1
|
Çöl B, Kürkçü MS, Di Bek E. Genome-Wide Screens Identify Genes Responsible for Intrinsic Boric Acid Resistance in Escherichia coli. Biol Trace Elem Res 2024; 202:5771-5793. [PMID: 38466471 PMCID: PMC11502571 DOI: 10.1007/s12011-024-04129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/24/2024] [Indexed: 03/13/2024]
Abstract
Boric acid (BA) has antimicrobial properties and is used to combat bacterial infections, including Enterobacteria. However, the molecular mechanisms and cellular responses to BA are still unknown. This genomics study aims to provide new information on the genes and molecular mechanisms related to the antimicrobial effect of BA in Escherichia coli. The Keio collection of E. coli was used to screen 3985 single-gene knockout strains in order to identify mutant strains that were sensitive or hypersensitive to BA at certain concentrations. The mutant strains were exposed to different concentrations of BA ranging from 0 to 120 mM in LB media. Through genome-wide screens, 92 mutants were identified that were relatively sensitive to BA at least at one concentration tested. The related biological processes in the particular cellular system were listed. This study demonstrates that intrinsic BA resistance is the result of various mechanisms acting together. Additionally, we identified eighteen out of ninety-two mutant strains (Delta_aceF, aroK, cheZ, dinJ, galS, garP, glxK, nohA, talB, torR, trmU, trpR, yddE, yfeS, ygaV, ylaC, yoaC, yohN) that exhibited sensitivity using other methods. To increase sensitivity to BA, we constructed double and triple knockout mutants of the selected sensitive mutants. In certain instances, engineered double and triple mutants exhibited significantly amplified effects. Overall, our analysis of these findings offers further understanding of the mechanisms behind BA toxicity and intrinsic resistance in E. coli.
Collapse
Affiliation(s)
- Bekir Çöl
- Faculty of Science, Department of Biology, Mugla Sitki Kocman University, Mugla, Turkey.
- Research Laboratories Center, Biotechnology Research Center, Mugla Sitki Kocman University, Mugla, Turkey.
| | - Merve Sezer Kürkçü
- Research Laboratories Center, Biotechnology Research Center, Mugla Sitki Kocman University, Mugla, Turkey
- Research and Application Center For Research Laboratories, Mugla Sitki Kocman University, Mugla, Turkey
| | - Esra Di Bek
- Research Laboratories Center, Biotechnology Research Center, Mugla Sitki Kocman University, Mugla, Turkey
- Köyceğiz Vocational School of Health Services, Department of Pharmacy Services, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
2
|
Hersey AN, Kay VE, Lee S, Realff MJ, Wilson CJ. Engineering allosteric transcription factors guided by the LacI topology. Cell Syst 2023; 14:645-655. [PMID: 37591203 DOI: 10.1016/j.cels.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 02/26/2023] [Accepted: 04/26/2023] [Indexed: 08/19/2023]
Abstract
Allosteric transcription factors (aTFs) are used in a myriad of processes throughout biology and biotechnology. aTFs have served as the workhorses for developments in synthetic biology, fundamental research, and protein manufacturing. One of the most utilized TFs is the lactose repressor (LacI). In addition to being an exceptional tool for gene regulation, LacI has also served as an outstanding model system for understanding allosteric communication. In this perspective, we will use the LacI TF as the principal exemplar for engineering alternate functions related to allostery-i.e., alternate protein DNA interactions, alternate protein-ligand interactions, and alternate phenotypic mechanisms. In addition, we will summarize the design rules and heuristics for each design goal and demonstrate how the resulting design rules and heuristics can be extrapolated to engineer other aTFs with a similar topology-i.e., from the broader LacI/GalR family of TFs.
Collapse
Affiliation(s)
- Ashley N Hersey
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, USA
| | - Valerie E Kay
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, USA
| | - Sumin Lee
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, USA
| | - Matthew J Realff
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, USA
| | - Corey J Wilson
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, USA.
| |
Collapse
|
3
|
Carreón-Rodríguez OE, Gosset G, Escalante A, Bolívar F. Glucose Transport in Escherichia coli: From Basics to Transport Engineering. Microorganisms 2023; 11:1588. [PMID: 37375089 PMCID: PMC10305011 DOI: 10.3390/microorganisms11061588] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Escherichia coli is the best-known model for the biotechnological production of many biotechnological products, including housekeeping and heterologous primary and secondary metabolites and recombinant proteins, and is an efficient biofactory model to produce biofuels to nanomaterials. Glucose is the primary substrate used as the carbon source for laboratory and industrial cultivation of E. coli for production purposes. Efficient growth and associated production and yield of desired products depend on the efficient sugar transport capabilities, sugar catabolism through the central carbon catabolism, and the efficient carbon flux through specific biosynthetic pathways. The genome of E. coli MG1655 is 4,641,642 bp, corresponding to 4702 genes encoding 4328 proteins. The EcoCyc database describes 532 transport reactions, 480 transporters, and 97 proteins involved in sugar transport. Nevertheless, due to the high number of sugar transporters, E. coli uses preferentially few systems to grow in glucose as the sole carbon source. E. coli nonspecifically transports glucose from the extracellular medium into the periplasmic space through the outer membrane porins. Once in periplasmic space, glucose is transported into the cytoplasm by several systems, including the phosphoenolpyruvate-dependent phosphotransferase system (PTS), the ATP-dependent cassette (ABC) transporters, and the major facilitator (MFS) superfamily proton symporters. In this contribution, we review the structures and mechanisms of the E. coli central glucose transport systems, including the regulatory circuits recruiting the specific use of these transport systems under specific growing conditions. Finally, we describe several successful examples of transport engineering, including introducing heterologous and non-sugar transport systems for producing several valuable metabolites.
Collapse
Affiliation(s)
| | | | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (O.E.C.-R.); (G.G.)
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (O.E.C.-R.); (G.G.)
| |
Collapse
|
4
|
Chang D, Wang C, Ul Islam Z, Yu Z. Omics analysis coupled with gene editing revealed potential transporters and regulators related to levoglucosan metabolism efficiency of the engineered Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:2. [PMID: 35418138 PMCID: PMC8753852 DOI: 10.1186/s13068-022-02102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/02/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Bioconversion of levoglucosan, a promising sugar derived from the pyrolysis of lignocellulose, into biofuels and chemicals can reduce our dependence on fossil-based raw materials. However, this bioconversion process in microbial strains is challenging due to the lack of catalytic enzyme relevant to levoglucosan metabolism, narrow production ranges of the native strains, poor cellular transport rate of levoglucosan, and inhibition of levoglucosan metabolism by other sugars co-existing in the lignocellulose pyrolysate. The heterologous expression of eukaryotic levoglucosan kinase gene in suitable microbial hosts like Escherichia coli could overcome the first two challenges to some extent; however, no research has been dedicated to resolving the last two issues till now.
Results
Aiming to resolve the two unsolved problems, we revealed that seven ABC transporters (XylF, MalE, UgpB, UgpC, YtfQ, YphF, and MglA), three MFS transporters (KgtP, GntT, and ActP), and seven regulatory proteins (GalS, MhpR, YkgD, Rsd, Ybl162, MalM, and IraP) in the previously engineered levoglucosan-utilizing and ethanol-producing E. coli LGE2 were induced upon exposure to levoglucosan using comparative proteomics technique, indicating these transporters and regulators were involved in the transport and metabolic regulation of levoglucosan. The proteomics results were further verified by transcriptional analysis of 16 randomly selected genes. Subsequent gene knockout and complementation tests revealed that ABC transporter XylF was likely to be a levoglucosan transporter. Molecular docking showed that levoglucosan can bind to the active pocket of XylF by seven H-bonds with relatively strong strength.
Conclusion
This study focusing on the omics discrepancies between the utilization of levoglucosan and non-levoglucosan sugar, could provide better understanding of levoglucosan transport and metabolism mechanisms by identifying the transporters and regulators related to the uptake and regulation of levoglucosan metabolism. The protein database generated from this study could be used for further screening and characterization of the transporter(s) and regulator(s) for downstream enzymatic/genetic engineering work, thereby facilitating more efficient microbial utilization of levoglucosan for biofuels and chemicals production in future.
Collapse
|
5
|
Schultz D, Stevanovic M, Tsimring LS. Optimal transcriptional regulation of dynamic bacterial responses to sudden drug exposures. Biophys J 2022; 121:4137-4152. [PMID: 36168291 PMCID: PMC9675034 DOI: 10.1016/j.bpj.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Cellular responses to the presence of toxic compounds in their environment require prompt expression of the correct levels of the appropriate enzymes, which are typically regulated by transcription factors that control gene expression for the duration of the response. The characteristics of each response dictate the choice of regulatory parameters such as the affinity of the transcription factor to its binding sites and the strength of the promoters it regulates. Although much is known about the dynamics of cellular responses, we still lack a framework to understand how different regulatory strategies evolved in natural systems relate to the selective pressures acting in each particular case. Here, we analyze a dynamical model of a typical antibiotic response in bacteria, where a transcriptionally repressed enzyme is induced by a sudden exposure to the drug that it processes. We identify strategies of gene regulation that optimize this response for different types of selective pressures, which we define as a set of costs associated with the drug, enzyme, and repressor concentrations during the response. We find that regulation happens in a limited region of the regulatory parameter space. While responses to more costly (toxic) drugs favor the usage of strongly self-regulated repressors, responses where expression of enzyme is more costly favor the usage of constitutively expressed repressors. Only a very narrow range of selective pressures favor weakly self-regulated repressors. We use this framework to determine which costs and benefits are most critical for the evolution of a variety of natural cellular responses that satisfy the approximations in our model and to analyze how regulation is optimized in new environments with different demands.
