1
|
Liu Y, Chen Q, Li Y, Bi L, Jin L, Peng R. Toxic Effects of Cadmium on Fish. TOXICS 2022; 10:622. [PMID: 36287901 PMCID: PMC9608472 DOI: 10.3390/toxics10100622] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Large amounts of enriched cadmium (Cd) in the environment seriously threatens the healthy and sustainable development of the aquaculture industry and greatly restricts the development of the food processing industry. Studying the distribution and toxic effects of Cd in fish, as well as the possible toxic effects of Cd on the human body, is very significant. A large number of studies have shown that the accumulation and distribution of Cd in fish are biologically specific, cause tissue differences, and seriously damage the integrity of tissue structure and function, the antioxidant defense system, the reproductive regulation system, and the immune system. The physiological, biochemical, enzyme, molecular, and gene expression levels change with different concentrations and times of Cd exposure, and these changes are closely related to the target sites of Cd action and tissues in fish. Therefore, the toxic effects of Cd on fish occur with multiple tissues, systems, and levels.
Collapse
|
2
|
Using Steady-State Kinetics to Quantitate Substrate Selectivity and Specificity: A Case Study with Two Human Transaminases. Molecules 2022; 27:molecules27041398. [PMID: 35209187 PMCID: PMC8875635 DOI: 10.3390/molecules27041398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
We examined the ability of two human cytosolic transaminases, aspartate aminotransferase (GOT1) and alanine aminotransferase (GPT), to transform their preferred substrates whilst discriminating against similar metabolites. This offers an opportunity to survey our current understanding of enzyme selectivity and specificity in a biological context. Substrate selectivity can be quantitated based on the ratio of the kcat/KM values for two alternative substrates (the 'discrimination index'). After assessing the advantages, implications and limits of this index, we analyzed the reactions of GOT1 and GPT with alternative substrates that are metabolically available and show limited structural differences with respect to the preferred substrates. The transaminases' observed selectivities were remarkably high. In particular, GOT1 reacted ~106-fold less efficiently when the side-chain carboxylate of the 'physiological' substrates (aspartate and glutamate) was replaced by an amido group (asparagine and glutamine). This represents a current empirical limit of discrimination associated with this chemical difference. The structural basis of GOT1 selectivity was addressed through substrate docking simulations, which highlighted the importance of electrostatic interactions and proper substrate positioning in the active site. We briefly discuss the biological implications of these results and the possibility of using kcat/KM values to derive a global measure of enzyme specificity.
Collapse
|
3
|
Schmidt C, Seibel R, Wehsling M, Le Mignon M, Wille G, Fischer M, Zimmer A. Keto leucine and keto isoleucine are bioavailable precursors of their respective amino acids in cell culture media. J Biotechnol 2020; 321:1-12. [DOI: 10.1016/j.jbiotec.2020.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/13/2023]
|
4
|
Bezsudnova EY, Popov VO, Boyko KM. Structural insight into the substrate specificity of PLP fold type IV transaminases. Appl Microbiol Biotechnol 2020; 104:2343-2357. [PMID: 31989227 DOI: 10.1007/s00253-020-10369-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 01/09/2020] [Indexed: 01/19/2023]
Abstract
Pyridoxal-5'-phosphate-dependent transaminases of fold type IV (class IV) are promising enzymes for (R)-selective amination of organic compounds. Transaminases of fold type IV exhibit either strict (R)-selectivity or (S)-selectivity that is implemented within geometrically similar active sites of different amino acid compositions. Based on substrate specificity, class IV comprises three large families of transaminases: (S)-selective branched-chain L-amino acid aminotransferases and (R)-selective D-amino acid aminotransferases and (R)-amine:pyruvate transaminases. In this review, we aim to analyze the substrate profiles and correlations between the substrate specificity and organization of the active site in transaminases from these structurally related families. New transaminases with an expanded substrate specificity are also discussed. An analysis of the structural features of substrate binding and comparisons of structural determinants of chiral discrimination between members of the class IV transaminases could be helpful in identifying new biocatalytically relevant enzymes as well as rational protein engineering.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071.
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071.,Kurchatov Complex of NBICS-Technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, Moscow, Russian Federation, 123182
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071
| |
Collapse
|
5
|
Zheng X, Cui Y, Li T, Li R, Guo L, Li D, Wu B. Biochemical and structural characterization of a highly active branched-chain amino acid aminotransferase from Pseudomonas sp. for efficient biosynthesis of chiral amino acids. Appl Microbiol Biotechnol 2019; 103:8051-8062. [PMID: 31485690 DOI: 10.1007/s00253-019-10105-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 08/26/2019] [Indexed: 01/11/2023]
Abstract
Aminotransferases (ATs) are important biocatalysts for the synthesis of chiral amines because of their capability of introducing amino group into ketones or keto acids as well as their high enantioselectivity, high regioselectivity. Among all ATs, branched-chain amino acid aminotransferase (BCAT) can use branched-chain amino acids (BCAAs) as substrate, including L-valine, L-leucine, and L-isoleucine, with α-ketoglutarate to form the corresponding α-keto acids and L-glutamate. Alternatively, BCATs have been used for the biosynthesis of unnatural amino acids, such as L-tert-leucine and L-norvaline. In the present study, the BCAT from Pseudomonas sp. (PsBCAT) was cloned and expressed in Escherichia coli for biochemical and structural analyses. The optimal reaction temperature and pH of PsBCAT were 40 °C and 8.5, respectively. PsBCAT exhibited a comparatively broader substrate spectrum and showed remarkably high activity with bulked aliphatic L-amino acids (kcat up to 220 s-1). Additionally, PsBCAT had activities with aromatic L-amino acids, L-histidine, L-lysine, and L-threonine. This substrate promiscuity is unique for the BCAT family and could prove useful in industrial applications. To analyze the catalytic mechanism of PsBCAT with the broad substrate spectrum, the crystal structure of PsBCAT was also determined. Based on the determined crystal structure, we found some differences in the organization of the substrate binding cavity, which may influence the substrate specificity of the enzyme. Finally, conjugated with the ornithine aminotransferase (OrnAT) to shift the reaction equilibrium towards the product formation, the coupled system was applied to the asymmetric synthesis of L-tert-leucine and L-norvaline. In summary, the structural and functional characteristics of PsBCAT were analyzed in detail, and this information will be conducive to industrial production of enantiopure chiral amino acids by aminotransferase.
