1
|
Environmentally regulated glycosome protein composition in the African trypanosome. EUKARYOTIC CELL 2013; 12:1072-9. [PMID: 23709182 DOI: 10.1128/ec.00086-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanosomes compartmentalize many metabolic enzymes in glycosomes, peroxisome-related microbodies that are essential to parasite survival. While it is understood that these dynamic organelles undergo profound changes in protein composition throughout life cycle differentiation, the adaptations that occur in response to changes in environmental conditions are less appreciated. We have adopted a fluorescent-organelle reporter system in procyclic Trypanosoma brucei by expressing a fluorescent protein (FP) fused to a glycosomal targeting sequence (peroxisome-targeting sequence 2 [PTS2]). In these cell lines, PTS2-FP is localized within import-competent glycosomes, and organelle composition can be analyzed by microscopy and flow cytometry. Using this reporter system, we have characterized parasite populations that differ in their glycosome composition. In glucose-rich medium, two parasite populations are observed; one population harbors glycosomes bearing the full repertoire of glycosome proteins, while the other parasite population contains glycosomes that lack the usual glycosome-resident proteins but do contain the glycosome membrane protein TbPEX11. Interestingly, these cells lack TbPEX13, a protein essential for the import of proteins into the glycosome. This bimodal distribution is lost in low-glucose medium. Furthermore, we have demonstrated that changes in environmental conditions trigger changes in glycosome protein composition. These findings demonstrate a level of procyclic glycosome diversity heretofore unappreciated and offer a system by which glycosome dynamics can be studied in live cells. This work adds to our growing understanding of how the regulation of glycosome composition relates to environmental sensing.
Collapse
|
2
|
Kumar S, Lefevre SD, Veenhuis M, van der Klei IJ. Extension of yeast chronological lifespan by methylamine. PLoS One 2012; 7:e48982. [PMID: 23133668 PMCID: PMC3487785 DOI: 10.1371/journal.pone.0048982] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 10/03/2012] [Indexed: 12/28/2022] Open
Abstract
Background Chronological aging of yeast cells is commonly used as a model for aging of human post-mitotic cells. The yeast Saccharomyces cerevisiae grown on glucose in the presence of ammonium sulphate is mainly used in yeast aging research. We have analyzed chronological aging of the yeast Hansenula polymorpha grown at conditions that require primary peroxisome metabolism for growth. Methodology/Principal Findings The chronological lifespan of H. polymorpha is strongly enhanced when cells are grown on methanol or ethanol, metabolized by peroxisome enzymes, relative to growth on glucose that does not require peroxisomes. The short lifespan of H. polymorpha on glucose is mainly due to medium acidification, whereas most likely ROS do not play an important role. Growth of cells on methanol/methylamine instead of methanol/ammonium sulphate resulted in further lifespan enhancement. This was unrelated to medium acidification. We show that oxidation of methylamine by peroxisomal amine oxidase at carbon starvation conditions is responsible for lifespan extension. The methylamine oxidation product formaldehyde is further oxidized resulting in NADH generation, which contributes to increased ATP generation and reduction of ROS levels in the stationary phase. Conclusion/Significance We conclude that primary peroxisome metabolism enhanced chronological lifespan of H. polymorpha. Moreover, the possibility to generate NADH at carbon starvation conditions by an organic nitrogen source supports further extension of the lifespan of the cell. Consequently, the interpretation of CLS analyses in yeast should include possible effects on the energy status of the cell.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
| | | | | | | |
Collapse
|
3
|
|
4
|
van Zutphen T, Baerends RJS, Susanna KA, de Jong A, Kuipers OP, Veenhuis M, van der Klei IJ. Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis. BMC Genomics 2010; 11:1. [PMID: 20044946 PMCID: PMC2827406 DOI: 10.1186/1471-2164-11-1] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 01/04/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Methylotrophic yeast species (e.g. Hansenula polymorpha, Pichia pastoris) can grow on methanol as sole source of carbon and energy. These organisms are important cell factories for the production of recombinant proteins, but are also used in fundamental research as model organisms to study peroxisome biology. During exponential growth on glucose, cells of H. polymorpha typically contain a single, small peroxisome that is redundant for growth while on methanol multiple, enlarged peroxisomes are present. These organelles are crucial to support growth on methanol, as they contain key enzymes of methanol metabolism.In this study, changes in the transcriptional profiles during adaptation of H. polymorpha cells from glucose- to methanol-containing media were investigated using DNA-microarray analyses. RESULTS Two hours after the shift of cells from glucose to methanol nearly 20% (1184 genes) of the approximately 6000 annotated H. polymorpha genes were significantly upregulated with at least a two-fold differential expression. Highest upregulation (> 300-fold) was observed for the genes encoding the transcription factor Mpp1 and formate dehydrogenase, an enzyme of the methanol dissimilation pathway. Upregulated genes also included genes encoding other enzymes of methanol metabolism as well as of peroxisomal beta-oxidation.A moderate increase in transcriptional levels (up to 4-fold) was observed for several PEX genes, which are involved in peroxisome biogenesis. Only PEX11 and PEX32 were higher upregulated. In addition, an increase was observed in expression of the several ATG genes, which encode proteins involved in autophagy and autophagy processes. The strongest upregulation was observed for ATG8 and ATG11.Approximately 20% (1246 genes) of the genes were downregulated. These included glycolytic genes as well as genes involved in transcription and translation. CONCLUSION Transcriptional profiling of H. polymorpha cells shifted from glucose to methanol showed the expected downregulation of glycolytic genes together with upregulation of the methanol utilisation pathway. This serves as a confirmation and validation of the array data obtained. Consistent with this, also various PEX genes were upregulated. The strong upregulation of ATG genes is possibly due to induction of autophagy processes related to remodeling of the cell architecture required to support growth on methanol. These processes may also be responsible for the enhanced peroxisomal beta-oxidation, as autophagy leads to recycling of membrane lipids. The prominent downregulation of transcription and translation may be explained by the reduced growth rate on methanol (td glucose 1 h vs td methanol 4.5 h).
