1
|
Droste J, Rückert C, Kalinowski J, Hamed MB, Anné J, Simoens K, Bernaerts K, Economou A, Busche T. Extensive Reannotation of the Genome of the Model Streptomycete Streptomyces lividans TK24 Based on Transcriptome and Proteome Information. Front Microbiol 2021; 12:604034. [PMID: 33935985 PMCID: PMC8079986 DOI: 10.3389/fmicb.2021.604034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/12/2021] [Indexed: 01/04/2023] Open
Abstract
Streptomyces lividans TK24 is a relevant Gram-positive soil inhabiting bacterium and one of the model organisms of the genus Streptomyces. It is known for its potential to produce secondary metabolites, antibiotics, and other industrially relevant products. S. lividans TK24 is the plasmid-free derivative of S. lividans 66 and a close genetic relative of the strain Streptomyces coelicolor A3(2). In this study, we used transcriptome and proteome data to improve the annotation of the S. lividans TK24 genome. The RNA-seq data of primary 5'-ends of transcripts were used to determine transcription start sites (TSS) in the genome. We identified 5,424 TSS, of which 4,664 were assigned to annotated CDS and ncRNAs, 687 to antisense transcripts distributed between 606 CDS and their UTRs, 67 to tRNAs, and 108 to novel transcripts and CDS. Using the TSS data, the promoter regions and their motifs were analyzed in detail, revealing a conserved -10 (TAnnnT) and a weakly conserved -35 region (nTGACn). The analysis of the 5' untranslated region (UTRs) of S. lividans TK24 revealed 17% leaderless transcripts. Several cis-regulatory elements, like riboswitches or attenuator structures could be detected in the 5'-UTRs. The S. lividans TK24 transcriptome contains at least 929 operons. The genome harbors 27 secondary metabolite gene clusters of which 26 could be shown to be transcribed under at least one of the applied conditions. Comparison of the reannotated genome with that of the strain Streptomyces coelicolor A3(2) revealed a high degree of similarity. This study presents an extensive reannotation of the S. lividans TK24 genome based on transcriptome and proteome analyses. The analysis of TSS data revealed insights into the promoter structure, 5'-UTRs, cis-regulatory elements, attenuator structures and novel transcripts, like small RNAs. Finally, the repertoire of secondary metabolite gene clusters was examined. These data provide a basis for future studies regarding gene characterization, transcriptional regulatory networks, and usage as a secondary metabolite producing strain.
Collapse
Affiliation(s)
- Julian Droste
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Mohamed Belal Hamed
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, KU Leuven, Rega Institute, Leuven, Belgium.,Molecular Biology Department, National Research Centre, Dokii, Egypt
| | - Jozef Anné
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, KU Leuven, Rega Institute, Leuven, Belgium
| | - Kenneth Simoens
- Bio- and Chemical Systems Technology, Reactor Engineering, and Safety (CREaS) Section, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering, and Safety (CREaS) Section, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, KU Leuven, Rega Institute, Leuven, Belgium
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Valverde JR, Gullón S, Mellado RP. Modelling the metabolism of protein secretion through the Tat route in Streptomyces lividans. BMC Microbiol 2018; 18:59. [PMID: 29898665 PMCID: PMC6000921 DOI: 10.1186/s12866-018-1199-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/30/2018] [Indexed: 01/03/2023] Open
Abstract
Background Streptomyces lividans has demonstrated its value as an efficient host for protein production due to its ability to secrete functional proteins directly to the media. Secretory proteins that use the major Sec route need to be properly folded outside the cell, whereas secretory proteins using the Tat route appear outside the cell correctly folded. This feature makes the Tat system very attractive for the production of natural or engineered Tat secretory proteins. S. lividans cells are known to respond differently to overproduction and secretion of Tat versus Sec proteins. Increased understanding of the impact of protein secretion through the Tat route can be obtained by a deeper analysis of the metabolic impact associated with protein production, and its dependence on protein origin, composition, secretion mechanisms, growth phases and nutrients. Flux Balance Analysis of Genome-Scale Metabolic Network models provides a theoretical framework to investigate cell metabolism under different constraints. Results We have built new models for various S. lividans strains to better understand the mechanisms associated with overproduction of proteins secreted through the Tat route. We compare models of an S. lividans Tat-dependent agarase overproducing strain with those of the S. lividans wild-type, an S. lividans strain carrying the multi-copy plasmid vector and an α-amylase Sec-dependent overproducing strain. Using updated genomic, transcriptomic and experimental data we could extend existing S. lividans models and produce a new model which produces improved results largely extending the coverage of S. lividans strains, the number of genes and reactions being considered, the predictive behaviour and the dependence on specification of exchange constraints. Comparison of the optimized solutions obtained highlights numerous changes between Tat- and Sec-dependent protein secreting strains affecting the metabolism of carbon, amino acids, nucleotides, lipids and cofactors, and variability analysis predicts a large potential for protein overproduction. Conclusions This work provides a detailed look to metabolic changes associated to Tat-dependent protein secretion reproducing experimental observations and identifying changes that are specific to each secretory route, presenting a novel, improved, more accurate and strain-independent model of S. lividans, thus opening the way for enhanced metabolic engineering of protein overproduction in S. lividans. Electronic supplementary material The online version of this article (10.1186/s12866-018-1199-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José R Valverde
- Scientific Computing Service. Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Sonia Gullón
- Departamento de Biotecnología Microbiana. Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Rafael P Mellado
- Departamento de Biotecnología Microbiana. Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Wang B, Wang A, Cao Z, Zhu G. Characterization of a novel highly thermostable esterase from the Gram-positive soil bacteriumStreptomyces lividansTK64. Biotechnol Appl Biochem 2016; 63:334-43. [DOI: 10.1002/bab.1465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/21/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Baojuan Wang
- Institute of Molecular Biology and Biotechnology and Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources; College of Life Sciences; Anhui Normal University; Wuhu Anhui People's Republic of China
| | - Ao Wang
- Institute of Molecular Biology and Biotechnology and Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources; College of Life Sciences; Anhui Normal University; Wuhu Anhui People's Republic of China
- College of Physical Education; Anhui Normal University; Wuhu Anhui People's Republic of China
| | - Zhengyu Cao
- Institute of Molecular Biology and Biotechnology and Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources; College of Life Sciences; Anhui Normal University; Wuhu Anhui People's Republic of China
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology and Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources; College of Life Sciences; Anhui Normal University; Wuhu Anhui People's Republic of China
| |
Collapse
|
4
|
Bekker V, Dodd A, Brady D, Rumbold K. Tools for metabolic engineering in Streptomyces. Bioengineered 2015; 5:293-9. [PMID: 25482230 DOI: 10.4161/bioe.29935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During the last few decades, Streptomycetes have shown to be a very important and adaptable group of bacteria for the production of various beneficial secondary metabolites. These secondary metabolites have been of great interest in academia and the pharmaceutical industries. To date, a vast variety of techniques and tools for metabolic engineering of relevant structural biosynthetic gene clusters have been developed. The main aim of this review is to summarize and discuss the published literature on tools for metabolic engineering of Streptomyces over the last decade. These strategies involve precursor engineering, structural and regulatory gene engineering, and the up or downregulation of genes, as well as genome shuffling and the use of genome scale metabolic models, which can reconstruct bacterial metabolic pathways to predict phenotypic changes and hence rationalize engineering strategies. These tools are continuously being developed to simplify the engineering strategies for this vital group of bacteria.
Collapse
Affiliation(s)
- Valerie Bekker
- a School of Molecular and Cell Biology; University of the Witwatersrand; Johannesburg, South Africa
| | | | | | | |
Collapse
|
5
|
Abstract
Pulsed field gel electrophoresis (PFGE) is a quick and reliable procedure to resolve DNA molecules larger than 30 kb by applying an electric field that periodically changes direction. This technique can be used to estimate genome size of a microorganism, to reveal if a genome is circular or linear, to indicate the presence of megaplasmids, and to show if a strain contains only one or more chromosomes.