Collapse
Affiliation(s)
- Xinxin Zheng
- College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, People's Republic of China.,CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Tao Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Ruifeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Lu Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Defeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
6
|
Kwon S, Park HH. Structural Consideration of the Working Mechanism of Fold Type I Transaminases From Eubacteria: Overt and Covert Movement. Comput Struct Biotechnol J 2019; 17:1031-1039. [PMID: 31452855 PMCID: PMC6698932 DOI: 10.1016/j.csbj.2019.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022] Open
Abstract
Transaminases (TAs) reversibly catalyze the transfer reaction of an amino group between an amino group donor and an amino group acceptor, using pyridoxal 5′-phosphate (PLP) as a cofactor. TAs are categorized according to the amino group position of the donor substrate and respective TAs recognize their own specific substrates. Over the past decade, a number of TA structures have been determined by X-ray crystallography. On the basis of the structural information, the detailed mechanism of substrate recognition by TAs has also been elucidated. In this review, fold type I TAs are addressed intensively. Comparative studies on structural differences between the apo and holo forms of fold type I TAs have demonstrated that regions containing the active site exhibit structural plasticity in the apo form, facilitating PLP insertion into the active site. In addition, given that TAs recognize two different kinds of substrates, they possess dual substrate specificity. It is known that spatial rearrangements of active site residues occur upon binding of the substrates. Intriguingly, positively charged residues are predominantly distributed at the active site cavity. The electric field generated by such charge distributions may attract negatively charged molecules, such as PLP and amino group acceptors, into the active site. Indeed, TAs show remarkable dynamics in diverse aspects. In this review, we describe the comprehensive working mechanism of fold type I TAs, with a focus on conformational changes.
Collapse
Affiliation(s)
| | - Hyun Ho Park
- Corresponding author at: College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
7
|
Bezsudnova EY, Boyko KM, Nikolaeva AY, Zeifman YS, Rakitina TV, Suplatov DA, Popov VO. Biochemical and structural insights into PLP fold type IV transaminase from Thermobaculum terrenum. Biochimie 2018; 158:130-138. [PMID: 30599183 DOI: 10.1016/j.biochi.2018.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
Abstract
The high catalytic efficiency of enzymes under reaction conditions is one of the main goals in biocatalysis. Despite the dramatic progress in the development of more efficient biocatalysts by protein design, the search for natural enzymes with useful properties remains a promising strategy. The pyridoxal 5'-phosphate (PLP)-dependent transaminases represent a group of industrially important enzymes due to their ability to stereoselectively transfer amino groups between diverse substrates; however, the complex mechanism of substrate recognition and conversion makes the design of transaminases a challenging task. Here we report a detailed structural and kinetic study of thermostable transaminase from the bacterium Thermobaculum terrenum (TaTT) using the methods of enzyme kinetics, X-ray crystallography and molecular modeling. TaTT can convert L-branched-chain and L-aromatic amino acids as well as (R)-(+)-1-phenylethylamine at a high rate and with high enantioselectivity. The structures of TaTT in complex with the cofactor pyridoxal 5'-phosphate covalently bound to enzyme and in complex with its reduced form, pyridoxamine 5'-phosphate, were determined at resolutions of 2.19 Å and 1.5 Å, and deposited in the Protein Data Bank as entries 6GKR and 6Q8E, respectively. TaTT is a fold type IV PLP-dependent enzyme. In terms of structural similarity, the enzyme is close to known branched-chain amino acid aminotransferases, but differences in characteristic sequence motifs in the active site were observed in TaTT compared to canonical branched-chain amino acid aminotransferases, which can explain the improved binding of aromatic amino acids and (R)-(+)-1-phenylethylamine. This study has shown for the first time that high substrate specificity towards both various l-amino acids and (R)-primary amines can be implemented within one pyridoxal 5'-phosphate-dependent active site of fold type IV. These results complement our knowledge of the catalytic diversity of transaminases and indicate the need for further biochemical and bioinformatic studies to understand the sequence-structure-function relationship in these enzymes.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation.
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation; Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| | - Alena Yu Nikolaeva
- Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| | - Yulia S Zeifman
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation; Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| | - Tatiana V Rakitina
- Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation; Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Str. 16/10, 117997, Moscow, Russian Federation
| | - Dmitry A Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Leninskiye Gory 1-73, Moscow, 119991, Russian Federation
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation; Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| |
Collapse
|
8
|
Bezsudnova EY, Boyko KM, Popov VO. Properties of Bacterial and Archaeal Branched-Chain Amino Acid Aminotransferases. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523060 DOI: 10.1134/s0006297917130028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. BCATs are the key enzymes of BCAA metabolism in all organisms. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP). BCATs differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the "lock and key" mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate α-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis. In this review, the structure-function features and the substrate specificity of bacterial and archaeal BCATs are analyzed. These BCATs differ from eukaryotic ones in the wide substrate specificity, optimal temperature, and reactivity toward pyruvate as the second substrate. The prospects of biotechnological application of BCATs in stereoselective synthesis are discussed.
Collapse
Affiliation(s)
- E Yu Bezsudnova
- Bach Institute of Biochemistry, The Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
9
|
Zheng RC, Hachisuka SI, Tomita H, Imanaka T, Zheng YG, Nishiyama M, Atomi H. An ornithine ω-aminotransferase required for growth in the absence of exogenous proline in the archaeon Thermococcus kodakarensis. J Biol Chem 2018; 293:3625-3636. [PMID: 29352105 DOI: 10.1074/jbc.ra117.001222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/15/2018] [Indexed: 11/06/2022] Open
Abstract
Aminotransferases are pyridoxal 5'-phosphate-dependent enzymes that catalyze reversible transamination reactions between amino acids and α-keto acids, and are important for the cellular metabolism of nitrogen. Many bacterial and eukaryotic ω-aminotransferases that use l-ornithine (Orn), l-lysine (Lys), or γ-aminobutyrate (GABA) have been identified and characterized, but the corresponding enzymes from archaea are unknown. Here, we examined the activity and function of TK2101, a gene annotated as a GABA aminotransferase, from the hyperthermophilic archaeon Thermococcus kodakarensis We overexpressed the TK2101 gene in T. kodakarensis and purified and characterized the recombinant protein and found that it displays only low levels of GABA aminotransferase activity. Instead, we observed a relatively high ω-aminotransferase activity with l-Orn and l-Lys as amino donors. The most preferred amino acceptor was 2-oxoglutarate. To examine the physiological role of TK2101, we created a TK2101 gene-disruption strain (ΔTK2101), which was auxotrophic for proline. Growth comparison with the parent strain KU216 and the biochemical characteristics of the protein strongly suggested that TK2101 encodes an Orn aminotransferase involved in the biosynthesis of l-Pro. Phylogenetic comparisons of the TK2101 sequence with related sequences retrieved from the databases revealed the presence of several distinct protein groups, some of which having no experimentally studied member. We conclude that TK2101 is part of a novel group of Orn aminotransferases that are widely distributed at least in the genus Thermococcus, but perhaps also throughout the Archaea.