Collapse
Affiliation(s)
- Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.
| | - Mirjana Stevanovic
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Lev S Tsimring
- Synthetic Biology Institute, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Biological signal processing filters via engineering allosteric transcription factors. Proc Natl Acad Sci U S A 2021; 118:2111450118. [PMID: 34772815 PMCID: PMC8609624 DOI: 10.1073/pnas.2111450118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
As the size and complexity of genetic circuits increases, scientists and engineers need to find solutions to rapidly optimize flux and reduce the metabolic burden imposed on chassis cells. In this study, we report synthetic biology tools that imbue chassis cells with advanced signal processing functions akin to electrical devices commonly used in wireless transmitters and receivers (i.e., biological BANDPASS and BANDSTOP devices) that can simultaneously reduce metabolic burden. Moreover, this study presents a set of granular and more complete design rules for engineering allosteric transcription factors in the broader LacI/GalR topology. In addition, this study has improved our fundamental understanding of the plasticity and continuum of allosteric communication from the binding pocket to the protein–DNA interaction. Signal processing is critical to a myriad of biological phenomena (natural and engineered) that involve gene regulation. Biological signal processing can be achieved by way of allosteric transcription factors. In canonical regulatory systems (e.g., the lactose repressor), an INPUT signal results in the induction of a given transcription factor and objectively switches gene expression from an OFF state to an ON state. In such biological systems, to revert the gene expression back to the OFF state requires the aggressive dilution of the input signal, which can take 1 or more d to achieve in a typical biotic system. In this study, we present a class of engineered allosteric transcription factors capable of processing two-signal INPUTS, such that a sequence of INPUTS can rapidly transition gene expression between alternating OFF and ON states. Here, we present two fundamental biological signal processing filters, BANDPASS and BANDSTOP, that are regulated by D-fucose and isopropyl-β-D-1-thiogalactopyranoside. BANDPASS signal processing filters facilitate OFF–ON–OFF gene regulation. Whereas, BANDSTOP filters facilitate the antithetical gene regulation, ON–OFF–ON. Engineered signal processing filters can be directed to seven orthogonal promoters via adaptive modular DNA binding design. This collection of signal processing filters can be used in collaboration with our established transcriptional programming structure. Kinetic studies show that our collection of signal processing filters can switch between states of gene expression within a few minutes with minimal metabolic burden—representing a paradigm shift in general gene regulation.
Collapse
|
7
|
Fraebel DT, Gowda K, Mani M, Kuehn S. Evolution of Generalists by Phenotypic Plasticity. iScience 2020; 23:101678. [PMID: 33163936 PMCID: PMC7600391 DOI: 10.1016/j.isci.2020.101678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022] Open
Abstract
Adapting organisms face a tension between specializing their phenotypes for certain ecological tasks and developing generalist strategies that permit persistence in multiple environmental conditions. Understanding when and how generalists or specialists evolve is an important question in evolutionary dynamics. Here, we study the evolution of bacterial range expansions by selecting Escherichia coli for faster migration through porous media containing one of four different sugars supporting growth and chemotaxis. We find that selection in any one sugar drives the evolution of faster migration in all sugars. Measurements of growth and motility of all evolved lineages in all nutrient conditions reveal that the ubiquitous evolution of fast migration arises via phenotypic plasticity. Phenotypic plasticity permits evolved strains to exploit distinct strategies to achieve fast migration in each environment, irrespective of the environment in which they were evolved. Therefore, selection in a homogeneous environment drives phenotypic plasticity that improves performance in other environments.
Collapse
Affiliation(s)
- David T. Fraebel
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Karna Gowda
- Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Madhav Mani
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
| | - Seppe Kuehn
- Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Evolution of an Escherichia coli PTS - strain: a study of reproducibility and dynamics of an adaptive evolutive process. Appl Microbiol Biotechnol 2020; 104:9309-9325. [PMID: 32954454 DOI: 10.1007/s00253-020-10885-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
Abstract
Adaptive laboratory evolution (ALE) has been used to study and solve pressing questions about evolution, especially for the study of the development of mutations that confer increased fitness during evolutionary processes. In this contribution, we investigated how the evolutionary process conducted with the PTS- mutant of Escherichia coli PB11 in three parallel batch cultures allowed the restoration of rapid growth with glucose as the carbon source. The significant findings showed that genomic sequence analysis of a set of newly evolved mutants isolated from ALE experiments 2-3 developed some essential mutations, which efficiently improved the fast-growing phenotypes throughout different fitness landscapes. Regulator galR was the target of several mutations such as SNPs, partial and total deletions, and insertion of an IS1 element and thus indicated the relevance of a null mutation of this gene in the adaptation of the evolving population of PB11 during the parallel ALE experiments. These mutations resulted in the selection of MglB and GalP as the primary glucose transporters by the evolving population, but further selection of at least a second adaptive mutation was also necessary. We found that mutations in the yfeO, rppH, and rng genes improved the fitness advantage of evolving PTS- mutants and resulted in amplification of leaky activity in Glk for glucose phosphorylation and upregulation of glycolytic and other growth-related genes. Notably, we determined that these mutations appeared and were fixed in the evolving populations between 48 and 72 h of cultivation, which resulted in the selection of fast-growing mutants during one ALE experiments in batch cultures of 80 h duration.Key points• ALE experiments selected evolved mutants through different fitness landscapes in which galR was the target of different mutations: SNPs, deletions, and insertion of IS.• Key mutations in evolving mutants appeared and fixed at 48-72 h of cultivation.• ALE experiments led to increased understanding of the genetics of cellular adaptation to carbon source limitation.
Collapse
|
9
|
Control of the galactose-to-glucose consumption ratio in co-fermentation using engineered Escherichia coli strains. Sci Rep 2020; 10:12132. [PMID: 32699275 PMCID: PMC7376015 DOI: 10.1038/s41598-020-69143-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/29/2020] [Indexed: 11/26/2022] Open
Abstract
Marine biomasses capable of fixing carbon dioxide have attracted attention as an alternative to fossil resources for fuel and chemical production. Although a simple co-fermentation of fermentable sugars, such as glucose and galactose, has been reported from marine biomass, no previous report has discussed the fine-control of the galactose-to-glucose consumption ratio in this context. Here, we sought to finely control the galactose-to-glucose consumption ratio in the co-fermentation of these sugars using engineered Escherichia coli strains. Toward this end, we constructed E. coli strains GR2, GR2P, and GR2PZ by knocking out galRS, galRS-pfkA, and galRS-pfkA-zwf, respectively, in parent strain W3110. We found that strains W3110, GR2, GR2P, and GR2PZ achieved 0.03, 0.09, 0.12, and 0.17 galactose-to-glucose consumption ratio (specific galactose consumption rate per specific glucose consumption rate), respectively, during co-fermentation. The ratio was further extended to 0.67 by integration of a brief process optimization for initial sugar ratio using GR2P strain. The strategy reported in this study will be helpful to expand our knowledge on the galactose utilization under glucose conditions.
Collapse
|
10
|
Willemin MS, Vingerhoets M, Holliger C, Maillard J. Hybrid Transcriptional Regulators for the Screening of Target DNA Motifs in Organohalide-Respiring Bacteria. Front Microbiol 2020; 11:310. [PMID: 32194528 PMCID: PMC7062800 DOI: 10.3389/fmicb.2020.00310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
The bioremediation of persistent organohalide molecules under anoxic conditions mostly relies on the bacterial process called organohalide respiration (OHR). Organohalide-respiring bacteria (OHRB) are phylogenetically diverse anaerobic bacteria that share the capacity to use organohalides as terminal electron acceptors in an energy-conserving process. The reductive dehalogenase (rdh) gene clusters encode for proteins specialized in the respiration of one or a limited number of organohalides. One particular OHRB may harbor up to several dozens of rdh gene clusters suggesting a wide potential for bioremediation. To avoid wasting energy in producing unnecessary proteins, rdh gene clusters often include a transcriptional regulator. In organohalide-respiring Firmicutes, RdhK is a dedicated transcriptional regulator of OHR and represents a subfamily of proteins among the CRP/FNR superfamily of regulators. RdhK proteins are composed of an effector-binding domain (EBD) which recognizes a given organohalide and subsequently controls the interaction of its C-terminal DNA-binding domain (DBD) with a DNA motif (referred to as dehalobox, or DB) located in the promoter region of the target rdh genes. The two binding partners (i.e. an organohalide molecule and a DB sequence) of RdhK proteins are interdependent which impairs the exploration of OHR regulatory networks. Here, we propose a strategy relying on hybrid proteins to efficiently screen the DNA target of a single RdhK protein without prior knowledge on its effector. To demonstrate the potential of the method, two hybrids with alternative fusion points were designed based on RdhK6 EBD and RdhK1 DBD from Desulfitobacterium hafniense. Electrophoretic mobility shift assay was performed with purified hybrids along with the parental proteins and their binding properties were further tested in vivo through a β-galactosidase reporter assay. Along with revealing new RdhK6 features, we show that both hybrids resulted in active regulatory proteins with distinct binding patterns. While Hybrid A was less specific for the DNA motif, Hybrid B successfully mimicked the binding behavior of the parental proteins and thus represents a promising template for the design of new RdhK hybrids to screen yet uncharacterized RdhK proteins and also possibly other members of the CRP/FNR superfamily.
