1
|
Muratov E, Rosenbaum FP, Fuchs FM, Ulrich NJ, Awakowicz P, Setlow P, Moeller R. Multifactorial resistance of Bacillus subtilis spores to low-pressure plasma sterilization. Appl Environ Microbiol 2024; 90:e0132923. [PMID: 38112445 PMCID: PMC10807416 DOI: 10.1128/aem.01329-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023] Open
Abstract
Common sterilization techniques for labile and sensitive materials have far-reaching applications in medical, pharmaceutical, and industrial fields. Heat inactivation, chemical treatment, and radiation are established methods to inactivate microorganisms, but pose a threat to humans and the environment and can damage susceptible materials or products. Recent studies have demonstrated that cold low-pressure plasma (LPP) treatment is an efficient alternative to common sterilization methods, as LPP's levels of radicals, ions, (V)UV-radiation, and exposure to an electromagnetic field can be modulated using different process gases, such as oxygen, nitrogen, argon, or synthetic (ambient) air. To further investigate the effects of LPP, spores of the Gram-positive model organism Bacillus subtilis were tested for their LPP susceptibility including wild-type spores and isogenic spores lacking DNA-repair mechanisms such as non-homologous end-joining (NHEJ) or abasic endonucleases, and protective proteins like α/β-type small acid-soluble spore proteins (SASP), coat proteins, and catalase. These studies aimed to learn how spores resist LPP damage by examining the roles of key spore proteins and DNA-repair mechanisms. As expected, LPP treatment decreased spore survival, and survival after potential DNA damage generated by LPP involved efficient DNA repair following spore germination, spore DNA protection by α/β-type SASP, and catalase breakdown of hydrogen peroxide that can generate oxygen radicals. Depending on the LPP composition and treatment time, LPP treatment offers another method to efficiently inactivate spore-forming bacteria.IMPORTANCESurface-associated contamination by endospore-forming bacteria poses a major challenge in sterilization, since the omnipresence of these highly resistant spores throughout nature makes contamination unavoidable, especially in unprocessed foods. Common bactericidal agents such as heat, UV and γ radiation, and toxic chemicals such as strong oxidizers: (i) are often not sufficient to completely inactivate spores; (ii) can pose risks to the applicant; or (iii) can cause unintended damage to the materials to be sterilized. Cold low-pressure plasma (LPP) has been proposed as an additional method for spore eradication. However, efficient use of LPP in decontamination requires understanding of spores' mechanisms of resistance to and protection against LPP.
Collapse
Affiliation(s)
- Erika Muratov
- Radiation Biology Department, Aerospace Microbiology, Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Florian P. Rosenbaum
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Felix M. Fuchs
- Applied Electrodynamics and Plasma Technology, Biomedical Applications of Plasma Technology, Ruhr University Bochum, Bochum, Germany
| | - Nikea J. Ulrich
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Peter Awakowicz
- Applied Electrodynamics and Plasma Technology, Biomedical Applications of Plasma Technology, Ruhr University Bochum, Bochum, Germany
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Ralf Moeller
- Radiation Biology Department, Aerospace Microbiology, Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| |
Collapse
|
2
|
Setlow P, Christie G. New Thoughts on an Old Topic: Secrets of Bacterial Spore Resistance Slowly Being Revealed. Microbiol Mol Biol Rev 2023; 87:e0008022. [PMID: 36927044 PMCID: PMC10304885 DOI: 10.1128/mmbr.00080-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The quest for bacterial survival is exemplified by spores formed by some Firmicutes members. They turn up everywhere one looks, and their ubiquity reflects adaptations to the stresses bacteria face. Spores are impactful in public health, food safety, and biowarfare. Heat resistance is the hallmark of spores and is countered principally by a mineralized gel-like protoplast, termed the spore core, with reduced water which minimizes macromolecular movement/denaturation/aggregation. Dry heat, however, introduces mutations into spore DNA. Spores have countermeasures to extreme conditions that are multifactorial, but the fact that spore DNA is in a crystalline-like nucleoid in the spore core, likely due to DNA saturation with small acid-soluble spore proteins (SASPs), suggests that reduced macromolecular motion is also critical in spore dry heat resistance. SASPs are also central in the radiation resistance characteristic of spores, where the contributions of four spore features-SASP; Ca2+, with pyridine-2,6-dicarboxylic acid (CaDPA); photoproduct lyase; and low water content-minimize DNA damage. Notably, the spore environment steers UV photochemistry toward a product that germinated spores can repair without significant mutagenesis. This resistance extends to chemicals and macromolecules that could damage spores. Macromolecules are excluded by the spore coat which impedes the passage of moieties of ≥10 kDa. Additionally, damaging chemicals may be degraded or neutralized by coat enzymes/proteins. However, the principal protective mechanism here is the inner membrane, a compressed structure lacking lipid fluidity and presenting a barrier to the diffusion of chemicals into the spore core; SASP saturation of DNA also protects against genotoxic chemicals. Spores are also resistant to other stresses, including high pressure and abrasion. Regardless, overarching mechanisms associated with resistance seem to revolve around reduced molecular motion, a fine balance between rigidity and flexibility, and perhaps efficient repair.