Collapse
Affiliation(s)
- Ren-Chao Zheng
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,the College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shin-Ichi Hachisuka
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Hiroya Tomita
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tadayuki Imanaka
- CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan.,the Department of Biotechnology, College of Life Science, Ritsumeikan University Noji-Higashi, Kusatsu 525-8577, Japan
| | - Yu-Guo Zheng
- the College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Makoto Nishiyama
- the Biotechnology Research Center, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku Tokyo 113-8657, Japan, and
| | - Haruyuki Atomi
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan, .,CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
10
|
Stekhanova TN, Rakitin AL, Mardanov AV, Bezsudnova EY, Popov VO. A Novel highly thermostable branched-chain amino acid aminotransferase from the crenarchaeon Vulcanisaeta moutnovskia. Enzyme Microb Technol 2016; 96:127-134. [PMID: 27871372 DOI: 10.1016/j.enzmictec.2016.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/31/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022]
Abstract
A new fold-type IV branched-chain amino acid aminotransferase VMUT0738 from the hyperthermophilic Crenarchaeon Vulcanisaeta moutnovskia was successfully expressed in Escherichia coli. Purified VMUT0738 showed activity toward numerous aliphatic and aromatic l-amino acids and 2-oxo acids at optimal pH 8.0. Distinguishing features of the VMUT0738 compared with typical BCAT are the absence of activity toward acidic substrates, high activity toward basic ones, and low but detectable activity toward the (R)-enantiomer of α-methylbenzylamine (0.0076U/mg) The activity of VMUT0738 increases with a rise in the temperature from 60°C to 90°C. VMUT0738 showed high thermostability (after 24h incubation at 70°C the enzyme lost only 27% of the initial activity) and the resistance to organic solvents. The sequence alignment revealed two motifs (V/I)xLDxR and PFG(K/H)YL characteristic of BCATs from species of the related genera Vulcanisaeta, Pyrobaculum and Thermoproteus that might be responsible for the unique substrate recognition profile of the enzyme.
Collapse
Affiliation(s)
- Tatiana N Stekhanova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russian Federation.
| | - Andrey L Rakitin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation
| | - Ekaterina Yu Bezsudnova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russian Federation
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russian Federation; NBICS Center, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation
| |
Collapse
|
11
|
Bezsudnova EY, Stekhanova TN, Suplatov DA, Mardanov AV, Ravin NV, Popov VO. Experimental and computational studies on the unusual substrate specificity of branched-chain amino acid aminotransferase from Thermoproteus uzoniensis. Arch Biochem Biophys 2016; 607:27-36. [PMID: 27523731 DOI: 10.1016/j.abb.2016.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/26/2023]
Abstract
PLP-Dependent fold-type IV branched-chain amino acid aminotransferases (BCATs) from archaea have so far been poorly characterized. A new BCAT from the hyperthermophilic archaeon Thermoproteus uzoniensis (TUZN1299) has been studied. TUZN1299 was found to be highly active toward branched-chain amino acids (BCAAs), positively charged amino acids, l-methionine, l-threonine, l-homoserine, l-glutamine, as well as toward 2-oxobutyrate and keto analogs of BCAAs, whereas l-glutamate and α-ketoglutarate were not converted in the overall reaction. According to stopped-flow experiments, the enzyme showed the highest specificity to BCAAs and their keto analogs. In order to explain the molecular mechanism of the unusual specificity of TUZN1299, bioinformatic analysis was implemented to identify the subfamily-specific positions in the aminotransferase class IV superfamily of enzymes. The role of the selected residues in binding of various ligands in the active site was further studied using molecular modeling. The results indicate that Glu188 forms a novel binding site for positively charged and polar side-chains of amino acids. Lack of accommodation for α-ketoglutarate and l-glutamate is due to the unique orientation and chemical properties of residues 102-106 in the loop forming the A-pocket. The likely functional roles of TUZN1299 in cellular metabolism - in the synthesis and degradation of BCAAs - are discussed.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation.
| | - Tatiana N Stekhanova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation
| | - Dmitry A Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Leninskiye Gory 1-73, Moscow, 119992, Russian Federation
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation; NBICS Center, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| |
Collapse
|
12
|
tyrB-2 and phhC genes of Pseudomonas putida encode aromatic amino acid aminotransferase isozymes: evidence at the protein level. Amino Acids 2013; 45:351-8. [PMID: 23685963 PMCID: PMC3714555 DOI: 10.1007/s00726-013-1508-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/04/2013] [Indexed: 01/08/2023]
Abstract
Two Pseudomonas putida aminotransferases (ArAT I and ArAT II) that exhibit activity toward L-tryptophan were purified 104- and 395-fold using a six-stage purification procedure involving ammonium sulfate fractionation and chromatographic separation on phenyl-Sepharose, Sephadex G-100 superfine, DEAE-cellulose and Protein-Pack Q8 HR columns. Mass spectrometry analysis resulted in the identification of 27 and 20 % of the total ArAT I and ArAT II amino acid sequences. In addition, N-terminal sequence fragments of ArAT I and ArAT II were determined using the Edman degradation method. Based on the analyses performed, the studied proteins were identified as products of the tyrB-2 and phhC genes, and the presence of these genes in the investigated bacterial strain was confirmed using molecular biology methods. Extensive analysis of the substrate specificities of ArAT I and ArAT II revealed that both enzymes most efficiently catalyzed reactions involving aromatic amino acids and 2-oxoacids followed by dicarboxylic compounds. The best substrates for ArAT I and ArAT II were L-phenylalanine and phenylpyruvate. Based on these results, the studied proteins were classified as aromatic amino acid aminotransferase isozymes.
Collapse
|
13
|
Paloyan AM, Stepanyan LA, Dadayan SA, Hambardzumyan AA, Halebyan GP, Saghiyan AS. Catalytic properties of enzymes from Erwinia carotovora involved in transamination of phenylpyruvate. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813020129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Paloyan AM, Hambardzumyan AA, Halebyan GP. Isolation, purification, and characterization of phenylpyruvate transaminating enzymes of Erwinia carotovora. BIOCHEMISTRY. BIOKHIMIIA 2012; 77:98-104. [PMID: 22339639 DOI: 10.1134/s0006297912010129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Enzymes of Erwinia carotovora that transaminate phenylpyruvate were isolated, purified, and characterized. Two aromatic aminotransferases (PAT1 and PAT2) and an aspartic aminotransferase (PAT3) were found. According to gel filtration, these enzymes have molecular weights of 76, 75, and 78 kDa. The enzymes consist of two identical subunits of molecular weights of 31.4, 31, and 36.5 kDa, respectively. The isoelectric points of PAT1, PAT2, and PAT3 were determined as 3.6, 3.9, and 4.7, respectively. The enzyme preparations considerably differ in substrate specificity. All three of the enzymes productively interacted with the following amino acids: L-aspartic acid, L-leucine (except PAT3), L-isoleucine (except PAT3), L-serine, L-methionine, L-cysteine, L-phenylalanine, L-tyrosine, and L-tryptophane. The aromatic aminotransferases display higher specificity to the aromatic amino acids and the leucine-isoleucine pair, whereas the aspartic aminotransferase displays higher specificity to L-aspartic acid and relatively low specificity to the aromatic amino acids. The aspartic aminotransferase does not use L-leucine or L-isoleucine as a substrate. PAT1, PAT2, and PAT3 show the highest activity at pH 8.9 and at 48, 53, and 58°C, respectively.
