1
|
Hassan-Casarez C, Ryan V, Shuster BM, Oliver JWK, Abbott ZD. Engineering a probiotic Bacillus subtilis for acetaldehyde removal: A hag locus integration to robustly express acetaldehyde dehydrogenase. PLoS One 2024; 19:e0312457. [PMID: 39509360 PMCID: PMC11542774 DOI: 10.1371/journal.pone.0312457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
We have addressed critical challenges in probiotic design to develop a commercially viable bacterial strain capable of removing the intestinal toxin, acetaldehyde. In this study, we report the engineering of the hag locus, a σD-dependent flagellin expression site, as a stable location for robust enzyme production. We demonstrate constitutive gene expression in relevant conditions driven by the endogenous hag promoter, following a deletion of the gene encoding a post-translational regulator of σD, FlgM, and a point mutation to abrogate the binding of the translational inhibitor CsrA. Reporter constructs demonstrate activity at the hag locus after germination, with a steady increase in heterologous expression throughout outgrowth and vegetative growth. To evaluate the chassis as a spore-based probiotic solution, we identified the physiologically relevant ethanol metabolic pathway and the subsequent accumulation of gut-derived acetaldehyde following alcohol consumption. We integrated a Cupriavidus necator aldehyde dehydrogenase gene (acoD) into the hag locus under the control of the flagellin promoter and observed a rapid reduction in acetaldehyde levels in gut-simulated conditions post-germination. This work demonstrates a promising approach for the development of genetically engineered spore-based probiotics.
Collapse
Affiliation(s)
| | - Valerie Ryan
- ZBiotics Company, San Francisco, CA, United States of America
| | | | | | | |
Collapse
|
2
|
Gascoyne JL, Bommareddy RR, Heeb S, Malys N. Engineering Cupriavidus necator H16 for the autotrophic production of (R)-1,3-butanediol. Metab Eng 2021; 67:262-276. [PMID: 34224897 PMCID: PMC8449065 DOI: 10.1016/j.ymben.2021.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022]
Abstract
Butanediols are widely used in the synthesis of polymers, specialty chemicals and important chemical intermediates. Optically pure R-form of 1,3-butanediol (1,3-BDO) is required for the synthesis of several industrial compounds and as a key intermediate of β-lactam antibiotic production. The (R)-1,3-BDO can only be produced by application of a biocatalytic process. Cupriavidus necator H16 is an established production host for biosynthesis of biodegradable polymer poly-3-hydroxybutryate (PHB) via acetyl-CoA intermediate. Therefore, the utilisation of acetyl-CoA or its upstream precursors offers a promising strategy for engineering biosynthesis of value-added products such as (R)-1,3-BDO in this bacterium. Notably, C. necator H16 is known for its natural capacity to fix carbon dioxide (CO2) using hydrogen as an electron donor. Here, we report engineering of this facultative lithoautotrophic bacterium for heterotrophic and autotrophic production of (R)-1,3-BDO. Implementation of (R)-3-hydroxybutyraldehyde-CoA- and pyruvate-dependent biosynthetic pathways in combination with abolishing PHB biosynthesis and reducing flux through the tricarboxylic acid cycle enabled to engineer strain, which produced 2.97 g/L of (R)-1,3-BDO and achieved production rate of nearly 0.4 Cmol Cmol−1 h−1 autotrophically. This is first report of (R)-1,3-BDO production from CO2. Engineering of chemolithoautotroph C. necator H16 for (R)-1,3-butanediol production. Implementation of (R)-3-hydroxybutyraldehyde-CoA- and pyruvate-dependent pathways for (R)-1,3-butanediol biosynthesis. Redirecting carbon flux for (R)-1,3-butanediol biosynthesis. Achieved 2.97 g/L of (R)-1,3-butanediol with production rate of nearly 0.4 Cmol/(Cmol h) autotrophically. First report of (R)-1,3-butanediol production from carbon dioxide.
Collapse
Affiliation(s)
- Joshua Luke Gascoyne
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Rajesh Reddy Bommareddy
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Stephan Heeb
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Naglis Malys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
3
|
Expression of acetaldehyde dehydrogenase (aldB) improved ethanol production from xylose by the ethanologenic Escherichia coli RM10. World J Microbiol Biotechnol 2020; 36:59. [PMID: 32236784 DOI: 10.1007/s11274-020-2797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 01/07/2020] [Indexed: 10/24/2022]
Abstract
An endogenous homoethanol pathway (glucose/1.2 xylose => 2 pyruvate => 2 ethanol) was previously engineered in Escherichia coli SZ410 via eliminating acid-producing pathways and anaerobic expression of the pyruvate dehydrogenase complex (aceEF-lpd operon). This ethanologenic derivative was subsequently engineered through adaptive evolution and partial deletion of the RNase G, resulting in an improved strain of E. coli RM10 for ethanol production using C6 and C5 sugars. Nevertheless, compared to the ethanol tolerance and/or ethanol titer achieved by industrial yeast, further incremental improvement of RM10 was needed for ethanol production using cellulosic biomass derived C6 and C5 sugars. In this study, the role of aldB gene (encoding for acetaldehyde dehydrogenase, AldB, which oxidizes acetaldehyde to acetic acid) was evaluated for ethanol/acetaldehyde tolerance and xylose fermentation by RM10. Deletion of aldB gene decreased ethanol tolerance, fermentative cell growth and ethanol production from xylose; while overexpression of aldB gene improved fermentative cell growth, and increased ethanol production from xylose. The improvement is likely attributed to preventing acetaldehyde accumulation (a toxic intermediate of homoethanol pathway) via AldB catalyzed oxidation.
Collapse
|
4
|
Lyophilized B. subtilis ZB183 Spores: 90-Day Repeat Dose Oral (Gavage) Toxicity Study in Wistar Rats. J Toxicol 2019; 2019:3042108. [PMID: 31781202 PMCID: PMC6875028 DOI: 10.1155/2019/3042108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/13/2019] [Indexed: 11/17/2022] Open
Abstract
A 90-day repeated-dose oral toxicological evaluation was conducted according to GLP and OECD guidelines on lyophilized spores of the novel genetically modified strain B. subtilis ZB183. Lyophilized spores at doses of 109, 1010, and 1011 CFU/kg body weight/day were administered by oral gavage to Wistar rats for a period of 90 consecutive days. B. subtilis ZB183 had no effects on clinical signs, mortality, ophthalmological examinations, functional observational battery, body weights, body weight gains and food consumption in both sexes. There were no test item-related changes observed in haematology, coagulation, urinalysis, thyroid hormonal analysis, terminal fasting body weights, organ weights, gross pathology and histopathology. A minimal increase in the plasma albumin level was observed at 1010 and 1011 CFU/kg/day doses without an increase in total protein in males or females and was considered a nonadverse effect. The “No Observed Adverse Effect Level (NOAEL)” is defined at the highest dose of 1011 CFU/kg body weight/day for lyophilized B. subtilis ZB183 Spores under the test conditions employed.
Collapse
|
5
|
Niewerth H, Schuldes J, Parschat K, Kiefer P, Vorholt JA, Daniel R, Fetzner S. Complete genome sequence and metabolic potential of the quinaldine-degrading bacterium Arthrobacter sp. Rue61a. BMC Genomics 2012; 13:534. [PMID: 23039946 PMCID: PMC3534580 DOI: 10.1186/1471-2164-13-534] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 10/01/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Bacteria of the genus Arthrobacter are ubiquitous in soil environments and can be considered as true survivalists. Arthrobacter sp. strain Rue61a is an isolate from sewage sludge able to utilize quinaldine (2-methylquinoline) as sole carbon and energy source. The genome provides insight into the molecular basis of the versatility and robustness of this environmental Arthrobacter strain. RESULTS The genome of Arthrobacter sp. Rue61a consists of a single circular chromosome of 4,736,495 bp with an average G + C content of 62.32%, the circular 231,551-bp plasmid pARUE232, and the linear 112,992-bp plasmid pARUE113 that was already published. Plasmid pARUE232 is proposed to contribute to the resistance of Arthrobacter sp. Rue61a to arsenate and Pb2+, whereas the linear plasmid confers the ability to convert quinaldine to anthranilate. Remarkably, degradation of anthranilate exclusively proceeds via a CoA-thioester pathway. Apart from quinaldine utilization, strain Rue61a has a limited set of aromatic degradation pathways, enabling the utilization of 4-hydroxy-substituted aromatic carboxylic acids, which are characteristic products of lignin depolymerization, via ortho cleavage of protocatechuate. However, 4-hydroxyphenylacetate degradation likely proceeds via meta cleavage of homoprotocatechuate. The genome of strain Rue61a contains numerous genes associated with osmoprotection, and a high number of genes coding for transporters. It encodes a broad spectrum of enzymes for the uptake and utilization of various sugars and organic nitrogen compounds. A. aurescens TC-1 is the closest sequenced relative of strain Rue61a. CONCLUSIONS The genome of Arthrobacter sp. Rue61a reflects the saprophytic lifestyle and nutritional versatility of the organism and a strong adaptive potential to environmental stress. The circular plasmid pARUE232 and the linear plasmid pARUE113 contribute to heavy metal resistance and to the ability to degrade quinaldine, respectively.
