1
|
Haubrich BA, Nayyab S, Gallati M, Hernandez J, Williams C, Whitman A, Zimmerman T, Li Q, Chen Y, Zhou CZ, Basu A, Reid CW. Inhibition of Streptococcus pneumoniae growth by masarimycin. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35467499 DOI: 10.1099/mic.0.001182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite renewed interest, development of chemical biology methods to study peptidoglycan metabolism has lagged in comparison to the glycobiology field in general. To address this, a panel of diamides were screened against the Gram-positive bacterium Streptococcus pneumoniae to identify inhibitors of bacterial growth. The screen identified the diamide masarimycin as a bacteriostatic inhibitor of S. pneumoniae growth with an MIC of 8 µM. The diamide inhibited detergent-induced autolysis in a concentration-dependent manner, indicating perturbation of peptidoglycan degradation as the mode-of-action. Cell based screening of masarimycin against a panel of autolysin mutants, identified a higher MIC against a ΔlytB strain lacking an endo-N-acetylglucosaminidase involved in cell division. Subsequent biochemical and phenotypic analyses suggested that the higher MIC was due to an indirect interaction with LytB. Further analysis of changes to the cell surface in masarimycin treated cells identified the overexpression of several moonlighting proteins, including elongation factor Tu which is implicated in regulating cell shape. Checkerboard assays using masarimycin in concert with additional antibiotics identified an antagonistic relationship with the cell wall targeting antibiotic fosfomycin, which further supports a cell wall mode-of-action.
Collapse
Affiliation(s)
- Brad A Haubrich
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA.,Department of Basic Sciences, Touro University Nevada, College of Osteopathic Medicine, Henderson, NV 89014, USA
| | - Saman Nayyab
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA.,Amherst Department of Molecular and Cellular Biology, University of Massachusetts, 230 Stockbridge Rd Amherst, MA, USA
| | - Mika Gallati
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Jazmeen Hernandez
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Caroline Williams
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Andrew Whitman
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Tahl Zimmerman
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC, USA
| | - Qiong Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Yuxing Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Cong-Zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Amit Basu
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Christopher W Reid
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| |
Collapse
|
2
|
Straume D, Piechowiak KW, Kjos M, Håvarstein LS. Class A PBPs: It is time to rethink traditional paradigms. Mol Microbiol 2021; 116:41-52. [PMID: 33709487 DOI: 10.1111/mmi.14714] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Until recently, class A penicillin-binding proteins (aPBPs) were the only enzymes known to catalyze glycan chain polymerization from lipid II in bacteria. Hence, the discovery of two novel lipid II polymerases, FtsW and RodA, raises new questions and has consequently received a lot of attention from the research community. FtsW and RodA are essential and highly conserved members of the divisome and elongasome, respectively, and work in conjunction with their cognate class B PBPs (bPBPs) to synthesize the division septum and insert new peptidoglycan into the lateral cell wall. The identification of FtsW and RodA as peptidoglycan glycosyltransferases has raised questions regarding the role of aPBPs in peptidoglycan synthesis and fundamentally changed our understanding of the process. Despite their dethronement, aPBPs are essential in most bacteria. So, what is their function? In this review, we discuss recent progress in answering this question and present our own views on the topic.
Collapse
Affiliation(s)
- Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Leiv Sigve Håvarstein
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
3
|
Abstract
Bacterial proteases and peptidases are integral to cell physiology and stability, and their necessity in Streptococcus pneumoniae is no exception. Protein cleavage and processing mechanisms within the bacterial cell serve to ensure that the cell lives and functions in its commensal habitat and can respond to new environments presenting stressful conditions. For S. pneumoniae, the human nasopharynx is its natural habitat. In the context of virulence, movement of S. pneumoniae to the lungs, blood, or other sites can instigate responses by the bacteria that result in their proteases serving dual roles of self-protein processors and virulence factors of host protein targets.
Collapse
Affiliation(s)
- Mary E Marquart
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi USA
| |
Collapse
|
4
|
New Aspects of the Interplay between Penicillin Binding Proteins, murM, and the Two-Component System CiaRH of Penicillin-Resistant Streptococcus pneumoniae Serotype 19A Isolates from Hungary. Antimicrob Agents Chemother 2017; 61:AAC.00414-17. [PMID: 28483958 PMCID: PMC5487634 DOI: 10.1128/aac.00414-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/01/2017] [Indexed: 11/23/2022] Open
Abstract
The Streptococcus pneumoniae clone Hungary19A-6 expresses unusually high levels of β-lactam resistance, which is in part due to mutations in the MurM gene, encoding a transferase involved in the synthesis of branched peptidoglycan. Moreover, it contains the allele ciaH232, encoding the histidine kinase CiaH (M. Müller, P. Marx, R. Hakenbeck, and R. Brückner, Microbiology 157:3104–3112, 2011, https://doi.org/10.1099/mic.0.053157-0). High-level penicillin resistance primarily requires the presence of low-affinity (mosaic) penicillin binding protein (PBP) genes, as, for example, in strain Hu17, a closely related member of the Hungary19A-6 lineage. Interestingly, strain Hu15 is β-lactam sensitive due to the absence of mosaic PBPs. This unique situation prompted us to investigate the development of cefotaxime resistance in transformation experiments with genes known to play a role in this phenotype, pbp2x, pbp1a, murM, and ciaH, and penicillin-sensitive recipient strains R6 and Hu15. Characterization of phenotypes, peptidoglycan composition, and CiaR-mediated gene expression revealed several novel aspects of penicillin resistance. The murM gene of strain Hu17 (murMHu17), which is highly similar to murM of Streptococcus mitis, induced morphological changes which were partly reversed by ciaH232. murMHu17 conferred cefotaxime resistance only in the presence of the pbp2x of strain Hu17 (pbp2xHu17). The ciaH232 allele contributed to a remarkable increase in cefotaxime resistance in combination with pbp2xHu17 and pbp1a of strain Hu17 (pbp1aHu17), accompanied by higher levels of expression of CiaR-regulated genes, documenting that ciaH232 responds to PBP1aHu17-mediated changes in cell wall synthesis. Most importantly, the proportion of branched peptides relative to the proportion of linear muropeptides increased in cells containing mosaic PBPs, suggesting an altered enzymatic activity of these proteins.
