GH44 module and the two CBMs. On cellulosic substrates, TM2 had an optimal temperature and pH of 85°C and 5.0, respectively. Although the amino acid sequence of the GH44 module of TM2 was similar to those of other GH44 modules that hydrolyzed cello-oligosaccharides, cellulose, lichenan, and xyloglucan, it was unique that TM2 also displayed modest activity on mannose-configured substrates and xylan. The TM2 protein also degraded Avicel with higher specific activity than activities reported for its homologs. The GH44 catalytic module is composed of a TIM-like domain and a β-sandwich domain, which consists of one β-sheet at the N terminus and nine β-sheets at the C terminus. Deletion of one or more β-sheets from the β-sandwich domain resulted in insoluble proteins, suggesting that the β-sandwich domain is essential for proper folding of the polypeptide. Combining TM2 with three other endoglucanases from C. bescii led to modest synergistic activities during degradation of cellulose, and based on our results, we propose a model for cellulose hydrolysis and utilization by C. bescii.
Collapse
|
4
|
Aizenberg-Gershtein Y, Vaizel-Ohayon D, Halpern M. Structure of bacterial communities in diverse freshwater habitats. Can J Microbiol 2012; 58:326-35. [DOI: 10.1139/w11-138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structures and dynamics of bacterial communities from raw source water, groundwater, and drinking water before and after filtration were studied in four seasons of a year, with culture-independent methods. Genomic DNA from water samples was analyzed by the polymerase chain reaction – denaturing gradient gel electrophoresis system and by cloning of the 16S rRNA gene. Water samples exhibited complex denaturing gradient gel electrophoresis genetic profiles composed of many bands, corresponding to a great variety of bacterial taxa. The bacterial communities of different seasons from the four sampling sites clustered into two major groups: (i) water before and after filtration, and (ii) source water and groundwater. Phylogenetic analyses of the clones from the autumn sampling revealed 13 phyla, 19 classes, and 155 operational taxonomic units. Of the clones, 66% showed less than 97% similarities to known bacterial species. Representatives of the phyla Proteobacteria, Bacteroidetes, and Actinobacteria were found at all four sampling sites. Species belonging to the phylum Firmicutes were an important component of the microbial community in filtered water. Representatives of Enterobacteriaceae were not detected, indicating the absence of fecal pollution in the drinking water. Differences were found in the bacterial populations that were sampled from the same sites in different seasons. Each water habitat had a unique bacterial profile. Drinking water harbors diverse and dynamic microbial communities, part of which may be active and resilient to chlorine disinfection. This study provides, for the first time, basic data for uncultivable drinking water bacteria in Israel.
Collapse
Affiliation(s)
- Yana Aizenberg-Gershtein
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Dalit Vaizel-Ohayon
- Nesin Central Laboratory, Mekorot National Water Co. Ltd., Jordan District, P.O. Box 610, Nazareth-Illit 17105, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon 36006, Israel
| |
Collapse
|
5
|
Park IH, Chang J, Lee YS, Fang SJ, Choi YL. Gene Cloning of Endoglucanase Cel5A from Cellulose-Degrading Paenibacillus xylanilyticus KJ-03 and Purification and Characterization of the Recombinant Enzyme. Protein J 2012; 31:238-45. [DOI: 10.1007/s10930-012-9396-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Zhang G, Li S, Xue Y, Mao L, Ma Y. Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10. Extremophiles 2011; 16:35-43. [PMID: 22012583 DOI: 10.1007/s00792-011-0403-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
Abstract
Alkaliphilic and halophilic Bacillus sp. BG-CS10 was isolated from Zabuye Salt Lake, Tibet. The gene celB, encoding a halophilic cellulase was identified from the genomic library of BG-CS10. CelB belongs to the cellulase superfamily and DUF291 superfamily, with an unknown function domain and less than 58% identity to other cellulases in GenBank. The purified recombinant protein (molecular weight: 62 kDa) can hydrolyze soluble cellulose substrates containing beta-1,4-linkages, such as carboxylmethyl cellulose and konjac glucomannan, but has no exoglucanase and β-glucosidase activities. Thus, CelB is a cellulase with an endo mode of action and glucomannanase activity. Interestingly, the enzyme activity was increased approximately tenfold with 2.5 M NaCl or 3 M KCl. Furthermore, the optimal temperatures were 55°C with 2.5 M NaCl and 35°C without NaCl, respectively. This indicates that NaCl can improve enzyme thermostability. The K ( m ) and k (cat) values of CelB for CMC with 2.5 M NaCl were 3.18 mg mL(-1) and 26 s(-1), while the K ( m ) and k (cat) values of CelB without NaCl were 6.6 mg mL(-1) and 2.1 s(-1). Thus, this thermo-stable, salt and pH-tolerant cellulase is a promising candidate for industrial applications, and provides a new model to study salt effects on the structure of protein.