Collapse
Affiliation(s)
- Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via delle Scienze, Ed. 16, Palermo, 90128, Italy,
| | | |
Collapse
|
6
|
|
7
|
Su RR, Wang A, Hou ST, Gao P, Zhu GP, Wang W. Identification of a novel fumarase C from Streptomyces lividans TK54 as a good candidate for L-malate production. Mol Biol Rep 2013; 41:497-504. [PMID: 24307253 DOI: 10.1007/s11033-013-2885-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 11/23/2013] [Indexed: 12/13/2022]
Abstract
Fumarase is a key enzyme that catalyzes the reversible hydration of fumarate to L-malate in the tricarboxylic acid cycle. This reaction has been extensively utilized for industrial applications in producing L-malate. In this study, a fumarase C gene from Streptomyces lividans TK54 (slFumC) was cloned and expressed as a fused protein (SlFumC) in Escherichia coli. The molecular mass of SlFumC was about 49 kDa determined by SDS-PAGE. Kinetic studies showed that the K m value of SlFumC for L-malate increased by approximately 8.5-fold at pH 6.5 (6.7 ± 0.81 mM) to 8.0 (57.0 ± 1.12 mM), which was higher than some known fumarases. The catalytic efficiency (k cat) and the specific activity increased by about 9.5-fold at pH 6.5 (65 s(-1)) to 8.0 (620 s(-1)) and from 79 U/mg at pH 6.5 to 752 U/mg at pH 8.0, respectively. Therefore, SlFumC may acquire strong catalytic ability by increasing pH to partially compensate for the loss of substrate affinity. The enzyme also showed substrate inhibition phenomenon, which is pH-dependent. Specific activity of SlFumC was gradually enhanced with increasing phosphate concentrations. However, no inhibition was observed at high concentration of phosphate ion, which was distinctly different in case of other Class II fumarases. In industrial process, the reaction temperatures for L-malate production are usually set between 40 and 60 °C. The recombinant SlFumC displayed maximal activity at 45 °C and remained over 85 % of original activity after 48 h incubation at 40 °C, which was more thermostable than other fumarases from Streptomyces and make it an efficient enzyme for use in the industrial production of L-malate.
Collapse
Affiliation(s)
- Rui-Rui Su
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Meng L, Yang SH, Kim TJ, Suh JW. Effects of two putative LacI-family transcriptional regulators, SCO4158 and SCO7554, on antibiotic pigment production of Streptomyces coelicolor and Streptomyces lividans. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13765-012-2164-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Ghinet MG, Roy S, Poulin-Laprade D, Lacombe-Harvey MÈ, Morosoli R, Brzezinski R. Chitosanase from Streptomyces coelicolor A3(2): biochemical properties and role in protection against antibacterial effect of chitosan. Biochem Cell Biol 2011; 88:907-16. [PMID: 21102653 DOI: 10.1139/o10-109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chitosan, an N-deacetylated derivative of chitin, has attracted much attention as an antimicrobial agent against fungi, bacteria, and viruses. Chitosanases, the glycoside hydrolases responsible for chitosan depolymerisation, are intensively studied as tools for biotechnological transformation of chitosan. The chitosanase CsnA (SCO0677) from Streptomyces coelicolor A3(2) was purified and characterized. CsnA belongs to the GH46 family of glycoside hydrolases. However, it is secreted efficiently by the Tat translocation pathway despite its similarity to the well-studied chitosanase from Streptomyces sp. N174 (CsnN174), which is preferentially secreted through the Sec pathway. Melting point determination, however, revealed substantial differences between these chitosanases, both in the absence and in the presence of chitosan. We further assessed the role of CsnA as a potential protective enzyme against the antimicrobial effect of chitosan. A Streptomyces lividans TK24 strain in which the csnA gene was inactivated by gene disruption was more sensitive to chitosan than the wild-type strain or a chitosanase-overproducing strain. This is the first genetic evidence for the involvement of chitosanases in the protection of bacteria against the antimicrobial effect of chitosan.
Collapse
Affiliation(s)
- Mariana Gabriela Ghinet
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Lewis RA, Laing E, Allenby N, Bucca G, Brenner V, Harrison M, Kierzek AM, Smith CP. Metabolic and evolutionary insights into the closely-related species Streptomyces coelicolor and Streptomyces lividans deduced from high-resolution comparative genomic hybridization. BMC Genomics 2010; 11:682. [PMID: 21122120 PMCID: PMC3017869 DOI: 10.1186/1471-2164-11-682] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 12/01/2010] [Indexed: 11/12/2022] Open
Abstract
Background Whilst being closely related to the model actinomycete Streptomyces coelicolor A3(2), S. lividans 66 differs from it in several significant and phenotypically observable ways, including antibiotic production. Previous comparative gene hybridization studies investigating such differences have used low-density (one probe per gene) PCR-based spotted arrays. Here we use new experimentally optimised 104,000 × 60-mer probe arrays to characterize in detail the genomic differences between wild-type S. lividans 66, a derivative industrial strain, TK24, and S. coelicolor M145. Results The high coverage and specificity (detection of three nucleotide differences) of the new microarrays used has highlighted the macroscopic genomic differences between two S. lividans strains and S. coelicolor. In a series of case studies we have validated the microarray and have identified subtle changes in genomic structure which occur in the Asp-activating adenylation domains of CDA non-ribosomal peptide synthetase genes which provides evidence of gene shuffling between these domains. We also identify single nucleotide sequence inter-species differences which exist in the actinorhodin biosynthetic gene cluster. As the glyoxylate bypass is non-functional in both S. lividans strains due to the absence of the gene encoding isocitrate lyase it is likely that the ethylmalonyl-CoA pathway functions as the alternative mechanism for the assimilation of C2 compounds. Conclusions This study provides evidence for widespread genetic recombination, rather than it being focussed at 'hotspots', suggesting that the previously proposed 'archipelago model' of genomic differences between S. coelicolor and S. lividans is unduly simplistic. The two S. lividans strains investigated differ considerably in genetic complement, with TK24 lacking 175 more genes than its wild-type parent when compared to S. coelicolor. Additionally, we confirm the presence of bldB in S. lividans and deduce that S. lividans 66 and TK24, both deficient in the glyoxylate bypass, possess an alternative metabolic mechanism for the assimilation of C2 compounds. Given that streptomycetes generally display high genetic instability it is envisaged that these high-density arrays will find application for rapid assessment of genome content (particularly amplifications/deletions) in mutational studies of S. coelicolor and related species.
Collapse
Affiliation(s)
- Richard A Lewis
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang B, Wang B, Wang P, Cao Z, Huang E, Hao J, Dean AM, Zhu G. Enzymatic characterization of a monomeric isocitrate dehydrogenase from Streptomyces lividans TK54. Biochimie 2009; 91:1405-10. [PMID: 19631711 DOI: 10.1016/j.biochi.2009.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
Isocitrate dehydrogenase (IDH) is one of the key enzymes in the citric acid cycle, which involves in providing energy and biosynthetic precursors for metabolism. Here, we report for the first time the enzymatic characterization of a monomeric NADP(+)-dependent IDH from Streptomyces lividans TK54 (SlIDH). The icd gene (GenBank database accession number EU661252) encoding IDH was cloned and overexpressed in Escherichia coli. The molecular mass of SlIDH was about 80 kDa, typical of a monomeric NADP-IDH, and showed high amino acid sequence identity with known monomeric IDHs. The optimal activity of the 6His-tagged SlIDH was found at pH values 8.5 (Mn(2+)) and 9.0 (Mg(2+)), and the optimal temperature was around 46 degrees C. Heat-inactivation studies showed that about 50% SlIDH activity was preserved at 38 degrees C after 20 min of incubation. The recombinant SlIDH displayed a 62,000-fold (k(cat)/K(m)) preference for NADP(+) over NAD(+) with Mn(2+), and a 85,000-fold greater specificity for NADP(+) than NAD(+) with Mg(2+). Therefore, SlIDH is a divalent cation-dependent monomeric IDH with remarkably high coenzyme preference for NADP(+).
Collapse
Affiliation(s)
- Beibei Zhang
- Key Laboratory of Molecular Evolution and Biodiversity and Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Phage shock protein (Psp) is induced by extracytoplasmic stress that may reduce the energy status of the cell. It is encoded in Escherichia coli by the phage shock protein regulon consisting of pspABCDE and by pspF and pspG. The phage shock protein system is highly conserved among a large number of gram-negative bacteria. However, many bacterial genomes contain only a pspA homologue but no homologues of the other genes of the Psp system. This conservation indicates that PspA alone might play an important role in these bacteria. In Streptomyces lividans, a soil-borne gram-positive bacterium, the phage shock protein system consists only of the pspA gene. In this report, we showed that pspA encodes a 28-kDa protein that is present in both the cytoplasmic and the membrane fractions of the S. lividans mycelium. We demonstrated that the pspA gene is strongly induced under stress conditions that attack membrane integrity and that it is essential for growth and survival under most of these conditions. The data reported here clearly show that PspA plays an important role in S. lividans under stress conditions despite the absence of other psp homologues, suggesting that PspA may be more important in most bacteria than previously thought.
Collapse
|
13
|
Charaniya S, Mehra S, Lian W, Jayapal KP, Karypis G, Hu WS. Transcriptome dynamics-based operon prediction and verification in Streptomyces coelicolor. Nucleic Acids Res 2007; 35:7222-36. [PMID: 17959654 PMCID: PMC2175336 DOI: 10.1093/nar/gkm501] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Streptomyces spp. produce a variety of valuable secondary metabolites, which are regulated in a spatio-temporal manner by a complex network of inter-connected gene products. Using a compilation of genome-scale temporal transcriptome data for the model organism, Streptomyces coelicolor, under different environmental and genetic perturbations, we have developed a supervised machine-learning method for operon prediction in this microorganism. We demonstrate that, using features dependent on transcriptome dynamics and genome sequence, a support vector machines (SVM)-based classification algorithm can accurately classify >90% of gene pairs in a set of known operons. Based on model predictions for the entire genome, we verified the co-transcription of more than 250 gene pairs by RT-PCR. These results vastly increase the database of known operons in S. coelicolor and provide valuable information for exploring gene function and regulation to harness the potential of this differentiating microorganism for synthesis of natural products.