Collapse
|
5
|
Peters K, Pipo J, Schweizer I, Hakenbeck R, Denapaite D. Promoter Identification and Transcription Analysis of Penicillin-Binding Protein Genes in Streptococcus pneumoniae R6. Microb Drug Resist 2016; 22:487-98. [PMID: 27409661 PMCID: PMC5036317 DOI: 10.1089/mdr.2016.0084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Penicillin-binding proteins (PBPs) are membrane-associated enzymes, which are involved in the last two steps of peptidoglycan biosynthesis, and some of them are key players in cell division. Furthermore, they are targets of β-lactams, the most widely used antibiotics. Nevertheless, very little is known about the expression and regulation of PBP genes. Using transcriptional mapping, we now determined the promoter regions of PBP genes from the laboratory strain Streptococcus pneumoniae R6 and examined the expression profile of these six promoters. The extended −10 region is highly conserved and complies with a σA-type promoter consensus sequence. In contrast, the −35 region is poorly conserved, indicating the possibility for differential PBP regulation. All PBP promoters were constitutively expressed and highly active during the exponential and early stationary growth phase. However, the individual expression of PBP promoters varied approximately fourfold, with pbp1a being the highest and pbp3 the lowest. Furthermore, the deletion of one nucleotide in the spacer region of the PBP3 promoter reduced pbp3 expression ∼10-fold. The addition of cefotaxime above the minimal inhibitory concentration (MIC) did not affect PBP expression in the penicillin-sensitive R6 strain. No evidence for regulation of S. pneumoniae PBP genes was obtained.
Collapse
Affiliation(s)
- Katharina Peters
- Department of Microbiology, University of Kaiserslautern , Kaiserslautern, Germany
| | - Julia Pipo
- Department of Microbiology, University of Kaiserslautern , Kaiserslautern, Germany
| | - Inga Schweizer
- Department of Microbiology, University of Kaiserslautern , Kaiserslautern, Germany
| | - Regine Hakenbeck
- Department of Microbiology, University of Kaiserslautern , Kaiserslautern, Germany
| | - Dalia Denapaite
- Department of Microbiology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
6
|
Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence. Sci Rep 2015; 5:16198. [PMID: 26537571 PMCID: PMC4633669 DOI: 10.1038/srep16198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is a major cause of life-threatening diseases worldwide. Here we provide an in-depth functional characterization of LytB, the peptidoglycan hydrolase responsible for physical separation of daughter cells. Identified herein as an N-acetylglucosaminidase, LytB is involved also in colonization and invasion of the nasopharynx, biofilm formation and evasion of host immunity as previously demonstrated. We have shown that LytB cleaves the GlcNAc-β-(1,4)-MurNAc glycosidic bond of peptidoglycan building units. The hydrolysis occurs at sites with fully acetylated GlcNAc moieties, with preference for uncross-linked muropeptides. The necessity of GlcN acetylation and the presence of a single acidic moiety (Glu585) essential for catalysis strongly suggest a substrate-assisted mechanism with anchimeric assistance of the acetamido group of GlcNAc moieties. Additionally, modelling of the catalytic region bound to a hexasaccharide tripentapeptide provided insights into substrate-binding subsites and peptidoglycan recognition. Besides, cell-wall digestion products and solubilisation rates might indicate a tight control of LytB activity to prevent unrestrained breakdown of the cell wall. Choline-independent localization at the poles of the cell, mediated by the choline-binding domain, peptidoglycan modification, and choline-mediated (lipo)teichoic-acid attachment contribute to the high selectivity of LytB. Moreover, so far unknown chitin hydrolase and glycosyltransferase activities were detected using GlcNAc oligomers as substrate.
Collapse
|
7
|
Zhang J, Yang YH, Jiang YL, Zhou CZ, Chen Y. Structural and biochemical analyses of the Streptococcus pneumonia L,D-carboxypeptidase DacB. ACTA ACUST UNITED AC 2015; 71:283-92. [PMID: 25664738 DOI: 10.1107/s1399004714025371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/19/2014] [Indexed: 11/10/2022]
Abstract
The L,D-carboxypeptidase DacB plays a key role in the remodelling of Streptococcus pneumoniae peptidoglycan during cell division. In order to decipher its substrate-binding properties and catalytic mechanism, the 1.71 Å resolution crystal structure of DacB from S. pneumoniae TIGR4 is reported. Structural analyses in combination with comparisons with the recently reported structures of DacB from S. pneumoniae D39 and R6 clearly demonstrate that DacB adopts a zinc-dependent carboxypeptidase fold and belongs to the metallopeptidase M15B subfamily. In addition, enzymatic activity assays further confirm that DacB indeed acts as an L,D-carboxypeptidase towards the tetrapeptide L-Ala-D-iGln-L-Lys-D-Ala of the peptidoglycan stem, with Km and kcat values of 2.84 ± 0.37 mM and 91.49 ± 0.05 s(-1), respectively. Subsequent molecular docking and site-directed mutagenesis enable the assignment of the key residues that bind to the tetrapeptide. Altogether, these findings provide structural insights into substrate recognition in the metallopeptidase M15B subfamily.