Collapse
Affiliation(s)
- Heiko Niewerth
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149, Münster, Germany
| | - Jörg Schuldes
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, 37077, Göttingen, Germany
| | - Katja Parschat
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149, Münster, Germany
- Present address: Jennewein Biotechnologie GmbH, 53619, Rheinbreitbach, Germany
| | - Patrick Kiefer
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, 37077, Göttingen, Germany
| | - Susanne Fetzner
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149, Münster, Germany
| |
Collapse
|
6
|
Group X aldehyde dehydrogenases of Pseudomonas aeruginosa PAO1 degrade hydrazones. J Bacteriol 2012; 194:1447-56. [PMID: 22267508 DOI: 10.1128/jb.06590-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrazones are natural and synthetic compounds containing a C=N-N moiety. Here we found that the opportunistic pathogen Pseudomonas aeruginosa PAO1 produced NAD(+)- or NADP(+)-dependent hydrazone dehydrogenase (HDH), which converts hydrazones to the corresponding hydrazides and acids rather than to the simple hydrolytic product aldehydes. Gene cloning indicated that the HDH is part of the group X aldehyde dehydrogenase (ALDH) family, which is distributed among bacteria, although the physiological roles of the ALDH family remain unknown. The PAO1 strain upregulated HDH in the presence of the hydrazone adipic acid bis(ethylidene hydrazide) (AEH). Gene disruption of the HDH-encoding hdhA (PA4022) decreased growth rates in culture medium containing AEH as the sole carbon source, and this effect was more obvious in the double gene disruption of hdhA and its orthologous exaC (PA1984), indicating that these genes are responsible for hydrazone utilization. Recombinant proteins of group X ALDHs from Escherichia coli, Paracoccus denitrificans, and Ochrobactrum anthropi also acted as HDHs in that they produced HDH activity in the cells and degraded hydrazones. These findings indicated the physiological roles of group X ALDHs in bacteria and showed that they comprise a distinct ALDH subfamily.
Collapse
|
7
|
Lo HF, Su JY, Chen HL, Chen JC, Lin LL. Biophysical studies of an NAD(P)(+)-dependent aldehyde dehydrogenase from Bacillus licheniformis. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2011; 40:1131-1142. [PMID: 21874381 DOI: 10.1007/s00249-011-0744-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/09/2011] [Indexed: 05/31/2023]
Abstract
Aldehyde dehydrogenase (ALDH) catalyzes the conversion of aldehydes to the corresponding acids by means of an NAD(P)(+)-dependent virtually irreversible reaction. In this investigation, the biophysical properties of a recombinant Bacillus licheniformis ALDH (BlALDH) were characterized in detail by analytical ultracentrifuge (AUC) and various spectroscopic techniques. The oligomeric state of BlALDH in solution was determined to be tetrameric by AUC. Far-UV circular dichroism analysis revealed that the secondary structures of BlALDH were not altered in the presence of acetone and ethanol, whereas SDS had a detrimental effect on the folding of the enzyme. Thermal unfolding of this enzyme was found to be highly irreversible. The native enzyme started to unfold beyond ~0.2 M guanidine hydrochloride (GdnHCl) and reached an unfolded intermediate, [GdnHCl](05, N-U), at 0.93 M. BlALDH was active at concentrations of urea below 2 M, but it experienced an irreversible unfolding under 8 M denaturant. Taken together, this study provides a foundation for the future structural investigation of BlALDH, a typical member of ALDH superfamily enzymes.
Collapse
Affiliation(s)
- Huei-Fen Lo
- Department of Food Science and Technology, Hungkuang University, Shalu, Taichung City, Taiwan
| | | | | | | | | |
Collapse
|
8
|
Yao Z, Zhang C, Lu F, Bie X, Lu Z. Gene cloning, expression, and characterization of a novel acetaldehyde dehydrogenase from Issatchenkia terricola strain XJ-2. Appl Microbiol Biotechnol 2011; 93:1999-2009. [PMID: 21858493 DOI: 10.1007/s00253-011-3541-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/31/2011] [Accepted: 08/05/2011] [Indexed: 11/24/2022]
Abstract
Acetaldehyde is a known mutagen and carcinogen. Active aldehyde dehydrogenase (ALDH) represents an important mechanism for acetaldehyde detoxification. A yeast strain XJ-2 isolated from grape samples was found to produce acetaldehyde dehydrogenase with a high activity of 2.28 U/mg and identified as Issatchenkia terricola. The enzyme activity was validated by oxidizing acetaldehyde to acetate with NAD(+) as coenzyme based on the headspace gas chromatography analysis. A novel acetaldehyde dehydrogenase gene (ist-ALD) was cloned by combining SiteFinding-PCR and self-formed adaptor PCR. The ist-ALD gene comprised an open reading frame of 1,578 bp and encoded a protein of 525 amino acids. The predicted protein of ist-ALD showed the highest identity (73%) to ALDH from Pichia angusta. The ist-ALD gene was expressed in Escherichia coli, and the gene product (ist-ALDH) presented a productivity of 442.3 U/mL cells. The purified ist-ALDH was a homotetramer of 232 kDa consisting of 57 kDa-subunit according to the SDS-PAGE and native PAGE analysis. Ist-ALDH exhibited the optimal activity at pH 9.0 and 40°C, respectively. The activity of ist-ALDH was enhanced by K(+), NH4(+), dithiothreitol, and 2-mercaptoethanol but strongly inhibited by Ag(+), Hg(2+), Cu(2+), and phenylmethyl sulfonylfluoride. In the presence of NAD(+), ist-ALDH could oxidize many aliphatic, aromatic, and heterocyclic aldehydes, preferably acetaldehyde. Kinetic study revealed that ist-ALDH had a k (cat) value of 27.71/s and a k (cat)/K (m) value of 26.80 × 10(3)/(mol s) on acetaldehyde, demonstrating ist-ALDH, a catalytically active enzyme by comparing with other ALDHs. These studies indicated that ist-ALDH was a potential enzymatic product for acetaldehyde detoxification.
Collapse
Affiliation(s)
- Zhengying Yao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | | | | | | | | |
Collapse
|
9
|
Gene cloning and biochemical characterization of a NAD(P)+ -dependent aldehyde dehydrogenase from Bacillus licheniformis. Mol Biotechnol 2010; 46:157-67. [PMID: 20495892 DOI: 10.1007/s12033-010-9290-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A putative aldehyde dehydrogenase (ALDH) gene, ybcD (gene locus b1467), was identified in the genome sequence of Bacillus licheniformis ATCC 14580. B. licheniformis ALDH (BlALDH) encoded by ybcD consists of 488 amino acid residues with a molecular mass of approximately 52.7 kDa. The coding sequence of ybcD gene was cloned in pQE-31, and functionally expressed in recombinant Escherichia coli M15. BlALDH had a subunit molecular mass of approximately 53 kDa and the molecular mass of the native enzyme was determined to be 220 kDa by FPLC, reflecting that the oilgomeric state of this enzyme is tetrameric. The temperature and pH optima for BlALDH were 37 degrees C and 7.0, respectively. In the presence of either NAD(+) or NADP(+), the enzyme could oxidize a number of aliphatic aldehydes, particularly C3- and C5-aliphatic aldehyde. Steady-state kinetic study revealed that BlALDH had a K (M) value of 0.46 mM and a k (cat) value of 49.38/s when propionaldehyde was used as the substrate. BlALDH did not require metal ions for its enzymatic reaction, whereas the dehydrogenase activity was enhanced by the addition of disulfide reductants, 2-mercaptoethanol and dithiothreitol. Taken together, this study lays a foundation for future structure-function studies with BlALDH, a typical member of NAD(P)(+)-dependent aldehyde dehydrogenases.
Collapse
|
10
|
Nakamura T, Ichinose H, Wariishi H. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 2010; 394:470-5. [PMID: 20175998 DOI: 10.1016/j.bbrc.2010.01.131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 01/31/2010] [Indexed: 11/16/2022]
Abstract
We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif "GxGxxxG" was located at the NAD(+)-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.
Collapse
Affiliation(s)
- Tomofumi Nakamura
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
11
|
Kato T, Miyanaga A, Kanaya S, Morikawa M. Gene cloning and characterization of an aldehyde dehydrogenase from long-chain alkane-degrading Geobacillus thermoleovorans B23. Extremophiles 2009; 14:33-9. [PMID: 19787414 DOI: 10.1007/s00792-009-0285-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 09/15/2009] [Indexed: 12/01/2022]
Abstract
Geobacillus thermoleovorans B23 is capable of degrading long-chain alkanes at 70 degrees C. Bt-aldh, an aldehyde dehydrogenase gene in B23, was located in the upstream region of p21 whose expression level was dramatically increased when alkane degradation was started (Kato et al. 2009, BMC Microbiol 9:60). Like p21, transcription level of Bt-aldh was also increased upon alkane degradation. Bt-Aldh (497 aa, MW = 53,886) was overproduced in Escherichia coli, purified, and characterized biochemically. Bt-Aldh acted as an octamer, required NAD(+) as a coenzyme, and showed high activity against aliphatic long-chain aldehydes such as tetradecanal. The optimum condition for activity was 50-55 degrees C and pH 10.0. The activity was elevated to two- to threefold in the presence of 2 mM Ba(2+), Ca(2+), or Sr(2+), while Mg(2+) and Zn(2+) inhibited the enzyme activity. Bt-Aldh represents thermophilic aldehyde dehydrogenases responsible for degradation of long-chain alkanes.