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Nguyen MCT, Nguyen HQ, Jang H, Noh S, Lee SY, Jang KS, Lee J, Sohn Y, Yee K, Jung H, Kim J. Sterilization effects of UV laser irradiation on Bacillus atrophaeus spore viability, structure, and proteins. Analyst 2021; 146:7682-7692. [PMID: 34812439 DOI: 10.1039/d1an01717a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bacillus spores are highly resistant to toxic chemicals and extreme environments. Because some Bacillus species threaten public health, spore inactivation techniques have been intensively investigated. We exposed Bacillus atrophaeus spores to a 266 nm Nd:YVO4 laser at a laser power of 1 W and various numbers of scans. As a result, the UV laser reduced the viability of Bacillus atrophaeus spores. Although the outer coat of spores remained intact after UV laser irradiation of 720 scans, damage inside the spores was observed. Spore proteins were identified by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry during the course of UV laser irradiation. Photochemical and photothermal processes are believed to be involved in the UV laser sterilization of Bacillus spores. Our findings suggest that a UV laser is capable of sterilizing Bacillus atrophaeus spores.
Collapse
Affiliation(s)
- My-Chi Thi Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Huu-Quang Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hanbyeol Jang
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sojung Noh
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seong-Yeon Lee
- Department of Physics and Institute of Quantum Systems, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.,Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Youngku Sohn
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.,Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kiju Yee
- Department of Physics and Institute of Quantum Systems, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Heesoo Jung
- Chem-Bio Technology Center, Agency for Defense Development (ADD), Yuseong P.O. Box 35, Daejeon, 34186, Republic of Korea.
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.,Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Engineered Bacteriophage as a Delivery Vehicle for Antibacterial Protein, SASP. Pharmaceuticals (Basel) 2021; 14:ph14101038. [PMID: 34681262 PMCID: PMC8538823 DOI: 10.3390/ph14101038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
The difficulties in developing novel classes of antibacterials is leading to a resurgence of interest in bacteriophages as therapeutic agents, and in particular engineered phages that can be optimally designed. Here, pre-clinical microbiology assessment is presented of a Staphylococcus aureus phage engineered to deliver a gene encoding an antibacterial small acid soluble spore protein (SASP) and further, rendered non-lytic to give product SASPject PT1.2. PT1.2 has been developed initially for nasal decolonisation of S. aureus, including methicillin-resistant S. aureus. Time-kill curve assays were conducted with PT1.2 against a range of staphylococcal species, and serial passaging experiments were conducted to investigate the potential for resistance to develop. SASPject PT1.2 demonstrates activity against 100% of 225 geographically diverse S. aureus isolates, exquisite specificity for S. aureus, and a rapid speed of kill. The kinetics of S. aureus/PT1.2 interaction is examined together with demonstrating that PT1.2 activity is unaffected by the presence of human serum albumin. SASPject PT1.2 shows a low propensity for resistance to develop with no consistent shift in sensitivity in S. aureus cells passaged for up to 42 days. SASPject PT1.2 shows promise as a novel first-in-class antibacterial agent and demonstrates potential for the SASPject platform.
Collapse
|
5
|
Francés-Monerris A, Hognon C, Douki T, Monari A. Photoinduced DNA Lesions in Dormant Bacteria: The Peculiar Route Leading to Spore Photoproducts Characterized by Multiscale Molecular Dynamics*. Chemistry 2020; 26:14236-14241. [PMID: 32597544 DOI: 10.1002/chem.202002484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Indexed: 11/07/2022]
Abstract
Some bacterial species enter a dormant state in the form of spores to resist to unfavorable external conditions. Spores are resistant to a wide series of stress agents, including UV radiation, and can last for tens to hundreds of years. Due to the suspension of biological functions, such as DNA repair, they accumulate DNA damage upon exposure to UV radiation. Differently from active organisms, the most common DNA photoproducts in spores are not cyclobutane pyrimidine dimers, but rather the so-called spore photoproducts. This noncanonical photochemistry results from the dry state of DNA and its binding to small, acid-soluble proteins that drastically modify the structure and photoreactivity of the nucleic acid. Herein, multiscale molecular dynamics simulations, including extended classical molecular dynamics and quantum mechanics/molecular mechanics based dynamics, are used to elucidate the coupling of electronic and structural factors that lead to this photochemical outcome. In particular, the well-described impact of the peculiar DNA environment found in spores on the favored formation of the spore photoproduct, given the small free energy barrier found for this path, is rationalized. Meanwhile, the specific organization of spore DNA precludes the photochemical path that leads to cyclobutane pyrimidine dimer formation.