Collapse
Affiliation(s)
- A M Paloyan
- SPC Armbiotechnology, National Academy of Sciences of Republic of Armenia, Yerevan, Republic of Armenia.
| | | | | |
Collapse
|
15
|
Porat I, Sieprawska-Lupa M, Teng Q, Bohanon FJ, White RH, Whitman WB. Biochemical and genetic characterization of an early step in a novel pathway for the biosynthesis of aromatic amino acids and p-aminobenzoic acid in the archaeon Methanococcus maripaludis. Mol Microbiol 2006; 62:1117-31. [PMID: 17010158 DOI: 10.1111/j.1365-2958.2006.05426.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methanococcus maripaludis is a strictly anaerobic, methane-producing archaeon and facultative autotroph capable of biosynthesizing all the amino acids and vitamins required for growth. In this work, the novel 6-deoxy-5-ketofructose-1-phosphate (DKFP) pathway for the biosynthesis of aromatic amino acids (AroAAs) and p-aminobenzoic acid (PABA) was demonstrated in M. maripaludis. Moreover, PABA was shown to be derived from an early intermediate in AroAA biosynthesis and not from chorismate. Following metabolic labelling with [U-(13)C]-acetate, the expected enrichments for phenylalanine and arylamine derived from PABA were observed. DKFP pathway activity was reduced following growth with aryl acids, an alternative source of the AroAAs. Lastly, a deletion mutant of aroA', which encodes the first step in the DKFP pathway, required AroAAs and PABA for growth. Complementation of the mutants by an aroA' expression vector restored the wild-type phenotype. In contrast, a deletion of aroB', which encodes the second step in the DKFP pathway, did not require AroAAs or PABA for growth. Presumably, methanococci contain an alternative activity for this step. These results identify the initial reactions of a new pathway for the biosynthesis of PABA in methanococci.
Collapse
Affiliation(s)
- Iris Porat
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
16
|
Helgadóttir S, Rosas-Sandoval G, Söll D, Graham DE. Biosynthesis of phosphoserine in the Methanococcales. J Bacteriol 2006; 189:575-82. [PMID: 17071763 PMCID: PMC1797378 DOI: 10.1128/jb.01269-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanococcus maripaludis and Methanocaldococcus jannaschii produce cysteine for protein synthesis using a tRNA-dependent pathway. These methanogens charge tRNA(Cys) with l-phosphoserine, which is also an intermediate in the predicted pathways for serine and cystathionine biosynthesis. To establish the mode of phosphoserine production in Methanococcales, cell extracts of M. maripaludis were shown to have phosphoglycerate dehydrogenase and phosphoserine aminotransferase activities. The heterologously expressed and purified phosphoglycerate dehydrogenase from M. maripaludis had enzymological properties similar to those of its bacterial homologs but was poorly inhibited by serine. While bacterial enzymes are inhibited by micromolar concentrations of serine bound to an allosteric site, the low sensitivity of the archaeal protein to serine is consistent with phosphoserine's position as a branch point in several pathways. A broad-specificity class V aspartate aminotransferase from M. jannaschii converted the phosphohydroxypyruvate product to phosphoserine. This enzyme catalyzed the transamination of aspartate, glutamate, phosphoserine, alanine, and cysteate. The M. maripaludis homolog complemented a serC mutation in the Escherichia coli phosphoserine aminotransferase. All methanogenic archaea apparently share this pathway, providing sufficient phosphoserine for the tRNA-dependent cysteine biosynthetic pathway.
Collapse
Affiliation(s)
- Sunna Helgadóttir
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
17
|
McCourt JA, Duggleby RG. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 2006; 31:173-210. [PMID: 16699828 DOI: 10.1007/s00726-005-0297-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/09/2005] [Indexed: 11/25/2022]
Abstract
The branched-chain amino acids are synthesized by plants, fungi and microorganisms, but not by animals. Therefore, the enzymes of this pathway are potential target sites for the development of antifungal agents, antimicrobials and herbicides. Most research has focused upon the first enzyme in this biosynthetic pathway, acetohydroxyacid synthase (AHAS) largely because it is the target site for many commercial herbicides. In this review we provide a brief overview of the important properties of each enzyme within the pathway and a detailed summary of the most recent AHAS research, against the perspective of work that has been carried out over the past 50 years.
Collapse
Affiliation(s)
- J A McCourt
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
18
|
Ward DE, de Vos WM, van der Oost J. Molecular analysis of the role of two aromatic aminotransferases and a broad-specificity aspartate aminotransferase in the aromatic amino acid metabolism of Pyrococcus furiosus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:133-41. [PMID: 15803651 PMCID: PMC2685563 DOI: 10.1155/2002/959031] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The genes encoding aromatic aminotransferase II (AroAT II) and aspartate aminotransferase (AspAT) from Pyrococcus furiosus have been identified, expressed in Escherichia coli and the recombinant proteins characterized. The AroAT II enzyme was specific for the transamination reaction of the aromatic amino acids, and uses a-ketoglutarate as the amino acceptor. Like the previously characterized AroAT I, AroAT II has highest efficiency for phenylalanine (k(cat)/Km = 923 s(-1) mM(-1)). Northern blot analyses revealed that AroAT I was mainly expressed when tryptone was the primary carbon and energy source. Although the expression was significantly lower, a similar trend was observed for AroAT II. These observations suggest that both AroATs are involved in amino acid degradation. Although AspAT exhibited highest activity with aspartate and alpha-ketoglutarate (k(cat) approximately 105 s(-1)), it also showed significant activity with alanine, glutamate and the aromatic amino acids. With aspartate as the amino donor, AspAT catalyzed the amination of alpha-ketoglutarate, pyruvate and phenyl-pyruvate. No activity was detected with either branched-chain amino acids or alpha-keto acids. The AspAT gene (aspC) was expressed as a polycistronic message as part of the aro operon, with expression observed only when the aromatic amino acids were absent from the growth medium, indicating a role in the biosynthesis of the aromatic amino acids.