Collapse
Affiliation(s)
- Mathilde Stéphanie Willemin
- Laboratory for Environmental Biotechnology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Vingerhoets
- Laboratory for Environmental Biotechnology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christof Holliger
- Laboratory for Environmental Biotechnology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
11
|
Woo JE, Seong HJ, Lee SY, Jang YS. Metabolic Engineering of Escherichia coli for the Production of Hyaluronic Acid From Glucose and Galactose. Front Bioeng Biotechnol 2019; 7:351. [PMID: 31824939 PMCID: PMC6881274 DOI: 10.3389/fbioe.2019.00351] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 11/17/2022] Open
Abstract
Hyaluronic acid is a glycosaminoglycan biopolymer widely present throughout connective and epithelial tissue, and has been of great interest for medical and cosmetic applications. In the microbial production of hyaluronic acid, it has not been established to utilize galactose enabling to be converted to UDP-glucuronic acid, which is a precursor for hyaluronic acid biosynthesis. In this study, we engineered Escherichia coli to produce hyaluronic acid from glucose and galactose. The galactose-utilizing Leloir pathway was activated by knocking out the galR and galS genes encoding the transcriptional repressors. Also, the hasA gene from Streptococcus zooepidemicus was introduced for the expression of hyaluronic acid synthase. The consumption rates of glucose and galactose were modulated by knockout of the pfkA and zwf genes, which encode 6-phosphofructokinase I and glucose-6-phosphate dehydrogenase, respectively. Furthermore, the precursor biosynthesis pathway for hyaluronic acid production was manipulated by separately overexpressing the gene clusters galU-ugd and glmS-glmM-glmU, which enable the production of UDP-glucuronic acid and UDP-N-acetyl-glucosamine, respectively. Batch culture of the final engineered strain produced 29.98 mg/L of hyaluronic acid from glucose and galactose. As a proof of concept, this study demonstrated the production of hyaluronic acid from glucose and galactose in the engineered E. coli.
Collapse
Affiliation(s)
- Ji Eun Woo
- Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science (BK21 Plus Program), Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Hyeon Jeong Seong
- Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science (BK21 Plus Program), Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Yu-Sin Jang
- Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science (BK21 Plus Program), Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
12
|
Aleksandrzak-Piekarczyk T, Szatraj K, Kosiorek K. GlaR (YugA)-a novel RpiR-family transcription activator of the Leloir pathway of galactose utilization in Lactococcus lactis IL1403. Microbiologyopen 2018; 8:e00714. [PMID: 30099846 PMCID: PMC6528599 DOI: 10.1002/mbo3.714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 01/27/2023] Open
Abstract
Bacteria can utilize diverse sugars as carbon and energy source, but the regulatory mechanisms directing the choice of the preferred substrate are often poorly understood. Here, we analyzed the role of the YugA protein (now designated GlaR—Galactose–lactose operon Regulatory protein) of the RpiR family as a transcriptional activator of galactose (gal genes) and lactose (lac genes) utilization genes in Lactococcus lactis IL1403. In this bacterium, gal genes forming the Leloir operon are combined with lac genes in a single so‐called gal–lac operon. The first gene of this operon is the lacS gene encoding galactose permease. The glaR gene encoding GlaR lies directly upstream of the gal–lac gene cluster and is transcribed in the same direction. This genetic layout and the presence of glaR homologues in the closest neighborhood to the Leloir or gal–lac operons are highly conserved only among Lactococcus species. Deletion of glaR disabled galactose utilization and abrogated or decreased expression of the gal–lac genes. The GlaR‐dependent regulation of the gal–lac operon depends on its specific binding to a DNA region upstream of the lacS gene activating lacS expression and increasing the expression of the operon genes localized downstream. Notably, expression of lacS‐downstream genes, namely galMKTE, thgA and lacZ, is partially independent of the GlaR‐driven activation likely due to the presence of additional promoters. The glaR transcription itself is not subject to catabolite control protein A (CcpA) carbon catabolite repression (CRR) and is induced by galactose. Up to date, no similar mechanism has been reported in other lactic acid bacteria species. These results reveal a novel regulatory protein and shed new light on the regulation of carbohydrate catabolism in L. lactis IL1403, and by similarity, probably also in other lactococci.
Collapse
Affiliation(s)
| | - Katarzyna Szatraj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (IBB PAS), Warsaw, Poland
| | - Katarzyna Kosiorek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (IBB PAS), Warsaw, Poland
| |
Collapse
|
13
|
Repression of VvpM Protease Expression by Quorum Sensing and the cAMP-cAMP Receptor Protein Complex in Vibrio vulnificus. J Bacteriol 2018; 200:JB.00526-17. [PMID: 29339417 DOI: 10.1128/jb.00526-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Septicemia-causing Vibrio vulnificus produces at least three exoproteases, VvpE, VvpS, and VvpM, all of which participate in interactions with human cells. Expression of VvpE and VvpS is induced in the stationary phase by multiple transcription factors, including sigma factor S, SmcR, and the cAMP-cAMP receptor protein (cAMP-CRP) complex. Distinct roles of VvpM, such as induction of apoptosis, lead us to hypothesize VvpM expression is different from that of the other exoproteases. Its transcription, which was found to be independent of sigma S, is induced at the early exponential phase and then becomes negligible upon entry into the stationary phase. SmcR and CRP were studied regarding the control of vvpM expression. Transcription of vvpM was repressed by SmcR and cAMP-CRP complex individually, which specifically bound to the regions -2 to +20 and +6 to +27, respectively, relative to the vvpM transcription initiation site. Derepression of vvpM gene expression was 10- to 40-fold greater in an smcR crp double mutant than in single-gene mutants. Therefore, these results show that the expression of V. vulnificus exoproteases is differentially regulated, and in this way, distinct proteases can engage in specific interactions with a host.IMPORTANCE An opportunistic human pathogen, Vibrio vulnificus produces multiple extracellular proteases that are involved in diverse interactions with a host. The total exoproteolytic activity is detected mainly in the supernatants of the high-cell-density cultures. However, some proteolytic activity derived from a metalloprotease, VvpM, was present in the supernatants of the low-cell-density cultures sampled at the early growth period. In this study, we present the regulatory mechanism for VvpM expression via repression by at least two transcription factors. This type of transcriptional regulation is the exact opposite of those for expression of the other V. vulnificus exoproteases. Differential regulation of each exoprotease's production then facilitates the pathogen's participation in the distinct interactions with a host.
Collapse
|
14
|
Qian Z, Trostel A, Lewis DEA, Lee SJ, He X, Stringer AM, Wade JT, Schneider TD, Durfee T, Adhya S. Genome-Wide Transcriptional Regulation and Chromosome Structural Arrangement by GalR in E. coli. Front Mol Biosci 2016; 3:74. [PMID: 27900321 PMCID: PMC5110547 DOI: 10.3389/fmolb.2016.00074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/26/2016] [Indexed: 11/13/2022] Open
Abstract
The regulatory protein, GalR, is known for controlling transcription of genes related to D-galactose metabolism in Escherichia coli. Here, using a combination of experimental and bioinformatic approaches, we identify novel GalR binding sites upstream of several genes whose function is not directly related to D-galactose metabolism. Moreover, we do not observe regulation of these genes by GalR under standard growth conditions. Thus, our data indicate a broader regulatory role for GalR, and suggest that regulation by GalR is modulated by other factors. Surprisingly, we detect regulation of 158 transcripts by GalR, with few regulated genes being associated with a nearby GalR binding site. Based on our earlier observation of long-range interactions between distally bound GalR dimers, we propose that GalR indirectly regulates the transcription of many genes by inducing large-scale restructuring of the chromosome.
Collapse
Affiliation(s)
- Zhong Qian
- Laboratory of Molecular Biology, National Institutes of Health, National Cancer Institute Bethesda, MD, USA
| | - Andrei Trostel
- Laboratory of Molecular Biology, National Institutes of Health, National Cancer Institute Bethesda, MD, USA
| | - Dale E A Lewis
- Laboratory of Molecular Biology, National Institutes of Health, National Cancer Institute Bethesda, MD, USA
| | - Sang Jun Lee
- Microbiomics and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology Daejeon, Korea
| | - Ximiao He
- Laboratory of Metabolism, National Institutes of Health, National Cancer Institute Bethesda, MD, USA
| | - Anne M Stringer
- Wadsworth Center, New York State Department of Health Albany, NY, USA
| | - Joseph T Wade
- Wadsworth Center, New York State Department of HealthAlbany, NY, USA; Department of Biomedical Sciences, School of Public Health, University of AlbanyAlbany, NY, USA
| | - Thomas D Schneider
- Gene Regulation and Chromosome Biology Laboratory, National Institutes of Health, National Cancer Institute, Center for Cancer Research Frederick, MD, USA
| | | | - Sankar Adhya
- Laboratory of Molecular Biology, National Institutes of Health, National Cancer Institute Bethesda, MD, USA
| |
Collapse
|
15
|
Sannino F, Giuliani M, Salvatore U, Apuzzo GA, de Pascale D, Fani R, Fondi M, Marino G, Tutino ML, Parrilli E. A novel synthetic medium and expression system for subzero growth and recombinant protein production in Pseudoalteromonas haloplanktis TAC125. Appl Microbiol Biotechnol 2016; 101:725-734. [DOI: 10.1007/s00253-016-7942-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/20/2016] [Accepted: 10/13/2016] [Indexed: 02/05/2023]
|
16
|
Yaung SJ, Deng L, Li N, Braff JL, Church GM, Bry L, Wang HH, Gerber GK. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics. Mol Syst Biol 2016; 11:788. [PMID: 26148351 PMCID: PMC4380924 DOI: 10.15252/msb.20145866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large‐scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Population dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co‐evolution of the plasmid library and E. coli genome driving increased galactose utilization. Our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.