Collapse
Affiliation(s)
- Guimin Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
7
|
Characterization of Paenibacillus curdlanolyticus B-6 Xyn10D, a xylanase that contains a family 3 carbohydrate-binding module. Appl Environ Microbiol 2011; 77:4260-3. [PMID: 21498754 DOI: 10.1128/aem.00226-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paenibacillus curdlanolyticus B-6 Xyn10D is a xylanase containing a family 3 carbohydrate-binding module (CBM3). Biochemical analyses using recombinant proteins derived from Xyn10D suggested that the CBM3 polypeptide has an affinity for cellulose and xylan and that CBM3 in Xyn10D is important for hydrolysis of insoluble arabinoxylan and natural biomass.
Collapse
|
8
|
Warner CD, Go RM, García-Salinas C, Ford C, Reilly PJ. Kinetic characterization of a glycoside hydrolase family 44 xyloglucanase/endoglucanase from Ruminococcus flavefaciens FD-1. Enzyme Microb Technol 2011; 48:27-32. [DOI: 10.1016/j.enzmictec.2010.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/26/2010] [Accepted: 08/31/2010] [Indexed: 11/16/2022]
|
9
|
Cho KM, Hong SJ, Math RK, Islam SMA, Kim JO, Lee YH, Kim H, Yun HD. Cloning of two cellulase genes from endophytic Paenibacillus polymyxa GS01 and comparison with cel 44C-man 26A. J Basic Microbiol 2009; 48:464-72. [PMID: 18759236 DOI: 10.1002/jobm.200700281] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endophytic bacteria are acknowledged as a new source of genes, proteins and other biochemical compounds, which are often used in biochemical processes. In this study, Paenibacillus polymyxa GS01 was isolated from the interior of the roots of Korean cultivars of ginseng (Panax ginseng C. A. Meyer). Two cellulase genes, cel 5A and cel 5B, were cloned from GS01, and encode 334 aa and 573 aa proteins, respectively. Cel5A and Cel5B each contain a glycosyl hydrolase family 5 (GH5) catalytic domain. The molecular mass of Cel5A and Cel5B were estimated to be 33 kDa and 61 kDa, respectively, by CMC-SDS-PAGE. When purified from Escherichia coli Cel5A and Cel5B both displayed cellulase activity with pH optima of 7.0 and 6.0, respectively and shared a temperature optimum of 50 degrees C. Neither enzyme had detectable xylanase, lichenase, or mannase activity, in contrast to the multifunctional Cel44C-Man26A enzyme of P. polymyxa which displays cellulase, xylanase, lichenase and mannanase activities. However, Cel5A and Cel5B exhibited higher specific cellulase activity than Cel44C-Man26A (120% and 140%, respectively). Cel5A and Cel5B mutants with alanine substitutions at a conserved glutamic acid in the GH5 domain (Glu 179 of Cel5A and Glu184 of Cel5B) lacked cellulase activity, suggesting that this residue is important for GH5 domain function.