Collapse
Affiliation(s)
- Antonio Francés-Monerris
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
- Departament de Química Física, Universitat de València, 46100, Burjassot, Spain
| | - Cécilia Hognon
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
- Université de Lorraine and CNRS, CRAN UMR 7039, 54000, Nancy, France
| | - Thierry Douki
- SyMMES, CEA, CNRS, IRIG, University Grenoble Alpes, 38000, Grenoble, France
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| |
Collapse
|
6
|
Setlow P, Li L. Photochemistry and Photobiology of the Spore Photoproduct: A 50-Year Journey. Photochem Photobiol 2015; 91:1263-90. [PMID: 26265564 PMCID: PMC4631623 DOI: 10.1111/php.12506] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/21/2015] [Indexed: 02/06/2023]
Abstract
Fifty years ago, a new thymine dimer was discovered as the dominant DNA photolesion in UV-irradiated bacterial spores [Donnellan, J. E. & Setlow R. B. (1965) Science, 149, 308-310], which was later named the spore photoproduct (SP). Formation of SP is due to the unique environment in the spore core that features low hydration levels favoring an A-DNA conformation, high levels of calcium dipicolinate that acts as a photosensitizer, and DNA saturation with small, acid-soluble proteins that alters DNA structure and reduces side reactions. In vitro studies reveal that any of these factors alone can promote SP formation; however, SP formation is usually accompanied by the production of other DNA photolesions. Therefore, the nearly exclusive SP formation in spores is due to the combined effects of these three factors. Spore photoproduct photoreaction is proved to occur via a unique H-atom transfer mechanism between the two involved thymine residues. Successful incorporation of SP into an oligonucleotide has been achieved via organic synthesis, which enables structural studies that reveal minor conformational changes in the SP-containing DNA. Here, we review the progress on SP photochemistry and photobiology in the past 50 years, which indicates a very rich SP photobiology that may exist beyond endospores.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, 46202
- Department of Biochemistry and Molecular Biology & Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
7
|
Lin G, Jian Y, Dria KJ, Long EC, Li L. Reactivity of damaged pyrimidines: DNA cleavage via hemiaminal formation at the C4 positions of the saturated thymine of spore photoproduct and dihydrouridine. J Am Chem Soc 2014; 136:12938-46. [PMID: 25127075 PMCID: PMC4183628 DOI: 10.1021/ja505407p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Described
here are mechanistic details of the chemical reactivities
of two modified/saturated pyrimidine residues that represent naturally
occurring forms of DNA damage: 5-thyminyl-5,6-dihydrothymine, commonly
referred to as the “spore photoproduct” (SP), and 5,6-dihydro-2′-deoxyuridine
(dHdU), formed via ionizing radiation damage to cytosine under anoxic
conditions and also serving as a general model of saturated pyrimidine
residues. It is shown that due to the loss of the pyrimidine C5–C6
double bond and consequent loss of ring aromaticity, the C4 position
of both these saturated pyrimidines is prone to the formation of a
hemiaminal intermediate via water addition. Water addition is facilitated
by basic conditions; however, it also occurs at physiological pH at
a slower rate. The hemiaminal species so-formed subsequently converts
to a ring-opened hydrolysis product through cleavage of the pyrimidine
N3–C4 bond. Further decomposition of this ring-opened product
above physiological pH leads to DNA strand break formation. Taken
together, these results suggest that once the aromaticity of a pyrimidine
residue is lost, the C4 position becomes a “hot spot”
for the formation of a tetrahedral intermediate, the decay of which
triggers a cascade of elimination reactions that can under certain
conditions convert a simple nucleobase modification into a DNA strand
break.