Collapse
Affiliation(s)
- Salim Charaniya
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455-0132, USA
| | | | | | | | | | | |
Collapse
|
14
|
He X, Ou HY, Yu Q, Zhou X, Wu J, Liang J, Zhang W, Rajakumar K, Deng Z. Analysis of a genomic island housing genes for DNA S-modification system in Streptomyces lividans 66 and its counterparts in other distantly related bacteria. Mol Microbiol 2007; 65:1034-48. [PMID: 17640271 DOI: 10.1111/j.1365-2958.2007.05846.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The complete sequence (92 770 bp) of a genomic island (GI) named SLG from Streptomyces lividans 66, encoding a novel DNA S-modification system (dnd), was determined. Its overall G+C content was 67.8%, lower than those of three sequenced Streptomyces genomes. Among 85 predicted open reading frames (ORFs) in SLG, 22 ORFs showed little homology with previously known proteins. SLG displays a mosaic structure composed of four modules, indicative of multiple recombination events in its formation. Spontaneous excision and circularization of SLG was observed, and the excision rate appeared to be induced at least fivefold by MNNG exposure. Using constructed mini-islands of SLG, we demonstrated that Slg01, a P4-like integrase, was sufficient to promote SLG integration, excision and circularization. Eleven counterpart dnd clusters, which also mapped to GIs in 10 chromosomes and a plasmid, were found in taxonomically unrelated bacterial species from various geographic niches. Additionally, c. 10% of actinomycetes were found to possess a dnd cluster in a survey involving 74 strains. Comparison of dnd clusters in the 12 bacteria strongly suggests that these dnd-bearing elements might have evolved from a common ancestor similar to plasmid-originated chromosome II of Pseudoalteromonas haloplanktis TAC125.
Collapse
Affiliation(s)
- Xinyi He
- Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jayapal KP, Lian W, Glod F, Sherman DH, Hu WS. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics 2007; 8:229. [PMID: 17623098 PMCID: PMC1934918 DOI: 10.1186/1471-2164-8-229] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 07/10/2007] [Indexed: 11/20/2022] Open
Abstract
Background The genomes of Streptomyces coelicolor and Streptomyces lividans bear a considerable degree of synteny. While S. coelicolor is the model streptomycete for studying antibiotic synthesis and differentiation, S. lividans is almost exclusively considered as the preferred host, among actinomycetes, for cloning and expression of exogenous DNA. We used whole genome microarrays as a comparative genomics tool for identifying the subtle differences between these two chromosomes. Results We identified five large S. coelicolor genomic islands (larger than 25 kb) and 18 smaller islets absent in S. lividans chromosome. Many of these regions show anomalous GC bias and codon usage patterns. Six of them are in close vicinity of tRNA genes while nine are flanked with near perfect repeat sequences indicating that these are probable recent evolutionary acquisitions into S. coelicolor. Embedded within these segments are at least four DNA methylases and two probable methyl-sensing restriction endonucleases. Comparison with S. coelicolor transcriptome and proteome data revealed that some of the missing genes are active during the course of growth and differentiation in S. coelicolor. In particular, a pair of methylmalonyl CoA mutase (mcm) genes involved in polyketide precursor biosynthesis, an acyl-CoA dehydrogenase implicated in timing of actinorhodin synthesis and bldB, a developmentally significant regulator whose mutation causes complete abrogation of antibiotic synthesis belong to this category. Conclusion Our findings provide tangible hints for elucidating the genetic basis of important phenotypic differences between these two streptomycetes. Importantly, absence of certain genes in S. lividans identified here could potentially explain the relative ease of DNA transformations and the conditional lack of actinorhodin synthesis in S. lividans.
Collapse
Affiliation(s)
- Karthik P Jayapal
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE., Minneapolis, MN 55455, USA
| | - Wei Lian
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE., Minneapolis, MN 55455, USA
- Abbott Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Frank Glod
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, USA
- Fonds National de la Recherche, 6 rue Antoine de Saint-Exupéry, L-1017 Kirchberg, Luxembourg
| | - David H Sherman
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE., Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N, Dickens S, Haydock SF, Leadlay PF. Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 2007; 25:447-53. [PMID: 17369815 DOI: 10.1038/nbt1297] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 02/21/2007] [Indexed: 11/09/2022]
Abstract
Saccharopolyspora erythraea is used for the industrial-scale production of the antibiotic erythromycin A, derivatives of which play a vital role in medicine. The sequenced chromosome of this soil bacterium comprises 8,212,805 base pairs, predicted to encode 7,264 genes. It is circular, like those of the pathogenic actinomycetes Mycobacterium tuberculosis and Corynebacterium diphtheriae, but unlike the linear chromosomes of the model actinomycete Streptomyces coelicolor A3(2) and the closely related Streptomyces avermitilis. The S. erythraea genome contains at least 25 gene clusters for production of known or predicted secondary metabolites, at least 72 genes predicted to confer resistance to a range of common antibiotic classes and many sets of duplicated genes to support its saprophytic lifestyle. The availability of the genome sequence of S. erythraea will improve insight into its biology and facilitate rational development of strains to generate high-titer producers of clinically important antibiotics.
Collapse
Affiliation(s)
- Markiyan Oliynyk
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Anthracycline Biosynthesis: Genes, Enzymes and Mechanisms. ANTHRACYCLINE CHEMISTRY AND BIOLOGY I 2007. [DOI: 10.1007/128_2007_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
Abstract
Streptomyces lividans has a novel DNA modification, which sensitises its DNA to degradation during electrophoresis (the Dnd phenotype). The entire gene cluster (dnd) involved in this modification was localized on an 8 kb DNA fragment and was expressed in a S. lividans deletion mutant (dnd) and in several heterologous hosts. Disruption of the dnd locus abolishes the Dnd phenotype, and gain of the dnd locus conferred the Dnd phenotype respectively. Extensive analysis of the dnd gene cluster revealed five open reading frames, whose hypothetic functions suggested an incorporation of sulphur or a sulphur-containing substance into S. lividans genome, yet in an unknown manner. The Dnd phenotype was also discovered to exist in DNA of widespread bacterial species of variable origin and diverse habitat. Similarly organized gene clusters were found in several bacterial genomes representing different genera and in eDNA of marine organisms, suggesting such modification as a widespread phenomenon. A coincidence between the Dnd phenotype and DNA modification by sulphur was demonstrated to occur in several representative bacterial genomes by the in vivo(35)S-labelling experiments.
Collapse
Affiliation(s)
- Xiufen Zhou
- Bio-X Life Science Research Centre and School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200030, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhou X, He X, Li A, Lei F, Kieser T, Deng Z. Streptomyces coelicolor A3(2) lacks a genomic island present in the chromosome of Streptomyces lividans 66. Appl Environ Microbiol 2005; 70:7110-8. [PMID: 15574907 PMCID: PMC535201 DOI: 10.1128/aem.70.12.7110-7118.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptomyces lividans ZX1 has become a preferred host for DNA cloning in Streptomyces species over its progenitor, the wild-type strain 66 (stock number 1326 from the John Innes Center collection), especially when stable DNA is crucial for in vitro electrophoresis, because DNA from strain 66 contains a novel modification that makes it sensitive to oxidative double-strand cleavage during electrophoresis. Detailed analysis of this modification-deficient mutant (ZX1) revealed that it has several additional phenotypic traits associated with a chromosomal deletion of ca. 90 kb, which was cloned and mapped by using a cosmid library. Comparative sequence analysis of two clones containing the left and right deletion ends originating from strain 66 and one clone with the deletion and fused sequence cloned from strain ZX1 revealed a perfect 15-bp direct repeat, which may have mediated deletion and fusion to yield strain ZX1 by site-specific recombination. Analysis of AseI linking clones in the deleted region in relation to the published AseI map of strain ZX1 yielded a complete AseI map for the S. lividans 66 genome, on which the relative positions of a cloned phage phiHAU3 resistance (phiHAU3r) gene and the dnd gene cluster were precisely localized. Comparison of S. lividans ZX1 and its progenitor 66, as well as the sequenced genome of its close relative, Streptomyces coelicolor M145, reveals that the ca. 90-kb deletion in strain ZX1 may have originated from an insertion from an unknown source.