Collapse
Affiliation(s)
- Tomohisa Kato
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
12
|
Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB. J Biotechnol 2008; 140:84-91. [PMID: 19041911 DOI: 10.1016/j.jbiotec.2008.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Revised: 09/29/2008] [Accepted: 10/21/2008] [Indexed: 11/18/2022]
Abstract
Corynebacterium glutamicum has been shown to grow with ethanol as the sole or as additional carbon and energy source and accordingly, to possess both alcohol dehydrogenase and acetaldehyde dehydrogenase (ALDH) activities, which are responsible for the two-step ethanol oxidation to acetate. Here we identify and functionally analyze the C. glutamicum ALDH gene (cg3096, ald), its expression and its regulation. Directed inactivation of the chromosomal ald gene led to the absence of detectable ALDH activity and to the inability to grow on or to utilize ethanol, indicating that the ald gene product is essential for ethanol metabolism and that no ALDH isoenzymes are present in C. glutamicum. Transcriptional analysis revealed that ald from C. glutamicum is monocistronic, that ald transcription is initiated 92 nucleotides upstream of the translational start codon ATG and that ald expression is much lower in the presence of glucose in the growth medium. Further analysis revealed that transcription of the ald gene is under control of the transcriptional regulators RamA and RamB. Both these proteins directly bind to the respective promoter region, RamA is essential for expression and RamB exerts a slightly negative effect on ald expression on all carbon sources tested.
Collapse
|
13
|
Abstract
Acetoin is an important physiological metabolite excreted by many microorganisms. The excretion of acetoin, which can be diagnosed by the Voges Proskauer test and serves as a microbial classification marker, has its vital physiological meanings to these microbes mainly including avoiding acification, participating in the regulation of NAD/NADH ratio, and storaging carbon. The well-known anabolism of acetoin involves alpha-acetolactat synthase and alpha-acetolactate decarboxylase; yet its catabolism still contains some differing views, although much attention has been focused on it and great advances have been achieved. Current findings in catabolite control protein A (CcpA) mediated carbon catabolite repression may provide a fuller understanding of the control mechanism in bacteria. In this review, we first examine the acetoin synthesis pathways and its physiological meanings and relevancies; then we discuss the relationship between the two conflicting acetoin cleavage pathways, the enzymes of the acetoin dehydrogenase enzyme system, major genes involved in acetoin degradation, and the CcpA mediated acetoin catabolite repression pathway; in the end we discuss the genetic engineering progresses concerning applications. To date, this is the first integrated review on acetoin metabolism in bacteria, especially with regard to catabolic aspects. The apperception of the generation and dissimilation of acetoin in bacteria will help provide a better understanding of microbial strategies in the struggle for resources, which will consequently better serve the utilization of these microbes.
Collapse
Affiliation(s)
- Zijun Xiao
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China
| | | |
Collapse
|
14
|
Kazuoka T, Oikawa T, Muraoka I, Kuroda S, Soda K. A cold-active and thermostable alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1. Extremophiles 2006; 11:257-67. [PMID: 17072683 DOI: 10.1007/s00792-006-0034-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 09/16/2006] [Indexed: 10/24/2022]
Abstract
An NAD(+)-dependent alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1 was purified to homogeneity with an overall yield of about 20% and characterized enzymologically. The enzyme has an apparent molecular weight of 160k and consists of four identical subunits with a molecular weight of 40k. The pI value of the enzyme and its optimum pH for the oxidation reaction were determined to be 6.7 and 7.0, respectively. The enzyme contains 2 gram-atoms Zn per subunit. The enzyme exclusively requires NAD(+) as a coenzyme and shows the pro-R stereospecificity for hydrogen transfer at the C4 position of the nicotinamide moiety of NAD(+). F. frigidimaris KUC-1 alcohol dehydrogenase shows as high thermal stability as the enzymes from thermophilic microorganisms. The enzyme is active at 0 to over 85 degrees C and the most active at 70 degrees C. The half-life time and k (cat) value at 60 degrees C were calculated to be 50 min and 27,400 min(-1), respectively. The enzyme also shows high catalytic efficiency at low temperatures (0-20 degrees C) (k(cat)/K(m) at 10 degrees C; 12,600 mM(-1)min(-1)) similar to other cold-active enzymes from psychrophiles. The alcohol dehydrogenase gene is composed of 1,035 bp and codes 344 amino acid residues with an estimated molecular weight of 36,823. The sequence identities were found with the amino acid sequences of alcohol dehydrogenases from Moraxella sp. TAE123 (67%), Pseudomonas aeruginosa (65%) and Geobacillus stearothermophilus LLD-R (56%). This is the first example of a cold-active and thermostable alcohol dehydrogenase.
Collapse
Affiliation(s)
- Takayuki Kazuoka
- Department of Biotechnology, Faculty of Engineering, Kansai University, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan
| | | | | | | | | |
Collapse
|
15
|
Gourion B, Rossignol M, Vorholt JA. A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci U S A 2006; 103:13186-91. [PMID: 16926146 PMCID: PMC1559774 DOI: 10.1073/pnas.0603530103] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aerial plant surfaces are colonized by diverse bacteria such as the ubiquitous Methylobacterium spp. The specific physiological traits as well as the underlying regulatory mechanisms for bacterial plant colonization are largely unknown. The purpose of this study was to identify proteins produced specifically in the phyllosphere by comparing the proteome of Methylobacterium extorquens colonizing the leaves either with that of bacteria colonizing the roots or with that of bacteria growing on synthetic medium. We identified 45 proteins that were more abundant in M. extorquens present on plant surfaces as compared with bacteria growing on synthetic medium, including 9 proteins that were more abundant on leaves compared with roots. Among the proteins induced during epiphytic growth, we found enzymes involved in methanol utilization, prominent stress proteins, and proteins of unknown function. In addition, we detected a previously undescribed type of two-domain response regulator, named PhyR, that consists of an N-terminal sigma factor (RpoE)-like domain and a C-terminal receiver domain and is predicted to be present in essentially all Alphaproteobacteria. The importance of PhyR was demonstrated through phenotypic tests of a deletion mutant strain shown to be deficient in plant colonization. Among PhyR-regulated gene products, we found a number of general stress proteins and, in particular, proteins known to be involved in the oxidative stress response such as KatE, SodA, AhpC, Ohr, Trx, and Dps. The PhyR-regulated gene products partially overlap with the bacterial in planta-induced proteome, suggesting that PhyR is a key regulator for adaptation to epiphytic life of M. extorquens.
Collapse
Affiliation(s)
- Benjamin Gourion
- *Laboratoire des Interactions Plantes Micro-Organismes (LIPM), Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, BP52627, 31326 Castanet-Tolosan, France; and
| | - Michel Rossignol
- Unité Mixte de Recherche 5546, Centre National de la Recherche/Université P. Sabatier, F-31326 Castanet-Tolosan, France
| | - Julia A. Vorholt
- *Laboratoire des Interactions Plantes Micro-Organismes (LIPM), Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, BP52627, 31326 Castanet-Tolosan, France; and
| |
Collapse
|
16
|
Delamarre SC, Batt CA. Comparative study of promoters for the production of polyhydroxyalkanoates in recombinant strains of Wautersia eutropha. Appl Microbiol Biotechnol 2005; 71:668-79. [PMID: 16362422 DOI: 10.1007/s00253-005-0217-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 10/15/2005] [Accepted: 10/17/2005] [Indexed: 11/28/2022]
Abstract
Recombinant strains of Wautersia eutropha expressing an artificial polyhydroxyalkanoate (PHA) biosynthesis operon under the control of different native promoters linked to polyhydroxybutyrate (PHB) (P(phb)), acetoin (P(acoE), P(acoD), and P(acoX)) or pyruvate (P(pdhE)) metabolism were constructed and tested. The promoters were representative either of the enterobacterial sigma70 (P(phb), P(acoE), and P(pdhE))- or sigma54 (P(acoD) and P(acoX))-dependent promoters. To obtain polymers consisting of C4-C12 monomer units, an artificial operon consisting of the PHA synthase gene from Pseudomonas sp. 61-3 (phaC1 (Ps)) tandemly linked to the W. eutropha genes encoding beta-ketothiolase (phbA (We)) and nicotinamide adenine dinucleotide phosphate dependent acetoacetyl-coenzyme A (CoA) reductase (phbB (We)) was constructed. All recombinant strains produced PHA, indicating that the PHA biosynthesis genes were expressed under the control of the different promoters. Cell growth and PHA synthesis on MS medium complemented with gluconate or octanoate, and different concentrations of acetoin (0, 0.15, and 0.3%) clearly differed among the recombinant strains. While the P(acoD) and P(acoX) promoters mediated only low PHA yields (<1%) in the presence of the inducer acetoin, the remaining promoters-independent of the addition of acetoin-resulted in the production of PHA polymers with high 3HB fractions (90-100 mol%) and with high 3HO contents (70-86 mol%) from gluconate and octanoate, respectively. Interestingly, on octanoate-MS medium with 0.15% acetoin, the P(acoE) promoter mediated the synthesis of PHA with a relatively high 3HB fraction (48 mol%). While PHAs with high 3HB contents were obtained, the overall PHA product yields were low (<10%); thus, their potential application for further commercial exploitation appears limited.