Collapse
Affiliation(s)
- Kye Man Cho
- Division of Applied Life Science, Gyeongsang National University, Chinju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ogawa A, Sumitomo N, Hakamada Y, Saeki K, Ozaki K, Kobayashi T. Nucleotide Sequence of a Paenibacillus Endoglucanase Gene and Characterization of the Recombinant Enzyme. J Appl Glycosci (1999) 2009. [DOI: 10.5458/jag.56.253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
11
|
Wang Y, Yuan H, Wang J, Yu Z. Truncation of the cellulose binding domain improved thermal stability of endo-beta-1,4-glucanase from Bacillus subtilis JA18. BIORESOURCE TECHNOLOGY 2009; 100:345-9. [PMID: 18632263 DOI: 10.1016/j.biortech.2008.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/01/2008] [Accepted: 06/04/2008] [Indexed: 05/23/2023]
Abstract
The C-terminus region of endo-beta-glucanase Egl499 from Bacillus subtilis JA18 was suggested to be a putative family 3 cellulose-binding domain (CBD) by computer analysis. To prove this proposal, C-terminus truncation mutant Egl330 was constructed and expressed. Compared with Egl499, Egl330 lost the cellulose binding capability at 4 degrees C, confirming the C-terminus region was a CBD. Binding of the CBD to Avicel was inhibited by carboxymethylcellulose (CMC), but not by barley beta-glucan and glucose at concentration of 0.1% and 0.5%. Kinetic analysis showed both the turnover rate (k(cat)) and the catalytic efficiency (k(cat)/K(m)) of Egl330 increased for the substrate CMC compared to Egl499. A great improvement in thermal stability was observed in Egl330. The half life of Egl330 at 65 degrees C increased to three folds that of Egl499, from 10 to 29 min. After treated at 80 degrees C for 10 min, Egl330 could recover more than 60% of its original activity while Egl499 only recovered 12% activity. UV spectrometry analysis showed Egl330 and Egl499 differed in refolding efficiency after heat treatment.
Collapse
Affiliation(s)
- Yujuan Wang
- Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences, Hefei, PR China
| | | | | | | |
Collapse
|
12
|
SHENE C, MIR N, ANDREWS BA, ASENJO JA. Mathematical Modeling of the Synthesis of a Cloned Lytic β-1,4-Endoglucanase in Bacillus subtilisa. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.1996.tb40573.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Cho KM, Hong SY, Lee SM, Kim YH, Kahng GG, Kim H, Yun HD. A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl Microbiol Biotechnol 2006; 73:618-30. [PMID: 16912849 DOI: 10.1007/s00253-006-0523-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 05/27/2006] [Accepted: 05/29/2006] [Indexed: 11/28/2022]
Abstract
A bacterial strain Paenibacillus polymyxa GS01 was isolated from the interior of the roots of Korean cultivars of ginseng (Panax ginseng C. A. Meyer). The cel44C-man26A gene was cloned from this endophytic strain. This 4,056-bp gene encodes for a 1,352-aa protein which, based on BLAST search homologies, contains a glycosyl hydrolase family 44 (GH44) catalytic domain, a fibronectin domain type 3, a glycosyl hydrolase family 26 (GH26) catalytic domain, and a cellulose-binding module type 3. The multifunctional enzyme domain GH44 possesses cellulase, xylanase, and lichenase activities, while the enzyme domain GH26 possesses mannanase activity. The Cel44C enzyme expressed in and purified from Escherichia coli has an optimum pH of 7.0 for cellulase and lichenase activities, but is at an optimum pH of 5.0 for xylanase and mannanase activities. The optimum temperature for enzymatic activity was 50 degrees C for all substrates. No detectable enzymatic activity was detected for the Cel44C-Man26A mutants E91A and E222A. These results suggest that the amino acid residues Glu(91) and Glu(222) may play an important role in the glycosyl hydrolases activity of Cel44C-Man26A.