Collapse
Affiliation(s)
- Xiufen Zhou
- Bio-X Life Science Research Center, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Vanden Boom TJ. Recent developments in the molecular genetics of the erythromycin-producing organism Saccharopolyspora erythraea. ADVANCES IN APPLIED MICROBIOLOGY 2003; 47:79-111. [PMID: 12876795 DOI: 10.1016/s0065-2164(00)47002-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Vanitha JD, Venkatasubramani R, Dharmalingam K, Paramasivan CN. Large-restriction-fragment polymorphism analysis of Mycobacterium chelonae and Mycobacterium terrae isolates. Appl Environ Microbiol 2003; 69:4337-41. [PMID: 12839827 PMCID: PMC165136 DOI: 10.1128/aem.69.7.4337-4341.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 04/02/2003] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium chelonae and Mycobacterium terrae were reported to be frequently present in the environment of the Mycobacterium bovis BCG trial area in south India. Six isolates of M. chelonae and four isolates of M. terrae obtained from different sources in this area were analyzed by pulsed-field gel electrophoresis (PFGE) to examine large-restriction-fragment (LRF) polymorphism using the chromosomal DNA digested with DraI and XbaI restriction enzymes. With the exception of one isolate of M. terrae, DNA from all other isolates could be digested with DraI and XbaI and resulted in separable fragments. Visual comparison of the LRFs showed a unique pattern for each of the isolates tested. A computer-assisted dendrogram of the percent similarity demonstrated a high degree of genetic diversity in this group of isolates. This study demonstrates that species of nontuberculous mycobacteria, particularly M. chelonae and M. terrae, can be successfully typed by their LRF pattern using PFGE, which does not require species-specific DNA probes.
Collapse
Affiliation(s)
- J Daisy Vanitha
- Bacteriology Department, Tuberculosis Research Centre (ICMR), Chetput, Chennai 600 031, India
| | | | | | | |
Collapse
|
22
|
Hussain HA, Ward JM. Ferredoxin reductase enhances heterologously expressed cytochrome CYP105D1 in Escherichia coli and Streptomyces lividans. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00047-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Hussain HA, Ward JM. Enhanced heterologous expression of two Streptomyces griseolus cytochrome P450s and Streptomyces coelicolor ferredoxin reductase as potentially efficient hydroxylation catalysts. Appl Environ Microbiol 2003; 69:373-82. [PMID: 12514018 PMCID: PMC152428 DOI: 10.1128/aem.69.1.373-382.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herbicide-inducible, soluble cytochrome P450s CYP105A1 and CYP105B1 and their adjacent ferredoxins, Fd1 and Fd2, of Streptomyces griseolus were expressed in Escherichia coli to high levels. Conditions for high-level expression of active enzyme able to catalyze hydroxylation have been developed. Analysis of the expression levels of the P450 proteins in several different E. coli expression hosts identified E. coli BL21 Star(DE3)pLysS as the optimal host cell to express CYP105B1 as judged by CO difference spectra. Examination of the codons used in the CYP1051A1 sequence indicated that it contains a number of codons corresponding to rare E. coli tRNA species. The level of its expression was improved in the modified forms of E. coli BL21(DE3), which contain extra copies of rare codon E. coli tRNA genes. The activity of correctly folded cytochrome P450s was further enhanced by cloning a ferredoxin reductase from Streptomyces coelicolor downstream of CYP105A1 and CYP105B1 and their adjacent ferredoxins. Expression of CYP105A1 and CYP105B1 was also achieved in Streptomyces lividans 1326 by cloning the P450 genes and their ferredoxins into the expression vector pBW160. S. lividans 1326 cells containing CYP105A1 or CYP105B1 were able efficiently to dealkylate 7-ethoxycoumarin.
Collapse
Affiliation(s)
- Haitham A Hussain
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
24
|
Lai C, Xu J, Tozawa Y, Okamoto-Hosoya Y, Yao X, Ochi K. Genetic and physiological characterization of rpoB mutations that activate antibiotic production in Streptomyces lividans. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3365-3373. [PMID: 12427928 DOI: 10.1099/00221287-148-11-3365] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Antibiotic production in Streptomyces lividans can be activated by introducing certain mutations (rif) into the rpoB gene that confer resistance to rifampicin. Working with the most typical (rif-17) mutant strain, KO-417, the rif-17 mutation was characterized. The rif-17 mutation was shown to be responsible for activating antibiotic production and for reducing the growth rate of strain KO-417, as demonstrated by gene-replacement experiments. Gene-expression analysis revealed that introduction of rif into S. lividans elevates expression of the pathway-specific regulatory gene actII-ORF4 to nearly the same level seen in Streptomyces coelicolor. The rif effect on antibiotic production was still evident in the genetic background of relC, indicating that the rif mutation can provoke its effect without depending on ppGpp. Accompanying the restoration of antibiotic production, rif mutants also exhibited a lower rate of RNA synthesis compared to the parental strain when grown in a nutritionally rich medium, suggesting that the mutant RNA polymerases may behave like 'stringent' RNA polymerases. These results indicate that the rif mutation can alter the gene-expression pattern independent of ppGpp. The impaired growth of strain KO-417 (rif-17) was largely restored by introducing the second rif mutation (rif-18) just adjacent to the rif-17 position. Proteome analysis using two-dimensional PAGE revealed that the rif mutant strain KO-418 (rif-17 rif-18) displayed a temporal burst of expression especially of two enzymes, glutamine synthetase (type II) and oxidoreductase, during the late growth phase.
Collapse
Affiliation(s)
- Caixia Lai
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan1
| | - Jun Xu
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan1
| | - Yuzuru Tozawa
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan1
| | | | - Xingsheng Yao
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan1
| | - Kozo Ochi
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan1
| |
Collapse
|
25
|
Pang X, Zhou X, Sun Y, Deng Z. Physical map of the linear chromosome of Streptomyces hygroscopicus 10-22 deduced by analysis of overlapping large chromosomal deletions. J Bacteriol 2002; 184:1958-65. [PMID: 11889104 PMCID: PMC134931 DOI: 10.1128/jb.184.7.1958-1965.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chromosomal DNA of Streptomyces hygroscopicus 10-22, a derivative of strain 5102-6, was digested with several restriction endonucleases and analyzed by pulsed-field gel electrophoresis (PFGE). Digestions with AseI gave 11 fragments with a total length of ca. 7.36 Mb. The AseI sites were mapped by analysis of overlapping chromosomal deletions in different mutants and confirmed by Southern hybridizations using partially digested genome fragments and linking cosmids as probes. PFGE analysis of DNA with and without proteinase K treatment, together with the hybridization results, suggested a linear organization with terminal proteins and large terminal inverted repeats. Some deletion mutants had circular chromosomes.
Collapse
Affiliation(s)
- Xiuhua Pang
- Bio-X Life Science Research Center, Shanghai Jiaotong University, Shanghai 200030, China
| | | | | | | |
Collapse
|
26
|
Coplin DL, Majerczak DR, Zhang Y, Kim WS, Jock S, Geider K. Identification of Pantoea stewartii subsp. stewartii by PCR and Strain Differentiation by PFGE. PLANT DISEASE 2002; 86:304-311. [PMID: 30818612 DOI: 10.1094/pdis.2002.86.3.304] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Stewart's bacterial wilt and leaf blight of sweet corn and maize is caused by Pantoea stewartii subsp. stewartii. This bacterium can be seed transmitted at a low frequency, so it is subject to quarantine restrictions by many countries. To develop a polymerase chain reaction assay for the identification of this pathogen from field samples and for use in seed health tests, four primer pairs were tested. These were selected from the sequences of hrpS, cpsDE, and the 16S rRNA intergenic transcribed spacer (ITS) region. Under optimal reaction conditions, about 20 and 200 cells of P. stewartii could be detected in pure cultures and leaf lesions, respectively. Other plant-associated enteric bacteria (e.g., P. agglomerans pv. herbicola, P. ananas, Erwinia amylovora, and E. carotovora) either did not produce amplicons or they were not the correct size for P. stewartii. To test further for possible false positives, 29 yellow-pigmented bacteria, mainly other Pantoea spp., were isolated from lesions on old corn leaves and assayed with the ITS primer sets. Except for weak, variable reactions with three P. ananas strains, the bacteria did not test positive. Pulsed field gel electrophoresis (PFGE) was evaluated as an additional test to confirm the identity of P. stewartii. After digestion with SpeI and XbaI, P. stewartii strains could be easily distinguished from related Erwinia and Pantoea spp. and each other.