Collapse
Affiliation(s)
- Donald E. Ward
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands
- Department of Chemical Engineering, North Carolina State University, P.O. Box 7905, Raleigh, NC, 27695, USA
| | - William M. de Vos
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands
- Corresponding author ()
| |
Collapse
|
19
|
Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, Hackett M, Haydock AK, Kang A, Land ML, Levy R, Lie TJ, Major TA, Moore BC, Porat I, Palmeiri A, Rouse G, Saenphimmachak C, Söll D, Van Dien S, Wang T, Whitman WB, Xia Q, Zhang Y, Larimer FW, Olson MV, Leigh JA. Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 2004; 186:6956-69. [PMID: 15466049 PMCID: PMC522202 DOI: 10.1128/jb.186.20.6956-6969.2004] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of the genetically tractable, mesophilic, hydrogenotrophic methanogen Methanococcus maripaludis contains 1,722 protein-coding genes in a single circular chromosome of 1,661,137 bp. Of the protein-coding genes (open reading frames [ORFs]), 44% were assigned a function, 48% were conserved but had unknown or uncertain functions, and 7.5% (129 ORFs) were unique to M. maripaludis. Of the unique ORFs, 27 were confirmed to encode proteins by the mass spectrometric identification of unique peptides. Genes for most known functions and pathways were identified. For example, a full complement of hydrogenases and methanogenesis enzymes was identified, including eight selenocysteine-containing proteins, with each being paralogous to a cysteine-containing counterpart. At least 59 proteins were predicted to contain iron-sulfur centers, including ferredoxins, polyferredoxins, and subunits of enzymes with various redox functions. Unusual features included the absence of a Cdc6 homolog, implying a variation in replication initiation, and the presence of a bacterial-like RNase HI as well as an RNase HII typical of the Archaea. The presence of alanine dehydrogenase and alanine racemase, which are uniquely present among the Archaea, explained the ability of the organism to use L- and D-alanine as nitrogen sources. Features that contrasted with the related organism Methanocaldococcus jannaschii included the absence of inteins, even though close homologs of most intein-containing proteins were encoded. Although two-thirds of the ORFs had their highest Blastp hits in Methanocaldococcus jannaschii, lateral gene transfer or gene loss has apparently resulted in genes, which are often clustered, with top Blastp hits in more distantly related groups.
Collapse
Affiliation(s)
- E L Hendrickson
- University of Washington, Dept. of Microbiology, Box 357242, Seattle, WA 98195-7242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Porat I, Waters BW, Teng Q, Whitman WB. Two biosynthetic pathways for aromatic amino acids in the archaeon Methanococcus maripaludis. J Bacteriol 2004; 186:4940-50. [PMID: 15262931 PMCID: PMC451642 DOI: 10.1128/jb.186.15.4940-4950.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanococcus maripaludis is a strictly anaerobic, methane-producing archaeon. Aromatic amino acids (AroAAs) are biosynthesized in this autotroph either by the de novo pathway, with chorismate as an intermediate, or by the incorporation of exogenous aryl acids via indolepyruvate oxidoreductase (IOR). In order to evaluate the roles of these pathways, the gene that encodes the third step in the de novo pathway, 3-dehydroquinate dehydratase (DHQ), was deleted. This mutant required all three AroAAs for growth, and no DHQ activity was detectible in cell extracts, compared to 6.0 +/- 0.2 mU mg(-1) in the wild-type extract. The growth requirement for the AroAAs could be fulfilled by the corresponding aryl acids phenylacetate, indoleacetate, and p-hydroxyphenylacetate. The specific incorporation of phenylacetate into phenylalanine by the IOR pathway was demonstrated in vivo by labeling with [1-(13)C]phenylacetate. M. maripaludis has two IOR homologs. A deletion mutant for one of these homologs contained 76, 74, and 42% lower activity for phenylpyruvate, p-hydoxyphenylpyruvate, and indolepyruvate oxidation, respectively, than the wild type. Growth of this mutant in minimal medium was inhibited by the aryl acids, but the AroAAs partially restored growth. Genetic complementation of the IOR mutant also restored much of the wild-type phenotype. Thus, aryl acids appear to regulate the expression or activity of the de novo pathway. The aryl acids did not significantly inhibit the activity of the biosynthetic enzymes chorismate mutase, prephenate dehydratase, and prephenate dehydrogenase in cell extracts, so the inhibition of growth was probably not due to an effect on these enzymes.
Collapse
Affiliation(s)
- Iris Porat
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA
| | | | | | | |
Collapse
|
21
|
Lin WC, Yang YL, Whitman WB. The anabolic pyruvate oxidoreductase from Methanococcus maripaludis. Arch Microbiol 2003; 179:444-56. [PMID: 12743680 DOI: 10.1007/s00203-003-0554-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Revised: 04/16/2003] [Accepted: 04/17/2003] [Indexed: 11/25/2022]
Abstract
In autotrophic methanogens, pyruvate oxidoreductase (POR) plays a key role in the assimilation of CO(2) and the biosynthesis of organic carbon. This enzyme has been purified to homogeneity, and the genes from Methanococcus maripaludis were sequenced. The purified POR contained five polypeptides with molecular masses of 47, 33, 25, 21.5 and 13 kDa. The N-terminal sequences of four of the polypeptides had high similarity to the subunits commonly associated with this enzyme from other archaea. However, the 21.5-kDa polypeptide had not been previously observed in PORs. Nucleotide sequencing of the gene cluster encoding the POR revealed six open reading frames ( porABCDEF). The genes porABCD corresponded to the subunits previously identified in PORs. On the basis of the N-terminal amino acid sequence, porE encoded the 21.5-kDa polypeptide and contained a high cysteinyl residue content and a motif indicative of a [Fe-S] cluster. porF also had a high sequence similarity to porE, a high cysteinyl residue content, and two [Fe-S] cluster motifs. Homologs to porE were also present in the genomic sequences of the autotrophic methanogens Methanocaldococcus jannaschii and Methanothermobacter thermautotrophicus. Based upon these results, it is proposed that PorE and PorF are components of a specialized system required to transfer low-potential electrons for pyruvate biosynthesis. Some biochemical properties of the purified methanococcal POR were also determined. This unstable enzyme was very sensitive to O(2 )and demonstrated high activity with pyruvate, oxaloacetate, and alpha-ketobutyrate. Methyl viologen, rubredoxin, FMN, and FAD were readily reduced. Activity was also observed with spinach and clostridial ferredoxins and cytochrome c. Coenzyme F(420) was not an electron acceptor for the purified enzyme.