Collapse
Affiliation(s)
- Kye Man Cho
- Division of Applied Life Science, Gyeongsang National University, Chinju 660-701, South Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Expression ofBacillus subtilis JA18 endo-β-1,4-glucanase gene inEscherichia coli and characterization of the recombinant enzyme. ANN MICROBIOL 2006. [DOI: 10.1007/bf03174968] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Sunna A, Gibbs MD, Bergquist PL. A novel thermostable multidomain 1,4-beta-xylanase from 'Caldibacillus cellulovorans' and effect of its xylan-binding domain on enzyme activity. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 11):2947-2955. [PMID: 11065373 DOI: 10.1099/00221287-146-11-2947] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The nucleotide sequence of the complete xynA gene, encoding a novel multidomain xylanase XynA of 'Caldibacillus cellulovorans', was determined by genomic-walking PCR. The putative XynA comprises an N-terminal domain (D1), recently identified as a xylan-binding domain (XBD), homologous to non-catalytic thermostabilizing domains from other xylanases. D1 is followed by a xylanase catalytic domain (D2) homologous to family 10 glycosyl hydrolases. Downstream of this domain two cellulose-binding domains (CBD), D3 and D4, were found linked via proline-threonine (PT)-rich peptides. Both CBDs showed sequence similarity to family IIIb CBDs. Upstream of xynA an incomplete open reading frame was identified, encoding a putative C-terminal CBD homologous to family IIIb CBDs. Two expression plasmids encoding the N-terminal XBD plus the catalytic domain (XynAd1/2) and the xylanase catalytic domain alone (XynAd2) were constructed and the biochemical properties of the recombinant enzymes compared. The absence of the XBD resulted in a decrease in thermostability of the catalytic domain from 70 degrees C (XynAd1/2) to 60 degrees C (XynAd2). Substrate-specificity experiments and analysis of the main products released from xylan hydrolysis indicate that both recombinant enzymes act as endo-1, 4-beta-xylanases, but differ in their ability to cleave small xylooligosaccharides.
Collapse
Affiliation(s)
- Anwar Sunna
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia1
| | - Moreland D Gibbs
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia1
| | - Peter L Bergquist
- Department of Molecular Medicine, University of Auckland Medical School, Private Bag 92019, Auckland, New Zealand2
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia1
| |
Collapse
|
16
|
Effect of the growth conditions on the synthesis of a recombinant beta-1,4-endoglucanase in continuous and fed-batch culture. Enzyme Microb Technol 2000; 27:248-253. [PMID: 10899550 DOI: 10.1016/s0141-0229(00)00203-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Continuous culture and fed-batch fermentations were used to test the behavior of the system Bacillus subtilis DN1885(pCH7) that synthesizes a recombinant beta-1,4-endoglucanase. Continuous culture experiments were focused on the study of the instability aspects of the system as well as determination of the biomass growth rate range at which the recombinant enzyme synthesis was improved. Fed-batch fermentations were carried out to study the possibility of enhancing recombinant enzyme synthesis through the control of medium addition. It was found that, in continuous culture fermentations, the culture is less unstable at low dilution rates (dilution rate < 0.1 h(-)(1)). Also, low dilution rates give a higher specific recombinant enzyme concentration (10 times more than that obtained at high dilution rates). In fed-batch fermentation, the final recombinant enzyme concentration can be manipulated through the medium addition strategy. To increase the recombinant enzyme concentration, the carbon source has to be fed slowly, otherwise enzyme synthesis is impaired due to catabolite repression. Therefore, an increase in the biomass concentration does not necessarily imply an increase in the recombinant enzyme concentration. Higher recombinant enzyme concentrations were found in fed-batch fermentations compared to those obtained in continuous culture.
Collapse
|
17
|
Sunna A, Gibbs MD, Chin CW, Nelson PJ, Bergquist PL. A gene encoding a novel multidomain beta-1,4-mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp. Appl Environ Microbiol 2000; 66:664-70. [PMID: 10653733 PMCID: PMC91878 DOI: 10.1128/aem.66.2.664-670.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic walking PCR was used to obtained a 4,567-bp nucleotide sequence from Caldibacillus cellulovorans. Analysis of this sequence revealed that there were three open reading frames, designated ORF1, ORF2, and ORF3. Incomplete ORF1 encoded a putative C-terminal cellulose-binding domain (CBD) homologous to members of CBD family IIIb, while putative ORF3 encoded a protein of unknown function. The putative ManA protein encoded by complete manA ORF2 was an enzyme with a novel multidomain structure and was composed of four domains in the following order: a putative N-terminal domain (D1) of unknown function, an internal CBD (D2), a beta-mannanase catalytic domain (D3), and a C-terminal CBD (D4). All four domains were linked via proline-threonine-rich peptides. Both of the CBDs exhibited sequence similarity to family IIIb CBDs, while the mannanase catalytic domain exhibited homology to the family 5 glycosyl hydrolases. The purified recombinant enzyme ManAd3 expressed from the cloned catalytic domain (D3) exhibited optimum activity at 85 degrees C and pH 6.0 and was extremely thermostable at 70 degrees C. This enzyme exhibited high specificity with the substituted galactomannan locust bean gum, while more substituted galacto- and glucomannans were poorly hydrolyzed. Preliminary studies to determine the effect of the recombinant ManAd3 and a recombinant thermostable beta-xylanase on oxygen-delignified Pinus radiata kraft pulp revealed that there was an increase in the brightness of the bleached pulp.