Collapse
|
17
|
Afroz T, Biliouris K, Kaznessis Y, Beisel CL. Bacterial sugar utilization gives rise to distinct single-cell behaviours. Mol Microbiol 2014; 93:1093-1103. [PMID: 24976172 DOI: 10.1111/mmi.12695] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 12/15/2022]
Abstract
Inducible utilization pathways reflect widespread microbial strategies to uptake and consume sugars from the environment. Despite their broad importance and extensive characterization, little is known how these pathways naturally respond to their inducing sugar in individual cells. Here, we performed single-cell analyses to probe the behaviour of representative pathways in the model bacterium Escherichia coli. We observed diverse single-cell behaviours, including uniform responses (d-lactose, d-galactose, N-acetylglucosamine, N-acetylneuraminic acid), 'all-or-none' responses (d-xylose, l-rhamnose) and complex combinations thereof (l-arabinose, d-gluconate). Mathematical modelling and probing of genetically modified pathways revealed that the simple framework underlying these pathways - inducible transport and inducible catabolism - could give rise to most of these behaviours. Sugar catabolism was also an important feature, as disruption of catabolism eliminated tunable induction as well as enhanced memory of previous conditions. For instance, disruption of catabolism in pathways that respond to endogenously synthesized sugars led to full pathway induction even in the absence of exogenous sugar. Our findings demonstrate the remarkable flexibility of this simple biological framework, with direct implications for environmental adaptation and the engineering of synthetic utilization pathways as titratable expression systems and for metabolic engineering.
Collapse
Affiliation(s)
- Taliman Afroz
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Konstantinos Biliouris
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yiannis Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
18
|
Iyer S, Karig DK, Norred SE, Simpson ML, Doktycz MJ. Multi-input regulation and logic with T7 promoters in cells and cell-free systems. PLoS One 2013; 8:e78442. [PMID: 24194933 PMCID: PMC3806817 DOI: 10.1371/journal.pone.0078442] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/10/2013] [Indexed: 11/21/2022] Open
Abstract
Engineered gene circuits offer an opportunity to harness biological systems for biotechnological and biomedical applications. However, reliance on native host promoters for the construction of circuit elements, such as logic gates, can make the implementation of predictable, independently functioning circuits difficult. In contrast, T7 promoters offer a simple orthogonal expression system for use in a variety of cellular backgrounds and even in cell-free systems. Here we develop a T7 promoter system that can be regulated by two different transcriptional repressors for the construction of a logic gate that functions in cells and in cell-free systems. We first present LacI repressible T7lacO promoters that are regulated from a distal lac operator site for repression. We next explore the positioning of a tet operator site within the T7lacO framework to create T7 promoters that respond to tet and lac repressors and realize an IMPLIES gate. Finally, we demonstrate that these dual input sensitive promoters function in an E. coli cell-free protein expression system. Our results expand the utility of T7 promoters in cell based as well as cell-free synthetic biology applications.
Collapse
Affiliation(s)
- Sukanya Iyer
- Graduate Program in Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, Tennessee, United States of America
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - David K. Karig
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - S. Elizabeth Norred
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee, United States of America
| | - Michael L. Simpson
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee, United States of America
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Knoxville, Tennessee, United States of America
| | - Mitchel J. Doktycz
- Graduate Program in Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, Tennessee, United States of America
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
19
|
Lee HJ, Kim JA, Lee MA, Park SJ, Lee KH. Regulation of haemolysin (VvhA) production by ferric uptake regulator (Fur) in Vibrio vulnificus: repression of vvhA transcription by Fur and proteolysis of VvhA by Fur-repressive exoproteases. Mol Microbiol 2013; 88:813-26. [PMID: 23560801 DOI: 10.1111/mmi.12224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2013] [Indexed: 11/29/2022]
Abstract
VvhA produced by Vibrio vulnificus exhibits cytolytic activity to human cells including erythrocytes. Since haemolysis by VvhA may provide iron for bacterial growth and pathogenicity, we investigated the expression of VvhA to elucidate the regulatory roles of Fur, a major transcription factor controlling iron-homeostasis. Fur repressed the transcription of vvhBA operon via binding to the promoter region. However, haemolysin content and haemolytic activity were lowered in cell-free supernatant of fur mutant. This discrepancy between the levels of vvhA transcript and VvhA protein in fur mutant was caused by exoproteolytic activities of the elastase VvpE and another metalloprotease VvpM, which were also regulated by Fur. vvpE gene expression was repressed by Fur via binding to the Fur-box homologous region. Regulation of VvpM expression by Fur did not occur at the level of vvpM transcription. In vitro proteolysis assays showed that both proteases efficiently degraded VvhA. In addition, the extracellular levels of VvhA were higher in culture supernatants of vvpE or vvpM mutants than in the wild type. Thus this study demonstrates that Fur regulates haemolysin production at the transcription level of the vvhBA operon and at the post-translation level by regulating the expressions of two VvhA-degrading exoproteases, VvpE and VvpM.
Collapse
Affiliation(s)
- Hyun-Jung Lee
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742, Korea
| | | | | | | | | |
Collapse
|
20
|
Glucose transport in Escherichia coli mutant strains with defects in sugar transport systems. J Bacteriol 2012; 194:5897-908. [PMID: 22923596 DOI: 10.1128/jb.01502-12] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In Escherichia coli, several systems are known to transport glucose into the cytoplasm. The main glucose uptake system under batch conditions is the glucose phosphoenolpyruvate:carbohydrate phosphotransferase system (glucose PTS), but the mannose PTS and the galactose and maltose transporters also can translocate glucose. Mutant strains which lack the enzyme IIBC (EIIBC) protein of the glucose PTS have been investigated previously because their lower rate of acetate formation offers advantages in industrial applications. Nevertheless, a systematic study to analyze the impact of the different glucose uptake systems has not been undertaken. Specifically, how the bacteria cope with the deletion of the major glucose uptake system and which alternative transporters react to compensate for this deficit have not been studied in detail. Therefore, a series of mutant strains were analyzed in aerobic and anaerobic batch cultures, as well as glucose-limited continuous cultivations. Deletion of EIIBC disturbs glucose transport severely in batch cultures; cyclic AMP (cAMP)-cAMP receptor protein (CRP) levels rise, and induction of the mgl operon occurs. Nevertheless, Mgl activity is not essential for growth of these mutants, since deletion of this transporter did not affect the growth rate; the activities of the remaining transporters seem to be sufficient. Under conditions of glucose limitation, mgl is upregulated 23-fold compared to levels for growth under glucose excess. Despite the strong induction of mgl upon glucose limitation, deletion of this transport system did not lead to further changes. Although the galactose transporters are often regarded as important for glucose uptake at micromolar concentrations, the glucose as well as mannose PTS might be sufficient for growth at this relatively low dilution rate.
Collapse
|
21
|
Abstract
Galactose is important for the survival and virulence of bacteria. In Escherichia coli, galactose is utilized by the Leloir pathway, which is controlled by a complex network. To shed light on the potential functions the galactose network could perform, we performed bioinformatical analysis of reference genome sequences belonging to the Enterobacteriaceae family. We found that several genomes have reduced numbers of components compared to the E. coli galactose system, suggesting that the network can be optimized for different environments. Typically, genes are removed by deletions; however, in Yersinia pestis, the galactose mutarotase (galM) gene is inactivated by a single-base-pair deletion. Lack of GalM activity indicates that the two anomers of d-galactose are used for different purposes, α-d-galactose as a carbon source and β-d-galactose for induction of UDP-galactose synthesis for biosynthetic glycosylation. We demonstrate that activity of the galM gene can be restored by different single-base-pair insertions. During the evolution of Y. pestis to become a vector-transmitted systemic pathogen, many genes were converted to pseudogenes. It is not clear whether pseudogenes are present to maintain meiotrophism or are in the process of elimination. Our results suggest that the galM pseudogene has not been deleted because its reactivation may be beneficial in certain environments. Evolution of bacteria to populate a new environment necessarily involves reengineering of their molecular network. Members of the Enterobacteriaceae family of bacteria have diverse lifestyles and can function in a wide range of environments. In this study we performed bioinformatical analysis of 34 reference genome sequences belonging to the Enterobacteriaceae family to gain insight into the natural diversity of the d-galactose utilization network. Our bioinformatical analysis shows that in several species, some genes of the network are completely missing or are inactivated by large deletions. The only exception is the galactose mutarotase (galM) gene of Yersinia pestis, which is converted to a pseudogene by a single-base-pair deletion. In this paper, we discuss the possible consequences of galM inactivation on network function. We suggest that galM was converted to a pseudogene rather than being deleted in evolution because its reactivation can be beneficial in certain environments.