Collapse
Affiliation(s)
- Juan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Yi-Hu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China
| |
Collapse
|
8
|
Philippe J, Gallet B, Morlot C, Denapaite D, Hakenbeck R, Chen Y, Vernet T, Zapun A. Mechanism of β-lactam action in Streptococcus pneumoniae: the piperacillin paradox. Antimicrob Agents Chemother 2015; 59:609-21. [PMID: 25385114 PMCID: PMC4291406 DOI: 10.1128/aac.04283-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/05/2014] [Indexed: 11/20/2022] Open
Abstract
The human pathogen Streptococcus pneumoniae has been treated for decades with β-lactam antibiotics. Its resistance is now widespread, mediated by the expression of mosaic variants of the target enzymes, the penicillin-binding proteins (PBPs). Understanding the mode of action of β-lactams, not only in molecular detail but also in their physiological consequences, will be crucial to improving these drugs and any counterresistances. In this work, we investigate the piperacillin paradox, by which this β-lactam selects primarily variants of PBP2b, whereas its most reactive target is PBP2x. These PBPs are both essential monofunctional transpeptidases involved in peptidoglycan assembly. PBP2x participates in septal synthesis, while PBP2b functions in peripheral elongation. The formation of the "lemon"-shaped cells induced by piperacillin treatment is consistent with the inhibition of PBP2x. Following the examination of treated and untreated cells by electron microscopy, the localization of the PBPs by epifluorescence microscopy, and the determination of the inhibition time course of the different PBPs, we propose a model of peptidoglycan assembly that accounts for the piperacillin paradox.
Collapse
Affiliation(s)
- Jules Philippe
- Université Grenoble Alpes, IBS, Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| | - Benoit Gallet
- Université Grenoble Alpes, IBS, Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| | - Cécile Morlot
- Université Grenoble Alpes, IBS, Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| | - Dalia Denapaite
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Regine Hakenbeck
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany Alfried Krupp Wissenschaftskolleg, Greifswald, Germany
| | - Yuxin Chen
- University of Science and Technology of China, Hefei, China
| | - Thierry Vernet
- Université Grenoble Alpes, IBS, Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| | - André Zapun
- Université Grenoble Alpes, IBS, Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| |
Collapse
|
9
|
Abdullah MR, Gutiérrez-Fernández J, Pribyl T, Gisch N, Saleh M, Rohde M, Petruschka L, Burchhardt G, Schwudke D, Hermoso JA, Hammerschmidt S. Structure of the pneumococcal l,d-carboxypeptidase DacB and pathophysiological effects of disabled cell wall hydrolases DacA and DacB. Mol Microbiol 2014; 93:1183-206. [PMID: 25060741 DOI: 10.1111/mmi.12729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 12/19/2022]
Abstract
Bacterial cell wall hydrolases are essential for peptidoglycan turnover and crucial to preserve cell shape. The d,d-carboxypeptidase DacA and l,d-carboxypeptidase DacB of Streptococcus pneumoniae function in a sequential manner. Here, we determined the structure of the surface-exposed lipoprotein DacB. The crystal structure of DacB, radically different to that of DacA, contains a mononuclear Zn(2+) catalytic centre located in the middle of a large and fully exposed groove. Two different conformations were found presenting a different arrangement of the active site topology. The critical residues for catalysis and substrate specificity were identified. Loss-of-function of DacA and DacB altered the cell shape and this was consistent with a modified peptidoglycan peptide composition in dac mutants. Contrary, an lgt mutant lacking lipoprotein diacylglyceryl transferase activity required for proper lipoprotein maturation retained l,d-carboxypeptidase activity and showed an intact murein sacculus. In addition we demonstrated pathophysiological effects of disabled DacA or DacB activities. Real-time bioimaging of intranasal infected mice indicated a substantial attenuation of ΔdacB and ΔdacAΔdacB pneumococci, while ΔdacA had no significant effect. In addition, uptake of these mutants by professional phagocytes was enhanced, while the adherence to lung epithelial cells was decreased. Thus, structural and functional studies suggest DacA and DacB as optimal drug targets.