Collapse
Affiliation(s)
- Winston C Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA
| | | | | |
Collapse
|
22
|
Graham DE, Kyrpides N, Anderson IJ, Overbeek R, Whitman WB. Genome of Methanocaldococcus (Methanococcus) jannaschii. Methods Enzymol 2001; 330:40-123. [PMID: 11210518 DOI: 10.1016/s0076-6879(01)30370-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- D E Graham
- Department of Biochemistry, Virginia Polytechnical Institute & State University, Blackburg, Virginia 24061-0308, USA
| | | | | | | | | |
Collapse
|
23
|
Dudley E, Steele J. Lactococcus lactis LM0230 contains a single aminotransferase involved in aspartate biosynthesis, which is essential for growth in milk. MICROBIOLOGY (READING, ENGLAND) 2001; 147:215-24. [PMID: 11160815 DOI: 10.1099/00221287-147-1-215] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Amino acid aminotransferases (ATases), which catalyse the last biosynthetic step of many amino acids, may have important physiological functions in Lactococcus lactis during growth in milk. In this study, the aspartate ATase gene (aspC) from L. lactis LM0230 was cloned by complementation into Escherichia coli DL39. One chromosomal fragment putatively encoding aspC was partially sequenced. A 1179 bp ORF was identified which could encode for a 393 aa, 43.2 kDa protein. The deduced amino acid sequence had high identity to other AspC sequences in GenBank and is a member of the Igamma family of ATases. Substrate-specificity studies suggested that the lactococcal AspC has ATase activity only with aspartic acid (Asp). An internal deletion was introduced into the L. lactis chromosomal copy of aspC by homologous recombination. The wild-type and mutant strain grew similarly in defined media containing all 20 amino acids and did not grow in minimal media unless supplemented with asparagine (Asn). The mutant strain was also unable to grow in or significantly acidify milk unless supplemented with Asp or Asn. These results suggest that only one lactococcal ATase is involved in the conversion of oxaloacetate to Asp, and Asp biosynthesis is required for the growth of L. lactis LM0230 in milk.
Collapse
Affiliation(s)
- E Dudley
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
24
|
Matsui I, Matsui E, Sakai Y, Kikuchi H, Kawarabayasi Y, Ura H, Kawaguchi S, Kuramitsu S, Harata K. The molecular structure of hyperthermostable aromatic aminotransferase with novel substrate specificity from Pyrococcus horikoshii. J Biol Chem 2000; 275:4871-9. [PMID: 10671523 DOI: 10.1074/jbc.275.7.4871] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aromatic amino acid aminotransferase (ArATPh), which has a melting temperature of 120 degrees C, is one of the most thermostable aminotransferases yet to be discovered. The crystal structure of this aminotransferase from the hyperthermophilic archaeon Pyrococcus horikoshii was determined to a resolution of 2.1 A. ArATPh has a homodimer structure in which each subunit is composed of two domains, in a manner similar to other well characterized aminotransferases. By the least square fit after superposing on a mesophilic ArAT, the ArATPh molecule exhibits a large deviation of the main chain coordinates, three shortened alpha-helices, an elongated loop connecting two domains, and a long loop transformed from an alpha-helix, which are all factors that are likely to contribute to its hyperthermostability. The pyridine ring of the cofactor pyridoxal 5'-phosphate covalently binding to Lys(233) is stacked parallel to F121 on one side and interacts with the geminal dimethyl-CH/pi groups of Val(201) on the other side. This tight stacking against the pyridine ring probably contributes to the hyperthermostability of ArATPh. Compared with other ArATs, ArATPh has a novel substrate specificity, the order of preference being Tyr > Phe > Glu > Trp > His>> Met > Leu > Asp > Asn. Its relatively weak activity against Asp is due to lack of an arginine residue corresponding to Arg(292)* (where the asterisk indicates that this is a residues supplied by the other subunit of the dimer) in pig cytosolic aspartate aminotransferase. The enzyme recognizes the aromatic substrate by hydrophobic interaction with aromatic rings (Phe(121) and Tyr(59)*) and probably recognizes acidic substrates by a hydrophilic interaction involving a hydrogen bond network with Thr(264)*.
Collapse
Affiliation(s)
- I Matsui
- National Institute of Bioscience and Human Technology, Tsukuba, Ibaraki 305, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yvon M, Chambellon E, Bolotin A, Roudot-Algaron F. Characterization and role of the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp. cremoris NCDO 763. Appl Environ Microbiol 2000; 66:571-7. [PMID: 10653720 PMCID: PMC91865 DOI: 10.1128/aem.66.2.571-577.2000] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Lactococcus lactis, which is widely used as a starter in the cheese industry, the first step of aromatic and branched-chain amino acid degradation is a transamination which is catalyzed by two major aminotransferases. We have previously purified and characterized biochemically and genetically the aromatic aminotransferase, AraT. In the present study, we purified and studied the second enzyme, the branched-chain aminotransferase, BcaT. We cloned and sequenced the corresponding gene and used a mutant, along with the luciferase gene as the reporter, to study the role of the enzyme in amino acid metabolism and to reveal the regulation of gene transcription. BcaT catalyzes transamination of the three branched-chain amino acids and methionine and belongs to class IV of the pyridoxal 5'-phosphate-dependent aminotransferases. In contrast to most of the previously described bacterial BcaTs, which are hexameric, this enzyme is homodimeric. It is responsible for 90% of the total isoleucine and valine aminotransferase activity of the cell and for 50 and 40% of the activity towards leucine and methionine, respectively. The original role of BcaT was probably biosynthetic since expression of its gene was repressed by free amino acids and especially by isoleucine. However, in dairy strains, which are auxotrophic for branched-chain amino acids, BcaT functions only as a catabolic enzyme that initiates the conversion of major aroma precursors. Since this enzyme is still active under cheese-ripening conditions, it certainly plays a major role in cheese flavor development.
Collapse
Affiliation(s)
- M Yvon
- Unité de Recherche de Biochimie et Structure des Protéines, I.N.R. A., 78352 Jouy-en-Josas, France.
| | | | | | | |
Collapse
|
26
|
Engels WJ, Alting AC, Arntz MM, Gruppen H, Voragen AG, Smit G, Visser S. Partial purification and characterization of two aminotransferases from Lactococcus lactis subsp. cremoris B78 involved in the catabolism of methionine and branched-chain amino acids. Int Dairy J 2000. [DOI: 10.1016/s0958-6946(00)00068-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Cohen-Kupiec R, Marx CJ, Leigh JA. Function and regulation of glnA in the methanogenic archaeon Methanococcus maripaludis. J Bacteriol 1999; 181:256-61. [PMID: 9864338 PMCID: PMC103557 DOI: 10.1128/jb.181.1.256-261.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/1998] [Accepted: 10/28/1998] [Indexed: 11/20/2022] Open
Abstract
The glnA gene in the domains Bacteria and Archaea encodes glutamine synthetase, a universally distributed enzyme that functions in ammonia assimilation and glutamine synthesis. We investigated the regulation and function of glnA in the methanogenic archaeon Methanococcus maripaludis. The deduced amino acid sequence of the gene demonstrated its membership in class GSI-alpha of glutamine synthetases. The gene appeared to be expressed as a monocistronic operon. glnA mRNA levels and specific activities of glutamine synthetase were regulated similarly by nitrogen. Three transcription start sites were identified, corresponding to two overlapping nitrogen-regulated promoters and one weaker constitutive promoter. An inverted repeat immediately upstream of the regulated transcription start sites mediated repression under noninducing conditions. Thus, mutations that altered the sequence of the inverted repeat resulted in derepression. The inverted repeat had sequence similarity with a repeat that we previously identified as the nif operator of M. maripaludis, suggesting a common mechanism of nitrogen regulation. Efforts to produce a glnA null mutant failed, suggesting that glnA is an essential gene in M. maripaludis.