Collapse
Affiliation(s)
- Gengjie Lin
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI) , 402 North Blackford Street, Indianapolis, Indiana 46202, United States
| | | | | | | | | |
Collapse
|
8
|
Du Q, Zhao H, Su H. Theoretical Investigation on the Absence of Spore Photoproduct Analogue at Cytosine‐Thymine Site. CHINESE J CHEM PHYS 2013. [DOI: 10.1063/1674-0068/26/06/661-668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Li L. Mechanistic studies of the radical SAM enzyme spore photoproduct lyase (SPL). BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1824:1264-77. [PMID: 22197590 PMCID: PMC3314140 DOI: 10.1016/j.bbapap.2011.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/28/2011] [Indexed: 02/06/2023]
Abstract
Spore photoproduct lyase (SPL) repairs a special thymine dimer 5-thyminyl-5,6-dihydrothymine, which is commonly called spore photoproduct or SP at the bacterial early germination phase. SP is the exclusive DNA photo-damage product in bacterial endospores; its generation and swift repair by SPL are responsible for the spores' extremely high UV resistance. The early in vivo studies suggested that SPL utilizes a direct reversal strategy to repair the SP in the absence of light. The research in the past decade further established SPL as a radical SAM enzyme, which utilizes a tri-cysteine CXXXCXXC motif to harbor a [4Fe-4S] cluster. At the 1+ oxidation state, the cluster provides an electron to the S-adenosylmethionine (SAM), which binds to the cluster in a bidentate manner as the fourth and fifth ligands, to reductively cleave the CS bond associated with the sulfonium ion in SAM, generating a reactive 5'-deoxyadenosyl (5'-dA) radical. This 5'-dA radical abstracts the proR hydrogen atom from the C6 carbon of SP to initiate the repair process; the resulting SP radical subsequently fragments to generate a putative thymine methyl radical, which accepts a back-donated H atom to yield the repaired TpT. SAM is suggested to be regenerated at the end of each catalytic cycle; and only a catalytic amount of SAM is needed in the SPL reaction. The H atom source for the back donation step is suggested to be a cysteine residue (C141 in Bacillus subtilis SPL), and the H-atom transfer reaction leaves a thiyl radical behind on the protein. This thiyl radical thus must participate in the SAM regeneration process; however how the thiyl radical abstracts an H atom from the 5'-dA to regenerate SAM is unknown. This paper reviews and discusses the history and the latest progress in the mechanistic elucidation of SPL. Despite some recent breakthroughs, more questions are raised in the mechanistic understanding of this intriguing DNA repair enzyme. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Seki KI, Aizawa K, Sugaoi T, Kimura M, Ohkura K. Synthesis of Highly Conjugated Arylpropenylidene-1,3-diazin-2-ones via Paterno–Büchi Reaction by Photoreaction of 5-Fluoro-1,3-dimethyluracil with 1-Methoxynaphthalenes. CHEM LETT 2008. [DOI: 10.1246/cl.2008.872] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Leyva-Illades JF, Setlow B, Sarker MR, Setlow P. Effect of a small, acid-soluble spore protein from Clostridium perfringens on the resistance properties of Bacillus subtilis spores. J Bacteriol 2007; 189:7927-31. [PMID: 17766414 PMCID: PMC2168745 DOI: 10.1128/jb.01179-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alpha/beta-type small, acid-soluble spore proteins (SASP) are essential for the resistance of DNA in spores of Bacillus species to damage. An alpha/beta-type SASP, Ssp2, from Clostridium perfringens was expressed at significant levels in B. subtilis spores lacking one or both major alpha/beta-type SASP (alpha- and alpha- beta- strains, respectively). Ssp2 restored some of the resistance of alpha- beta- spores to UV and nitrous acid and of alpha- spores to dry heat. Ssp2 also restored much of the resistance of alpha- spores to nitrous acid and restored full resistance of alpha- spores to UV and moist heat. These results further indicate the interchangeability of alpha/beta-type SASP in DNA protection in spores.
Collapse
Affiliation(s)
- Juan Francisco Leyva-Illades
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | | | | | | |
Collapse
|
12
|
Douki T, Setlow B, Setlow P. Effects of the Binding of α/β-type Small, Acid-soluble Spore Proteins on the Photochemistry of DNA in Spores of Bacillus subtilis and In Vitro¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb01536.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Douki T. Low ionic strength reduces cytosine photoreactivity in UVC-irradiated isolated DNA. Photochem Photobiol Sci 2006; 5:1045-51. [PMID: 17077901 DOI: 10.1039/b604517k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Exposure of DNA to far-UV radiation leads to the formation of several types of dimeric lesions, including cyclobutane dimers and (6-4) photoproducts. In order to gain insights into the main parameters driving DNA photochemistry, the effect of ionic strength on the yield of formation of these photoproducts was investigated in UVC-irradiated samples of isolated genomic DNA. The main consequence of lowering the ionic strength was a decrease in the UVC-induced formation of thymine-cytosine and cytosine-cytosine photoproducts. The reactivity of thymine-thymine and cytosine-thymine doublets was hardly affected. Evidence was obtained against a major role played by duplex denaturation in these observations. A more likely explanation is a change in the DNA structure as the result of a larger extent of protonation at low counter-ions concentration.