Collapse
Affiliation(s)
- A Sunna
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | | | |
Collapse
|
18
|
Enzymatic activity and β-galactomannan binding property of β-mannosidase from Trichoderm reesei. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(99)00056-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Zverlov VV, Velikodvorskaya GV, Schwarz WH, Bronnenmeier K, Kellermann J, Staudenbauer WL. Multidomain structure and cellulosomal localization of the Clostridium thermocellum cellobiohydrolase CbhA. J Bacteriol 1998; 180:3091-9. [PMID: 9620957 PMCID: PMC107808 DOI: 10.1128/jb.180.12.3091-3099.1998] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The nucleotide sequence of the Clostridium thermocellum F7 cbhA gene, coding for the cellobiohydrolase CbhA, has been determined. An open reading frame encoding a protein of 1,230 amino acids was identified. Removal of a putative signal peptide yields a mature protein of 1,203 amino acids with a molecular weight of 135,139. Sequence analysis of CbhA reveals a multidomain structure of unusual complexity consisting of an N-terminal cellulose binding domain (CBD) homologous to CBD family IV, an immunoglobulin-like beta-barrel domain, a catalytic domain homologous to cellulase family E1, a duplicated domain similar to fibronectin type III (Fn3) modules, a CBD homologous to family III, a highly acidic linker region, and a C-terminal dockerin domain. The cellulosomal localization of CbhA was confirmed by Western blot analysis employing polyclonal antibodies raised against a truncated enzymatically active version of CbhA. CbhA was identified as cellulosomal subunit S3 by partial amino acid sequence analysis. Comparison of the multidomain structures indicates striking similarities between CbhA and a group of cellulases from actinomycetes. Average linkage cluster analysis suggests a coevolution of the N-terminal CBD and the catalytic domain and its spread by horizontal gene transfer among gram-positive cellulolytic bacteria.
Collapse
Affiliation(s)
- V V Zverlov
- Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
20
|
Garda AL, Fernández-Abalos JM, Sánchez P, Ruiz-Arribas A, Santamaría RI. Two genes encoding an endoglucanase and a cellulose-binding protein are clustered and co-regulated by a TTA codon in Streptomyces halstedii JM8. Biochem J 1997; 324 ( Pt 2):403-11. [PMID: 9182697 PMCID: PMC1218445 DOI: 10.1042/bj3240403] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Streptomyces halstedii JM8 Cel2 is an endoglucanase of 28 kDa that is first produced as a protein of 42 kDa (p42) and is later processed at its C-terminus. Cel2 displays optimal activity towards CM-cellulose at pH6 and 50 degrees C and shows no activity against crystalline cellulose or xylan. The N-terminus of p42 shares similarity with cellulases included in family 12 of the beta-glycanases and the C-terminus shares similarity with bacterial cellulose-binding domains included in family II. This latter domain enables the precursor to bind so tightly to Avicel that it can only be eluted by boiling in 10% (w/v) SDS. Another open reading frame (ORF) situated 216 bp downstream from the p42 ORF encodes a protein of 40 kDa (p40) that does not have any clear hydrolytic activity against cellulosic or xylanosic compounds, but shows high affinity for Avicel (crystalline cellulose). The p40 protein is processed in old cultures to give a protein of 35 kDa that does not bind to Avicel. Translation of both ORFs is impaired in Streptomyces coelicolor bldA mutants, suggesting that a TTA codon situated at the fourth position of the first ORF is responsible for this regulation. S1 nuclease protection experiments demonstrate that both ORFs are co-transcribed.