Collapse
Affiliation(s)
- R Cohen-Kupiec
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
28
|
Yvon M, Thirouin S, Rijnen L, Fromentier D, Gripon JC. An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds. Appl Environ Microbiol 1997; 63:414-9. [PMID: 9023921 PMCID: PMC168333 DOI: 10.1128/aem.63.2.414-419.1997] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The enzymatic degradation of amino acids in cheese is believed to generate aroma compounds and therefore to be involved in the complex process of cheese flavor development. In lactococci, transamination is the first step in the degradation of aromatic and branched-chain amino acids which are precursors of aroma compounds. Here, the major aromatic amino acid aminotransferase of a Lactococcus lactis subsp. cremoris strain was purified and characterized. The enzyme transaminates the aromatic amino acids, leucine, and methionine. It uses the ketoacids corresponding to these amino acids and alpha-ketoglutarate as amino group acceptors. In contrast to most bacterial aromatic aminotransferases, it does not act on aspartate and does not use oxaloacetate as second substrate. It is essential for the transformation of aromatic amino acids to flavor compounds. It is a pyridoxal 5'-phosphate-dependent enzyme and is composed of two identical subunits of 43.5 kDa. The activity of the enzyme is optimal between pH 6.5 and 8 and between 35 and 45 degrees C, but it is still active under cheese-ripening conditions.
Collapse
Affiliation(s)
- M Yvon
- Unité de Recherche de Biochimie et Structure des Protéines, I.N.R.A., Jouy-en-Josas, France.
| | | | | | | | | |
Collapse
|
29
|
Abou-Zeid A, Euverink G, Hessels GI, Jensen RA, Dijkhuizen L. Biosynthesis of l-Phenylalanine and l-Tyrosine in the Actinomycete Amycolatopsis methanolica. Appl Environ Microbiol 1995; 61:1298-302. [PMID: 16534989 PMCID: PMC1388407 DOI: 10.1128/aem.61.4.1298-1302.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Auxotrophic mutants of the actinomycete Amycolatopsis methanolica requiring l-Phe or l-Tyr were isolated and identified as strains lacking prephenate dehydratase (strain GH71) or arogenate dehydrogenase (strain GH70), respectively. A. methanolica thus employs single pathways only for the biosynthesis of these aromatic amino acids. Anion-exchange chromatography of extracts revealed two peaks with Phe as well as Tyr aminotransferase (AT) activity (Phe/Tyr ATI and Phe/Tyr ATII) and three peaks with prephenate AT activity (Ppa ATI to Ppa ATIII). Phe/Tyr ATI and Ppa ATI coeluted and appear to function as the A. methanolica branched-chain amino acid AT. Ppa ATII probably functions as the aspartate AT. Mutant studies showed that Phe/Tyr ATII is the dominant AT in l-Phe biosynthesis and in l-Tyr catabolism but not in l-Tyr biosynthesis. Biochemical studies showed that Ppa ATIII is highly specific for prephenate and provided evidence that Ppa ATIII is the dominant AT in l-Tyr biosynthesis.
Collapse
|
30
|
Andreotti G, Cubellis MV, Nitti G, Sannia G, Mai X, Adams MW, Marino G. An extremely thermostable aromatic aminotransferase from the hyperthermophilic archaeon Pyrococcus furiosus. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1247:90-6. [PMID: 7873596 DOI: 10.1016/0167-4838(94)00211-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pyrococcus furiosus is a strictly anaerobic archaeon (formerly archaebacterium) that grows optimally at 100 degrees C by the fermentation of peptides. Cell-free extracts were found to contain two distinct aromatic aminotransferases (ArAT, EC 2.6.1.57), one of which was purified to electrophoretic homogeneity. P. furiosus ArAT is a homodimer with a subunit M(r) value of 44,000 +/- 1000. Using 2-ketoglutarate as the amino acceptor, the purified enzyme catalyzed the pyridoxal 5'-phosphate (PMP)-dependent transamination of phenylalanine, tyrosine and tryptophan with respective kcat values of 253, 72 and 62 (s-1 at 80 degrees C) under saturating conditions. The Km values for all three amino acids were between 1.1 and 2.1 mM and the optimum temperature for catalysis was above 95 degrees C. The melting point for the pure enzyme was also above 95 degrees C as determined by the change in ellipticity at 220 nm. Irreversible denaturation of the pure enzyme was not apparent after 6 h at 80 degrees C in the presence of PMP and 2-ketoglutarate and the time required for a 50% loss in activity at 95 degrees C was approx. 16 h. This decreased to approx. 12 h if cofactor and substrate were not added. In contrast, the apoenzyme (lacking PMP) lost most (70%) of its activity (measured after reconstitution) after 6 h at 80 degrees C, indicating that both PMP and 2-ketoglutarate stabilize the enzyme at extreme temperatures. Although few ArATs have been characterized to date, the molecular properties and substrate specificity of P. furiosus ArAT more resemble those of the ArAT from Escherichia coli than those of the analogous enzyme from rat liver. Moreover, the P. furiosus enzyme is by far the most thermostable aminotransferase of any type to be purified so far.
Collapse
Affiliation(s)
- G Andreotti
- Dipartimento di Chimica Organica e Biologica, Università di Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Xing R, Whitman WB. Purification and characterization of the oxygen-sensitive acetohydroxy acid synthase from the archaebacterium Methanococcus aeolicus. J Bacteriol 1994; 176:1207-13. [PMID: 8113159 PMCID: PMC205181 DOI: 10.1128/jb.176.5.1207-1213.1994] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Acetohydroxy acid synthase (EC 4.1.3.18) of the archaebacterium Methanococcus aeolicus was purified 1,150-fold to homogeneity. The molecular weight of the purified enzyme was 125,000, and it contained only one type of subunit (M(r) = 58,000). The amino-terminal sequence had 46 to 57% similarity to those of the large subunits of the eubacterial anabolic enzymes and 37 to 43% similarity to those of the yeast and plant enzymes. The methanococcal enzyme had a pH optimum of 7.6. The pI, estimated by chromatofocusing, was 5.6. Activity required Mg2+ or Mn2+ ions, thiamine pyrophosphate, and a flavin. Flavin adenine dinucleotide, flavin mononucleotide, and riboflavin plus 10 mM phosphate all supported activity. However, activity was strongly inhibited by these flavins at 0.3 mM. The Michaelis constants for pyruvate, MgCl2, MnCl2, thiamine pyrophosphate, flavin adenine dinucleotide, and flavin mononucleotide were 6.8 mM, 0.3 mM, 0.16 mM, 1.6 microM, 0.4 microM, and 1.3 microM, respectively. In cell extracts, the enzyme was sensitive to O2 (half-life = 2.7 min with 5% O2 in the headspace), but the purified enzyme was less sensitive to O2 (half-life = 78.0 min with 20% O2). Reconstitution of the enzyme with flavin adenine dinucleotide increased the sensitivity to O2. Moreover, in the assay the homogeneous enzyme was rapidly inactivated by O2, and the concentration required for 50% inhibition (I50) was obtained with an atmosphere of 0.11% O2. The methanococcal enzyme has similarities to the eubacterial and eucaryotic enzymes, consistent with the ancient origin of the archaebacterial enzyme.