Collapse
Affiliation(s)
- Soazig C Delamarre
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
17
|
Peng X, Shindo K, Kanoh K, Inomata Y, Choi SK, Misawa N. Characterization of Sphingomonas aldehyde dehydrogenase catalyzing the conversion of various aromatic aldehydes to their carboxylic acids. Appl Microbiol Biotechnol 2005; 69:141-50. [PMID: 15812642 DOI: 10.1007/s00253-005-1962-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2005] [Revised: 02/18/2005] [Accepted: 03/12/2005] [Indexed: 11/25/2022]
Abstract
An aldehyde dehydrogenase gene, designated phnN, was isolated from a genome library of the 1,4-dimethylnaphthalene-utilizing soil bacterium, Sphingomonas sp. 14DN61. Escherichia coli expressing the phnN gene converted 1,4-dihydroxymethylnaphthalene to 1-hydroxymethyl-4-naphthoic acid. The putative amino acid sequence of the phnN gene product had 31-42% identity with those of NAD(+)-dependent short-chain aliphatic aldehyde dehydrogenases and a secondary alcohol dehydrogenase. The NAD(P)(+)-binding site and two consensus sequences involved in the active site for aldehyde dehydrogenase are conserved among these proteins. The PhnN enzyme purified from recombinant E. coli showed broad substrate specificity towards various aromatic aldehydes, i.e., 1- and 2-naphaldehydes, cinnamaldehyde, vanillin, syringaldehyde, benzaldehyde and benzaldehydes substituted with a hydroxyl, methyl, methoxy, chloro, fluoro, or nitro group were converted to their corresponding carboxylic acids. Interestingly, E. coli expressing phnN was able to biotransform a variety of not only aromatic aldehydes, but also aromatic alcohols to carboxylic acids.
Collapse
Affiliation(s)
- Xue Peng
- Marine Biotechnology Institute, Kamaishi-shi, Iwate, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Ho KK, Weiner H. Isolation and characterization of an aldehyde dehydrogenase encoded by the aldB gene of Escherichia coli. J Bacteriol 2005; 187:1067-73. [PMID: 15659684 PMCID: PMC545698 DOI: 10.1128/jb.187.3.1067-1073.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 10/30/2004] [Indexed: 11/20/2022] Open
Abstract
An aldehyde dehydrogenase was detected in crude cell extracts of Escherichia coli DH5alpha. Growth studies indicated that the aldehyde dehydrogenase activity was growth phase dependent and increased in cells grown with ethanol. The N-terminal amino acid sequence of the purified enzyme identified the latter as an aldehyde dehydrogenase encoded by aldB, which was thought to play a role in the removal of aldehydes and alcohols in cells that were under stress. The purified enzyme showed an estimated molecular mass of 220 +/- 8 kDa, consisting of four identical subunits, and preferred to use NADP and acetaldehyde. MgCl2 increased the activity of the NADP-dependent enzyme with various substrates. A comparison of the effect of Mg2+ ions on the bacterial enzyme with the effect of Mg2+ ions on human liver mitochondrial aldehyde dehydrogenase revealed that the bacterial enzyme shared kinetic properties with the mammalian enzyme. An R197E mutant of the bacterial enzyme appeared to retain very little NADP-dependent activity on acetaldehyde.
Collapse
Affiliation(s)
- Kwok Ki Ho
- Biochemistry Department, Purdue University, West Lafayette, IN 47904-2063, USA
| | | |
Collapse
|
19
|
Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N. Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 2004; 185:7120-8. [PMID: 14645271 PMCID: PMC296251 DOI: 10.1128/jb.185.24.7120-7128.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new isolate, Gordonia sp. strain TY-5, is capable of growth on propane and n-alkanes with C(13) to C(22) carbon chains as the sole source of carbon. In whole-cell reactions, significant propane oxidation to 2-propanol was detected. A gene cluster designated prmABCD, which encodes the components of a putative dinuclear-iron-containing multicomponent monooxygenase, including the large and small subunits of the hydroxylase, an NADH-dependent acceptor oxidoreductase, and a coupling protein, was cloned and sequenced. A mutant with prmB disrupted (prmB::Kan(r)) lost the ability to grow on propane, and Northern blot analysis revealed that polycistronic transcription of the prm genes was induced during its growth on propane. These results indicate that the prmABCD gene products play an essential role in propane oxidation by the bacterium. Downstream of the prm genes, an open reading frame (adh1) encoding an NAD(+)-dependent secondary alcohol dehydrogenase was identified, and the protein was purified and characterized. The Northern blot analysis results and growth properties of a disrupted mutant (adh1::Kan(r)) indicate that Adh1 plays a major role in propane metabolism. Two additional NAD(+)-dependent secondary alcohol dehydrogenases (Adh2 and Adh3) were also found to be involved in 2-propanol oxidation. On the basis of these results, we conclude that Gordonia sp. strain TY-5 oxidizes propane by monooxygenase-mediated subterminal oxidation via 2-propanol.
Collapse
Affiliation(s)
- Tetsuya Kotani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
20
|
Aguilar C, Friscina A, Devescovi G, Kojic M, Venturi V. Identification of quorum-sensing-regulated genes of Burkholderia cepacia. J Bacteriol 2003; 185:6456-62. [PMID: 14563881 PMCID: PMC219387 DOI: 10.1128/jb.185.21.6456-6462.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing is a regulatory mechanism (operating in response to cell density) which in gram-negative bacteria usually involves the production of N-acyl homoserine lactones (HSL). Quorum sensing in Burkholderia cepacia has been associated with the regulation of expression of extracellular proteins and siderophores and also with the regulation of swarming and biofilm formation. In the present study, several quorum-sensing-controlled gene promoters of B. cepacia ATCC 25416 were identified and characterized. A total of 28 putative gene promoters show CepR-C(8)-HSL-dependent expression, suggesting that quorum sensing in B. cepacia is a global regulatory system.
Collapse
Affiliation(s)
- Claudio Aguilar
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy.
| | | | | | | | | |
Collapse
|
21
|
Sripo T, Phongdara A, Wanapu C, Caplan AB. Screening and characterization of aldehyde dehydrogenase gene from Halomonas salina strain AS11. J Biotechnol 2002; 95:171-9. [PMID: 11911926 DOI: 10.1016/s0168-1656(02)00006-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A population survey was made of moderately halophilic bacteria in prawn pond sediment in the Songkla region of Thailand. Twenty-two isolated halophilic bacteria capable of growing on modified ATCC culture medium 1270 for halobacterium were then assayed for aldehyde dehydrogenase (ALDH) activity which might be involved in the metabolism of xenobiotic compounds. One isolate, designated AS11, was selected based on its high amount of ALDH activity. This organism can grow at sodium chloride concentrations ranging from 2.5 to 25%, although optimum growth occurs at 5% NaCl. Phenotypic and phylogenetic studies indicated that AS11 was an isolate of Halomonas salina. The aldh gene coding for this enzyme was then cloned. The open reading frame of the aldh gene was 1521-bp long and coded for a protein of 506 amino acid residues with a calculated molecular mass of 55 kDa. The aldh gene product proved to be 76% identical to the NAD-dependent acetaldehyde dehydrogenase gene from Pseudomonase aeruginosa.
Collapse
Affiliation(s)
- Thanya Sripo
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hatyai, 90112, Songkla, Thailand
| | | | | | | |
Collapse
|
22
|
Schräder T, Zarnt G, Andreesen JR. NAD(P)-dependent aldehyde dehydrogenases induced during growth of Ralstonia eutropha strain Bo on tetrahydrofurfuryl alcohol. J Bacteriol 2001; 183:7408-11. [PMID: 11717302 PMCID: PMC95592 DOI: 10.1128/jb.183.24.7408-7411.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different aldehyde dehydrogenases (AlDHs) were formed during growth of Ralstonia eutropha Bo on tetrahydrofurfuryl alcohol (THFA). One of these enzymes, AlDH 4, was purified and characterized as a homodimer containing no prosthetic groups, showing a strong substrate inhibition, and having an N-terminal sequence similar to those of various NAD(P)-dependent AlDHs. The conversion rate of THFA by the quinohemoprotein THFA dehydrogenase was increased by AlDH 4.