Collapse
Affiliation(s)
- Tim van Zutphen
- Molecular Cell Biology, University of Groningen, Haren, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
5
|
van der Klei IJ, Veenhuis M. Yeast and filamentous fungi as model organisms in microbody research. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1364-73. [PMID: 17050005 DOI: 10.1016/j.bbamcr.2006.09.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 09/01/2006] [Accepted: 09/06/2006] [Indexed: 11/19/2022]
Abstract
Yeast and filamentous fungi are important model organisms in microbody research. The value of these organisms as models for higher eukaryotes is underscored by the observation that the principles of various aspects of microbody biology are strongly conserved from lower to higher eukaryotes. This has allowed to resolve various peroxisome-related functions, including peroxisome biogenesis disorders in man. This paper summarizes the major advances in microbody research using fungal systems and specifies specific properties and advantages/disadvantages of the major model organisms currently in use.
Collapse
Affiliation(s)
- Ida J van der Klei
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands.
| | | |
Collapse
|
6
|
Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Tomomitsu K. Addition of oleic acid increases expression of recombinant human serum albumin by the AOX2 promoter in Pichia pastoris. J Biosci Bioeng 2005; 89:479-84. [PMID: 16232781 DOI: 10.1016/s1389-1723(00)89100-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1999] [Accepted: 02/24/2000] [Indexed: 10/18/2022]
Abstract
The addition of several kinds of fatty acid to the culture medium of a recombinant human serum albumin (rHSA)-producing yeast, Pichia pastoris, resulted in increased expression levels of the product. Among the fatty acids tested, a small amount of oleic acid (0.01% (w/v)) doubled the rHSA production level in a shake-flask culture when measured by the reversed passive hemagglutination assay method. To elucidate this phenomenon, studies were conducted using deletion mutants from the AOX2 promoter region. Deletion mutants, designed for a detailed evaluation of the methanol regulation elements (AOX2-UAS, AOX2-URS1, and AOX2-URS2) did not respond to the addition of oleic acid. However, a deletion mutant that was not lacking an upstream region from the AOX2 promoter showed a response to oleic acid. The results implied the presence of an oleic acid-responsive element between nucleotides (nt) -1529 and -803, and it may lie between nt -1411 and -1403 in the AOX2 promoter of P. pastoris. The response to oleic acid was shown to function even when the level of rHSA expression was increased by a mutation in the AOX2 promoter. Therefore addition of oleic acid to the medium is likely to play an important role, in cooperation with gene manipulation, in achieving high expression levels of rHSA for the purpose of commercial production.