Collapse
Affiliation(s)
- R Xing
- Department of Microbiology, University of Georgia, Athens 30602-2605
| | | |
Collapse
|
32
|
Andreotti G, Cubellis MV, Nitti G, Sannia G, Mai X, Marino G, Adams MW. Characterization of aromatic aminotransferases from the hyperthermophilic archaeon Thermococcus litoralis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:543-9. [PMID: 8125113 DOI: 10.1111/j.1432-1033.1994.tb18654.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The hyperthermophilic archaeon (formerly archaebacterium) Thermococcus litoralis grows at temperatures up to 98 degrees C using peptides and proteins as the sole sources of carbon and nitrogen. Cell-free extracts of the organism contained two distinct types of aromatic aminotransferases (EC 2.6.1.57) which were separated and purified to electrophoretic homogeneity. Both enzymes are homodimers with subunit masses of approximately 47 kDa and 45 kDa. Using 2-oxoglutarate as the amino acceptor, each catalyzed the pyridoxal-5'-phosphate-dependent transamination of the three aromatic amino acids but showed virtually no activity towards aspartic acid, alanine, valine or isoleucine. From the determination of Km and kcat values using 2-oxoglutarate, phenylalanine, tyrosine and tryptophan as substrates, both enzymes were shown to be highly efficient at transaminating phenylalanine (kcat/Km approximately 400 s-1 mM-1); the 47-kDa enzyme showed more activity towards tyrosine and tryptophan compared to the 45-kDa one. Kinetic analyses indicated a two-step mechanism with a pyridoxamine intermediate. Both enzymes were virtually inactive at 30 degrees C and exhibited maximal activity between 95-100 degrees C. They showed no N-terminal sequence similarity with each other (approximately 30 residues), nor with the complete amino acid sequences of aromatic aminotransferases from Escherichia coli and rat liver. The catalytic properties of the two enzymes are distinct from bacterial aminotransferases, which have broad substrate specificities, but are analogous to two aromatic aminotransferases which play a biosynthetic role in a methanogenic archaeon. In contrast, it is proposed that one or both play a catabolic role in proteolytic T. litoralis in which they generate glutamate and an arylpyruvate. These serve as substrates for glutamate dehydrogenase and indolepyruvate ferredoxin oxidoreductase in a novel pathway for the utilization of aromatic amino acids.
Collapse
Affiliation(s)
- G Andreotti
- Dipartimento di Chimica Organica e Biologica, Università di Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Methanococcus maripaludis, a facultatively autotrophic archaebacterium that grows with H2 or formate as the electron donor, does not assimilate sugars and other complex organic substrates. However, glycogen is biosynthesized intracellularly and commonly reaches values of 0.34% of the cellular dry weight in the early stationary phase. To determine the pathway of glycogen catabolism, specific enzymes of sugar metabolism were assayed in cell extracts. The following enzymes were found (specific activity in milliunits per milligram of protein): glycogen phosphorylase, 4.4; phosphoglucomutase, 10; glucose-6-phosphate isomerase, 9; 6-phosphofructokinase, 5.6, fructose-1,6-bisphosphatase, 10; fructose-1,6-bisphosphate aldolase, 4.2; triosephosphate isomerase, 44; glyceraldehyde-3-phosphate dehydrogenase, 26; phosphoglycerate kinase, 20; phosphoglycerate mutase, 78; enolase, 107; and pyruvate kinase, 4.0. Glyceraldehyde-3-phosphate dehydrogenase was NADP+ dependent, and the pyruvate kinase required MnCl2. The 6-phosphofructokinase had an unusually low pH optimum of 6.0. Four nonoxidative pentose-biosynthetic enzymes were found (specific activity in milliunits per milligram of protein): transketolase, 12; transaldolase, 24; ribulose-5-phosphate-3-epimerase, 55; and ribulose-5-phosphate isomerase, 100. However, the key enzymes of the oxidative pentose phosphate pathway, the reductive pentose phosphate pathway, and the classical and modified Entner-Duodoroff pathways were not detected. Thus, glycogen appears to be catabolized by the Embden-Meyerhoff-Parnas pathway. This result is in striking contrast to the nonmethanogenic archaebacteria that have been examined, among which the Entner-Doudoroff pathway is common. A dithiothreitol-specific NADP(+)-reducing activity was also found (8.5 mU/mg of protein). Other thiol compounds, such as cysteine hydrochloride, reduced glutathione, and 2-mercaptoethanesulfonic acid, did not replace dithiothreitol for this activity. The physiological significance of this activity is not known.
Collapse
Affiliation(s)
- J P Yu
- Department of Microbiology, University of Georgia, Athens 30602-2605
| | | | | |
Collapse
|
34
|
Abstract
Hyperthermophilic microorganisms grow at temperatures of 90 degrees C and above and are a recent discovery in the microbial world. They are considered to be the most ancient of all extant life forms, and have been isolated mainly from near shallow and deep sea hydrothermal vents. All but two of the nearly twenty known genera are classified as Archaea (formerly archaebacteria). Virtually all of them are strict anaerobes. The majority are obligate heterotrophs that utilize proteinaceous materials as carbon and energy sources, although a few species are also saccharolytic. Most also depend on the reduction of elemental sulfur to hydrogen sulfide (H2S) for significant growth. Peptide fermentation involves transaminases and glutamate dehydrogenase, together with several unusual ferredoxin-linked oxidoreductases not found in mesophilic organisms. Similarly, a novel pathway based on a partially non-phosphorylated Entner-Doudoroff scheme has been postulated to convert carbohydrates to acetate, H2 and CO2, although a more conventional Embden-Meyerhof pathway has also been identified in one saccharolytic species. The few hypethermophiles known that can assimilate CO2 do so via a reductive citric acid cycle. Two S(o)-reducing enzymes termed sulfhydrogenase and sulfide dehydrogenase have been purified from the cytoplasm of a hyperthermophile that is able to grow either with or without S(o). A scheme for electron flow during the oxidation of carbohydrates and peptides and the reduction of S(o) has been proposed. However, the mechanisms by which S(o) reduction is coupled to energy conservation in this organism and in obligate S(o)-reducing hyperthermophiles is not known.
Collapse
Affiliation(s)
- R M Kelly
- Department of Chemical Engineering, North Carolina State University, Raleigh 27695
| | | |
Collapse
|