Collapse
Affiliation(s)
- T Schräder
- Institut für Mikrobiologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
23
|
Gama-Castro S, Núñez C, Segura D, Moreno S, Guzmán J, Espín G. Azotobacter vinelandii aldehyde dehydrogenase regulated by sigma(54): role in alcohol catabolism and encystment. J Bacteriol 2001; 183:6169-74. [PMID: 11591659 PMCID: PMC100092 DOI: 10.1128/jb.183.21.6169-6174.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Encystment in Azotobacter vinelandii is induced by n-butanol or beta-hydroxybutyrate (BHB). We identified a gene, encoding an aldehyde dehydrogenase, that was named aldA. An aldA mutation impaired bacterial growth on n-butanol, ethanol, or hexanol as the sole carbon source. Expression of aldA increased in cells shifted from sucrose to n-butanol and was shown to be dependent on the alternative sigma(54) factor. A mutation in rpoN encoding the sigma(54) factor also impaired growth on alcohols. Encystment on n-butanol, but not on BHB, was impaired in aldA or rpoN mutants, indicating that n-butanol is not an inducer of encystment by itself but must be catabolized in order to induce encystment.
Collapse
Affiliation(s)
- S Gama-Castro
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62250, Mexico
| | | | | | | | | | | |
Collapse
|
24
|
D'Andrea AD, Zhu Y. Cloning and functional analysis of erythropoietin-, interleukin-3- and thrombopoietin-inducible genes. Stem Cells 2001; 14 Suppl 1:82-7. [PMID: 11012206 DOI: 10.1002/stem.5530140710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The receptor for thrombopoietin (TPO) is a member of the cytokine receptor superfamily. This superfamily also includes the receptors for erythropoietin (EPO), interleukin 3 (IL-3), GM-CSF and several other cytokines. Stimulation of cytokine receptors with their cognate ligands results in the activation of multiple signal transduction pathways and ultimately in the induction of new genes. The cloning of these specific genes provides one approach for analyzing cytokine-specific responses. In the current study, we have designed a strategy for isolating inducible genes. While the strategy has been used to identify EPO-specific and IL-3-specific inducible genes, the strategy can be extended to clone TPO-inducible genes.
Collapse
Affiliation(s)
- A D D'Andrea
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School. Boston, Massachusetts 02115, USA
| | | |
Collapse
|
25
|
Ishige T, Tani A, Sakai Y, Kato N. Long-chain aldehyde dehydrogenase that participates in n-alkane utilization and wax ester synthesis in Acinetobacter sp. strain M-1. Appl Environ Microbiol 2000; 66:3481-6. [PMID: 10919810 PMCID: PMC92174 DOI: 10.1128/aem.66.8.3481-3486.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A long-chain aldehyde dehydrogenase, Ald1, was found in a soluble fraction of Acinetobacter sp. strain M-1 cells grown on n-hexadecane as a sole carbon source. The gene (ald1) was cloned from the chromosomal DNA of the bacterium. The open reading frame of ald1 was 1,512 bp long, corresponding to a protein of 503 amino acid residues (molecular mass, 55,496 Da), and the deduced amino acid sequence showed high similarity to those of various aldehyde dehydrogenases. The ald1 gene was stably expressed in Escherichia coli, and the gene product (recombinant Ald1 [rAld1]) was purified to apparent homogeneity by gel electrophoresis. rAld1 showed enzyme activity toward n-alkanals (C(4) to C(14)), with a preference for longer carbon chains within the tested range; the highest activity was obtained with tetradecanal. The ald1 gene was disrupted by homologous recombination on the Acinetobacter genome. Although the ald1 disruptant (ald1Delta) strain still had the ability to grow on n-hexadecane to some extent, its aldehyde dehydrogenase activity toward n-tetradecanal was reduced to half the level of the wild-type strain. Under nitrogen-limiting conditions, the accumulation of intracellular wax esters in the ald1Delta strain became much lower than that in the wild-type strain. These and other results imply that a soluble long-chain aldehyde dehydrogenase indeed plays important roles both in growth on n-alkane and in wax ester formation in Acinetobacter sp. strain M-1.
Collapse
Affiliation(s)
- T Ishige
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Japan
| | | | | | | |
Collapse
|
26
|
Maeda T, Yoshinaga I, Shiba T, Murakami M, Wada A, Ishida Y. Cloning and sequencing of the gene encoding an aldehyde dehydrogenase that is induced by growing Alteromonas sp. Strain KE10 in a low concentration of organic nutrients. Appl Environ Microbiol 2000; 66:1883-9. [PMID: 10788355 PMCID: PMC101428 DOI: 10.1128/aem.66.5.1883-1889.2000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein composition of Alteromonas sp. strain KE10 cultured at two different organic-nutrient concentrations was determined by using two-dimensional polyacrylamide gel electrophoresis. The cellular levels of three proteins, OlgA, -B, and -C, were considerably higher in cells grown in a low concentration of organic nutrient medium (LON medium; 0.2 mg of carbon per liter) than cells grown in a high concentration of organic nutrient medium (HON; 200 mg of C liter(-1)) or cells starved for organic nutrients. In the LON medium, the cellular levels of the Olg proteins were higher at the exponential growth phase than at the stationary growth phase. A sequence of the gene for OlgA revealed that the amino acid sequence had a high degree of similarity to the NAD(+)-dependent aldehyde dehydrogenases of several bacteria. OlgA, expressed in Escherichia coli, catalyzed the dehydrogenation of acetaldehyde, propionaldehyde, and butyraldehyde. The aldehyde dehydrogenase activity of KE10 was higher in cells growing exponentially in LON medium than in HON. OlgA may be involved in the growth under low-nutrient conditions. The physiological role of OlgA is discussed here.
Collapse
Affiliation(s)
- T Maeda
- Department of Food Science and Technology, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Barrios H, Valderrama B, Morett E. Compilation and analysis of sigma(54)-dependent promoter sequences. Nucleic Acids Res 1999; 27:4305-13. [PMID: 10536136 PMCID: PMC148710 DOI: 10.1093/nar/27.22.4305] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Promoters recognized by the RNA-polymerase with the alternative sigma factor sigma(54) (Esigma54) are unique in having conserved positions around -24 and -12 nucleotides upstream from the transcriptional start site, instead of the typical -35 and -10 boxes. Here we compile 186 -24/-12 promoter sequences reported in the literature and generate an updated and extended consensus sequence. The use of the extended consensus increases the probability of identifying genuine -24/-12 promoters. The effect of several reported mutations at the -24/-12 elements on RNA-polymerase binding and promoter strength is discussed in the light of the updated consensus.
Collapse
Affiliation(s)
- H Barrios
- Departamento de Reconocimiento Molecular y Bioestructura, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62271, México
| | | | | |
Collapse
|
28
|
Ponomarev AG, Bubyakina VV, Tatarinova TD, Zelenin SM. Characterization of an aldehyde dehydrogenase gene fragment from mung bean (Vigna radiata) using the polymerase chain reaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 463:249-54. [PMID: 10352693 DOI: 10.1007/978-1-4615-4735-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- A G Ponomarev
- Institute of Biological Problems of Cryolithozone, Siberian Branch, Russian Academy of Sciences, Yakutsk, Russia
| | | | | | | |
Collapse
|
29
|
Okibe N, Amada K, Hirano S, Haruki M, Imanaka T, Morikawa M, Kanaya S. Gene cloning and characterization of aldehyde dehydrogenase from a petroleum-degrading bacterium, strain HD-1. J Biosci Bioeng 1999; 88:7-11. [PMID: 16232565 DOI: 10.1016/s1389-1723(99)80167-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/1999] [Accepted: 04/09/1999] [Indexed: 11/30/2022]
Abstract
The hd-ald gene encoding aldehyde dehydrogenase (hd-ALDH) from an mixotrophic petroleum-degrading bacterium, strain HD-1 was cloned and sequenced. hd-ALDH (506 amino acids) is a member of the NAD+-dependent aldehyde dehydrogenase group. The hd-ald gene was expressed in Escherichia coli, and the recombinant enzyme was purified and characterized biochemically and enzymatically. The molecular weight of the enzyme was estimated to be 55,000 by SDS-PAGE, and 224,000 by gel filtration chromatography, suggesting that it acts as a tetramer. The CD spectrum suggests that the helical content of the enzyme is 10%. hd-ALDH was active on various aliphatic aldehyde substrates. The K(m) values of the enzyme were 6.4 microM for acetaldehyde, 4.2 microM for hexanal, 2.8 microM for octanal, and 0.84 microM for decanal, whereas the kcat values for these substrates were nearly equal (51-64 min(-1)). These results indicate that hd-ALDH acts preferentially on long-chain aliphatic aldehydes.