Collapse
Affiliation(s)
- K Kobayashi
- Bioscience Research, Drug Discovery Laboratories, Pharmaceutical Research Division, Yoshitomi Pharmaceutical Industries Ltd., 2-25-1 Shodai-Ohtani, Hirakata, Osaka 573-1153, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Sunga AJ, Cregg JM. The Pichia pastoris formaldehyde dehydrogenase gene (FLD1) as a marker for selection of multicopy expression strains of P. pastoris. Gene 2004; 330:39-47. [PMID: 15087122 DOI: 10.1016/j.gene.2003.12.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 11/25/2003] [Accepted: 12/12/2003] [Indexed: 11/19/2022]
Abstract
The methylotrophic yeast Pichia pastoris is a popular host for the production of a variety of recombinant proteins. We describe the use of a novel selectable marker, the P. pastoris formaldehyde dehydrogenase gene (FLD1) for DNA-mediated transformations of this yeast. The product of the FLD1 gene (Fld1p) is required for growth of P. pastoris on methanol as a carbon source and methylamine as a nitrogen source. In both these C(1) pathways, Fld1p oxidizes formaldehyde to formate, which is subsequently further oxidized by a second dehydrogenase to carbon dioxide. We show that the FLD1 gene can be used as a marker in transformations of a P. pastoris fld1 host by selection on plates containing methylamine. Furthermore, we demonstrate that populations of these transformants can be enriched for strains that receive multiple copies of an FLD1-based vector by their increased resistance to formaldehyde. We provide the FLD1 selection system in a set of P. pastoris expression vectors that are composed almost entirely of P. pastoris DNA (except for the recombinant gene) and are devoid of antibiotic resistance genes or other sequences of bacterial origin. The vectors are useful for the selection of strains containing multiple copies of an expression vector and may be ideal for certain large-scale recombinant protein production processes where strains containing non-P. pastoris DNA sequences, particularly bacterial antibiotic resistance genes and replication origins, are considered a potential biological hazard to be avoided.
Collapse
Affiliation(s)
- Anthony Jay Sunga
- Keck Graduate Institute of Applied Life Sciences, 535 Watson Drive, Claremont, CA 91711, USA
| | | |
Collapse
|
8
|
Abstract
Peroxisomes are essential organelles that may be involved in various functions, dependent on organism, cell type, developmental stage of the cell, and the environment. Until recently, peroxisomes were viewed as a class of static organelles that developed by growth and fission from pre-existing organelles. Recent observations have challenged this view by providing evidence that peroxisomes may be part of the endomembrane system and constitute a highly dynamic population of organelles that arises and is removed upon environmental demands. Additionally, evidence is now accumulating that peroxisomes may arise by alternative methods. This review summarizes relevant recent data on this subject. In addition, the progress in the understanding of the principles of the peroxisomal matrix protein import machinery is discussed.
Collapse
Affiliation(s)
- Marten Veenhuis
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, NL-9750 AA Haren, The Netherlands.
| | | | | |
Collapse
|
9
|
Wilcke M, Alexson SE. Differential induction of peroxisomal populations in subcellular fractions of rat liver. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1544:358-69. [PMID: 11341945 DOI: 10.1016/s0167-4838(00)00250-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In rat liver, peroxisome proliferators induce profound changes in the number and protein composition of peroxisomes, which upon subcellular fractionation is reflected in heterogeneity in sedimentation properties of peroxisome populations. In this study we have investigated the time course of induction of the peroxisomal proteins catalase, acyl-CoA oxidase (ACO) and the 70 kDa peroxisomal membrane protein (PMP70) in different subcellular fractions. Rats were fed a di(2-ethylhexyl)phthalate (DEHP) containing diet for 8 days and livers were removed at different time-points, fractionated by differential centrifugation into nuclear, heavy and light mitochondrial, microsomal and soluble fractions, and organelle marker enzymes were measured. Catalase was enriched mainly in the light mitochondrial and soluble fractions, while ACO was enriched in the nuclear fraction (about 30%) and in the soluble fraction. PMP70 was found in all fractions except the soluble fraction. DEHP treatment induced ACO, catalase and PMP70 activity and immunoreactive protein, but the time course and extent of induction was markedly different in the various subcellular fractions. All three proteins were induced more rapidly in the nuclear fraction than in the light mitochondrial or microsomal fractions, with catalase and PMP70 being maximally induced in the nuclear fraction already at 2 days of treatment. Refeeding a normal diet quickly normalized most parameters. These results suggest that induction of a heavy peroxisomal compartment is an early event and that induction of 'small peroxisomes', containing PMP70 and ACO, is a late event. These data are compatible with a model where peroxisomes initially proliferate by growth of a heavy, possibly reticular-like, structure rather than formation of peroxisomes by division of pre-existing organelles into small peroxisomes that subsequently grow. The various peroxisome populations that can be separated by subcellular fractionation may represent peroxisomes at different stages of biogenesis.
Collapse
Affiliation(s)
- M Wilcke
- The Wenner-Gren Institute, Stockholm University, Sweden.
| | | |
Collapse
|
10
|
Abstract
In yeast, peroxisomes are the site of specific catabolic pathways that characteristically include hydrogen peroxide producing oxidases and catalase. During the last 10 years, much progress has been made in unravelling the molecular mechanisms involved in the biogenesis of this organelle. At present, 23 different genes (PEX genes) have been identified that are involved in different aspects of peroxisome biogenesis (e.g., proliferation, formation of the peroxisomal membrane, import of matrix proteins). The principles of peroxisome degradation are still much less understood. Recently, the first yeast mutants affected in this process have become available and used to clone corresponding genes by functional complementation. In this paper, an overview is presented of the research on yeast peroxisomes, focusing on recent achievements in the molecular aspects of peroxisome development, function, and turnover.