Collapse
Affiliation(s)
- Mohammed R Abdullah
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Peters K, Schweizer I, Beilharz K, Stahlmann C, Veening JW, Hakenbeck R, Denapaite D. Streptococcus pneumoniae PBP2x mid-cell localization requires the C-terminal PASTA domains and is essential for cell shape maintenance. Mol Microbiol 2014; 92:733-55. [DOI: 10.1111/mmi.12588] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Katharina Peters
- Department of Microbiology; University of Kaiserslautern; Paul-Ehrlich Straße 23 D-67663 Kaiserslautern Germany
| | - Inga Schweizer
- Department of Microbiology; University of Kaiserslautern; Paul-Ehrlich Straße 23 D-67663 Kaiserslautern Germany
| | - Katrin Beilharz
- Molecular Genetics Group; Groningen Biomolecular Sciences and Biotechnology Institute; Centre for Synthetic Biology; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Christoph Stahlmann
- Department of Microbiology; University of Kaiserslautern; Paul-Ehrlich Straße 23 D-67663 Kaiserslautern Germany
| | - Jan-Willem Veening
- Molecular Genetics Group; Groningen Biomolecular Sciences and Biotechnology Institute; Centre for Synthetic Biology; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Regine Hakenbeck
- Department of Microbiology; University of Kaiserslautern; Paul-Ehrlich Straße 23 D-67663 Kaiserslautern Germany
- Stiftung Alfried Krupp Kolleg Greifswald; D-17487 Greifswald Germany
| | - Dalia Denapaite
- Department of Microbiology; University of Kaiserslautern; Paul-Ehrlich Straße 23 D-67663 Kaiserslautern Germany
| |
Collapse
|
11
|
Massidda O, Nováková L, Vollmer W. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol 2013; 15:3133-57. [PMID: 23848140 DOI: 10.1111/1462-2920.12189] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/08/2013] [Accepted: 06/09/2013] [Indexed: 12/22/2022]
Abstract
Streptococcus pneumoniae is an oval-shaped Gram-positive coccus that lives in intimate association with its human host, both as a commensal and pathogen. The seriousness of pneumococcal infections and the spread of multi-drug resistant strains call for new lines of intervention. Bacterial cell division is an attractive target to develop antimicrobial drugs. This review discusses the recent advances in understanding S. pneumoniae growth and division, in comparison with the best studied rod-shaped models, Escherichia coli and Bacillus subtilis. To maintain their shape, these bacteria propagate by peripheral and septal peptidoglycan synthesis, involving proteins that assemble into distinct complexes called the elongasome and the divisome, respectively. Many of these proteins are conserved in S. pneumoniae, supporting the notion that the ovococcal shape is also achieved by rounds of elongation and division. Importantly, S. pneumoniae and close relatives with similar morphology differ in several aspects from the model rods. Overall, the data support a model in which a single large machinery, containing both the peripheral and septal peptidoglycan synthesis complexes, assembles at midcell and governs growth and division. The mechanisms generating the ovococcal or coccal shape in lactic-acid bacteria have likely evolved by gene reduction from a rod-shaped ancestor of the same group.
Collapse
Affiliation(s)
- Orietta Massidda
- Department of Surgical Sciences, University of Cagliari, Via Porcell, 4, 09100, Cagliari, Italy
| | | | | |
Collapse
|
12
|
Hakenbeck R, Brückner R, Denapaite D, Maurer P. Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae. Future Microbiol 2012; 7:395-410. [PMID: 22393892 DOI: 10.2217/fmb.12.2] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alterations in the target enzymes for β-lactam antibiotics, the penicillin-binding proteins (PBPs), have been recognized as a major resistance mechanism in Streptococcus pneumoniae. Mutations in PBPs that confer a reduced affinity to β-lactams have been identified in laboratory mutants and clinical isolates, and document an astounding variability of sites involved in this phenotype. Whereas point mutations are selected in the laboratory, clinical isolates display a mosaic structure of the affected PBP genes, the result of interspecies gene transfer and recombination events. Depending on the selective β-lactam, different combinations of PBP genes and mutations within are involved in conferring resistance, and astoundingly in non-PBP genes as well.
Collapse
Affiliation(s)
- Regine Hakenbeck
- Department of Microbiology, University of Kaiserslautern, Paul Ehrlich Strasse 23, D-67663 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
13
|
Bui NK, Eberhardt A, Vollmer D, Kern T, Bougault C, Tomasz A, Simorre JP, Vollmer W. Isolation and analysis of cell wall components from Streptococcus pneumoniae. Anal Biochem 2012; 421:657-66. [DOI: 10.1016/j.ab.2011.11.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/14/2011] [Accepted: 11/22/2011] [Indexed: 11/16/2022]
|
14
|
Giefing-Kröll C, Jelencsics KE, Reipert S, Nagy E. Absence of pneumococcal PcsB is associated with overexpression of LysM domain-containing proteins. MICROBIOLOGY-SGM 2011; 157:1897-1909. [PMID: 21474534 DOI: 10.1099/mic.0.045211-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The streptococcal protein required for cell separation B (PcsB) is predicted to play an important role in peptidoglycan metabolism, based on sequence motifs and altered phenotypes of gene deletion mutant cells exhibiting defects in cell separation. However, no enzymic activity has been demonstrated for PcsB so far. By generating gene deletion mutant strains in four different genetic backgrounds we could demonstrate that pcsB is not essential for cell survival in Streptococcus pneumoniae, but is essential for proper cell division. Deletion mutant cells displayed cluster formation due to aberrant cell division, reduced growth and antibiotic sensitivity that were fully reverted by transformation with a plasmid carrying pcsB. Immunofluorescence staining revealed that PcsB was localized to the cell poles, similarly to PBP3 and LytB, enzymes with demonstrated peptidoglycan-degrading activity required for daughter cell separation. Similarly to other studies with PcsB homologues, we could not detect peptidoglycan-lytic activity with recombinant or native pneumococcal PcsB in vitro. In addition to defects in septum placement and separation, the absence of PcsB induced an increased release of several proteins, such as enolase, MalX and the SP0107 LysM domain protein. Interestingly, genes encoding both LysM domain-containing proteins that are present in the pneumococcal genome (SP0107 and SP2063) and predicted to be involved in cell wall metabolism were found to be highly overexpressed (14-33-fold increase) in ΔpcsB cells in two different genetic backgrounds. Otherwise, we detected very few changes in the global gene expression profile of cells lacking PcsB. Thus our data suggest that LysM domain proteins partially compensate for the lack of PcsB function and allow the survival and slow growth of the pneumococcus.