Collapse
Affiliation(s)
- N Okibe
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871 Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Perozich J, Nicholas H, Wang BC, Lindahl R, Hempel J. Relationships within the aldehyde dehydrogenase extended family. Protein Sci 1999; 8:137-46. [PMID: 10210192 PMCID: PMC2144113 DOI: 10.1110/ps.8.1.137] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
One hundred-forty-five full-length aldehyde dehydrogenase-related sequences were aligned to determine relationships within the aldehyde dehydrogenase (ALDH) extended family. The alignment reveals only four invariant residues: two glycines, a phenylalanine involved in NAD binding, and a glutamic acid that coordinates the nicotinamide ribose in certain E-NAD binary complex crystal structures, but which may also serve as a general base for the catalytic reaction. The cysteine that provides the catalytic thiol and its closest neighbor in space, an asparagine residue, are conserved in all ALDHs with demonstrated dehydrogenase activity. Sixteen residues are conserved in at least 95% of the sequences; 12 of these cluster into seven sequence motifs conserved in almost all ALDHs. These motifs cluster around the active site of the enzyme. Phylogenetic analysis of these ALDHs indicates at least 13 ALDH families, most of which have previously been identified but not grouped separately by alignment. ALDHs cluster into two main trunks of the phylogenetic tree. The largest, the "Class 3" trunk, contains mostly substrate-specific ALDH families, as well as the class 3 ALDH family itself. The other trunk, the "Class 1/2" trunk, contains mostly variable substrate ALDH families, including the class 1 and 2 ALDH families. Divergence of the substrate-specific ALDHs occurred earlier than the division between ALDHs with broad substrate specificities. A site on the World Wide Web has also been devoted to this alignment project.
Collapse
Affiliation(s)
- J Perozich
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
31
|
Achterholt S, Priefert H, Steinbüchel A. Purification and characterization of the coniferyl aldehyde dehydrogenase from Pseudomonas sp. Strain HR199 and molecular characterization of the gene. J Bacteriol 1998; 180:4387-91. [PMID: 9721273 PMCID: PMC107445 DOI: 10.1128/jb.180.17.4387-4391.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/1998] [Accepted: 06/07/1998] [Indexed: 11/20/2022] Open
Abstract
The coniferyl aldehyde dehydrogenase (CALDH) of Pseudomonas sp. strain HR199 (DSM7063), which catalyzes the NAD+-dependent oxidation of coniferyl aldehyde to ferulic acid and which is induced during growth with eugenol as the carbon source, was purified and characterized. The native protein exhibited an apparent molecular mass of 86,000 +/- 5,000 Da, and the subunit mass was 49.5 +/- 2.5 kDa, indicating an alpha2 structure of the native enzyme. The optimal oxidation of coniferyl aldehyde to ferulic acid was obtained at a pH of 8.8 and a temperature of 26 degreesC. The Km values for coniferyl aldehyde and NAD+ were about 7 to 12 microM and 334 microM, respectively. The enzyme also accepted other aromatic aldehydes as substrates, whereas aliphatic aldehydes were not accepted. The NH2-terminal amino acid sequence of CALDH was determined in order to clone the encoding gene (calB). The corresponding nucleotide sequence was localized on a 9.4-kbp EcoRI fragment (E94), which was subcloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The partial sequencing of this fragment revealed an open reading frame of 1,446 bp encoding a protein with a relative molecular weight of 51,822. The deduced amino acid sequence, which is reported for the first time for a structural gene of a CALDH, exhibited up to 38.5% amino acid identity (60% similarity) to NAD+-dependent aldehyde dehydrogenases from different sources.
Collapse
Affiliation(s)
- S Achterholt
- Institut für Mikrobiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | | | | |
Collapse
|
32
|
Bergeron H, Labbé D, Turmel C, Lau PC. Cloning, sequence and expression of a linear plasmid-based and a chromosomal homolog of chloroacetaldehyde dehydrogenase-encoding genes in Xanthobacter autotrophicus GJ10. Gene 1998; 207:9-18. [PMID: 9511738 DOI: 10.1016/s0378-1119(97)00598-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The degradation of 1,2-dichloroethane (DCE) by Xanthobacter autotrophicus GJ10 proceeds via chloroacetaldehyde (CAA), a toxic intermediate in the cells if it is not metabolized further by the NAD(+)-dependent CAA dehydrogenases. Here, we describe the cloning, sequence and expression in Escherichia coli of aldA, a plasmid-located CAA dehydrogenase-encoding gene of GJ10 as well as a chromosomal homolog, designated aldB. The DNA-predicted amino acid (aa) sequences of the two proteins (505 aa in AldA and 506 aa in AldB) are 84% identical. The cloned aldA and aldB genes were verified by their expression in the E. coli T7 polymerase/promoter and the pUC lac promoter systems. The expression level of AldA and its enzymatic activity towards CAA were both higher than those of AldB. In a hybrid construct, the 3'end of aldB was able to complement, although not completely, the corresponding portion of aldA to produce a functional gene. Both AldA and AldB proteins of GJ10 share the highest degree of sequence identity with an acetaldehyde dehydrogenase (ALDH) encoded by acoD of Alcaligenes eutrophus (77.3-78% identity). Together with at least three other ALDHs of prokaryotic origin, these proteins apparently form a special class of ALDHs whose expressions are dependent on RpoN factors. By pulsed-field gel electrophoresis the 225-kb pXAU1 plasmid encoding aldA was shown to be linear.
Collapse
Affiliation(s)
- H Bergeron
- Biotechnology Research Institute, National Research Council Canada, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
33
|
Priefert H, Rabenhorst J, Steinbüchel A. Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. J Bacteriol 1997; 179:2595-607. [PMID: 9098058 PMCID: PMC179009 DOI: 10.1128/jb.179.8.2595-2607.1997] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gene loci vdh, vanA, and vanB, which are involved in the bioconversion of vanillin to protocatechuate by Pseudomonas sp. strain HR199 (DSM 7063), were identified as the structural genes of a novel vanillin dehydrogenase (vdh) and the two subunits of a vanillate demethylase (vanA and vanB), respectively. These genes were localized on an EcoRI fragment (E230), which was cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The vdh gene was identified on a subfragment (HE35) of E230, and the vanA and vanB genes were localized on a different subfragment (H110) of E230. The nucleotide sequences of fragment HE35 and part of fragment H110 were determined, revealing open reading frames of 1062, 951, and 1446 bp, representing vanA, vanB, and vdh, respectively. The vdh gene was organized in one operon together with a fourth open reading frame (ORF2), of 735 bp, which was located upstream of vdh. The deduced amino acid sequences of vanA and vanB exhibited 78.8 and 62.1% amino acid identity, respectively, to the corresponding gene products from Pseudomonas sp. strain ATCC 19151 (F. Brunel and J. Davison, J. Bacteriol. 170:4924-4930, 1988). The deduced amino acid sequence of the vdh gene exhibited up to 35.3% amino acid identity to aldehyde dehydrogenases from different sources. The deduced amino acid sequence of ORF2 exhibited up to 28.4% amino acid identity to those of enoyl coenzyme A hydratases. Escherichia coli strains harboring fragment E230 cloned in pBluescript SK- converted vanillin to protocatechuate via vanillate, indicating the functional expression of vdh, vanA, and vanB in E. coli. High expression of vdh in E. coli was achieved with HE35 cloned in pBluescript SK-. The resulting recombinant strains converted vanillin to vanillate at a rate of up to 0.3 micromol per min per ml of culture. Transfer of vanA, vanB, and vdh to Alcaligenes eutrophus and to different Pseudomonas strains, which were unable to utilize vanillin or vanillate as carbon sources, respectively, conferred the ability to grow on these substrates to these bacteria.
Collapse
Affiliation(s)
- H Priefert
- Institut für Mikrobiologie der Westfälischen Wilhelms-Universitat Münster, Germany
| | | | | |
Collapse
|
34
|
Xu J, Johnson RC. aldB, an RpoS-dependent gene in Escherichia coli encoding an aldehyde dehydrogenase that is repressed by Fis and activated by Crp. J Bacteriol 1995; 177:3166-75. [PMID: 7768815 PMCID: PMC177007 DOI: 10.1128/jb.177.11.3166-3175.1995] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Escherichia coli aldB was identified as a gene that is negatively regulated by Fis but positively regulated by RpoS. The complete DNA sequence determined in this study indicates that aldB encodes a 56.3-kDa protein which shares a high degree of homology with an acetaldehyde dehydrogenase encoded by acoD of Alcaligenes eutrophus and an aldehyde dehydrogenase encoded by aldA of Vibrio cholerae and significant homology with a group of other aldehyde dehydrogenases from prokaryotes and eukaryotes. Expression of aldB is maximally induced during the transition from exponential phase to stationary phase. Its message levels are elevated three- to fourfold by a fis mutation and abolished by an rpoS mutation. In addition, the expression of an aldB-lacZ fusion was decreased about 20-fold in the absence of crp. DNase I footprinting analysis showed that five Fis binding sites and one Crp binding site are located within the aldB promoter region, suggesting that Fis and Crp are acting directly to control aldB transcription. AldB expression is induced by ethanol, but in contrast to that of most of the RpoS-dependent genes, the expression of aldB is not altered by an increase in medium osmolarity.