Collapse
Affiliation(s)
- M Veenhuis
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | | | |
Collapse
|
11
|
|
12
|
Sakai Y, Yurimoto H, Matsuo H, Kato N. Regulation of peroxisomal proteins and organelle proliferation by multiple carbon sources in the methylotrophic yeast, Candida boidinii. Yeast 1998; 14:1175-87. [PMID: 9791889 DOI: 10.1002/(sici)1097-0061(19980930)14:13<1175::aid-yea319>3.0.co;2-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A methylotrophic yeast, Candida boidinii, was grown on various combinations of peroxisome-inducing carbon source(s) (PIC(s)), i.e. methanol, oleate and D-alanine, and the regulation of peroxisomal proteins (both matrix and membrane ones) and organelle proliferation were studied. This regulation was followed (1) at the protein or enzyme level by means of the peroxisomal enzyme activity and Western analysis; (2) at the mRNA level by Northern analysis; and (3) at the organelle level by direct observation of peroxisomes under a fluorescent microscope. Peroxisomal proliferation was followed in vivo by using a C. boidinii strain producing a green fluorescent protein having peroxisomal targeting signal 1. When multiple PICs were used for cell growth, C. boidinii induced specific peroxisomal proteins characteristic of all PIC(s) present in the medium, responding to all PIC(s) simultaneously. Thus, these PICs were considered to induce peroxisomal proliferation independently and not to repress peroxisomes induced by other PICs. Next, the sensitivity of the peroxisomal induction to glucose repression was studied. While the peroxisomal induction by methanol or oleate was completely repressed by glucose, the D-alanine-induced activities of D-amino acid oxidase and catalase, Pmp47, and the organelle proliferation were not. These results indicate that peroxisomal proliferation in yeasts is not necessarily sensitive to glucose repression. Lastly, this regulation was shown to occur at the mRNA level.
Collapse
Affiliation(s)
- Y Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan.
| | | | | | | |
Collapse
|
13
|
Shen S, Sulter G, Jeffries TW, Cregg JM. A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 1998; 216:93-102. [PMID: 9714758 DOI: 10.1016/s0378-1119(98)00315-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In methylotrophic yeasts, glutathione-dependent formaldehyde dehydrogenase (FLD) is a key enzyme required for the metabolism of methanol as a carbon source and certain alkylated amines such as methylamine as nitrogen sources. We describe the isolation and characterization of the FLD1 gene from the yeast Pichia pastoris. The gene contains a single short intron with typical yeast-splicing signals near its 5' end, the first intron to be demonstrated in this yeast. The predicted FLD1 product (Fld1p) is a protein of 379 amino acids (approx. 40 kDa) with 71% identity to the FLD protein sequence from the n-alkane-assimilating yeast Candida maltosa and 61-65% identity with dehydrogenase class III enzymes from humans and other higher eukaryotes. Using beta-lactamase as a reporter, we show that the FLD1 promoter (PFLD1) is strongly and independently induced by either methanol as sole carbon source (with ammonium sulfate as nitrogen source) or methylamine as sole nitrogen source (with glucose as carbon source). Furthermore, with either methanol or methylamine induction, levels of beta-lactamase produced under control of PFLD1 are comparable to those obtained with the commonly used alcohol oxidase I gene promoter (PAOX1). Thus, PFLD1 is an attractive alternative to PAOX1 for expression of foreign genes in P. pastoris, allowing the investigator a choice of carbon (methanol) or nitrogen source (methylamine) regulation with the same expression strain.
Collapse
Affiliation(s)
- S Shen
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, P.O. Box 91000, Portland, OR 97291-1000, USA
| | | | | | | |
Collapse
|
14
|
Smith JJ, Szilard RK, Marelli M, Rachubinski RA. The peroxin Pex17p of the yeast Yarrowia lipolytica is associated peripherally with the peroxisomal membrane and is required for the import of a subset of matrix proteins. Mol Cell Biol 1997; 17:2511-20. [PMID: 9111320 PMCID: PMC232100 DOI: 10.1128/mcb.17.5.2511] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PEX genes encode peroxins, which are required for the biogenesis of peroxisomes. The Yarrowia lipolytica PEX17 gene encodes the peroxin Pex17p, which is 671 amino acids in length and has a predicted molecular mass of 75,588 Da. Pex17p is peripherally associated with the peroxisomal membrane. The carboxyl-terminal tripeptide, Gly-Thr-Leu, of Pex17p is not necessary for its targeting to peroxisomes. Synthesis of Pex17p is low in cells grown in glucose-containing medium and increases after the cells are shifted to oleic acid-containing medium. Cells of the pex17-1 mutant, the original mutant strain, and the pex17-KA mutant, a strain in which most of the PEX17 gene is deleted, fail to form normal peroxisomes but instead contain numerous large, multimembraned structures. The import of peroxisomal matrix proteins in these mutants is selectively impaired. This selective import is not a function of the nature of the peroxisomal targeting signal. We suggest a regulatory role for Pex17p in the import of a subset of matrix proteins into peroxisomes.