Collapse
Affiliation(s)
- David L Coplin
- Department of Plant Pathology, The Ohio State University, Columbus 43210-1087
| | - Doris R Majerczak
- Department of Plant Pathology, The Ohio State University, Columbus 43210-1087
| | - Yongxiang Zhang
- Max-Planck-Institut für Zellbiologie, Rosenhof, D-68526 Ladenburg, Germany
| | - Won-Sik Kim
- Max-Planck-Institut für Zellbiologie, Rosenhof, D-68526 Ladenburg, Germany
| | - Susanne Jock
- Max-Planck-Institut für Zellbiologie, Rosenhof, D-68526 Ladenburg, Germany
| | - Klaus Geider
- Max-Planck-Institut für Zellbiologie, Rosenhof, D-68526 Ladenburg, Germany
| |
Collapse
|
27
|
Yang MC, Losick R. Cytological evidence for association of the ends of the linear chromosome in Streptomyces coelicolor. J Bacteriol 2001; 183:5180-6. [PMID: 11489872 PMCID: PMC95395 DOI: 10.1128/jb.183.17.5180-5186.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Accepted: 06/04/2001] [Indexed: 11/20/2022] Open
Abstract
The chromosome of the filamentous bacterium Streptomyces coelicolor is linear, but the genetic map is circular. We present cytological evidence based on the use of fluorescence in situ hybridization showing that the ends of the chromosome frequently colocalize, in agreement with the idea that the ends are held together, effectively forming a circular chromosome. These observations provide a possible explanation for how a linear bacterial chromosome can exhibit a circular genetic map.
Collapse
Affiliation(s)
- M C Yang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
28
|
Courtois S, Frostegård A, Göransson P, Depret G, Jeannin P, Simonet P. Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation. Environ Microbiol 2001; 3:431-9. [PMID: 11553233 DOI: 10.1046/j.1462-2920.2001.00208.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All molecular analyses of soil bacterial diversity are based on the extraction of a representative fraction of cellular DNA. Methods of DNA extraction for this purpose are divided into two categories: those in which cells are lysed within the soil (direct extraction) and those in which cells are first removed from soil (cell extraction) and then lysed. The purpose of this study was to compare a method of direct extraction with a method in which cells were first separated from the soil matrix by Nycodenz gradient centrifugation in order to evaluate the effect of these different approaches on the analysis of the spectrum of diversity in a microbial community. We used a method based on polymerase chain reaction (PCR) amplification of a 16S rRNA gene fragment, followed by hybridization of the amplified fragments to a set of specific probes to assess the phylogenetic diversity of our samples. Control parameters, such as the relationship between amount of DNA template and amount of PCR product and the influence of competing DNA on PCR amplification, were first examined. Comparison between extraction methods showed that less DNA was extracted when cells were first separated from the soil matrix (0.4 microg g(-1) dry weight soil versus 38-93 microg g(-1) obtained by in situ lysis methods). However, with the exception of the gamma-subclass of Proteobacteria, there was no significant difference in the spectrum of diversity resulting from the two extraction strategies.
Collapse
Affiliation(s)
- S Courtois
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Université Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| | | | | | | | | | | |
Collapse
|
29
|
Vetrivel KS, Dharmalingam K. Isolation of a chitinase overproducing mutant of Streptomyces peucetius defective in daunorubicin biosynthesis. Can J Microbiol 2000. [DOI: 10.1139/w00-079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Streptomyces peucetius, producer of the antitumor anthracycline antibiotic daunorubicin, was mutagenized, and mutants defective in daunorubicin biosynthesis were screened. One mutant (SPVI), which failed to produce daunorubicin, was found to overproduce an extracellular chitinase. Time course analyses of chitinase production and of the extracellular protein profile showed that the increase in activity is due to increased synthesis of the enzyme protein. The production of chitinase in SPVI was repressed by glucose as in the case of wild-type S. peucetius. PFGE analysis of VspI restriction fragments of S. peucetius and SPVI showed that there was no major alteration in the mutant genome. The hybridization pattern of S. peucetius and SPVI genomic DNA digested with various restriction enzymes was identical when probed with dnrUVJI genes of the S. peucetius daunorubicin cluster and chiA of Streptomyces lividans 66. The possible step affected in the daunorubicin biosynthetic pathway could be a polyketide synthase, since aklanonic acid, the earliest detectable intermediate in the daunorubicin pathway, was not synthesized in SPVI.Key words: Streptomyces peucetius, chitinase, daunorubicin, NTG mutagenesis.
Collapse
|
30
|
Redenbach M, Kleinert E, Stoll A. Identification of DNA amplifications near the center of the Streptomyces coelicolor M145 chromosome. FEMS Microbiol Lett 2000; 191:123-9. [PMID: 11004409 DOI: 10.1111/j.1574-6968.2000.tb09328.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Linear streptomycete chromosomes frequently undergo spontaneous gross DNA rearrangements at the terminal regions. Large DNA deletions of the chromosome ends are in many cases associated with tandemly reiterated DNA amplifications, found at the border of the deletable areas. In contrast to previous reports, we have discovered amplifications near the center of the Streptomyces coelicolor M145 chromosome. The detected amplified units of DNA are 19.9 kb and 16 kb in length and exist in copy numbers of 30 and 40, respectively. Both amplifications were located in the same region and share at least 3.6 kb.
Collapse
Affiliation(s)
- M Redenbach
- Department of Genetics, Genome Research Unit, Kaiserslautern University, 67663, Kaiserslautern, Germany.
| | | | | |
Collapse
|
31
|
Vierling S, Weber T, Wohlleben W, Muth G. Transcriptional and mutational analyses of the Streptomyces lividans recX gene and its interference with RecA activity. J Bacteriol 2000; 182:4005-11. [PMID: 10869079 PMCID: PMC94586 DOI: 10.1128/jb.182.14.4005-4011.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the 20,922-Da RecX protein and its interference with RecA activity were analyzed in Streptomyces lividans. The recX gene is located 220 bp downstream of recA. Transcriptional analysis by reverse transcriptase PCR demonstrated that recX and recA constitute an operon. While recA was transcribed at a basal level even under noninducing conditions, a recA-recX cotranscript was only detectable after induction of recA following DNA damage. The recA-recX cotranscript was less abundant than the recA transcript alone. The recX gene was inactivated by gene replacement. The resulting mutant had a clearly diminished colony size, but was not impaired in recombination activity, genetic instability, and resistance against UV irradiation. Expression of an extra copy of the S. lividans recA gene under control of the thiostrepton-inducible tipA promoter was lethal to the recX mutant, demonstrating that RecX is required to overcome the toxic effects of recA overexpression. Since inactivation of the recX gene did not influence transcription of recA, the putative function of the RecX protein might be the downregulation of RecA activity by interaction with the RecA protein or filament.
Collapse
Affiliation(s)
- S Vierling
- Mikrobiologie/Biotechnologie, Universität Tübingen, Germany
| | | | | | | |
Collapse
|
32
|
Le Bourgeois P, Daveran-Mingot ML, Ritzenthaler P. Genome plasticity among related ++Lactococcus strains: identification of genetic events associated with macrorestriction polymorphisms. J Bacteriol 2000; 182:2481-91. [PMID: 10762249 PMCID: PMC111311 DOI: 10.1128/jb.182.9.2481-2491.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomic diversity of nine strains of the Lactococcus lactis subsp. cremoris (NCDO712, NCDO505, NCDO2031, NCDO763, MMS36, C2, LM0230, LM2301, and MG1363) was studied by macrorestriction enzyme analysis using pulsed-field gel electrophoresis. These strains were considered adequate for the investigation of genomic plasticity because they have been described as belonging to the same genetic lineage. Comparison of ApaI and SmaI genome fingerprints of each strain revealed the presence of several macrorestriction fragment length polymorphisms (RFLPs), despite a high degree of similarity of the generated restriction patterns. The physical map of the MG1363 chromosome was used to establish a genome map of the other strains and allocate the RFLPs to five regions. Southern hybridization analysis correlated the polymorphic regions with genetic events such as chromosomal inversion, integration of prophage DNA, and location of the transposon-like structures carrying conjugative factor or oligopeptide transport system.
Collapse
Affiliation(s)
- P Le Bourgeois
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | | | | |
Collapse
|
33
|
Sosio M, Giusino F, Cappellano C, Bossi E, Puglia AM, Donadio S. Artificial chromosomes for antibiotic-producing actinomycetes. Nat Biotechnol 2000; 18:343-5. [PMID: 10700154 DOI: 10.1038/73810] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bacteria belonging to the order Actinomycetales produce most microbial metabolites thus far described, several of which have found applications in medicine and agriculture. However, most strains were discovered by their ability to produce a given molecule and are, therefore, poorly characterized physiologically and genetically. Thus, methodologies for genetic manipulation of actinomycetes are not available and efficient tools have been developed for just a few strains. This constitutes a serious limitation to applying molecular genetics approaches to strain development and structural manipulation of microbial metabolites. To overcome this hurdle, we have developed bacterial artificial chromosomes (BAC) that can be shuttled among Escherichia coli, where they replicate autonomously, and a suitable Streptomyces host, where they integrate site-specifically into the chromosome. The existence of gene clusters and of genetically amenable host strains, such as Streptomyces coelicolor or Streptomyces lividans, makes this a sensible approach. We report here that 100 kb segments of actinomycete DNA can be cloned into these vectors and introduced into genetically accessible S. lividans, where they are stably maintained in integrated form in its chromosome.