Collapse
Affiliation(s)
- A L Garda
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas, (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, Avda, Campo Charro s/n, Salamanca, Spain
| | | | | | | | | |
Collapse
|
21
|
Vercoe PE, Finks JL, White BA. DNA sequence and transcriptional characterization of a beta-glucanase gene (celB) from Ruminococcus flavefaciens FD-1. Can J Microbiol 1995; 41:869-76. [PMID: 8590402 DOI: 10.1139/m95-120] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The recombinant clone pBAW101 (in pBluescript SK-) contains the celB endoglucanase gene from Ruminococcus flavefaciens FD-1. Subcloning indicated that the endoglucanase activity expressed was present within a 2.4-kb insert (pBAW104). The nucleotide sequence of the celB gene was determined, and upon analysis, revealed an open reading frame of 1943 nucleotides that encodes a polypeptide of 632 amino acids with a molecular weight of 69,414. A putative Shine-Dalgarno sequence was identified 6 bp upstream from the translation start site. The N-terminal 32 amino acid residues were typical of prokaryotic signal sequences. Hydrophobic cluster analysis (HCA) and DNA alignment of CelB to other published beta-glucanase polypeptide sequences in GenBank indicate that CelB belongs in HCA cellulase family 44. Primer extension analyses were performed using RNA isolated from R. flavefaciens grown on cellulose and cellobiose, and from Escherichia coli containing the plasmid clone pBAW104. Transcription is initiated at different sites in E. coli and R. flavefaciens. In the case of R. flavefaciens transcription is initiated at a C residue (nucleotides 329), 221 bp upstream from the translation start site. There were no regions resembling E. coli sigma 70-like promoter sequences present upstream from this putative transcription initiation site. In contrast, numerous transcription initiation sites were identified when RNA from E. coli was used in the primer extension analyses.
Collapse
Affiliation(s)
- P E Vercoe
- Department of Animal Sciences, University of Illinois at Urbana-Champaign 61801, USA
| | | | | |
Collapse
|
22
|
Goldstein MA, Doi RH. Mutation analysis of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A. J Bacteriol 1994; 176:7328-34. [PMID: 7961505 PMCID: PMC197122 DOI: 10.1128/jb.176.23.7328-7334.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cellulose-binding protein A (CbpA) has been previously shown to mediate the interaction between crystalline cellulose substrates and the cellulase enzyme complex of Clostridium cellulovorans. CbpA contains a family III cellulose-binding domain (CBD) which, when expressed independently, binds specifically to crystalline cellulose. A series of N- and C-terminal deletions and a series of small internal deletions of the CBD were created to determine whether the entire region previously described as a CBD is required for the cellulose-binding function. The N- and C-terminal deletions reduced binding affinity by 10- to 100-fold. Small internal deletions of the CBD resulted in substantial reduction of CBD function. Some, but not all, point mutations throughout the sequence had significant disruptive effects on the binding ability of the CBD. Thus, mutations in any region of the CBD had effects on the binding of the fragment to cellulose. The results indicate that the entire 163-amino-acid region of the CBD is required for maximal binding to crystalline cellulose.
Collapse
Affiliation(s)
- M A Goldstein
- Section of Molecular and Cellular Biology, University of California, Davis 95616
| | | |
Collapse
|
23
|
Abstract
Cellulolytic microorganisms play an important role in the biosphere by recycling cellulose, the most abundant carbohydrate produced by plants. Cellulose is a simple polymer, but it forms insoluble, crystalline microfibrils, which are highly resistant to enzymatic hydrolysis. All organisms known to degrade cellulose efficiently produce a battery of enzymes with different specificities, which act together in synergism. The study of cellulolytic enzymes at the molecular level has revealed some of the features that contribute to their activity. In spite of a considerable diversity, sequence comparisons show that the catalytic cores of cellulases belong to a restricted number of families. Within each family, available data suggest that the various enzymes share a common folding pattern, the same catalytic residues, and the same reaction mechanism, i.e. either single substitution with inversion of configuration or double substitution resulting in retention of the beta-configuration at the anomeric carbon. An increasing number of three-dimensional structures is becoming available for cellulases and xylanases belonging to different families, which will provide paradigms for molecular modeling of related enzymes. In addition to catalytic domains, many cellulolytic enzymes contain domains not involved in catalysis, but participating in substrate binding, multi-enzyme complex formation, or possibly attachment to the cell surface. Presumably, these domains assist in the degradation of crystalline cellulose by preventing the enzymes from being washed off from the surface of the substrate, by focusing hydrolysis on restricted areas in which the substrate is synergistically destabilized by multiple cutting events, and by facilitating recovery of the soluble degradation products by the cellulolytic organism. In most cellulolytic organisms, cellulase synthesis is repressed in the presence of easily metabolized, soluble carbon sources and induced in the presence of cellulose. Induction of cellulases appears to be effected by soluble products generated from cellulose by cellulolytic enzymes synthesized constitutively at a low level. These products are presumably converted into true inducers by transglycosylation reactions. Several applications of cellulases or hemicellulases are being developed for textile, food, and paper pulp processing. These applications are based on the modification of cellulose and hemicellulose by partial hydrolysis. Total hydrolysis of cellulose into glucose, which could be fermented into ethanol, isopropanol or butanol, is not yet economically feasible. However, the need to reduce emissions of greenhouse gases provides an added incentive for the development of processes generating fuels from cellulose, a major renewable carbon source.