Collapse
Affiliation(s)
- Thierry Douki
- Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique UMR-E 3 CEA-UJF, CEA/DSM/Département de Recherche Fondamentale sur la Matière Condensée, CEA-Grenoble, 38054, Grenoble Cedex 9, France.
| |
Collapse
|
14
|
Douki T, Setlow B, Setlow P. Effects of the Binding of α/β-type Small, Acid-soluble Spore Proteins on the Photochemistry of DNA in Spores of Bacillus subtilis and In Vitro¶. Photochem Photobiol 2005. [DOI: 10.1562/2004-08-18-ra-278.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Douki T, Setlow B, Setlow P. Photosensitization of DNA by dipicolinic acid, a major component of spores of Bacillus species. Photochem Photobiol Sci 2005; 4:591-7. [PMID: 16052264 DOI: 10.1039/b503771a] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The DNA in spores of Bacillus species exhibits a relatively novel photochemistry, as 5-thyminyl-5,6-dihydrothymine (spore photoproduct (SP)) is by far the major UV photoproduct whereas cyclobutane dimers (CPDs) and (6-4) photoproducts (6-4PPs) are the major photoproducts in growing cells. Dehydration and more importantly complexation of DNA by alpha/beta-type small, acid-soluble spore proteins (SASP) have been shown to partly explain the photochemistry of spore DNA. The large amount ( approximately 10% of dry weight) of the spore's dipicolinic acid (DPA) also has been shown to play a role in spore DNA photochemistry. In the present work we showed by exposing spores of various strains of B. subtilis to UVC radiation that DPA photosensitizes spore DNA to damage and favors the formation of SP. The same result was obtained in either the presence or absence of the alpha/beta-type SASP that saturate the spore chromosome. Addition of DPA to dry films of isolated DNA or to frozen solutions of thymidine also led to a higher yield of SP and increased ratio of CPDs to 6-4PPs; DPA also significantly increased the yield of CPDs in thymidine exposed to UVC in liquid solution. These observations strongly support a triplet energy transfer between excited DPA and thymine residues. We further conclude that the combined effects of alpha/beta-type SASP and DPA explain the novel photochemistry of DNA in spores of Bacillus species.
Collapse
Affiliation(s)
- Thierry Douki
- Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, CEA/DSM/Departément de Rechevche Fondamentale sur la Matière Condensée, CEA-Grenoble, Grenoble Cedex, France.
| | | | | |
Collapse
|
16
|
Abstract
Although analysis strategies exist for probing a diverse array of molecular properties, most of these approaches are not amenable to the study of reaction intermediates and other transient species. Separations in particular can provide detailed information on attributes not readily measured by spectroscopy but typically are performed over time scales much longer than the life span of highly unstable compounds. Here we report the development of an electrophoretic strategy that dramatically extends the practical speed limit for fractionations and demonstrate its utility in examining transient hydroxyindole photoproducts. Fluorescent reaction intermediates are optically generated in femtoliter volumes within a flowing reagent stream and are differentially transported at velocities as large as 1.3 m.s(-1), thereby minimizing band variance and allowing multicomponent reaction mixtures to be resolved over separation paths as short as 9 microm. Analyte migration times and band variances do not deviate significantly from basic theory for separations performed with fields that exceed 0.1 MV.cm(-1), indicating that effects from Joule heating are minor. We demonstrate the feasibility of achieving baseline resolution of a binary mixture in <10 micros, nearly 100-fold faster than previously possible. Application of this approach to the study of a range of short-lived molecules should be feasible.
Collapse
Affiliation(s)
- Matthew L Plenert
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology and the Center for Nano- and Molecular Science and Engineering, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
17
|
Rice JK, Ewell M. Examination of peak power dependence in the UV inactivation of bacterial spores. Appl Environ Microbiol 2001; 67:5830-2. [PMID: 11722941 PMCID: PMC93378 DOI: 10.1128/aem.67.12.5830-5832.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examine whether the rate of delivery of photons from a UV radiation source has an effect on the inactivation of spores. We directly compare the output of a high-peak-power UV laser source at 248 nm to a low-power continuous lamp source (254 nm) in the inactivation of Bacillus subtilis spores. The two UV sources differ by a factor of 10(8) in peak power. Contrary to previous reports, no clear differences in spore survival were observed.