Collapse
Affiliation(s)
- J Xu
- Department of Biological Chemistry, UCLA School of Medicine 90095, USA
| | | |
Collapse
|
35
|
Pieper-Fürst U, Madkour MH, Mayer F, Steinbüchel A. Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules. J Bacteriol 1995; 177:2513-23. [PMID: 7730285 PMCID: PMC176912 DOI: 10.1128/jb.177.9.2513-2523.1995] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The function of the polyhydroxyalkanoic acid (PHA) granule-associated GA14 protein of Rhodococcus ruber was investigated in Escherichia coli XL1-Blue, which coexpressed this protein with the polyhydroxybutyric acid (PHB) biosynthesis operon of Alcaligenes eutrophus. The GA14 protein had no influence on the biosynthesis rate of PHB in E. coli XL1-Blue(pSKCO7), but this recombinant E. coli strain formed smaller PHB granules than were formed by an E. coli strain that expressed only the PHB operon. Immunoelectron microscopy with GA14-specific antibodies demonstrated the binding of GA14 protein to these mini granules. In a previous study, two hydrophobic domains close to the C terminus of the GA14 protein were analyzed, and a working hypothesis that suggested an anchoring of the GA14 protein in the phospholipid monolayer surrounding the PHA granule core by these hydrophobic domains was developed (U. Pieper-Fürst, M. H. Madkour, F. Mayer, and A. Steinbüchel, J. Bacteriol. 176:4328-4337, 1994). This hypothesis was confirmed by the construction of C-terminally truncated variants of the GA14 protein lacking the second or both hydrophobic domains and by the demonstration of their inability to bind to PHB granules. Further confirmation of the hypothesis was obtained by the construction of a fusion protein composed of the acetaldehyde dehydrogenase II of A. eutrophus and the C terminus of the GA14 protein containing both hydrophobic domains and by its affinity to native and artificial PHB granules.
Collapse
Affiliation(s)
- U Pieper-Fürst
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | | | | | |
Collapse
|
36
|
Xu J, Johnson RC. Identification of genes negatively regulated by Fis: Fis and RpoS comodulate growth-phase-dependent gene expression in Escherichia coli. J Bacteriol 1995; 177:938-47. [PMID: 7860604 PMCID: PMC176687 DOI: 10.1128/jb.177.4.938-947.1995] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Fis is a nucleoid-associated protein in Escherichia coli that has been shown to regulate recombination, replication, and transcription reactions. It is expressed in a transient manner under batch culturing conditions such that high levels are present during early exponential phase and low levels are present during late exponential phase and stationary phase. We have screened a random collection of transposon-induced lac fusions for those which give decreased expression in the presence of Fis. Thirteen different Fis-repressed genes were identified, including glnQ (glutamine high-affinity transport), mglA (methyl-galactoside transport), xylF (D-xylose-binding protein), sdhA (succinate dehydrogenase flavoprotein subunit), and a newly identified aldehyde dehydrogenase, aldB. The LacZ expression patterns revealed that many of the fusions were maximally expressed at different stages of growth, including early log phase, mid- to late log phase, and stationary phase. The expression of some of the late-exponential- and stationary-phase genes was dependent on the RpoS sigma factor, whereas that of others was affected negatively by RpoS. We conclude that Fis negatively regulates a diverse set of genes and that RpoS can function to both activate and inhibit the expression of specific genes.
Collapse
Affiliation(s)
- J Xu
- Department of Biological Chemistry, UCLA School of Medicine 90024
| | | |
Collapse
|
37
|
Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J, de Mot R. Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Bacteriol 1995; 177:676-87. [PMID: 7836301 PMCID: PMC176643 DOI: 10.1128/jb.177.3.676-687.1995] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Determination of the N-terminal sequences of two EPTC (S-ethyl dipropylcarbamothioate)-induced proteins from thiocarbamate-degrading Rhodococcus sp. strain NI86/21 resolved by two-dimensional electrophoresis enabled the localization of the respective structural genes on two distinct DNA fragments. One of these strongly induced proteins is a NAD(+)-dependent dehydrogenase active on aliphatic aldehydes. The second protein was identified as a cytochrome P-450 enzyme. The cytochrome P-450 gene represents the first member of a new family, CYP116. Downstream of the cytochrome P-450 gene, two genes for a [2Fe-2S] ferredoxin (rhodocoxin) and a ferredoxin reductase are located. A putative regulatory gene encoding a new member of the AraC-XylS family of positive transcriptional regulators is divergently transcribed from the cytochrome P-450 gene. By hybridization, it was demonstrated that the aldehyde dehydrogenase gene is widespread in the Rhodococcus genus, but the components of the cytochrome P-450 system are unique to Rhodococcus sp. strain NI86/21. Overexpression in Escherichia coli was achieved for all of these proteins except for the regulatory protein. Evidence for the involvement of this cytochrome P-450 system in EPTC degradation and herbicide biosafening for maize was obtained by complementation experiments using EPTC-negative Rhodococcus erythropolis SQ1 and mutant FAJ2027 as acceptor strains. N dealkylation by cytochrome P-450 and conversion of the released aldehyde into the corresponding carboxylic acid by aldehyde dehydrogenase are proposed as the reactions initiating thiocarbamate catabolism in Rhodococcus sp. strain NI86/21. In addition to the major metabolite N-depropyl EPTC, another degradation product was identified, EPTC-sulfoxide.
Collapse
Affiliation(s)
- I Nagy
- F. A. Janssens Laboratory of Genetics, Catholic University of Leuven, Heverless, Belgium
| | | | | | | | | | | |
Collapse
|
38
|
Sofia HJ, Burland V, Daniels DL, Plunkett G, Blattner FR. Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res 1994; 22:2576-86. [PMID: 8041620 PMCID: PMC308212 DOI: 10.1093/nar/22.13.2576] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The DNA sequence of a 225.4 kilobase segment of the Escherichia coli K-12 genome is described here, from 76.0 to 81.5 minutes on the genetic map. This brings the total of contiguous sequence from the E.coli genome project to 725.1 kb (76.0 to 92.8 minutes). We found 191 putative coding genes (ORFs) of which 72 genes were previously known, and 110 of which remain unidentified despite literature and similarity searches. Seven new genes--arsE, arsF, arsG, treF, xylR, xylG, and xylH--were identified as well as the previously mapped pit and dctA genes. The arrangement of proposed genes relative to possible promoters and terminators suggests 90 potential transcription units. Other features include 19 REP elements, 95 computer-predicted bends, 50 Chi sites, and one grey hole. Thirty-one putative signal peptides were found, including those of thirteen known membrane or periplasmic proteins. One tRNA gene (proK) and two insertion sequences (IS5 and IS150) are located in this segment. The genes in this region are organized with equal numbers oriented with or against replication.
Collapse
Affiliation(s)
- H J Sofia
- Laboratory of Genetics, University of Wisconsin, Madison 53706
| | | | | | | | | |
Collapse
|
39
|
Deng WL, Chang HY, Peng HL. Acetoin catabolic system of Klebsiella pneumoniae CG43: sequence, expression, and organization of the aco operon. J Bacteriol 1994; 176:3527-35. [PMID: 8206829 PMCID: PMC205540 DOI: 10.1128/jb.176.12.3527-3535.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A cosmid clone which was capable of depleting acetoin in vivo was isolated from a library of Klebsiella pneumoniae CG43 cosmids. The smallest functional subclone contained a 3.9-kb DNA fragment of the cosmid clone. Sequencing of the DNA fragment revealed three open reading frames (ORFs A, B, and C) encoding polypeptides of 34, 36, and 52 kDa, respectively. The presence of these proteins was demonstrated by expression of the recombinant DNA clone in Escherichia coli. Considerable similarities between the deduced amino acid sequences of the ORFs and those of the following enzymes were found: acetoin dissimilation enzymes, pyruvate dehydrogenase complex, 2-oxoglutarate dehydrogenase complex, and branched-chain 2-oxo acid dehydrogenase complex of various origins. Activities of these enzymes, including acetoin-dependent dichlorophenolin-dohenol oxidoreductase and dihydrolipoamide acetyltransferase, were detected in the extracts of E. coli harboring the genes encoding products of the three ORFs. Although not required for acetoin depletion in vivo, a possible fourth ORF (ORF D), located 39 nucleotides downstream of ORF C, was also identified. The deduced N-terminal sequence of the ORF D product was highly homologous to the dihydrolipoamide dehydrogenases of several organisms. Primer extension analysis identified the transcriptional start of the operon as an A residue 72 nucleotides upstream of ORF A.