Collapse
|
22
|
Manso I, García JL, Galán B. Escherichia coli mhpR gene expression is regulated by catabolite repression mediated by the cAMP-CRP complex. MICROBIOLOGY-SGM 2010; 157:593-600. [PMID: 20966094 DOI: 10.1099/mic.0.043620-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The expression of the mhp genes involved in the degradation of the aromatic compound 3-(3-hydroxyphenyl)propionic acid (3HPP) in Escherichia coli is dependent on the MhpR transcriptional activator at the Pa promoter. This catabolic promoter is also subject to catabolic repression in the presence of glucose mediated by the cAMP-CRP complex. The Pr promoter drives the MhpR-independent expression of the regulatory gene. In vivo and in vitro experiments have shown that transcription from the Pr promoter is downregulated by the addition of glucose and this catabolic repression is also mediated by the cAMP-CRP complex. The activation role of the cAMP-CRP regulatory system was further investigated by DNase I footprinting assays, which showed that the cAMP-CRP complex binds to the Pr promoter sequence, protecting a region centred at position -40.5, which allowed the classification of Pr as a class II CRP-dependent promoter. Open complex formation at the Pr promoter is observed only when RNA polymerase and cAMP-CRP are present. Finally, by in vitro transcription assays we have demonstrated the absolute requirement of the cAMP-CRP complex for the activation of the Pr promoter.
Collapse
Affiliation(s)
- I Manso
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - J L García
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - B Galán
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
23
|
Horváth P, Hunziker A, Erdossy J, Krishna S, Semsey S. Timing of gene transcription in the galactose utilization system of Escherichia coli. J Biol Chem 2010; 285:38062-8. [PMID: 20923764 DOI: 10.1074/jbc.m110.152264] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the natural environment, bacterial cells have to adjust their metabolism to alterations in the availability of food sources. The order and timing of gene expression are crucial in these situations to produce an appropriate response. We used the galactose regulation in Escherichia coli as a model system for understanding how cells integrate information about food availability and cAMP levels to adjust the timing and intensity of gene expression. We simulated the feast-famine cycle of bacterial growth by diluting stationary phase cells in fresh medium containing galactose as the sole carbon source. We followed the activities of six promoters of the galactose system as cells grew on and ran out of galactose. We found that the cell responds to a decreasing external galactose level by increasing the internal galactose level, which is achieved by limiting galactose metabolism and increasing the expression of transporters. We show that the cell alters gene expression based primarily on the current state of the cell and not on monitoring the level of extracellular galactose in real time. Some decisions have longer term effects; therefore, the current state does subtly encode the history of food availability. In summary, our measurements of timing of gene expression in the galactose system suggest that the system has evolved to respond to environments where future galactose levels are unpredictable rather than regular feast and famine cycles.
Collapse
Affiliation(s)
- Péter Horváth
- Department of Genetics, Eötvös Loránd University, H-1117 Budapest, Hungary
| | | | | | | | | |
Collapse
|
24
|
Regulation of galactose metabolism through the HisK:GalR two-component system in Thermoanaerobacter tengcongensis. J Bacteriol 2010; 192:4311-6. [PMID: 20581213 DOI: 10.1128/jb.00402-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermoanaerobacter tengcongensis could utilize galactose as a carbon source via the enzymes encoded by a novel gal operon, whose regulation mechanism has yet to be elucidated. We propose here that the gal operon in T. tengcongensis is regulated through a HisK:GalR two-component system. By using radioactive isotope assay and genetic analysis, we found that the kinase of this system, HisK, is phosphorylated by ATP, and the regulator, GalR, accepts a phosphoryl group during phosphorelay, in which the phosphoryl group at HisK-His-259 is transferred to GalR-Asp-56. Two-dimensional electrophoresis, followed by Western blotting, revealed that phosphorylation status of GalR is uniquely dependent on the galactose stimulus in vivo. Furthermore, DNA pulldown assays demonstrated that the phosphorylated GalR prefers binding to the operator DNA O(2), whereas the unphosphorylated GalR to O(1). A model of HisK:GalR is proposed to explain how galactose mediates the expression of the gal operon in T. tengcongensis.
Collapse
|
25
|
Dominant negative autoregulation limits steady-state repression levels in gene networks. J Bacteriol 2009; 191:4487-91. [PMID: 19429616 DOI: 10.1128/jb.00056-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many transcription factors repress transcription of their own genes. Negative autoregulation has been shown to reduce cell-cell variation in regulatory protein levels and speed up the response time in gene networks. In this work we examined transcription regulation of the galS gene and the function of its product, the GalS protein. We observed a unique operator preference of the GalS protein characterized by dominant negative autoregulation. We show that this pattern of regulation limits the repression level of the target genes in steady states. We suggest that transcription factors with dominant negative autoregulation are designed for regulating gene expression during environmental transitions.
Collapse
|
26
|
El Qaidi S, Allemand F, Oberto J, Plumbridge J. Repression of galP, the galactose transporter in Escherichia coli, requires the specific regulator of N-acetylglucosamine metabolism. Mol Microbiol 2008; 71:146-57. [PMID: 19007420 DOI: 10.1111/j.1365-2958.2008.06515.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Soupene et al. [J. Bacteriol. (2003) 185 5611-5626] made the unexpected observation that the presence of a mutation, in the gene for the N-acetylglucosamine repressor, nagC, increased the growth rate of Escherichia coli MG1655 on galactose, an unrelated sugar. We have found that NagC, binds to a single, high-affinity site overlapping the promoter of galP (galactose permease) gene and that expression of galP is repressed by a combination of NagC, GalR and GalS. In addition to the previously identified galOE operator, other gal operators further upstream are required for full repression. GalS has a specific role, as it binds with higher affinity to one of the upstream operators but its effect in vivo is only observed in the presence of GalR. Regulation of galP by three specific repressors, NagC, GalR and GalS is unusual in that it involves multiple, specific regulators from two different areas of metabolism. This novel regulation seems to be particular for E. coli and its nearest neighbour, Shigella. Other bacteria with galP orthologues, although retaining the metK-galP gene order, do not have the NagC site. Although quantitative effects were strain specific, nagC mutations increased the growth rate on galactose of all E. coli strains tested.
Collapse
Affiliation(s)
- Samir El Qaidi
- Institut de Biologie Physico-Chimique (UPR9073-CNRS), 13, rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
27
|
Saito S, Aburatani S, Horimoto K. Network evaluation from the consistency of the graph structure with the measured data. BMC SYSTEMS BIOLOGY 2008; 2:84. [PMID: 18828895 PMCID: PMC2566979 DOI: 10.1186/1752-0509-2-84] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 10/01/2008] [Indexed: 11/10/2022]
Abstract
Background A knowledge-based network, which is constructed by extracting as many relationships identified by experimental studies as possible and then superimposing them, is one of the promising approaches to investigate the associations between biological molecules. However, the molecular relationships change dynamically, depending on the conditions in a living cell, which suggests implicitly that all of the relationships in the knowledge-based network do not always exist. Here, we propose a novel method to estimate the consistency of a given network with the measured data: i) the network is quantified into a log-likelihood from the measured data, based on the Gaussian network, and ii) the probability of the likelihood corresponding to the measured data, named the graph consistency probability (GCP), is estimated based on the generalized extreme value distribution. Results The plausibility and the performance of the present procedure are illustrated by various graphs with simulated data, and with two types of actual gene regulatory networks in Escherichia coli: the SOS DNA repair system with the corresponding data measured by fluorescence, and a set of 29 networks with data measured under anaerobic conditions by microarray. In the simulation study, the procedure for estimating GCP is illustrated by a simple network, and the robustness of the method is scrutinized in terms of various aspects: dimensions of sampling data, parameters in the simulation study, magnitudes of data noise, and variations of network structures. In the actual networks, the former example revealed that our method operates well for an actual network with a size similar to those of the simulated networks, and the latter example illustrated that our method can select the activated network candidates consistent with the actual data measured under specific conditions, among the many network candidates. Conclusion The present method shows the possibility of bridging between the static network from the literature and the corresponding measurements, and thus will shed light on the network structure variations in terms of the changes in molecular interaction mechanisms that occur in response to the environment in a living cell.
Collapse
Affiliation(s)
- Shigeru Saito
- Biological Network Team, Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan.
| | | | | |
Collapse
|
28
|
Abstract
The gal regulon of Escherichia coli contains genes involved in galactose transport and metabolism. Transcription of the gal regulon genes is regulated in different ways by two iso-regulatory proteins, Gal repressor (GalR) and Gal isorepressor (GalS), which recognize the same binding sites in the absence of d-galactose. DNA binding by both GalR and GalS is inhibited in the presence of d-galactose. Many of the gal regulon genes are activated in the presence of the adenosine cyclic-3',5'-monophosphate (cAMP)-cAMP receptor protein (CRP) complex. We studied transcriptional regulation of the gal regulon promoters simultaneously in a purified system and attempted to integrate the two small molecule signals, d-galactose and cAMP, that modulate the isoregulators and CRP respectively, at each promoter, using Boolean logic. Results show that similarly organized promoters can have different input functions. We also found that in some cases the activity of the promoter and the cognate gene can be described by different logic gates. We combined the transcriptional network of the galactose regulon, obtained from our experiments, with literature data to construct an integrated map of the galactose network. Structural analysis of the network shows that at the interface of the genetic and metabolic network, feedback loops are by far the most common motif.