Collapse
Affiliation(s)
- J K Rice
- Chemistry Division, Naval Research Laboratory, Washington, DC 20375-5342, USA.
| | | |
Collapse
|
18
|
Setlow P. Resistance of spores of Bacillus species to ultraviolet light. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:97-104. [PMID: 11746741 DOI: 10.1002/em.1058] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Dormant spores of the various Bacillus species, including B. subtilis, are 5 to 50 times more resistant to UV radiation than are the corresponding growing cells. This elevated spore UV resistance is due to: a) the photochemistry of DNA within spores, as UV generates few if any cyclobutane dimers, but rather a photoproduct (Fig. 1) called spore photoproduct (SP; 5-thyminyl-5,6-dihydrothymine); and b) DNA repair, in particular SP-specific repair, during spore germination. The novel UV photochemistry of spore DNA is largely due to its saturation with a group of small, acid-soluble proteins (SASP), which are unique to spores and whose binding alters the DNA conformation and thus its photochemistry. SP-specific repair is also unique to spores and is carried out by a light-independent SP-lyase, an iron-sulfur protein that utilizes S-adenosylmethionine to catalyze SP monomerization without DNA backbone cleavage.
Collapse
Affiliation(s)
- P Setlow
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032, USA.
| |
Collapse
|
19
|
Warriner K, Rysstad G, Murden A, Rumsby P, Thomas D, Waites WM. Inactivation of Bacillus subtilis spores on packaging surfaces by u. v. excimer laser irradiation. J Appl Microbiol 2000; 88:678-85. [PMID: 10792527 DOI: 10.1046/j.1365-2672.2000.01015.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ultraviolet (u.v.) laser irradiation has been used to inactivate Bacillus subtilis spores deposited on to planar aluminium- and polyethylene-coated packaging surfaces. Kill kinetics were found to be diphasic, with an initial rapid inactivation phase followed by tailing. Although no definitive evidence was obtained, it is thought that spores located within packaging crevices/pores were primarily responsible for the observed tailing. Surviving spores were also found on the unexposed underside of cards and, to a lesser extent, within clumps. The log count reduction in B. subtilis was dependent on spore loading and total u.v. dose. In comparison, packaging surface composition, fluence (2-18 Jm-2) and frequency (40-150 Hz) had only a negligible effect. By irradiating boards carrying 106 spores, with a dose of 11.5 J cm-2, a log count reduction >5 was obtained. The mode of spore inactivation was primarily through DNA disruption. This was confirmed by the high sensitivity of spores lacking protective, small, acid-soluble proteins, in addition to the high frequency of auxotrophic and asporogenous mutations found amongst survivors.
Collapse
Affiliation(s)
- K Warriner
- Division of Food Sciences, School of Biological Sciences, University of Nottingham, Loughborough, UK
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Differentiation between spore-forming and asporogenic bacteria using a PCR and Southern hybridization based method. J Microbiol Methods 1997. [DOI: 10.1016/s0167-7012(97)00091-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Sabli M, Setlow P, Waites W. The effect of hypochlorite on spores of Bacillus subtilis lacking small acid-soluble proteins. Lett Appl Microbiol 1996. [DOI: 10.1111/j.1472-765x.1996.tb01190.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Abstract
The removal of cell-bound water through air drying and the addition of water to air-dried cells are forces that have played a pivotal role in the evolution of the prokaryotes. In bacterial cells that have been subjected to air drying, the evaporation of free cytoplasmic water (Vf) can be instantaneous, and an equilibrium between cell-bound water (Vb) and the environmental water (vapor) potential (psi wv) may be achieved rapidly. In the air-dried state some bacteria survive only for seconds whereas others can tolerate desiccation for thousands, perhaps millions, of years. The desiccated (anhydrobiotic) cell is characterized by its singular lack of water--with contents as low as 0.02 g of H2O g (dry weight)-1. At these levels the monolayer coverage by water of macromolecules, including DNA and proteins, is disturbed. As a consequence the mechanisms that confer desiccation tolerance upon air-dried bacteria are markedly different from those, such as the mechanism of preferential exclusion of compatible solutes, that preserve the integrity of salt-, osmotically, and freeze-thaw-stressed cells. Desiccation tolerance reflects a complex array of interactions at the structural, physiological, and molecular levels. Many of the mechanisms remain cryptic, but it is clear that they involve interactions, such as those between proteins and co-solvents, that derive from the unique properties of the water molecule. A water replacement hypothesis accounts for how the nonreducing disaccharides trehalose and sucrose preserve the integrity of membranes and proteins. Nevertheless, we have virtually no insight into the state of the cytoplasm of an air-dried cell. There is no evidence for any obvious adaptations of proteins that can counter the effects of air drying or for the occurrence of any proteins that provide a direct and a tangible contribution to cell stability. Among the prokaryotes that can exist as anhydrobiotic cells, the cyanobacteria have a marked capacity to do so. One form, Nostoc commune, encompasses a number of the features that appear to be critical to the withstanding of a long-term water deficit, including the elaboration of a conspicuous extracellular glycan, synthesis of abundant UV-absorbing pigments, and maintenance of protein stability and structural integrity. There are indications of a growing technology for air-dried cells and enzymes. Paradoxically, desiccation tolerance of bacteria has virtually been ignored for the past quarter century. The present review considers what is known, and what is not known, about desiccation, a phenomenon that impinges upon every facet of the distributions and activities of prokaryotic cells.