Collapse
Affiliation(s)
- J J Smith
- Department of Cell Biology and Anatomy, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
15
|
Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene X 1997; 186:37-44. [PMID: 9047342 DOI: 10.1016/s0378-1119(96)00675-0] [Citation(s) in RCA: 323] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report the cloning and sequence of the glyceraldehyde-3-phosphate dehydrogenase gene (GAP) from the yeast Pichia pastoris. The gene is predicted to encode a 35.4-kDa protein with significant sequence similarity to glyceraldehyde-3-phosphate dehydrogenases from other organisms. Promoter studies in P. pastoris using bacterial beta-lactamase as a reporter showed that the GAP promoter (P(GAP)) is constitutively expressed, although its strength varies depending on the carbon source used for cell growth. Expression of beta-lactamase under control of P(GAP) in glucose-grown cells was significantly higher than under control of the commonly employed alcohol oxidase 1 promoter (P(AOX1)) in methanol-grown cells. As an example of the use of P(GAP), we showed that beta-lactamase synthesized under transcriptional control of P(GAP) is correctly targeted to peroxisomes by addition of either a carboxy-terminal or an amino-terminal peroxisomal targeting signal. P(GAP) has been successfully utilized for synthesis of heterologous proteins from bacterial, yeast, insect and mammalian origins, and therefore is an attractive alternative to P(AOX1) in P. pastoris.
Collapse
Affiliation(s)
- H R Waterham
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291-1000, USA
| | | | | | | | | |
Collapse
|
16
|
van der Klei IJ, Veenhuis M. Peroxisome biogenesis in the yeast Hansenula polymorpha: a structural and functional analysis. Ann N Y Acad Sci 1996; 804:47-59. [PMID: 8993535 DOI: 10.1111/j.1749-6632.1996.tb18607.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- I J van der Klei
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | |
Collapse
|
17
|
Titorenko VI, Eitzen GA, Rachubinski RA. Mutations in the PAY5 gene of the yeast Yarrowia lipolytica cause the accumulation of multiple subpopulations of peroxisomes. J Biol Chem 1996; 271:20307-14. [PMID: 8702764 DOI: 10.1074/jbc.271.34.20307] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We previously reported the cloning of the PAY5 gene of the yeast Yarrowia lipolytica by complementation of the peroxisome assembly mutant pay5-1 (Eitzen, G. A., Titorenko, V. I., Smith, J. J., Veenhuis, M., Szilard, R. K., and Rachubinski, R. A. (1996) J. Biol. Chem. 271, 20300-20306). The peroxisomal integral membrane protein Pay5p is a homologue of mammalian PAF-1 proteins, which are essential for peroxisome assembly and whose mutation in humans results in peroxisome biogenesis disorders. Mutations in the PAY5 gene result in the accumulation of three distinct peroxisomal subpopulations. These subpopulations are characterized by differences in 1) buoyant density, 2) the relative distribution of peroxisomal matrix and membrane proteins, 3) the efficiency of import of several peroxisomal matrix proteins, and 4) the phospholipid levels of peroxisomal membranes. These data, together with the analysis of temporal changes in the relative abundance of individual peroxisomal subpopulations in pay5 mutants, suggest that these subpopulations represent intermediates in a multistep peroxisome assembly pathway normally operating in yeast cells.
Collapse
Affiliation(s)
- V I Titorenko
- Department of Anatomy and Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
18
|
Titorenko VI, Evers ME, Diesel A, Samyn B, Van Beeumen J, Roggenkamp R, Kiel JA, van der Klei IJ, Veenhuis M. Identification and characterization of cytosolic Hansenula polymorpha proteins belonging to the Hsp70 protein family. Yeast 1996; 12:849-57. [PMID: 8840502 DOI: 10.1002/(sici)1097-0061(199607)12:9%3c849::aid-yea985%3e3.0.co;2-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have isolated two members of the Hsp70 protein family from the yeast Hansenula polymorpha using affinity chromatography. Both proteins were located in the cytoplasm. One of these, designated Hsp72, was inducible in nature (e.g. by heat shock). The second protein (designated Hsc74) was constitutively present. Peptides derived from both Hsp72 and Hsc74 showed sequence homology to the cytosolic Saccharomyces cerevisiae Hsp70s, Ssa1p and Ssa2p. The gene encoding Hsp72 (designated HSA1) was cloned, sequenced and used to construct HSA1 disruption and HSA1 overexpression strains. Comparison of the stress tolerances of these strains with those of wild-type H. polymorpha revealed that HSA1 overexpression negatively affected the tolerance of the cells to killing effects of temperature or ethanol, but enhanced the tolerance to copper and cadmium. The tolerance for other chemicals (arsenite, arsenate, H2O2) or to high osmolarity was unaffected by either deletion or overexpression of HSA1.