Collapse
Affiliation(s)
- P Béguin
- Unité de Physiologie Cellulaire, Département des Biotechnologies, Institut Pasteur, Paris, France
| | | |
Collapse
|
24
|
Lindahl V, Aa K, Tronsmo A. Nucleotide sequence of an endo-beta-1,4-glucanase gene from Bacillus subtilis CK-2. Antonie Van Leeuwenhoek 1994; 66:327-32. [PMID: 7710280 DOI: 10.1007/bf00882768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The gene encoding endo-beta-1,4-glucanase in Bacillus subtilis CK-2 was cloned into Escherichia coli DH5 alpha, and the nucleotide sequence determined. The 1500 bp gene encodes a protein of 499 amino-acid residues with a calculated molecular mass of 55,261, and is equipped with a typical B. subtilis signal peptide. Nucleotide sequence comparison revealed only 2 basepairs deviation between this gene and the endo-beta-1,4-glucanase gene of B. subtilis PAP115, and 93% to 95% homology was found between the amino acid sequences of these enzymes and other B. subtilis endo-beta-1,4-glucanases. Regions of similarity were also observed between the carboxy-terminal part of these enzymes and the part of the B. lautus PL236 celA enzyme constituting the cellulose-binding domain.
Collapse
Affiliation(s)
- V Lindahl
- Department of Biotechnological Sciences, Agricultural University of Norway, As
| | | | | |
Collapse
|
25
|
Cooper VJ, Salmond GP. Molecular analysis of the major cellulase (CelV) of Erwinia carotovora: evidence for an evolutionary "mix-and-match" of enzyme domains. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:341-50. [PMID: 8246888 DOI: 10.1007/bf00284687] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The structural gene for the major cellulase of Erwinia carotovora subspecies carotovora (Ecc) was isolated and expressed in Escherichia coli. Sequencing of the gene (celV) revealed a typical signal sequence and two functional domains in the enzyme; a catalytic domain linked by a short proline/threonine-rich linker to a cellulose-binding domain (CBD). The deduced amino acid sequence of the catalytic domain showed homology with cellulases of Family A, including enzymes from Bacillus spp. and Erwinia chrysanthemi CelZ, whereas the CBD showed homology with cellulases from several diverse families, supporting a "mix-and-match" hypothesis for evolution of this domain. Analysis of the substrate specificity of CelV showed it to be an endoglucanase with some exoglucanase activity. The pH optimum is about 7.0 and the temperature optimum about 42 degrees C. CelV is secreted by Ecc and by the taxonomically related Erwinia carotovora subspecies atroseptica (Eca) but not by E. coli. Overproduction of the enzyme from multicopy plasmids in Ecc appears to overload the secretory mechanism.