Collapse
Affiliation(s)
| | | | | | - Eszter Nagy
- Intercell AG, Vienna Biocenter 3, 1030 Vienna, Austria
| |
Collapse
|
15
|
Characterization of mutants deficient in the L,D-carboxypeptidase (DacB) and WalRK (VicRK) regulon, involved in peptidoglycan maturation of Streptococcus pneumoniae serotype 2 strain D39. J Bacteriol 2011; 193:2290-300. [PMID: 21378199 DOI: 10.1128/jb.01555-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Peptidoglycan (PG) hydrolases play critical roles in the remodeling of bacterial cell walls during division. PG hydrolases have been studied extensively in several bacillus species, such as Escherichia coli and Bacillus subtilis, but remain relatively uncharacterized in ovococcus species, such as Streptococcus pneumoniae (pneumococcus). In this work, we identified genes that encode proteins with putative PG hydrolytic domains in the genome of S. pneumoniae strain D39. Knockout mutations in these genes were constructed, and the resulting mutants were characterized in comparison with the parent strain for growth, cell morphology, PG peptide incorporation, and in some cases, PG peptide composition. In addition, we characterized deletion mutations in nonessential genes of unknown function in the WalRK(Spn) two-component system regulon, which also contains the essential pcsB cell division gene. Several mutants did not show overt phenotypes, which is perhaps indicative of redundancy. In contrast, two new mutants showed distinct defects in PG biosynthesis. One mutation was in a gene designated dacB (spd_0549), which we showed encodes an L,D-carboxypeptidase involved in PG maturation. Notably, dacB mutants, similar to dacA (D,D-carboxypeptidase) mutants, exhibited defects in cell shape and septation, consistent with the idea that the availability of PG peptide precursors is important for proper PG biosynthesis. Epistasis analysis indicated that DacA functions before DacB in D-Ala removal, and immunofluorescence microscopy showed that DacA and DacB are located over the entire surface of pneumococcal cells. The other mutation was in WalRK(Spn) regulon gene spd_0703, which encodes a putative membrane protein that may function as a type of conserved streptococcal shape, elongation, division, and sporulation (SEDS) protein.
Collapse
|
16
|
Korsak D, Markiewicz Z, Gutkind GO, Ayala JA. Identification of the full set of Listeria monocytogenes penicillin-binding proteins and characterization of PBPD2 (Lmo2812). BMC Microbiol 2010; 10:239. [PMID: 20843347 PMCID: PMC2949700 DOI: 10.1186/1471-2180-10-239] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/15/2010] [Indexed: 11/24/2022] Open
Abstract
Background Bacterial penicillin-binding proteins (PBPs) can be visualized by their ability to bind radiolabeled or fluorescent β-lactam derivatives both whole cells and membrane/cell enriched fractions. Analysis of the Listeria monocytogenes genome sequence predicted ten genes coding for putative PBPs, but not all of their products have been detected in studies using radiolabeled antibiotics, thus hindering their characterization. Here we report the positive identification of the full set of L. monocytogenes PBPs and the characteristics of the hitherto undescribed PBPD2 (Lmo2812). Results Eight L. monocytogenes PBPs were identified by the binding of fluorescent β-lactam antibiotic derivatives Boc-FL, Boc-650 and Amp-Alexa430 to proteins in whole cells or membrane/cell wall extracts. The gene encoding a ninth PBP (Lmo2812) was cloned and expressed in Escherichia coli as a His-tagged protein. The affinity purified recombinant protein had DD-carboxypeptidase activity and preferentially degraded low-molecular-weight substrates. L. monocytogenes mutants lacking the functional Lmo2812 enzyme were constructed and, compared to the wild-type, the cells were longer and slightly curved with bent ends. Protein Lmo1855, previously designated PBPD3, did not bind any of the antibiotic derivatives tested, similarly to the homologous enterococcal protein VanY. Conclusions Nine out of the ten putative L. monocytogenes PBP genes were shown to encode proteins that bind derivatives of β-lactam antibiotics, thus enabling their positive identification. PBPD2 (Lmo2812) was not visualized in whole cell extracts, most probably due to its low abundance, but it was shown to bind Boc-FL after recombinant overexpression and purification. Mutants lacking Lmo2812 and another low molecular mass (LMM) PBP, PBP5 (PBPD1) - both with DD-carboxypeptidase activity - displayed only slight morphological alterations, demonstrating that they are dispensable for cell survival and probably participate in the latter stages of peptidoglycan synthesis. Since Lmo2812 preferentially degrades low-molecular- mass substrates, this may indicate a role in cell wall turnover.