Collapse
Affiliation(s)
- M Potts
- Department of Biochemistry and Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061
| |
Collapse
|
24
|
Abstract
The removal of cell-bound water through air drying and the addition of water to air-dried cells are forces that have played a pivotal role in the evolution of the prokaryotes. In bacterial cells that have been subjected to air drying, the evaporation of free cytoplasmic water (Vf) can be instantaneous, and an equilibrium between cell-bound water (Vb) and the environmental water (vapor) potential (psi wv) may be achieved rapidly. In the air-dried state some bacteria survive only for seconds whereas others can tolerate desiccation for thousands, perhaps millions, of years. The desiccated (anhydrobiotic) cell is characterized by its singular lack of water--with contents as low as 0.02 g of H2O g (dry weight)-1. At these levels the monolayer coverage by water of macromolecules, including DNA and proteins, is disturbed. As a consequence the mechanisms that confer desiccation tolerance upon air-dried bacteria are markedly different from those, such as the mechanism of preferential exclusion of compatible solutes, that preserve the integrity of salt-, osmotically, and freeze-thaw-stressed cells. Desiccation tolerance reflects a complex array of interactions at the structural, physiological, and molecular levels. Many of the mechanisms remain cryptic, but it is clear that they involve interactions, such as those between proteins and co-solvents, that derive from the unique properties of the water molecule. A water replacement hypothesis accounts for how the nonreducing disaccharides trehalose and sucrose preserve the integrity of membranes and proteins. Nevertheless, we have virtually no insight into the state of the cytoplasm of an air-dried cell. There is no evidence for any obvious adaptations of proteins that can counter the effects of air drying or for the occurrence of any proteins that provide a direct and a tangible contribution to cell stability. Among the prokaryotes that can exist as anhydrobiotic cells, the cyanobacteria have a marked capacity to do so. One form, Nostoc commune, encompasses a number of the features that appear to be critical to the withstanding of a long-term water deficit, including the elaboration of a conspicuous extracellular glycan, synthesis of abundant UV-absorbing pigments, and maintenance of protein stability and structural integrity. There are indications of a growing technology for air-dried cells and enzymes. Paradoxically, desiccation tolerance of bacteria has virtually been ignored for the past quarter century. The present review considers what is known, and what is not known, about desiccation, a phenomenon that impinges upon every facet of the distributions and activities of prokaryotic cells.
Collapse
Affiliation(s)
- M Potts
- Department of Biochemistry and Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061
| |
Collapse
|
25
|
Setlow P. Mechanisms which contribute to the long-term survival of spores of Bacillus species. SOCIETY FOR APPLIED BACTERIOLOGY SYMPOSIUM SERIES 1994; 23:49S-60S. [PMID: 8047910 DOI: 10.1111/j.1365-2672.1994.tb04357.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- P Setlow
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030-3305
| |
Collapse
|
26
|
Setlow B, Setlow P. Binding of small, acid-soluble spore proteins to DNA plays a significant role in the resistance of Bacillus subtilis spores to hydrogen peroxide. Appl Environ Microbiol 1993; 59:3418-23. [PMID: 8250563 PMCID: PMC182468 DOI: 10.1128/aem.59.10.3418-3423.1993] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Dormant spores of Bacillus subtilis which lack the majority of the alpha/beta-type small, acid-soluble proteins (SASP) (termed alpha- beta- spores) that coat the DNA in wild-type spores are significantly more sensitive to hydrogen peroxide than are wild-type spores. Hydrogen peroxide treatment of alpha- beta- spores causes DNA strand breaks more readily than does comparable treatment of wild-type spores, and alpha- beta- spores, but not wild-type spores, which survive hydrogen peroxide treatment have acquired a significant number of mutations. The hydrogen peroxide resistance of wild-type spores appears to be acquired in at least two incremental steps during sporulation. The first increment is acquired at about the time of alpha/beta-type SASP synthesis, and the second increment is acquired approximately 2 h later, at about the time of dipicolinic acid accumulation. During sporulation of the alpha- beta- strain, only the second increment of hydrogen peroxide resistance is acquired. In contrast, sporulation mutants which accumulate alpha/beta-type SASP but progress no further in sporulation acquire only the first increment of hydrogen peroxide resistance. These findings strongly suggest that binding of alpha/beta-type SASP to DNA provides one increment of spore hydrogen peroxide resistance. Indeed, binding of alpha/beta-type SASP to DNA in vitro provides strong protection against cleavage of DNA by hydrogen peroxide.