Collapse
Affiliation(s)
- M Sosio
- Biosearch Italia SpA, 21040 Gerenzano, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Bamas-Jacques N, Lorenzon S, Lacroix P, Crouzet J. Cluster organization of the genes of Streptomyces pristinaespiralis involved in pristinamycin biosynthesis and resistance elucidated by pulsed-field gel electrophoresis. J Appl Microbiol 1999; 87:939-948. [PMID: 10692076 DOI: 10.1046/j.1365-2672.1999.00955.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptomyces pristinaespiralis synthesizes pristinamycin, a member of the streptogramin antibiotic family which consists of a mixture of two types of chemically unrelated compounds named pristinamycins I and pristinamycins II. In order to estimate the size of the Strep. pristinaespiralis chromosome and to elucidate the organization of the pristinamycin biosynthetic and resistance genes already identified, it was decided to use the pulsed-field gel electrophoresis technique. Results indicate that the Strep. pristinaespiralis chromosome is linear and about 7580 kb, as previously shown for several other Streptomyces species. By hybridization, it could be shown that the biosynthetic and resistance genes for pristinamycins I and pristinamycins II, except for the multidrug resistance gene ptr, are interspersed and seem to be organized as a single large cluster, covering less than 200 kb corresponding to 2.6% of the total size of the chromosome. The consequences and significance of such a genetic organization are discussed.
Collapse
Affiliation(s)
- N Bamas-Jacques
- Service Génomique-Antibactériens, Service Procédés Biochimiques and Division Gencell, Centre de Recherche de Vitry-Alforville, Rhône-Poulenc Rorer S.A., Vitry-sur-Seine cedex, France
| | | | | | | |
Collapse
|
35
|
Schmid E, Büchler C, Altenbuchner J. AUD4, a new amplifiable element from Streptomyces lividans. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 12):3331-3341. [PMID: 10627032 DOI: 10.1099/00221287-145-12-3331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
After transformation of the Streptomyces lividans chloramphenicol-sensitive, arginine-auxotrophic mutant strain AJ100 with a derivative of plasmid SCP2, some of the regenerated protoplasts contained an 8.2 kb DNA sequence amplified to several hundred copies per chromosome. The corresponding non-amplified sequence, called AUD4, was isolated from a lambda phage genomic library of S. lividans 1326. Two cytosine residues were the only directly repeated nucleotides at the ends of the element, indicating that AUD4 is a class I amplifiable sequence. The element mapped in the AseI-D fragment of the S. lividans chromosome, where other class I amplifications have been described. The complete element was sequenced and 10 ORFs were identified. Some of the deduced proteins are highly conserved in other organisms but a putative function could be attributed to only a few of them. Duplication of AUD4 by integration of an Escherichia coli plasmid carrying various parts of AUD4 and a thiostrepton-resistance gene in S. lividans AJ100, ZX7 or TK64 induced amplification of the integrated plasmid, AUD4 or both at high frequency.
Collapse
Affiliation(s)
- Esther Schmid
- Institute of Industrial Genetics, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany1
| | - Christa Büchler
- Institute of Industrial Genetics, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany1
| | - Josef Altenbuchner
- Institute of Industrial Genetics, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany1
| |
Collapse
|
36
|
Redenbach M, Bibb M, Gust B, Seitz B, Spychaj A. The linear plasmid SCP1 of Streptomyces coelicolor A3(2) possesses a centrally located replication origin and shows significant homology to the transposon Tn4811. Plasmid 1999; 42:174-85. [PMID: 10545260 DOI: 10.1006/plas.1999.1419] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The linear plasmid SCP1 of Streptomyces coelicolor A3(2) is one of the genetically more studied linear streptomycete replicons. Although the genetics of SCP1 and its interaction with the host chromosome have been analyzed for nearly three decades no information exists on its replication. With the help of an ordered cosmid contig for the complete 360-kb element, we have localized a 5439-bp fragment from the central region that confers autonomous replication in Streptomyces lividans. The minimal origin contains two overlapping ORFs which are separated from an AT-rich region which might correspond to the replication start point. ORF1 revealed intensive similarity to a class of DNA-primase/helicases of actinophages and archael plasmids. In addition, we have identified a region in both terminal inverted repeats of SCP1 that shows significant homology to the transposable element Tn4811 located near the ends of the S. lividans 66 chromosome.
Collapse
Affiliation(s)
- M Redenbach
- Genome Research Unit, Kaiserslautern University, Kaiserslautern, 67663, Germany.
| | | | | | | | | |
Collapse
|
37
|
Gagnat J, Chouayekh H, Gerbaud C, Francou F, Virolle MJ. Disruption of sblA in Streptomyces lividans permits expression of a heterologous alpha-amylase gene in the presence of glucose. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 9):2303-2312. [PMID: 10517583 DOI: 10.1099/00221287-145-9-2303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In a transposition mutant of Streptomyces lividans TK24, the usually glucose-repressible expression of a heterologous alpha-amylase gene (aml) became resistant to glucose repression. The transposon had inserted into an ORF called sblA which encodes a 274 aa product sharing significant sequence similarities with various phosphatases that act on small phosphorylated substrates. sblA was transcribed as a monocistronic mRNA and its transcription was enhanced at the transition phase. Because its transcriptional and putative translational start points coincide, sblA is likely to be translated in the absence of a conventional RBS. The sblA-disrupted mutant is characterized by early growth arrest in glucose-grown cultures and by partial relief of glucose repression of aml expression.
Collapse
Affiliation(s)
- Josette Gagnat
- Laboratoire de Biologie et Génétique Moléculaire, Institut de Génétique et Microbiologie, CNRS UMR8621 Bâtiment 400, Université Paris-Sud, F-91405 Orsay Cedex, France1
| | - Hichem Chouayekh
- Laboratoire de Biologie et Génétique Moléculaire, Institut de Génétique et Microbiologie, CNRS UMR8621 Bâtiment 400, Université Paris-Sud, F-91405 Orsay Cedex, France1
| | - Claude Gerbaud
- Laboratoire de Biologie et Génétique Moléculaire, Institut de Génétique et Microbiologie, CNRS UMR8621 Bâtiment 400, Université Paris-Sud, F-91405 Orsay Cedex, France1
| | - François Francou
- Laboratoire de Biologie et Génétique Moléculaire, Institut de Génétique et Microbiologie, CNRS UMR8621 Bâtiment 400, Université Paris-Sud, F-91405 Orsay Cedex, France1
| | - Marie-Joelle Virolle
- Laboratoire de Biologie et Génétique Moléculaire, Institut de Génétique et Microbiologie, CNRS UMR8621 Bâtiment 400, Université Paris-Sud, F-91405 Orsay Cedex, France1
| |
Collapse
|
38
|
Wang SJ, Chang HM, Lin YS, Huang CH, Chen CW. Streptomyces genomes: circular genetic maps from the linear chromosomes. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 9):2209-2220. [PMID: 10517574 DOI: 10.1099/00221287-145-9-2209] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptomyces chromosomes are linear DNA molecules and yet their genetic maps based on linkage analysis are circular. The only other known examples of this phenomenon are in the bacteriophages T2 and T4, the linear genomic sequences of which are circularly permuted and terminally redundant, and in which replication intermediates include long concatemers. These structural and functional features are not found in Streptomyces. Instead, the circularity of Streptomyces genetic maps appears to be caused by a completely different mechanism postulated by Stahl & Steinberg (1964, Genetics 50, 531-538)--a strong bias toward even numbers of crossovers during recombination creates misleading genetic linkages between markers on the opposite arms of the chromosome. This was demonstrated by physical inspection of the telomeres in recombinant chromosomes after interspecies conjugation promoted by a linear or circular plasmid. The preference for even numbers of crossovers is probably demanded by the merozygosity of the recombining chromosomes, and by the association between the telomeres mediated by interactions of covalently bound terminal proteins.
Collapse
Affiliation(s)
- Shih-Jie Wang
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan1
| | - Hua-Mei Chang
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan1
| | - Yi-Shing Lin
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan1
| | - Chih-Hung Huang
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan1
| | - Carton W Chen
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan1
| |
Collapse
|
39
|
Güneş G, Smith B, Dyson P. Genetic instability associated with insertion of IS6100 into one end of the Streptomyces lividans chromosome. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 9):2203-2208. [PMID: 10517573 DOI: 10.1099/00221287-145-9-2203] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Analysis of 548 recombinant strains of Streptomyces lividans carrying chromosomal insertions of IS6100 revealed that six mutants contained DNA amplifications. The amplifications differed in size but included IS6100 sequences. Hybridization with representative cosmid clones containing sequences from the unstable regions of the chromosome indicated that, in each mutant, DNA rearrangements affected just one of the chromosome ends. The amplifications were derived either from a region immediately proximal to the terminal inverted repeat (TIR) or further distal, from a previously characterized type I amplifiable unit of DNA. There was no evidence for extensive deletions accompanying the amplifications and chromosome linearity was maintained with, at least in five mutants, clear evidence for no loss of either TIR. The nature of the rearrangements provides evidence that insertions affecting the integrity of a chromosome end can contribute to genetic instability in Streptomyces.