Collapse
Affiliation(s)
- V I Titorenko
- Department of Microbiology, Groningen Biomolecular Sciences, Haren, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Faber KN, Westra S, Waterham HR, Keizer-Gunnink I, Harder W, Veenhuis GA. Foreign gene expression in Hansenula polymorpha. A system for the synthesis of small functional peptides. Appl Microbiol Biotechnol 1996; 45:72-9. [PMID: 8920181 DOI: 10.1007/s002530050651] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We describe the synthesis and purification of two functional peptides, namely human insulin-like growth factor II (IGF-II) and Xenopus laevis magainin II in Hansenula polymorpha after their synthesis as hybrid proteins fused to the C terminus of endogenous amine oxidase. The hybrid genes, placed under control of the H. polymorpha alcohol oxidase promoter (PAOX), were integrated into the genomic alcohol oxidase locus, yielding stable production strains. High-level synthesis of the fusion proteins, exceeding 20% of total cellular protein, was obtained when the transformed strains were grown in methanol-limited chemostat cultures; when expressed by itself, i.e. in the absence of the amine oxidase gene, IGF-II could not be recovered from crude cell extracts, probably as a result of rapid proteolytic degradation. Accumulation in peroxisomes did not significantly affect the IGF-II protein stability when expressed in the absence of the carrier protein. Apparently, fusion to the large (+/- 78 kDa) amine oxidase carrier particularly stabilizes the peptides and prevents them from proteolysis. After partial purification, the fusion partners were readily separated by factor Xa treatment.
Collapse
Affiliation(s)
- K N Faber
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Haren, Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Endrizzi A, Pagot Y, Le Clainche A, Nicaud JM, Belin JM. Production of lactones and peroxisomal beta-oxidation in yeasts. Crit Rev Biotechnol 1996; 16:301-29. [PMID: 8989867 DOI: 10.3109/07388559609147424] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Among aroma compounds interesting for the food industry, lactones may be produced by biotechnological means using yeasts. These microorganisms are able to synthesize lactones de novo or by biotransformation of fatty acids with higher yields. Obtained lactone concentrations are compatible with industrial production, although detailed metabolic pathways have not been completely elucidated. The biotransformation of ricinoleic acid into gamma-decalactone is taken here as an example to better understand the uptake of hydroxy fatty acids by yeasts and the different pathways of fatty acid degradation. The localization of ricinoleic acid beta-oxidation in peroxisomes is demonstrated. Then the regulation of the biotransformation is described, particularly the induction of peroxisome proliferation and peroxisomal beta-oxidation and its regulation at the genome level. The nature of the biotransformation product is then discussed (4-hydroxydecanoic acid or gamma-decalactone), because the localization and the mechanisms of the lactonization are still not properly known. Lactone production may also be limited by the degradation of this aroma compound by the yeasts which produced it. Thus, different possible ways of modification and degradation of gamma-decalactone are described.
Collapse
Affiliation(s)
- A Endrizzi
- Laboratoire de Biotechnologie, ENSBANA. Univ. Bourgogne, Dijon, France
| | | | | | | | | |
Collapse
|
21
|
Kiel JA, Keizer-Gunnink IK, Krause T, Komori M, Veenhuis M. Heterologous complementation of peroxisome function in yeast: the Saccharomyces cerevisiae PAS3 gene restores peroxisome biogenesis in a Hansenula polymorpha per9 disruption mutant. FEBS Lett 1995; 377:434-8. [PMID: 8549771 DOI: 10.1016/0014-5793(95)01385-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PER genes are essential for the biogenesis of peroxisomes in the yeast Hansenula polymorpha. Here we describe the functional complementation of a H. polymorpha per9 disruption strain (delta per9) by a heterologous gene. The Saccharomyces cerevisiae Pas3p, a homologue of per9p, restored peroxisome biogenesis and peroxisomal protein import in the delta per9 mutant, allowing it to grow again on methanol as sole carbon and energy source. This result shows that heterologous complementation of peroxisome function in yeast is indeed feasible and furthermore suggests that H. polymorpha delta per9 may be the candidate of choice to attempt the isolation of Per9p homologues from higher eukaryotes by functional complementation.