Collapse
Affiliation(s)
- Dorota Korsak
- Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | |
Collapse
|
17
|
|
18
|
Zapun A, Vernet T. Bacterial morphogenesis: the cell wall of 'ovococci'. Mol Microbiol 2006. [DOI: 10.1111/j.1365-2958.2006.05051.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Korsak D, Vollmer W, Markiewicz Z. Listeria monocytogenes EGD lacking penicillin-binding protein 5 (PBP5) produces a thicker cell wall. FEMS Microbiol Lett 2006; 251:281-8. [PMID: 16140473 DOI: 10.1016/j.femsle.2005.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 06/08/2005] [Accepted: 08/09/2005] [Indexed: 10/25/2022] Open
Abstract
We report on the cloning of the structural gene for penicillin-binding protein 5 (PBP5), lmo2754. We also describe the enzymatic activity of PBP5 and characterize a mutant lacking this activity. Purified PBP5 has dd-carboxypeptidase activity, removing the terminal D-alanine residue from murein pentapeptide side chains. It shows higher activity against low molecular weight monomeric pentapeptide substrates compared to dimeric pentapeptide compound. Similarly, PBP5 preferentially cleaves monomeric pentapeptides present in high-molecular weight murein sacculi. A Listeria monocytogenes mutant lacking functional PBP5 was constructed. Cells of the mutant are viable, showing that the protein is dispensable for growth, but grow slower and have thickened cell walls.
Collapse
Affiliation(s)
- Dorota Korsak
- Department of General Microbiology, Institute of Microbiology, Warsaw University, Warsaw, Poland
| | | | | |
Collapse
|
20
|
Morlot C, Pernot L, Le Gouellec A, Di Guilmi AM, Vernet T, Dideberg O, Dessen A. Crystal Structure of a Peptidoglycan Synthesis Regulatory Factor (PBP3) from Streptococcus pneumoniae. J Biol Chem 2005; 280:15984-91. [PMID: 15596446 DOI: 10.1074/jbc.m408446200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Penicillin-binding proteins (PBPs) are membrane-associated enzymes which perform critical functions in the bacterial cell division process. The single d-Ala,d-Ala (d,d)-carboxypeptidase in Streptococcus pneumoniae, PBP3, has been shown to play a key role in control of availability of the peptidoglycal substrate during cell growth. Here, we have biochemically characterized and solved the crystal structure of a soluble form of PBP3 to 2.8 A resolution. PBP3 folds into an NH(2)-terminal, d,d-carboxypeptidase-like domain, and a COOH-terminal, elongated beta-rich region. The carboxypeptidase domain harbors the classic signature of the penicilloyl serine transferase superfamily, in that it contains a central, five-stranded antiparallel beta-sheet surrounded by alpha-helices. As in other carboxypeptidases, which are present in species whose peptidoglycan stem peptide has a lysine residue at the third position, PBP3 has a 14-residue insertion at the level of its omega loop, a feature that distinguishes it from carboxypeptidases from bacteria whose peptidoglycan harbors a diaminopimelate moiety at this position. PBP3 performs substrate acylation in a highly efficient manner (k(cat)/K(m) = 50,500 M(-1) x s(-1)), an event that may be linked to role in control of pneumococcal peptidoglycan reticulation. A model that places PBP3 poised vertically on the bacterial membrane suggests that its COOH-terminal region could act as a pedestal, placing the active site in proximity to the peptidoglycan and allowing the protein to "skid" on the surface of the membrane, trimming pentapeptides during the cell growth and division processes.
Collapse
Affiliation(s)
- Cécile Morlot
- Laboratoire de Cristallographie Macromoléculaire and Laboratoire d'Ingénierie des Macromolécules, Institut de Biologie Structurale Jean-Pierre Ebel (CNRS/CEA/UJF), 41 rue Jules Horowitz, Grenoble 38027, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Filipe SR, Severina E, Tomasz A. Functional analysis of Streptococcus pneumoniae MurM reveals the region responsible for its specificity in the synthesis of branched cell wall peptides. J Biol Chem 2001; 276:39618-28. [PMID: 11522792 DOI: 10.1074/jbc.m106425200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recently identified murMN operon of Streptococcus pneumoniae encodes enzymes involved in the synthesis of branched structured muropeptides of the pneumococcal cell wall peptidoglycan. Its inactivation was shown to cause production of a peptidoglycan composed exclusively of linear muropeptides and a virtually complete loss of resistance in penicillin-resistant strains. The studies described in this communication follow up these observations in several directions. The substrate of the MurM-catalyzed reaction (addition of alanine or serine) was identified as the lipid-linked N-acetylglucosamine-muramyl pentapeptide. Different murM alleles from several penicillin-resistant S. pneumoniae strains, each with a characteristic branched peptide pattern, were cloned into pLS578, a pneumococcal plasmid capable of replicating in S. pneumoniae, and transformed into the penicillin-susceptible laboratory strain R36A. All transformants remained penicillin-susceptible; however, their cell wall composition changed in directions corresponding to the muropeptide pattern of the strain from which the murM allele was derived. This suggests that the muropeptide composition of the pneumococcal cell walls is determined by the particular murM allele carried by the cells. A 30-amino acid long sequence within the MurM protein was shown to be the main determinant of the specificity of the reaction (addition of alanine versus serine).