Collapse
Affiliation(s)
- V J Cooper
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | |
Collapse
|
26
|
Schou C, Rasmussen G, Kaltoft MB, Henrissat B, Schülein M. Stereochemistry, specificity and kinetics of the hydrolysis of reduced cellodextrins by nine cellulases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:947-53. [PMID: 8223652 DOI: 10.1111/j.1432-1033.1993.tb18325.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The catalytic activity of nine enzymes (endoglucanases I-III, V, VI and cellobiohydrolases I and II from Humicola insolens; endoglucanases A and C from Bacillus lautus), representative of cellulase families A-C, H, J and K, has been investigated using a series of reduced cellooligosaccharides (cellotriitol to cellohexaitol) as substrates. For each enzyme, the specificity of cleavage was determined by analytical HPLC while the kinetic constants were obtained from a kinetic assay involving a cellobiose dehydrogenase purified from H. insolens as a coupled enzyme using 2,6-dichloroindophenol as the electron acceptor. These data were used to estimate the number of subsites in the enzymes. The stereochemical course of hydrolysis by seven enzymes, representing the six different families, was assessed using 1H-NMR. The enzymes belonging to families which had already been investigated (A-C), showed results in agreement with previous studies. The three other families (H, J and K), for which no mechanistic data was previously available, gave results which indicated that enzymes in group H had retaining-type activity and enzymes in groups J and K had inverting-type activity. The retaining endoglucanases I and III displayed a high glycosyl-transferase activity under the conditions used during the NMR experiments resulting in precipitates of higher oligomers.
Collapse
Affiliation(s)
- C Schou
- Department of Biochemistry and Nutrition, Technical University of Denmark, Lyngby
| | | | | | | | | |
Collapse
|
27
|
Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 1993; 293 ( Pt 3):781-8. [PMID: 8352747 PMCID: PMC1134435 DOI: 10.1042/bj2930781] [Citation(s) in RCA: 1394] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
301 glycosyl hydrolases and related enzymes corresponding to 39 EC entries of the I.U.B. classification system have been classified into 35 families on the basis of amino-acid-sequence similarities [Henrissat (1991) Biochem. J. 280, 309-316]. Approximately half of the families were found to be monospecific (containing only one EC number), whereas the other half were found to be polyspecific (containing at least two EC numbers). A > 60% increase in sequence data for glycosyl hydrolases (181 additional enzymes or enzyme domains sequences have since become available) allowed us to update the classification not only by the addition of more members to already identified families, but also by the finding of ten new families. On the basis of a comparison of 482 sequences corresponding to 52 EC entries, 45 families, out of which 22 are polyspecific, can now be defined. This classification has been implemented in the SWISS-PROT protein sequence data bank.
Collapse
Affiliation(s)
- B Henrissat
- Centre de Recherches sur les Macromolécules Végétales, C.N.R.S., Grenoble, France
| | | |
Collapse
|
28
|
Gerngross UT, Romaniec MP, Kobayashi T, Huskisson NS, Demain AL. Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol Microbiol 1993; 8:325-34. [PMID: 8316083 DOI: 10.1111/j.1365-2958.1993.tb01576.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It is known that two proteins of the cellulosomal complex of Clostridium thermocellum (SL and SS) together degrade crystalline cellulose. SL is a glycoprotein of 210,000 Da which enhances the binding to cellulose and the activity of SS, an endoglucanase of 83,000 Da. We have previously reported the cloning of a DNA fragment encoding the N-terminal end of the SL protein using antibodies raised against the native protein. A chromosomal walking approach using an EcoRI and a Bam HI-Sau3A gene library allowed us to isolate the C-terminal end of the gene. Sequencing of both fragments revealed the existence of a leader peptide as has been found in cellulases of the same organism. This leader sequence is followed by a stretch of 14 amino acids that is identical to the N-terminal amino acid sequence of the native secreted protein. The open reading frame (ORF) of this gene encodes a protein of 196,800 Da and is followed by a hairpin loop that could be involved in transcription termination. Within the open reading frame (ORF), we found nine internal repeated elements (IREs) of about 500 nucleotides each. Seven of these sequences displayed 98-100% homology and were located adjacent to each other within the structural gene without intervening regions. The remaining two, located on the N-terminal end of the gene, showed a significantly lower homology. Bearing in mind the inherent instability of reiterated regions, we confirmed the authenticity of our clones by Southern blot analysis using chromosomal C. thermocellum DNA and ruled out the possibility of rearrangements during the cloning and sequencing process. The sequenced gene is designated cipA and the encoded SL protein CipA.
Collapse
Affiliation(s)
- U T Gerngross
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | |
Collapse
|