Collapse
Affiliation(s)
- Gülsüm Güneş
- Molecular Biology Research Group, School of Biological Sciences, University of Wales Swansea, Swansea SA2 8PP, UK1
| | - Barry Smith
- Molecular Biology Research Group, School of Biological Sciences, University of Wales Swansea, Swansea SA2 8PP, UK1
| | - Paul Dyson
- Molecular Biology Research Group, School of Biological Sciences, University of Wales Swansea, Swansea SA2 8PP, UK1
| |
Collapse
|
40
|
Saito A, Fujii T, Yoneyama T, Redenbach M, Ohno T, Watanabe T, Miyashita K. High-multiplicity of chitinase genes in Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem 1999; 63:710-8. [PMID: 10361684 DOI: 10.1271/bbb.63.710] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Six different genes for chitinase from ordered cosmids of the chromosome of Streptomyces coelicolor A3(2) were identified by hybridization, using the chitinase genes from other Streptomyces spp. as probes, and cloned. The genes were sequenced and analyzed. The genes, together with an additional chitinase gene obtained from the data bank, can be classified into either family 18 or family 19 of the glycosyl hydrolase classification. The five chitinases that fall into family 18 show diversity in their multiple domain structures as well as in the amino acid sequences of their catalytic domains. The remaining two chitinases are members of family 19 chitinases, since their C-terminus shares more than 70% identity with the catalytic domain of ChiC of Streptomyces griseus, the sole gene for family 19 chitinase so far found in an organism other than higher plants.
Collapse
Affiliation(s)
- A Saito
- National Institute of Agro-Environmental Sciences, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Bacterial genome sizes, which range from 500 to 10,000 kbp, are within the current scope of operation of large-scale nucleotide sequence determination facilities. To date, 8 complete bacterial genomes have been sequenced, and at least 40 more will be completed in the near future. Such projects give wonderfully detailed information concerning the structure of the organism's genes and the overall organization of the sequenced genomes. It will be very important to put this incredible wealth of detail into a larger biological picture: How does this information apply to the genomes of related genera, related species, or even other individuals from the same species? Recent advances in pulsed-field gel electrophoretic technology have facilitated the construction of complete and accurate physical maps of bacterial chromosomes, and the many maps constructed in the past decade have revealed unexpected and substantial differences in genome size and organization even among closely related bacteria. This review focuses on this recently appreciated plasticity in structure of bacterial genomes, and diversity in genome size, replicon geometry, and chromosome number are discussed at inter- and intraspecies levels.
Collapse
Affiliation(s)
- S Casjens
- Department of Oncological Sciences, University of Utah, Salt Lake City 84132, USA.
| |
Collapse
|
42
|
Flett F, de Mello Jungmann-Campello D, Mersinias V, Koh SL, Godden R, Smith CP. A 'gram-negative-type' DNA polymerase III is essential for replication of the linear chromosome of Streptomyces coelicolor A3(2). Mol Microbiol 1999; 31:949-58. [PMID: 10048037 DOI: 10.1046/j.1365-2958.1999.01237.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Streptomyces coelicolor dnaE gene, encoding the catalytic alpha-subunit of DNA polymerase III (pol III) was isolated by genetic complementation of a temperature-sensitive DNA replication mutant, S. coelicolor ts-38. The deduced protein sequence (1179 residues) is highly similar to the Escherichia coli-type pol III alpha-subunit, rather than to the PolC-type alpha-subunit that is known to be essential for replication in the 'low G + C' Gram-positive bacteria such as Bacillus subtilis. The dnaE gene is able to restore replication to a 'slow stop' mutant (ts-38) and a 'fast stop' mutant (ts-114); the dnaE gene of ts-38 carries a single amino acid substitution (Glu-802 to Lys), and the mutation in ts-114 has been mapped between codons 697 and 1062 of dnaE. Mutant ts-38 is considered to be defective in assembly of the multisubunit pol III holoenzyme and, hence, in initiation of replication, whereas ts-114 is defective in chain elongation. This study provides the first evidence that a DnaE-type pol III is essential for replication in a Gram-positive bacterium. In addition, the complementation studies suggest that the C-terminal 117 residues are not essential for DnaE function in S. coelicolor. When integrated at a distant site on the chromosome, a fragment containing the 3' half of dnaE(codons 697-1179) is capable of rescuing ts-38 (but not ts-114) at the restrictive temperature; it was demonstrated that homogenotization was responsible for this phenomenon.
Collapse
Affiliation(s)
- F Flett
- Department of Biomolecular Sciences, UMIST, Manchester, UK
| | | | | | | | | | | |
Collapse
|
43
|
Fischer G, Wenner T, Decaris B, Leblond P. Chromosomal arm replacement generates a high level of intraspecific polymorphism in the terminal inverted repeats of the linear chromosomal DNA of Streptomyces ambofaciens. Proc Natl Acad Sci U S A 1998; 95:14296-301. [PMID: 9826694 PMCID: PMC24367 DOI: 10.1073/pnas.95.24.14296] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chromosomal DNA of the bacteria Streptomyces ambofaciens DSM40697 is an 8-Mb linear molecule that ends in terminal inverted repeats (TIRs) of 210 kb. The sequences of the TIRs are highly variable between the different linear replicons of Streptomyces (plasmids or chromosomes). Two spontaneous mutant strains harboring TIRs of 480 and 850 kb were isolated. The TIR polymorphism seen is a result of the deletion of one chromosomal end and its replacement by 480 or 850 kb of sequence identical to the end of the undeleted chromosomal arm. Analysis of the wild-type sequences involved in these rearrangements revealed that a recombination event took place between the two copies of a duplicated DNA sequence. Each copy was mapped to one chromosomal arm, outside of the TIR, and encoded a putative alternative sigma factor. The two ORFs, designated hasR and hasL, were found to be 99% similar at the nucleotide level. The sequence of the chimeric regions generated by the recombination showed that the chromosomal structure of the mutant strains resulted from homologous recombination events between the two copies. We suggest that this mechanism of chromosomal arm replacement contributes to the rapid evolutionary diversification of the sequences of the TIR in Streptomyces.
Collapse
Affiliation(s)
- G Fischer
- Laboratoire de Génétique et Microbiologie, Unité associée INRA 952, Université Henri Poincaré-Nancy 1, Faculté des Sciences, Boulevard des Aiguillettes, F-54506 Vandoeuvre-lès-Nancy, France
| | | | | | | |
Collapse
|
44
|
Willems H, Jäger C, Baljer G. Physical and genetic map of the obligate intracellular bacterium Coxiella burnetii. J Bacteriol 1998; 180:3816-22. [PMID: 9683477 PMCID: PMC107364 DOI: 10.1128/jb.180.15.3816-3822.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pulsed-field gel electrophoresis and PCR techniques have been used to construct a NotI macrorestriction map of the obligate intracellular bacterium Coxiella burnetii Nine Mile. The size of the chromosome has been determined to be 2,103 kb comprising 29 NotI restriction fragments. The average resolution is 72.5 kb, or about 3. 5% of the genome. Experimental data support the presence of a linear chromosome. Published genes were localized on the physical map by Southern hybridization. One gene, recognized as transposable element, was found to be present in at least nine sites evenly distributed over the whole chromosome. There is only one copy of a 16S rRNA gene. The putative oriC has been located on a 27.5-kb NotI fragment. Gene organization upstream the oriC is almost identical to that of Pseudomonas putida and Bacillus subtilis, whereas gene organization downstream the oriC seems to be unique among bacteria. The physical map will be helpful in investigations of the great heterogeneity in restriction fragment length polymorphism patterns of different isolates and the great variation in genome size. The genetic map will help to determine whether gene order in different isolates is conserved.