Collapse
Affiliation(s)
- S R Filipe
- Laboratory of Microbiology, The Rockefeller University, 1230 York Ave., New York, NY 10021, USA
| | | | | |
Collapse
|
22
|
McPherson DC, Driks A, Popham DL. Two class A high-molecular-weight penicillin-binding proteins of Bacillus subtilis play redundant roles in sporulation. J Bacteriol 2001; 183:6046-53. [PMID: 11567005 PMCID: PMC99684 DOI: 10.1128/jb.183.20.6046-6053.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2001] [Accepted: 07/19/2001] [Indexed: 11/20/2022] Open
Abstract
The four class A penicillin-binding proteins (PBPs) of Bacillus subtilis appear to play functionally redundant roles in polymerizing the peptidoglycan (PG) strands of the vegetative-cell and spore walls. The ywhE product was shown to bind penicillin, so the gene and gene product were renamed pbpG and PBP2d, respectively. Construction of mutant strains lacking multiple class A PBPs revealed that, while PBP2d plays no obvious role in vegetative-wall synthesis, it does play a role in spore PG synthesis. A pbpG null mutant produced spore PG structurally similar to that of the wild type; however, electron microscopy revealed that in a significant number of these spores the PG did not completely surround the spore core. In a pbpF pbpG double mutant this spore PG defect was apparent in every spore produced, indicating that these two gene products play partially redundant roles. A normal amount of spore PG was produced in the double mutant, but it was frequently produced in large masses on either side of the forespore. The double-mutant spore PG had structural alterations indicative of improper cortex PG synthesis, including twofold decreases in production of muramic delta-lactam and L-alanine side chains and a slight increase in cross-linking. Sporulation gene expression in the pbpF pbpG double mutant was normal, but the double-mutant spores failed to reach dormancy and subsequently degraded their spore PG. We suggest that these two forespore-synthesized PBPs are required for synthesis of the spore germ cell wall, the first layer of spore PG synthesized on the surface of the inner forespore membrane, and that in the absence of the germ cell wall the cells lack a template needed for proper synthesis of the spore cortex, the outer layers of spore PG, by proteins on the outer forespore membrane.
Collapse
Affiliation(s)
- D C McPherson
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
23
|
Meador-Parton J, Popham DL. Structural analysis of Bacillus subtilis spore peptidoglycan during sporulation. J Bacteriol 2000; 182:4491-9. [PMID: 10913082 PMCID: PMC94620 DOI: 10.1128/jb.182.16.4491-4499.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major structural element of bacterial endospores is a peptidoglycan (PG) wall. This wall is produced between the two opposed membranes surrounding the developing forespore and is composed of two layers. The inner layer is the germ cell wall, which appears to have a structure similar to that of the vegetative cell wall and which serves as the initial cell wall following spore germination. The outer layer, the cortex, has a modified structure, is required for maintenance of spore dehydration, and is degraded during spore germination. Theories suggest that the spore PG may also play a mechanical role in the attainment of spore dehydration. Inherent in one of these models is the production of a gradient of cross-linking across the span of the spore PG. We report analyses of the structure of PG found within immature, developing Bacillus subtilis forespores. The germ cell wall PG is synthesized first, followed by the cortex PG. The germ cell wall is relatively highly cross-linked. The degree of PG cross-linking drops rapidly during synthesis of the first layers of cortex PG and then increases two- to eightfold across the span of the outer 70% of the cortex. Analyses of forespore PG synthesis in mutant strains reveal that some strains that lack this gradient of cross-linking are able to achieve normal spore core dehydration. We conclude that spore PG with cross-linking within a broad range is able to maintain, and possibly to participate in, spore core dehydration. Our data indicate that the degree of spore PG cross-linking may have a more direct impact on the rate of spore germination and outgrowth.
Collapse
Affiliation(s)
- J Meador-Parton
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
24
|
Selakovitch-Chenu L, Giammarinaro P, Sicard M. Molecular characterization of a mutation affecting the amount of Streptococcus pneumoniae penicillin-binding protein 3. Microb Drug Resist 2000; 3:259-62. [PMID: 9270995 DOI: 10.1089/mdr.1997.3.259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have studied the molecular structure of the gene for the penicillin binding protein (PBP 3) of the Streptococcus pneumoniae wild-type strain and a laboratory mutant strain that exhibits a reduced amount of this protein on PBP gels. This mutation affects cefotaxime resistance when transferred into resistant strains. We have sequenced the PBP3 gene, dacA, and upstream regions from the wild-type isogenic strain and the laboratory mutant. We show that a deletion of one base-pair in the upstream sequence of this gene account for the phenotype by decreasing the amount of PBP3.
Collapse
Affiliation(s)
- L Selakovitch-Chenu
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, Toulouse, France
| | | | | |
Collapse
|
25
|
Zhao G, Yeh WK, Carnahan RH, Flokowitsch J, Meier TI, Alborn WE, Becker GW, Jaskunas SR. Biochemical characterization of penicillin-resistant and -sensitive penicillin-binding protein 2x transpeptidase activities of Streptococcus pneumoniae and mechanistic implications in bacterial resistance to beta-lactam antibiotics. J Bacteriol 1997; 179:4901-8. [PMID: 9244281 PMCID: PMC179340 DOI: 10.1128/jb.179.15.4901-4908.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To understand the biochemical basis of resistance of bacteria to beta-lactam antibiotics, we purified a penicillin-resistant penicillin-binding protein 2x (R-PBP2x) and a penicillin-sensitive PBP2x (S-PBP2x) enzyme of Streptococcus pneumoniae and characterized their transpeptidase activities, using a thioester analog of stem peptides as a substrate. A comparison of the k(cat)/Km values for the two purified enzymes (3,400 M(-1) s(-1) for S-PBP2x and 11.2 M(-1) s(-1) for R-PBP2x) suggests that they are significantly different kinetically. Implications of this finding are discussed. We also found that the two purified enzymes did not possess a detectable level of beta-lactam hydrolytic activity. Finally, we show that the expression levels of both PBP2x enzymes were similar during different growth phases.