Collapse
Affiliation(s)
- J A Kiel
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Wilcke M, Hultenby K, Alexson SE. Novel peroxisomal populations in subcellular fractions from rat liver. Implications for peroxisome structure and biogenesis. J Biol Chem 1995; 270:6949-58. [PMID: 7896845 DOI: 10.1074/jbc.270.12.6949] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
According to current concepts, new peroxisomes are formed by division of pre-existing peroxisomes or by budding from a peroxisomal reticulum. Recent cytochemical and biochemical data indicate that protein content in peroxisomes are heterogenous and that import of newly synthesized proteins may be restricted to certain protein import-competent peroxisomal subcompartments (Yamamoto, K., and Fahimi, H. D. (1987) J. Cell Biol. 105, 713-722; Heinemann, P., and Just, W. W. (1992) FEBS Lett. 300, 179-182; Lüers, G., Hashimoto, T., Fahimi, H. D., and Völkl, A. (1993) J. Cell Biol. 121, 1271-1280). We have observed that substantial amounts of peroxisomal proteins are found together with "microsomes" (100,000 x g pellet) after subcellular fractionation of rat liver homogenates. In this study we have investigated the origin of these peroxisomal proteins by modified gradient centrifugation procedures in Nycodenz and by analysis of enzyme activity distributions, Western blotting, and immunoelectron microscopy. It is concluded that much of this material is confined to novel populations of "peroxisomes." Immunocytochemistry on gradient fractions showed that some vesicles were enriched in acyl-CoA oxidase and peroxisomal multifunctional enzyme ("catalase-negative") whereas others were enriched in catalase and thiolase ("acyl-CoA oxidase-negative"). Double immunolabeling experiments verified the strong heterogeneity in the protein contents of these vesicles and also identified peroxisomes varying in size from about 0.5 microns ("normal peroxisomes") to extremely small vesicles of less than 100 nm in diameter. The possibility that these vesicles may be related to different subcompartments of a larger peroxisomal structure involved in protein import and biogenesis will be discussed.
Collapse
Affiliation(s)
- M Wilcke
- Department of Metabolic Research, Wenner-Gren Institute, Arrhenius Laboratories F3, Stockholm University, Sweden
| | | | | |
Collapse
|
23
|
Faber KN, Keizer-Gunnink I, Pluim D, Harder W, Ab G, Veenhuis M. The N-terminus of amine oxidase of Hansenula polymorpha contains a peroxisomal targeting signal. FEBS Lett 1995; 357:115-20. [PMID: 7805876 DOI: 10.1016/0014-5793(94)01317-t] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Here we describe the identification of the targeting sequence of peroxisomal amine oxidase (AMO) of H. polymorpha. Deletion analysis revealed that essential targeting information is located within the extreme N-terminal 16 amino acids. Moreover, this sequence can direct a reporter protein to the peroxisomal matrix of H. polymorpha. The N-terminal 16 amino acids of AMO contain a sequence with strong homology to the conserved PTS2 sequence. Therefore, AMO is considered to be a PTS2 protein.
Collapse
Affiliation(s)
- K N Faber
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Titorenko VI, Keizer I, Harder W, Veenhuis M. Isolation and characterization of mutants impaired in the selective degradation of peroxisomes in the yeast Hansenula polymorpha. J Bacteriol 1995; 177:357-63. [PMID: 7814324 PMCID: PMC176598 DOI: 10.1128/jb.177.2.357-363.1995] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have isolated a collection of peroxisome degradation-deficient (Pdd-) mutants of the yeast Hansenula polymorpha which are impaired in the selective autophagy of alcohol oxidase-containing peroxisomes. Two genes, designated PDD1 and PDD2, have been identified by complementation and linkage analyses. In both mutant strains, the glucose-induced proteolytic turnover of peroxisomes is fully prevented. The pdd1 and pdd2 mutant phenotypes were caused by recessive monogenic mutations. Mutations mapped in the PDD1 gene appeared to affect the initial step of peroxisome degradation, namely, sequestration of the organelle to be degraded by membrane multilayers. Thus, Pdd1p may be involved in the initial signalling events which determine which peroxisome will be degraded. The product of the PDD2 gene appeared to be essential for mediating the second step in selective peroxisome degradation, namely, fusion and subsequent uptake of the sequestered organelles into the vacuole. pdd1 and pdd2 mutations showed genetic interactions which suggested that the corresponding gene products may physically or functionally interact with each other.