Collapse
Affiliation(s)
- B Setlow
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030-3305
| | | |
Collapse
|
27
|
Abstract
The initiation of sporulation in Bacillus subtilis is regulated by a signal transduction system leading to activation (by phosphorylation) of the Spo0A transcription factor. Activated Spo0A controls the expression of genes encoding different RNA polymerase sigma factors, whose synthesis and activities are related to morphological events and intercompartmental communication between the developing forespore and the mother cell.
Collapse
Affiliation(s)
- M A Strauch
- Department of Molecular and Experimental Medicine, Scripps Research Institute La Jolla, CA 92037
| | | |
Collapse
|
28
|
Christiansen G, Pedersen LB, Koehler JE, Lundemose AG, Birkelund S. Interaction between the Chlamydia trachomatis histone H1-like protein (Hc1) and DNA. J Bacteriol 1993; 175:1785-95. [PMID: 8449885 PMCID: PMC203973 DOI: 10.1128/jb.175.6.1785-1795.1993] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The gene encoding the Chlamydia trachomatis histone H1-like protein (Hc1) from serovar L2 was cloned into Escherichia coli by use of expression vector pET11d. In this vector, transcription of the gene is under the control of a bacteriophage T7 promoter, and T7 RNA polymerase is inducible in the host. Following induction, the E. coli cells were lysed gently. Gel filtration of the lysate revealed comigration of DNA and Hc1 in the voided volume. Electron microscopy revealed the DNA to be complexed with protein in large aggregates, often in the form of spherical bodies. Purified recombinant Hc1 maintained its DNA-binding capacity and was able at high concentrations to form condensed aggregates with DNA (one molecule of Hc1 per base pair) independently of the form or size of the DNA but with a slight preference for supercoiled DNA. Hc1 alone is thus able to package DNA into condensed spherical bodies.
Collapse
Affiliation(s)
- G Christiansen
- Institute of Medical Microbiology, University of Aarhus, Denmark
| | | | | | | | | |
Collapse
|
29
|
Rao H, Mohr SC, Fairhead H, Setlow P. Synthesis and characterization of a 29-amino acid residue DNA-binding peptide derived from alpha/beta-type small, acid-soluble spore proteins (SASP) of bacteria. FEBS Lett 1992; 305:115-20. [PMID: 1618339 DOI: 10.1016/0014-5793(92)80876-i] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A 29-amino acid residue peptide (SASP-peptide) derived from the sequence of the putative DNA-contacting portion at the carboxyl terminus of an alpha/beta-type small, acid-soluble spore protein (SASP) of Bacillus subtilis has been synthesized by automated solid-phase methods and tested for its ability to interact with DNA. Circular dichroism (CD) spectroscopy reveals an interaction between this SASP-peptide and DNA, both by an increase in alpha-helix content of the peptide (which alone has a mostly random conformation) and by enhancement of the 275-nm CD band of the DNA. In contrast to results with intact alpha/beta-type SASP, however, the peptide does not induce a B----A conformational transition in the DNA. The SASP-peptide also binds to poly(dG).poly(dC) and protects this polynucleotide against DNase I digestion and UV light-induced cytosine dimer formation, parallel to findings made previously with native alpha/beta-type SASP. The results confirm the hypothesis that the carboxyl-terminal region of the alpha/beta-type SASP directly contacts DNA and possesses some, but not all, of the functional characteristics of the intact molecule.
Collapse
Affiliation(s)
- H Rao
- Department of Chemistry, Boston University, MA 02215
| | | | | | | |
Collapse
|
30
|
Affiliation(s)
- P Setlow
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030-3305
| |
Collapse
|