Collapse
Affiliation(s)
- W L Deng
- Department of Microbiology and Immunology, Chang Gung College of Medicine and Technology, Tao Yuan, Taiwan
| | | | | |
Collapse
|
40
|
Krüger N, Oppermann FB, Lorenzl H, Steinbüchel A. Biochemical and molecular characterization of the Clostridium magnum acetoin dehydrogenase enzyme system. J Bacteriol 1994; 176:3614-30. [PMID: 8206840 PMCID: PMC205551 DOI: 10.1128/jb.176.12.3614-3630.1994] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
E2 (dihydrolipoamide acetyltransferase) and E3 (dihydrolipoamide dehydrogenase) of the Clostridium magnum acetoin dehydrogenase enzyme system were copurified in a three-step procedure from acetoin-grown cells. The denatured E2-E3 preparation comprised two polypeptides with M(r)s of 49,000 and 67,000, respectively. Microsequencing of both proteins revealed identical amino acid sequences. By use of oligonucleotide probes based on the N-terminal sequences of the alpha and beta subunits of E1 (acetoin dehydrogenase, thymine PPi dependent), which were purified recently (H. Lorenzl, F.B. Oppermann, B. Schmidt, and A. Steinbüchel, Antonie van Leeuwenhoek 63:219-225, 1993), and of E2-E3, structural genes acoA (encoding E1 alpha), acoB (encoding E1 beta), acoC (encoding E2), and acoL (encoding E3) were identified on a single ClaI restriction fragment and expressed in Escherichia coli. The nucleotide sequences of acoA (978 bp), acoB (999 bp), acoC (1,332 bp), and acoL (1,734 bp), as well as those of acoX (996 bp) and acoR (1,956 bp), were determined. The amino acid sequences deduced from acoA, acoB, acoC, and acoL for E1 alpha (M(r), 35,532), E1 beta (M(r), 35,541), E2 (M(r), 48,149), and E3 (M(r), 61,255) exhibited striking similarities to the amino acid sequences of the corresponding components of the Pelobacter carbinolicus acetoin dehydrogenase enzyme system and the Alcaligenes eutrophus acetoin-cleaving system, respectively. Significant homologies to the enzyme components of various 2-oxo acid dehydrogenase complexes were also found, indicating a close relationship between the two enzyme systems. As a result of the partial repetition of the 5' coding region of acoC into the corresponding part of acoL, the E3 component of the C. magnum acetoin dehydrogenase enzyme system contains an N-terminal lipoyl domain, which is unique among dihydrolipoamide dehydrogenases. We found strong similarities between the AcoR and AcoX sequences and the A. eutrophus acoR gene product, which is a regulatory protein required for expression of the A. eutrophus aco genes, and the A. eutrophus acoX gene product, which has an unknown function, respectively. The aco genes of C. magnum are probably organized in one single operon (acoABXCL); acoR maps upstream of this operon.
Collapse
Affiliation(s)
- N Krüger
- Institut für Mikrobiologie, Georg-August-Universität zu Göttingen, Germany
| | | | | | | |
Collapse
|
41
|
van der Ploeg J, Smidt MP, Landa AS, Janssen DB. Identification of Chloroacetaldehyde Dehydrogenase Involved in 1,2-Dichloroethane Degradation. Appl Environ Microbiol 1994; 60:1599-605. [PMID: 16349259 PMCID: PMC201523 DOI: 10.1128/aem.60.5.1599-1605.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The degradation of 1,2-dichloroethane and 2-chloroethanol by
Xanthobacter autotrophicus
GJ10 proceeds via chloroacetaldehyde, a reactive and potentially toxic intermediate. The organism produced at least three different aldehyde dehydrogenases, of which one is plasmid encoded. Two mutants of strain GJ10, designated GJ10M30 and GJ10M41, could no longer grow on 2-chloroethanol and were found to lack the NAD-dependent aldehyde dehydrogenase that is the predominant protein in wild-type cells growing on 2-chloroethanol. Mutant GJ10M30, selected on the basis of its resistance to 1,2-dibromoethane, also had lost haloalkane dehalogenase activity and Hg
2+
resistance, indicating plasmid loss. From a gene bank of strain GJ10, different clones that complemented one of these mutants were isolated. In both transconjugants, the aldehyde dehydrogenase that was absent in the mutants was overexpressed. The enzyme was purified and was a tetrameric protein of 55-kDa subunits. The substrate range was rather broad, with the highest activity measured for acetaldehyde. The
K
m
value for chloroacetaldehyde was 160 μM, higher than those for other aldehydes tested. It is concluded that the ability of GJ10 to grow with 2-chloroethanol is due to the high expression level of an aldehyde dehydrogenase with a rather low activity for chloroacetaldehyde.
Collapse
Affiliation(s)
- J van der Ploeg
- Department of Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
42
|
Overproduction of a stable acetaldehyde dehydrogenase with high affinity to acetaldehyde by Escherichia coli expressing the ACOD gene of Alcaligenes eutrophus. Biotechnol Lett 1993. [DOI: 10.1007/bf00129315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Priefert H, Steinbüchel A. Identification and molecular characterization of the acetyl coenzyme A synthetase gene (acoE) of Alcaligenes eutrophus. J Bacteriol 1992; 174:6590-9. [PMID: 1356967 PMCID: PMC207630 DOI: 10.1128/jb.174.20.6590-6599.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene locus acoE, which is involved in the utilization of acetoin in Alcaligenes eutrophus, was identified as the structural gene of an acetyl coenzyme A synthetase (acetate:coenzyme A ligase [AMP forming]; EC 6.2.1.1). This gene was localized on a 3.8-kbp SmaI-EcoRI subfragment of an 8.1-kbp EcoRI restriction fragment (fragment E) that was cloned recently (C. Fründ, H. Priefert, A. Steinbüchel, and H. G. Schlegel, J. Bacteriol. 171:6539-6548, 1989). The 1,983 bp acoE gene encoded a protein with a relative molecular weight of 72,519, and it was preceded by a putative Shine-Dalgarno sequence. A comparison analysis of the amino acid sequence deduced from acoE revealed a high degree of homology to primary structures of acetyl coenzyme A synthetases from other sources (amounting to up to 50.5% identical amino acids). Tn5 insertions in two transposon-induced mutants of A. eutrophus, that were impaired in the catabolism of acetoin were mapped 481 and 1,159 bp downstream from the translational start codon of acoE. The expression of acoE in Escherichia coli led to the formation of an acyl coenzyme A synthetase that accepted acetate as the preferred substrate (100% relative activity) but also reacted with propionate (46%) and hydroxypropionate (87%); fatty acids consisting of four or more carbon atoms were not accepted. In addition, evidence for the presence of a second acyl coenzyme A synthetase was obtained; this enzyme exhibited a different substrate specificity. The latter enzyme is obviously required for the activation of propionate, e.g., during the formation of the storage compound poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) when propionate is provided as the sole carbon source. An analysis of mutants provided evidence that the expression of the uptake protein for propionate depends on the presence of alternate sigma factor sigma 54.
Collapse
Affiliation(s)
- H Priefert
- Institut für Mikrobiologie Georg-August-Universität zu Göttingen, Germany
| | | |
Collapse
|
44
|
Krüger N, Steinbüchel A. Identification of acoR, a regulatory gene for the expression of genes essential for acetoin catabolism in Alcaligenes eutrophus H16. J Bacteriol 1992; 174:4391-400. [PMID: 1378052 PMCID: PMC206224 DOI: 10.1128/jb.174.13.4391-4400.1992] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Two hundred thirty-nine base pairs upstream from acoXABC, which encodes the Alcaligenes eutrophus H16 structural genes essential for cleavage of acetoin, the 2,004-bp acoR gene was identified. acoR encodes a protein of 668 amino acids with a molecular mass of 72.9 kDa. The amino acid sequence deduced from acoR exhibited homologies to the primary structures of transcriptional activators such as NifA of Azotobacter vinelandii, NtrC of Klebsiella pneumoniae, and HoxA of A. eutrophus. Striking similarities to the central domain of these proteins and the presence of a typical nucleotide-binding site (GETGSGK) as well as of a C-terminal helix-turn-helix motif as a DNA-binding site were revealed. Between acoR and acoXABC, two different types of sequences with dual rotational symmetry [CAC-(N11 to N18)-GTG and TGT-(N10 to N14)-ACA] were found; these sequences are similar to NtrC and NifA upstream activator sequences, respectively. Determination of the N-terminal amino acid sequence of an acoR'-'lacZ gene fusion identified the translational start of acoR. S1 nuclease protection assay identified the transcriptional start site 109 bp upstream of acoR. The promoter region (TTGCGC-N18-TACATT) resembled the sigma 70 consensus sequence of Escherichia coli. Analysis of an acoR'-'lacZ fusion and primer extension studies revealed that acoR was expressed at a low level under all culture conditions, whereas acoXABC was expressed only in acetoin-grown cells. The insertions of Tn5 in six transposon-induced acetoin-negative mutants of A. eutrophus were mapped within acoR. On the basis of these studies, it is probable that AcoR represents a regulatory protein which is required for sigma 54-dependent transcription of acoXABC.
Collapse
MESH Headings
- Acetoin/metabolism
- Alcaligenes/genetics
- Alcaligenes/metabolism
- Amino Acid Sequence
- Bacterial Proteins
- Base Sequence
- Cloning, Molecular
- DNA Transposable Elements
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA-Binding Proteins
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Genes, Regulator
- Molecular Sequence Data
- Mutagenesis, Insertional
- Oligodeoxyribonucleotides
- Plasmids
- Promoter Regions, Genetic
- RNA, Bacterial/genetics
- RNA, Bacterial/isolation & purification
- Restriction Mapping
- Sequence Homology, Nucleic Acid
- Terminator Regions, Genetic
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- N Krüger
- Institut für Mikrobiologie, Georg-August-Universität zu Göttingen, Germany
| | | |
Collapse
|