Collapse
Affiliation(s)
- Szabolcs Semsey
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | | | | | |
Collapse
|
29
|
Mangan S, Itzkovitz S, Zaslaver A, Alon U. The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. J Mol Biol 2005; 356:1073-81. [PMID: 16406067 DOI: 10.1016/j.jmb.2005.12.003] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 12/01/2005] [Accepted: 12/02/2005] [Indexed: 12/19/2022]
Abstract
Complex gene regulation networks are made of simple recurring gene circuits called network motifs. One of the most common network motifs is the incoherent type-1 feed-forward loop (I1-FFL), in which a transcription activator activates a gene directly, and also activates a repressor of the gene. Mathematical modeling suggested that the I1-FFL can show two dynamical features: a transient pulse of gene expression, and acceleration of the dynamics of the target gene. It is important to experimentally study the dynamics of this motif in living cells, to test whether it carries out these functions even when embedded within additional interactions in the cell. Here, we address this using a system with incoherent feed-forward loop connectivity, the galactose (gal) system of Escherichia coli. We measured the dynamics of this system in response to inducing signals at high temporal resolution and accuracy by means of green fluorescent protein reporters. We show that the galactose system displays accelerated turn-on dynamics. The acceleration is abolished in strains and conditions that disrupt the I1-FFL. The I1-FFL motif in the gal system works as theoretically predicted despite being embedded in several additional feedback loops. Response acceleration may be performed by the incoherent feed-forward loop modules that are found in diverse systems from bacteria to humans.
Collapse
Affiliation(s)
- S Mangan
- Department of Molecular Cell Biology and Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
30
|
Wall ME, Dunlop MJ, Hlavacek WS. Multiple functions of a feed-forward-loop gene circuit. J Mol Biol 2005; 349:501-14. [PMID: 15890368 DOI: 10.1016/j.jmb.2005.04.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/06/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
The feed-forward-loop (FFL), a network motif in genetic regulatory networks, involves two transcription factors (TFs): one regulates the expression of the second, and both TFs regulate the expression of an effector gene. Analysis of FFL design principles has been initiated, but the functional significance of the FFL is still unclear. In theoretical studies so far, the TFs are assumed to interact with different signals, which is common. However, we have found examples of FFLs in Escherichia coli in which both TFs interact with the same signal. These examples belong to the type 2 incoherent class of FFLs, in which each TF acts exclusively as a repressor of transcription. Here, we analyze mathematical models of this class of circuits, examining a comprehensive array of subclasses that differ in the way a signal modulates the activities of the TFs. Through parameter variation, we characterize statistically how input/output (I/O) behavior and temporal responsiveness are predicted to depend on the wiring of signal interactions in a circuit. We find that circuits can exhibit any of 13 qualitatively distinct steady-state I/O patterns, including inducible and repressible patterns. Some subclasses exhibit as many as six patterns. Transient pulses are also possible, and the response of a circuit to a signal may be either faster or slower than that of a gene circuit in which there is only one TF. Our results provide a catalog of functions for a class of FFL circuits, whose subclasses have different breadths of possible behaviors and different typical behaviors.
Collapse
Affiliation(s)
- Michael E Wall
- Computer and Computational Sciences Division, Mail Stop B256, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | |
Collapse
|
31
|
Zheng D, Constantinidou C, Hobman JL, Minchin SD. Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 2004; 32:5874-93. [PMID: 15520470 PMCID: PMC528793 DOI: 10.1093/nar/gkh908] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Escherichia coli cyclic AMP receptor protein (CRP) is a global regulator that controls transcription initiation from more than 100 promoters by binding to a specific DNA sequence within cognate promoters. Many genes in the CRP regulon have been predicted simply based on the presence of DNA-binding sites within gene promoters. In this study, we have exploited a newly developed technique, run-off transcription/microarray analysis (ROMA) to define CRP-regulated promoters. Using ROMA, we identified 176 operons that were activated by CRP in vitro and 16 operons that were repressed. Using positive control mutants in different regions of CRP, we were able to classify the different promoters into class I or class II/III. A total of 104 operons were predicted to contain Class II CRP-binding sites. Sequence analysis of the operons that were repressed by CRP revealed different mechanisms for CRP inhibition. In contrast, the in vivo transcriptional profiles failed to identify most CRP-dependent regulation because of the complexity of the regulatory network. Analysis of these operons supports the hypothesis that CRP is not only a regulator of genes required for catabolism of sugars other than glucose, but also regulates the expression of a large number of other genes in E.coli. ROMA has revealed 152 hitherto unknown CRP regulons.
Collapse
Affiliation(s)
- Dongling Zheng
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
32
|
Møller T, Franch T, Udesen C, Gerdes K, Valentin-Hansen P. Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev 2002; 16:1696-706. [PMID: 12101127 PMCID: PMC186370 DOI: 10.1101/gad.231702] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The physiological role of Escherichia coli Spot 42 RNA has remained obscure, even though the 109-nucleotide RNA was discovered almost three decades ago. Structural features of Spot 42 RNA and previous work suggested to us that the RNA might be a regulator of discoordinate gene expression of the galactose operon, a control that is only understood at the phenomenological level. The effects of controlled expression of Spot 42 RNA or deleting the gene (spf) encoding the RNA supported this hypothesis. Down-regulation of galK expression, the third gene in the gal operon, was only observed in the presence of Spot 42 RNA and required growth conditions that caused derepression of the spf gene. Subsequent biochemical studies showed that Spot 42 RNA specifically bound at the galK Shine-Dalgarno region of the galETKM mRNA, thereby blocking ribosome binding. We conclude that Spot 42 RNA is an antisense RNA that acts to differentially regulate genes that are expressed from the same transcription unit. Our results reveal an interesting mechanism by which the expression of a promoter distal gene in an operon can be modulated and underline the importance of antisense control in bacterial gene regulation.
Collapse
Affiliation(s)
- Thorleif Møller
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
33
|
Abstract
A gene regulatory protein with helix-turn-helix (HTH) DNA-binding motif, GalS contains a functional operator within the DNA sequences encoding the HTH region (Nature 369 (1994) 314). We searched for operator-like sequences within the DNA sequences encoding the DNA binding motifs of other regulatory proteins. Five such proteins, DeoR, CytR, LRP, LuxR and PurR, were found to have actual operator or operator-like sequences in the DNA sequences encoding the DNA-binding motif. Except DeoR, all of them including GalS, are known to be auto-regulated. Auto-regulation in case of DeoR has not been investigated. Seven other proteins containing a HTH motif, do not have operator-like sequences in the DNA sequences encoding the HTH motif; none of them, except MerR, are known to be auto-regulated. The DNA binding proteins may have evolved from a common ancestor containing a DNA binding site within its gene segment that encodes the DNA-binding motif to facilitate auto-regulation. We have discussed current evidence for monophyletic or polyphyletic origin of such sequences.
Collapse
Affiliation(s)
- Siddhartha Roy
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Building 37, Room 5138, 37 Convent Drive MSC 4264, Bethesda, MD 20892-4264, USA
| | | | | |
Collapse
|
34
|
Shin D, Lim S, Seok YJ, Ryu S. Heat shock RNA polymerase (E sigma(32)) is involved in the transcription of mlc and crucial for induction of the Mlc regulon by glucose in Escherichia coli. J Biol Chem 2001; 276:25871-5. [PMID: 11340070 DOI: 10.1074/jbc.m101757200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mlc is a global regulator of carbohydrate metabolism. Recent studies have revealed that Mlc is depressed by protein-protein interaction with enzyme IICB(Glc), a glucose-specific permease, which is encoded by ptsG. The mlc gene has been previously known to be transcribed by two promoters, P1(+1) and P2(+13), and have a binding site of its own gene product at +16. However, the mechanism of transcriptional regulation of the gene has not yet been established. In vitro transcription assays of the mlc gene showed that P2 promoter could be recognized by RNA polymerase containing the heat shock sigma factor final sigma(32) (E sigma(32)) as well as E sigma(70), while P1 promoter is only recognized by E sigma(70). The cyclic AMP receptor protein and cyclic AMP complex (CRP.cAMP) increased expression from P2 but showed negative effect on transcription from P1 by E sigma(70), although it had little effect on transcription from P2 by E sigma(32) in vitro. Purified Mlc repressed transcription from both promoters, but with different degrees of inhibition. In vivo transcription assays using wild type and mlc strains indicated that the level of mlc expression was modulated less than 2-fold by glucose in the medium with concerted action of CRP.cAMP and Mlc. A dramatic increase in mlc expression was observed upon heat shock or in cells overexpressing final sigma(32), confirming that E sigma(32) is involved in the expression of mlc. Induction of ptsG P1 and pts P0 transcription by glucose was also dependent on E sigma(32). These results indicate that E sigma(32) plays an important role in balancing the relative concentration of Mlc and EIICB(Glc) in response to availability of glucose in order to maintain inducibility of the Mlc regulon at high growth temperature.