Collapse
Affiliation(s)
- G Zhao
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285-0438, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Severin A, Severina E, Tomasz A. Abnormal physiological properties and altered cell wall composition in Streptococcus pneumoniae grown in the presence of clavulanic acid. Antimicrob Agents Chemother 1997; 41:504-10. [PMID: 9055983 PMCID: PMC163741 DOI: 10.1128/aac.41.3.504] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Subinhibitory concentrations of clavulanate caused premature induction of stationary-phase autolysis, sensitization to lysozyme, and reductions in the MICs of deoxycholate and penicillin for Streptococcus pneumoniae. In the range of clavulanate concentrations producing these effects, this beta-lactam compound was selectively bound to PBP 3. Cell walls isolated from pneumococci grown in the presence of clavulanate showed increased sensitivity to the hydrolytic action of purified pneumococcal autolysin in vitro. High-performance liquid chromatography analysis of the peptidoglycan isolated from the clavulanate-grown cells showed major qualitative and quantitative changes in stem peptide composition, the most striking feature of which was the accumulation of peptide species carrying intact D-alanyl-D-alanine residues at the carboxy termini. The altered biological and biochemical properties of the clavulanate-grown pneumococci appear to be the consequences of suppressed D,D-carboxypeptidase activity.
Collapse
Affiliation(s)
- A Severin
- Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
27
|
Abstract
Analysis by high-performance liquid chromatography of the stem peptide composition of cell walls purified from a large number of pneumococcal strains indicates that these bacteria produce a highly conserved species-specific peptidoglycan independent of serotype, isolation date, and geographic origin. Characteristic features of this highly reproducible peptide pattern are the dominance of linear stem peptides with a monomeric tripeptide, a tri-tetra linear dimer, and two indirectly cross-linked tri-tetra dimers being the most abundant components. Screening of strains with the high-performance liquid chromatography technique has identified two naturally occurring peptidoglycan variants in which the species-specific stem peptide composition was replaced by two drastically different and distinct stem peptide patterns, each unique to the particular clone of pneumococci producing it. Both isolates were multidrug resistant, including resistance to penicillin. In one of these clones--defined by multilocus enzyme analysis and pulsed-field gel electrophoresis of the chromosomal DNAs--the linear stem peptides were replaced by branched peptides that most frequently carried an alanyl-alanine substituent on the epsilon amino group of the diamino acid residue. In the second clone, the predominant stem peptide species replacing the linear stem peptides carried a seryl-alanine substituent. The abnormal peptidoglycans may be related to the altered substrate preference of transpeptidases (penicillin-binding proteins) in the pneumococcal variants.
Collapse
Affiliation(s)
- A Severin
- Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
28
|
Chapter 6 Biochemistry of the penicilloyl serine transferases. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0167-7306(08)60409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Selakovitch-Chenu L, Seroude L, Sicard AM. The role of penicillin-binding protein 3 (PBP 3) in cefotaxime resistance in Streptococcus pneumoniae. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:77-80. [PMID: 8510666 DOI: 10.1007/bf00281604] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A pneumococcal strain, with a reduced amount of penicillin-binding protein 3 (PBP 3), permitted an analysis of the role of this protein in cefotaxime resistance. We observed that reduced amounts of PBP 3 sensitize the bacteria to high temperature, to excess glycine and to some D-amino acids. These phenotypes suggest that the amount of PBP 3 may influence the membrane properties of the bacteria. The strain with reduced PBP 3 was transformed to cefotaxime resistance. We show that the PBP 3 mutation, in certain genetic backgrounds, decreases the level of resistance to cefotaxime by a factor of 2. Models are presented to explain this result.
Collapse
Affiliation(s)
- L Selakovitch-Chenu
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, Toulouse, France
| | | | | |
Collapse
|
30
|
Kell CM, Sharma UK, Dowson CG, Town C, Balganesh TS, Spratt BG. Deletion analysis of the essentiality of penicillin-binding proteins 1A, 2B and 2X of Streptococcus pneumoniae. FEMS Microbiol Lett 1993; 106:171-5. [PMID: 8454182 DOI: 10.1111/j.1574-6968.1993.tb05954.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
An internal fragment from each of the penicillin-binding protein (PBP) 1A, 2B and 2X genes of Streptococcus pneumoniae, which included the region encoding the active-site serine residue, was replaced by a fragment encoding spectinomycin resistance. The resulting constructs were tested for their ability to transform S. pneumoniae strain R6 to spectinomycin resistance. Spectinomycin-resistant transformants could not be obtained using either the inactivated PBP 2X or 2B genes, suggesting that deletion of either of these genes was a lethal event, but they were readily obtained using the inactivated PBP 1A gene. Analysis using the polymerase chain reaction confirmed that the latter transformants had replaced their chromosomal copy of the PBP 1A gene with the inactivated copy of the gene. Deletion of the PBP 1A gene was therefore tolerated under laboratory conditions and appeared to have little effect on growth or susceptibility to benzylpenicillin.
Collapse
Affiliation(s)
- C M Kell
- Microbial Genetics Group, School of Biological Sciences, University of Sussex, Brighton, UK
| | | | | | | | | | | |
Collapse
|
31
|
Labischinski H. Consequences of the interaction of beta-lactam antibiotics with penicillin binding proteins from sensitive and resistant Staphylococcus aureus strains. Med Microbiol Immunol 1992; 181:241-65. [PMID: 1474963 DOI: 10.1007/bf00198846] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- H Labischinski
- Robert Koch-Institute of the Federal Health Organization, Berlin, Federal Republic of Germany
| |
Collapse
|