Collapse
Affiliation(s)
- V I Titorenko
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
25
|
The Ecological and Physiological Significance of the Growth of Heterotrophic Microorganisms with Mixtures of Substrates. ADVANCES IN MICROBIAL ECOLOGY 1995. [DOI: 10.1007/978-1-4684-7724-5_8] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Faber KN, Haima P, Gietl C, Harder W, Ab G, Veenhuis M. The methylotrophic yeast Hansenula polymorpha contains an inducible import pathway for peroxisomal matrix proteins with an N-terminal targeting signal (PTS2 proteins). Proc Natl Acad Sci U S A 1994; 91:12985-9. [PMID: 7809160 PMCID: PMC45565 DOI: 10.1073/pnas.91.26.12985] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two main types of peroxisomal targeting signals have been identified that reside either at the extreme C terminus (PTS1) or the N terminus (PTS2) of the protein. In the methylotrophic yeast Hansenula polymorpha the majority of peroxisomal matrix proteins are of the PTS1 type. Thus far, for H. polymorpha only amine oxidase (AMO) has been shown to contain a PTS2 type signal. In the present study we expressed H. polymorpha AMO under control of the strong endogenous alcohol oxidase promoter. Partial import of AMO into peroxisomes was observed in cells grown in methanol/(NH4)2SO4-containing medium. However, complete import of AMO occurred if the cells were grown under conditions that induce expression of the endogenous AMO gene. Similar results were obtained when the heterologous PTS2 proteins, glyoxysomal malate dehydrogenase from watermelon and thiolase from Saccharomyces cerevisiae, were synthesized in H. polymorpha. The import of PTS1 proteins, however, was not affected by the growth conditions. These results indicate that the reduced rate of AMO import in (NH4)2SO4-grown cells is not due to competition with PTS1 proteins for the same import pathway. Apparently, AMO is imported via a separate pathway that is induced by amines and functions for PTS2 proteins in general.
Collapse
Affiliation(s)
- K N Faber
- Laboratory for Electron Microscopy, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Waterham HR, Titorenko VI, Haima P, Cregg JM, Harder W, Veenhuis M. The Hansenula polymorpha PER1 gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy- and amino-terminal targeting signals. J Cell Biol 1994; 127:737-49. [PMID: 7962056 PMCID: PMC2120227 DOI: 10.1083/jcb.127.3.737] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We describe the cloning of the Hansenula polymorpha PER1 gene and the characterization of the gene and its product, PER1p. The gene was cloned by functional complementation of a per1 mutant of H. polymorpha, which was impaired in the import of peroxisomal matrix proteins (Pim- phenotype). The DNA sequence of PER1 predicts that PER1p is a polypeptide of 650 amino acids with no significant sequence similarity to other known proteins. PER1 expression was low but significant in wild-type H. polymorpha growing on glucose and increased during growth on any one of a number of substrates which induce peroxisome proliferation. PER1p contains both a carboxy- (PTS1) and an amino-terminal (PTS2) peroxisomal targeting signal which both were demonstrated to be capable of directing bacterial beta-lactamase to the organelle. In wild-type H. polymorpha PER1p is a protein of low abundance which was demonstrated to be localized in the peroxisomal matrix. Our results suggest that the import of PER1p into peroxisomes is a prerequisite for the import of additional matrix proteins and we suggest a regulatory function of PER1p on peroxisomal protein support.
Collapse
Affiliation(s)
- H R Waterham
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Evers ME, Titorenko VI, van der Klei IJ, Harder W, Veenhuis M. Assembly of alcohol oxidase in peroxisomes of the yeast Hansenula polymorpha requires the cofactor flavin adenine dinucleotide. Mol Biol Cell 1994; 5:829-37. [PMID: 7803851 PMCID: PMC301104 DOI: 10.1091/mbc.5.8.829] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The peroxisomal flavoprotein alcohol oxidase (AO) is an octamer (600 kDa) consisting of eight identical subunits, each of which contains one flavin adenine dinucleotide molecule as a cofactor. Studies on a riboflavin (Rf) auxotrophic mutant of the yeast Hansenula polymorpha revealed that limitation of the cofactor led to drastic effects on AO import and assembly as well as peroxisome proliferation. Compared to wild-type control cells Rf-limitation led to 1) reduced levels of AO protein, 2) reduced levels of correctly assembled and activated AO inside peroxisomes, 3) a partial inhibition of peroxisomal protein import, leading to the accumulation of precursors of matrix proteins in the cytosol, and 4) a significant increase in peroxisome number. We argue that the inhibition of import may result from the saturation of a peroxisomal molecular chaperone under conditions that normal assembly of a major matrix protein inside the target organelle is prevented.
Collapse
Affiliation(s)
- M E Evers
- Laboratory of Electron Microscopy, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Dijksterhuis J, Harder W, Veenhuis M. Proliferation and function of microbodies in the nematophagous fungus Arthrobotrys oligosporaduring growth on oleic acid or d-alanine as the sole carbon source. FEMS Microbiol Lett 1993. [DOI: 10.1111/j.1574-6968.1993.tb06436.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
30
|
Steffan J, McAlister-Henn L. Isolation and characterization of the yeast gene encoding the MDH3 isozyme of malate dehydrogenase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35822-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
31
|
Working P, Meizel S. Evidence that an ATPase functions in the maintenance of the acidic pH of the hamster sperm acrosome. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69307-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|