Collapse
Affiliation(s)
- D Shin
- Research Center for New Bio-Materials in Agriculture, Department of Food Science and Technology and School of Agricultural Biotechnology, Seoul National University, Suwon 441-744, Korea
| | | | | | | |
Collapse
|
35
|
Vaughan EE, van den Bogaard PT, Catzeddu P, Kuipers OP, de Vos WM. Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus. J Bacteriol 2001; 183:1184-94. [PMID: 11157930 PMCID: PMC94991 DOI: 10.1128/jb.183.4.1184-1194.2001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2000] [Accepted: 11/16/2000] [Indexed: 11/20/2022] Open
Abstract
Streptococcus thermophilus strain CNRZ 302 is unable to ferment galactose, neither that generated intracellularly by lactose hydrolysis nor the free sugar. Nevertheless, sequence analysis and complementation studies with Escherichia coli demonstrated that strain CNRZ 302 contained structurally intact genes for the Leloir pathway enzymes. These were organized into an operon in the order galKTE, which was preceded by a divergently transcribed regulator gene, galR, and followed by a galM gene and the lactose operon lacSZ. Results of Northern blot analysis showed that the structural gal genes were transcribed weakly, and only in medium containing lactose, by strain CNRZ 302. However, in a spontaneous galactose-fermenting mutant, designated NZ302G, the galKTE genes were well expressed in cells grown on lactose or galactose. In both CNRZ 302 and the Gal(+) mutant NZ302G, the transcription of the galR gene was induced by growth on lactose. Disruption of galR indicated that it functioned as a transcriptional activator of both the gal and lac operons while negatively regulating its own expression. Sequence analysis of the gal promoter regions of NZ302G and nine other independently isolated Gal(+) mutants of CNRZ 302 revealed mutations at three positions in the galK promoter region, which included substitutions at positions -9 and -15 as well as a single-base-pair insertion at position -37 with respect to the main transcription initiation point. Galactokinase activity measurements and analysis of gusA reporter gene fusions in strains containing the mutated promoters suggested that they were gal promoter-up mutations. We propose that poor expression of the gal genes in the galactose-negative S. thermophilus CNRZ 302 is caused by naturally occurring mutations in the galK promoter.
Collapse
Affiliation(s)
- E E Vaughan
- Wageningen Centre for Food Sciences, NIZO Food Research, 6718 ZB Ede, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
Swanson BL, Hamood AN. Autoregulation of the Pseudomonas aeruginosa protein PtxS occurs through a specific operator site within the ptxS upstream region. J Bacteriol 2000; 182:4366-71. [PMID: 10894751 PMCID: PMC101966 DOI: 10.1128/jb.182.15.4366-4371.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that the Pseudomonas aeruginosa toxA regulatory protein PtxS autoregulates its own synthesis by binding to a 52-bp fragment. The 3' end of the 52-bp fragment is located 58 bp 5' of the ptxS translation start site. We have identified a 14-bp palindromic sequence (TGAAACCGGTTTCA) within the 52-bp fragment. In this study, we used site-directed mutagenesis and promoter fusion experiments to determine if PtxS binds specifically to this palindromic sequence and regulates ptxS expression. We have also tried to determine the roles of specific nucleotides within the palindromic sequence in PtxS binding and ptxS expression. Initial promoter fusion experiments confirmed that the 52-bp fragment does not overlap with the region that carries the ptxS promoter activity. PtxS binding was eliminated upon the deletion of the 14-bp palindromic sequence from the 52-bp fragment. In addition, the deletion of the 14-bp sequence caused a significant enhancement in ptxS expression in the P. aeruginosa strain PAO1 and the ptxS isogenic mutant PAO::ptxS. Mutation of specific nucleotides within the 14-bp sequence eliminated, reduced, or had no effect on PtxS binding. However, mutations of several of these nucleotides produced a significant increase in ptxS expression in both PAO1 and PAO::ptxS. These results suggest that (i) the 14-bp palindromic sequence and specific nucleotides within it play a role in PtxS binding and (ii) deletion of the palindromic sequence or changing of certain nucleotides within it interferes with another mechanism that may regulate ptxS expression.
Collapse
Affiliation(s)
- B L Swanson
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | |
Collapse
|
37
|
Swanson BL, Hager P, Phibbs P, Ochsner U, Vasil ML, Hamood AN. Characterization of the 2-ketogluconate utilization operon in Pseudomonas aeruginosa PAO1. Mol Microbiol 2000; 37:561-73. [PMID: 10931350 DOI: 10.1046/j.1365-2958.2000.02012.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Pseudomonas aeruginosa protein PtxS negatively regulates its own synthesis by binding to the upstream region of its gene. We have recently identified a 14 bp palindromic sequence within the ptxS upstream region as the PtxS operator site (OP1). In this study, we searched the P. aeruginosa genomic sequence to determine whether this 14 bp sequence exists in other regions of the P. aeruginosa chromosome. Another PtxS operator site (OP2) was located 47 bp downstream of ptxS. DNA gel shift experiments confirmed that PtxS specifically binds to a 520 bp fragment that carries OP2. The DNA segment 3' of OP2 contains four open reading frames (ORF1-ORF4), which code for 29, 32, 48 and 35 kDa proteins respectively. The molecular weight of the products of ORFs 2 and 3 were confirmed by T7 expression experiments. Computer analyses suggest that ORF2 encodes an ATP-dependent kinase; ORF3, a transporter; and ORF4, a dehydrogenase. The predicted product of ORF1 showed no homology to previously identified proteins and contains all the conserved amino acids within the aldose 1-epimerase protein motif. Examination of the ptxs-ORF1 intergenic region (using promoter fusion experiments) showed that no potential promoter exists. An isogenic mutant defective in ORF1 was constructed in the P. aeruginosa strain PAO1. In contrast to its parent strain, the mutant failed to grow on a minimal medium in which 2-ketogluconate was the sole carbon source. Similarly, a previously constructed ptxS isogenic mutant of PAO1 did not grow in a minimal medium containing 2-ketogluconate as the sole carbon source. Furthermore, a plasmid carrying a fragment that contains ptxS and ORFs 1-4 complemented the defect of the previously described P. aeruginosa 2-ketogluconate-negative mutant. In the presence of 10 mM 2-ketogluconate, the in vitro binding of PtxS to a DNA fragment that carries either OP1 or OP2 was inhibited. These results suggest that: (i) ptxS together with the other four ORFs constitute the 2-ketogluconate utilization operon (kgu) in P. aeruginosa. Therefore, ORFs 1-4 were designated kguE, kguK, kguT and kguD respectively. (ii) PtxS regulates the expression of the kgu operon by binding to two operators (OP1 and OP2) within the operon; and (iii) 2-ketogluconate is the molecular inducer of the kgu operon or the molecular effector of PtxS.
Collapse
Affiliation(s)
- B L Swanson
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
An online catalog of intergenic DNA repeat sequence elements is added to the EcoGene Escherichia coli K-12 genome sequence annotation and analysis project (bmb.med.miami.edu/EcoGene). A library of noncoding (intergenic) DNA sequences depleted of known intergenic repeat classes was searched for DNA sequence similarities to identify novel DNA repeat sequence classes.
Collapse
Affiliation(s)
- K E Rudd
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, FL 33101-6129, USA.
| |
Collapse
|
39
|
Swanson BL, Colmer JA, Hamood AN. The Pseudomonas aeruginosa exotoxin A regulatory gene, ptxS: evidence for negative autoregulation. J Bacteriol 1999; 181:4890-5. [PMID: 10438759 PMCID: PMC93976 DOI: 10.1128/jb.181.16.4890-4895.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously described a Pseudomonas aeruginosa gene, ptxR, which enhances exotoxin A production at the transcriptional level. We have also described another gene, ptxS, which is transcribed divergently from ptxR and interferes with the enhancement of exotoxin A synthesis by ptxR. However, the mechanisms through which ptxR and/or ptxS are regulated is not known. In this study, we attempted (by using the DNA gel shift assay) to determine if P. aeruginosa contains a potential regulatory protein that binds specifically to the ptxR or ptxS upstream region. In the initial analysis, different-sized gel shift bands were detected when a probe containing the ptxR-ptxS intergenic region was incubated with the lysate of P. aeruginosa PAO1. The strongest binding activity was detected with a smaller fragment that represents the ptxS upstream region. Additional deletion analysis localized the binding to a 52-bp fragment immediately upstream of ptxS. The gel shift band was not detected when the 52-bp fragment was incubated with the lysate of the ptxS isogenic mutant PAO1::ptxS. However, the binding band was regenerated when a plasmid carrying ptxS intact was introduced into PAO1::ptxS. In addition, the gel shift band was detected when the 52-bp fragment was incubated with a lysate of Escherichia coli in which ptxS was overexpressed from the T7 promoter. The effect of PtxS on ptxS expression was examined by using a ptxS-lacZ fusion plasmid. The level of beta-galactosidase activity produced by PAO1::ptxS carrying the fusion plasmid was four- to fivefold higher than that produced by PAO1 carrying the same plasmid. Using DNase I footprinting analysis, the binding region was specified to a 20-bp fragment. Within the fragment, a 14-bp palindromic sequence exists that may function as a PtxS binding site. These results suggest that PtxS autoregulates its synthesis by binding to a specific sequence within the ptxS upstream region.
Collapse
Affiliation(s)
- B L Swanson
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | |
Collapse
|
40
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
41
|
Decker K, Plumbridge J, Boos W. Negative transcriptional regulation of a positive regulator: the expression of malT, encoding the transcriptional activator of the maltose regulon of Escherichia coli, is negatively controlled by Mlc. Mol Microbiol 1998; 27:381-90. [PMID: 9484893 DOI: 10.1046/j.1365-2958.1998.00694.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The maltose regulon consists of 10 genes encoding a multicomponent and binding protein-dependent ABC transporter for maltose and maltodextrins as well as enzymes necessary for the degradation of these sugars. MalT, the transcriptional activator of the system, is necessary for the transcription of all mal genes. MalK, the energy-transducing subunit of the transport system, acts phenotypically as repressor, particularly when overproduced. We isolated an insertion mutation that strongly reduced the repressing effect of overproduced MalK. The affected gene was sequenced and identified as mlc, a known gene encoding a protein of unknown function with homology to the Escherichia coli NagC protein. The loss of Mlc function led to a threefold increase in malT expression, and the presence of mlc on a multicopy plasmid reduced malT expression. By DNasel protection assay, we found that Mlc protected a DNA region comprising positions +1 to +23 of the malT transcriptional start point. Using a mlc-lacZ fusion in a mlc and mlc+ background, we found that Mlc represses its own expression. As Mlc also regulates another operon (manXYZ, see pages 369-379 of this issue), it may very well constitute a new global regulator of carbohydrate utilization.
Collapse
Affiliation(s)
- K Decker
- Department of Biology, University of Konstanz, Germany
| | | | | |
Collapse
|
42
|
Nieto C, Espinosa M, Puyet A. The maltose/maltodextrin regulon of Streptococcus pneumoniae. Differential promoter regulation by the transcriptional repressor MalR. J Biol Chem 1997; 272:30860-5. [PMID: 9388231 DOI: 10.1074/jbc.272.49.30860] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Streptococcus pneumoniae MalR protein regulates the transcription of two divergent operons, malXCD and malMP, involved in maltosaccharide uptake and utilization, respectively. MalR belongs to the LacI-GalR family of transcription repressors. The protein binds specifically to two operator sequences in the intergenic region between these operons. The affinity of MalR for the malMP binding sequence is higher than for the malXCD site. Results obtained in vivo using transcriptional fusions with reporter genes indicate low repression level of malXCD by MalR when compared with malMP. This behavior may be correlated with the existence of separate induction pathways for maltose, maltotriose, and maltotetraose. The similarities found at the operator sequences and binding domains for MalR and enterococcal repressor proteins suggest that the pneumococcal maltosaccharide regulation system is closely related to several Gram-negative metabolic pathways, but not to the structurally similar Escherichia coli maltose regulon.
Collapse
Affiliation(s)
- C Nieto
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Velázquez 144, E-28006 Madrid, Spain
| | | | | |
Collapse
|
43
|
Ozoline ON, Deev AA, Arkhipova MV. Non-canonical sequence elements in the promoter structure. Cluster analysis of promoters recognized by Escherichia coli RNA polymerase. Nucleic Acids Res 1997; 25:4703-9. [PMID: 9365247 PMCID: PMC147123 DOI: 10.1093/nar/25.23.4703] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nucleotide sequences of 441 promoters recognized by Escherichia coli RNA polymerase were subjected to a site-specific cluster analysis based on the hierarchical method of classification. Five regions permitting promoter subgrouping were identified. They are located at -54 +/- 4, -44 +/- 3, -35 +/- 3 (-35 element), -29 +/- 2 and -11 +/-4 (-10 element). Promoters were independently subgrouped on the basis of their sequence homology in each of these regions and typical sequence elements were determined. The putative functional significance of the revealed elements is discussed on the basis of available biochemical data. Those promoters that have a high degree of homology with the revealed sequence elements were selected as representatives of corresponding promoter groups and the presence of other sequence motifs in their structure was examined. Both positive and negative correlations in the presence of particular sequence motifs were observed; however, the degree of these interdependencies was not high in all cases, probably indicating that different combinations of the signal elements may create a promoter. The list of promoter sequences with the presence of different sequence elements is available on request by Email: ozoline@venus.iteb. serpukhov.su.
Collapse
Affiliation(s)
- O N Ozoline
- Institute of Cell Biophysics, Russian Academy of Sciences (RAS), Pushchino, 142292 Moscow region, Russia.
| | | | | |
Collapse
|
44
|
Monedero V, Gosalbes MJ, Pérez-Martínez G. Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J Bacteriol 1997; 179:6657-64. [PMID: 9352913 PMCID: PMC179592 DOI: 10.1128/jb.179.21.6657-6664.1997] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chromosomal ccpA gene from Lactobacillus casei ATCC 393 has been cloned and sequenced. It encodes the CcpA protein, a central catabolite regulator belonging to the LacI-GalR family of bacterial repressors, and shows 54% identity with CcpA proteins from Bacillus subtilis and Bacillus megaterium. The L. casei ccpA gene was able to complement a B. subtilis ccpA mutant. An L. casei ccpA mutant showed increased doubling times and a relief of the catabolite repression of some enzymatic activities, such as N-acetylglucosaminidase and phospho-beta-galactosidase. Detailed analysis of CcpA activity was performed by using the promoter region of the L. casei chromosomal lacTEGF operon which is subject to catabolite repression and contains a catabolite responsive element (cre) consensus sequence. Deletion of this cre site or the presence of the ccpA mutation abolished the catabolite repression of a lacp::gusA fusion. These data support the role of CcpA as a common regulatory element mediating catabolite repression in low-GC-content gram-positive bacteria.
Collapse
Affiliation(s)
- V Monedero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Burjassot, Valencia, Spain
| | | | | |
Collapse
|
45
|
Geanacopoulos M, Adhya S. Functional characterization of roles of GalR and GalS as regulators of the gal regulon. J Bacteriol 1997; 179:228-34. [PMID: 8982002 PMCID: PMC178683 DOI: 10.1128/jb.179.1.228-234.1997] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
An isorepressor of the gal regulon in Escherichia coli, GalS, has been purified to homogeneity. In vitro DNase I protection experiments indicated that among operators of the gal regulon, GalS binds most strongly to the external operator of the mgl operon, which encodes the high-affinity beta-methylgalactoside galactose transport system, and with less affinity to the operators controlling expression of the gal operon, which codes for enzymes of galactose metabolism. GalS has even less affinity for the external operator of galP, which codes for galactose permease, the major low-affinity galactose transporter in the cell. This order of affinities is the reverse of that of GalR, which binds most strongly to the operator of galP and most weakly to that of mgl. Our results also show that GalS, like its homolog, GalR, is a dimeric protein which in binding to the bipartite operators of the gal operon selectively represses its P1 promoter. Consistent with the fact that GalR is the exclusive regulator of the low-affinity galactose transporter, galactose permease, and that the major role of GalS is in regulating expression of the high-affinity galactose transporter encoded by the mgl operon, we found that the DNA binding of GalS is 15-fold more sensitive than that of GalR to galactose.
Collapse
Affiliation(s)
- M Geanacopoulos
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | |
Collapse
|
46
|
Plumbridge J. How to achieve constitutive expression of a gene within an inducible operon: the example of the nagC gene of Escherichia coli. J Bacteriol 1996; 178:2629-36. [PMID: 8626331 PMCID: PMC177988 DOI: 10.1128/jb.178.9.2629-2636.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nagC gene, encoding the NagC repressor/activator of the nag regulon, is part of the nagBACD operon. When the promoter-proximal nagB and nagA genes are induced 20- to 40-fold, the nagC gene is induced only two- to threefold. In addition to being transcribed as part of the polycistronic nagBACD mRNA, nagC is also expressed from two promoters located within the upstream nagA gene. These promoters are comparable in strength to the induced nagB promoter, resulting in a high basal level of the nagC mRNA. This means that when the nagBA genes are induced, there is a much smaller effect on the amount of nagC mRNA. The nagC gene is subject to low-level translation so that the amount of NagC protein is kept low despite the relatively high transcription levels.
Collapse
Affiliation(s)
- J Plumbridge
- Institut de Biologie Physico-chimique, Paris, France
| |
Collapse
|
47
|
|
48
|
Hindle Z, Smith CP. Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol 1994; 12:737-45. [PMID: 8052126 DOI: 10.1111/j.1365-2958.1994.tb01061.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The pathway for glycerol catabolism in Streptomyces coelicolor is determined by the gylCABX operon, which is transcribed from two closely spaced glycerol-inducible, glucose-repressible promoters. Glucose (or catabolite) repression of gyl is known to be exerted by a general catabolite repression system in which the soluble glucose kinase plays a central role. The gylR gene is contained in a separate glycerol-inducible, weakly glucose-repressible transcription unit immediately upstream from the gyl operon. The role of gylR in the regulation of gyl transcription was assessed by introducing specific null mutations into the chromosomal gylR gene. Direct quantification of gyl transcripts from the gylR null mutants grown on different carbon sources demonstrated that GylR is the repressor of the gylCABX operon and also revealed that GylR functions as a negative autoregulator. Moreover, the transcriptional analysis revealed that the gylR null mutants were relieved of glucose repression of both gylCABX and gylR. We conclude that both substrate induction and catabolite repression of gyl are mediated through the GylR protein. This is the first direct evidence that catabolite repression in Streptomyces is not exerted at the transcriptional level by a general 'catabolite repressor protein'. Models for catabolite repression are discussed.
Collapse
Affiliation(s)
- Z Hindle
- Department of Biochemistry and Applied Molecular Biology, UMIST, Manchester, UK
| | | |
Collapse
|
49
|
In vitro asymmetric binding of the pleiotropic regulatory protein, FruR, to the ace operator controlling glyoxylate shunt enzyme synthesis. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36548-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
|