Collapse
Affiliation(s)
- H Willems
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany.
| | | | | |
Collapse
|
45
|
Reeves AR, Post DA, Vanden Boom TJ. Physical-genetic map of the erythromycin-producing organism Saccharopolyspora erythraea. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 8):2151-2159. [PMID: 9720036 DOI: 10.1099/00221287-144-8-2151] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A physical map of the chromosome of the erythromycin-producing actinomycete Saccharopolyspora erythraea NRRL 2338 has been constructed using the restriction enzymes AseI and DraI. The map was constructed by a variety of methods including linking clone analysis, cross-hybridizations using labelled macrorestriction fragments, gene probing, two-dimensional PFGE and restriction enzyme site generation. Analysis of the individual macrorestriction patterns of the 17 AseI-, 6 DraI- and 22 AseI/DraI-digested fragments indicated a chromosome size of about 8 Mb. Linking clones for five contiguous AseI fragments were obtained, covering 32% of the chromosome. The linkage of an additional eight AseI fragments was aided by the finding that the rRNA operons of S. erythraea contain an AseI site within the 16S (rrs) gene. Generation of S. erythraea strains that contain additional DraI sites within selected AseI fragments, followed by PFGE analysis and Southern hybridization to determine specific linkages, facilitated the completion of the AseI map. The entire DraI map was constructed by gene probing and cross-hybridizations. PFGE analysis of agarose-embedded DNA prepared in either the presence or absence of proteinase K suggested that the S. erythraea NRRL 2338 chromosome is linear. A total of 15 genes or gene clusters were mapped to specific AseI and DraI fragments, including the erythromycin-biosynthetic gene cluster and the rRNA operons.
Collapse
Affiliation(s)
- Andrew R Reeves
- Abbott Laboratories, Fermentation Microbiology Research and Development1401 Sheridan Road, North Chicago, IL 60064-4000USA
| | - David A Post
- Abbott Laboratories, Fermentation Microbiology Research and Development1401 Sheridan Road, North Chicago, IL 60064-4000USA
| | - Thomas J Vanden Boom
- Abbott Laboratories, Fermentation Microbiology Research and Development1401 Sheridan Road, North Chicago, IL 60064-4000USA
| |
Collapse
|
46
|
Yin XH, Gerbaud C, Francou FX, Guérineau M, Virolle MJ. amlC, another amylolytic gene maps close to the amlB locus in Streptomyces lividans TK24. Gene 1998; 215:171-80. [PMID: 9666116 DOI: 10.1016/s0378-1119(98)00265-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The region located upstream of the alpha-amylase gene (amlB) of Streptomyces lividans TK24 (Yin et al., 1997) contains a 2978-bp-long ORF divergent from amlB, and designated amlC. amlC Encodes a 993amino acid (aa) protein with a calculated molecular weight of 107.054kDa. On the basis of sequence similarity as well as enzymatic activity, AmlC is likely to belong to the 1, 4-alpha-D-glucan glucanohydrolase family. amlC is transcribed as a unique 3kb leaderless monocistronic mRNA. Primer extension experiments allowed the identification of promoter sequences that do not resemble the typical eubacterial promoter sequences. amlC was successfully disrupted and was mapped at approx. 700kb from a chromosomal end of S. lividans TK24, 100kb on the right of the amplifiable unit AUD1 (Volff et al., 1996). Nevertheless, amlC disruption seemed to be accompanied by extensive rearrangements of the 2500-kb DraI-II fragment of the chromosome.
Collapse
Affiliation(s)
- X H Yin
- Laboratoire de Biologie et Génétique Moléculaire, Institut de Génétique et Microbiologie, CNRS URA D2225 Bâtiment 400, Université Paris-Sud, F-91405, Orsay, Cedex, France
| | | | | | | | | |
Collapse
|
47
|
Weaden J, Dyson P. Transposon mutagenesis with IS6100 in the avermectin-producer Streptomyces avermitilis. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 7):1963-1970. [PMID: 9695929 DOI: 10.1099/00221287-144-7-1963] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The insertion sequence IS6100 was shown to undergo intermolecular transposition from a temperature-sensitive delivery plasmid to the genome of the avermectin-producer Streptomyces avermitilis, creating cointegrates. Evidence from both Southern hybridization and the range of auxotrophic mutations present in a transposon library was consistent with random transposition. It was not possible to increase transposase expression by readthrough transcription from a copy of the tipA promoter located adjacent to the insertion sequence. This was in part due to the absence of a homologue of the Streptomyces lividans transcriptional activator TipAL in S. avermitilis. However, recombinant S. avermitilis strains carrying the S. lividans tip operon were also deficient for induction of the promoter. The frequency of reversion of different auxotrophic mutations by precise excision, involving recombination across 8 bp direct repeats, was shown to vary by at least five orders of magnitude. This dependence of recombination frequency on chromosomal location may contribute to the stability of repetitive modular type I polyketide biosynthetic genes.
Collapse
|
48
|
Saito A, Fujii T, Yoneyama T, Miyashita K. glkA is involved in glucose repression of chitinase production in Streptomyces lividans. J Bacteriol 1998; 180:2911-4. [PMID: 9603881 PMCID: PMC107258 DOI: 10.1128/jb.180.11.2911-2914.1998] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chitinase production in Streptomyces lividans is induced by chitin and repressed in the presence of glucose. A mutant of S. lividans TK24, strain G015, which was defective in glucose repression of chitinase production, was obtained by screening colonies for zones of clearing on colloidal chitin agar plates containing 1.0% (wt/vol) glucose. The transcriptional analysis of chiA in G015 with xylE, which encodes catechol 2,3-dioxygenase, as a reporter gene showed that the transcription from the chiA promoter of S. lividans TK24 occurred regardless of the presence of glucose. G015 was resistant to 2-deoxyglucose (2-DOG) and did not utilize glucose as a sole carbon source. When a DNA fragment containing glkA, a gene for glucose kinase, of Streptomyces coelicolor A3(2) was introduced into strain G015 on a low-copy-number plasmid, the sensitivity to 2-DOG, the ability to utilize glucose, and the glucose repression of chitinase production were restored. These results indicate that glkA is involved in glucose repression of chitinase production in S. lividans TK24.
Collapse
Affiliation(s)
- A Saito
- National Institute of Agro-Environmental Sciences, 3-1-1 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan
| | | | | | | |
Collapse
|
49
|
Jakimowicz D, Majka J, Messer W, Speck C, Fernandez M, Cruz Martin M, Sanchez J, Schauwecker F, Keller U, Schrempf H, Zakrzewska-Czerwinńska J. Structural elements of the Streptomyces oriC region and their interactions with the DnaA protein. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 5):1281-1290. [PMID: 9611803 DOI: 10.1099/00221287-144-5-1281] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptomycetes differ from other prokaryotic organisms in their mycelial life cycle and in possessing a large, linear, GC-rich chromosome. To deduce structural features of the Streptomyces origin of chromosomal replication, the oriC sequences of three Streptomyces species (S. antibioticus, S. chrysomallus and S. lividans) were compared. In Streptomyces, the oriC region contains 19 DnaA boxes whose location, orientation and spacing are conserved. The consensus sequence of the DnaA box identified within Streptomyces oriC is (T/C)(T/C)(G/A/C)TCCACA (preferred bases underlined). The interactions of DnaA with DNA fragments containing single, two or three DnaA boxes were studied using surface plasmon resonance. The dissociation constant (KD) for specific binding of individual DnaA boxes varied between 12 and 78 nM. Streptomyces oriC does not contain the three AT-rich 13-mer direct repeats present in the 5' part of the Escherichia coli oriC region. However, short AT-rich sequences are distributed among the DnaA boxes of Streptomyces oriC. Repeated attempts to unwind Streptomyces oriC have been unsuccessful. It remains to be elucidated whether DnaA interacts with putative accessory proteins which help in unwinding Streptomyces oriC.
Collapse
Affiliation(s)
- Dagmara Jakimowicz
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wroclaw, Poland
| | - Jerzy Majka
- Max-Planck-Institut für Molekulare Genetik, Ihnestraße 73, D-14195 Berlin-Dahlem, Germany
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wroclaw, Poland
| | - Walter Messer
- Max-Planck-Institut für Molekulare Genetik, Ihnestraße 73, D-14195 Berlin-Dahlem, Germany
| | - Christian Speck
- Max-Planck-Institut für Molekulare Genetik, Ihnestraße 73, D-14195 Berlin-Dahlem, Germany
| | - Marisol Fernandez
- Departamento de Biologia Funcional e Instituto Universitario de Biotecnologia de Asturias, Universidad de Oviedo, J. Claveria 6, Oviedo 33006, Spain
| | - M Cruz Martin
- Departamento de Biologia Funcional e Instituto Universitario de Biotecnologia de Asturias, Universidad de Oviedo, J. Claveria 6, Oviedo 33006, Spain
| | - Jesus Sanchez
- Departamento de Biologia Funcional e Instituto Universitario de Biotecnologia de Asturias, Universidad de Oviedo, J. Claveria 6, Oviedo 33006, Spain
| | - Florian Schauwecker
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Fachgebiet Biochemie und Molekulare Biologie, Technische Universität Berlin, Franklinstrasse 29, D-10587 Berlin, Germany
| | - Ullrich Keller
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Fachgebiet Biochemie und Molekulare Biologie, Technische Universität Berlin, Franklinstrasse 29, D-10587 Berlin, Germany
| | - Hildgund Schrempf
- Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastraße 11, 49069 Osnabrück, Germany
| | - Jolanta Zakrzewska-Czerwinńska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
50
|
Leblond P, Decaris B. Chromosome geometry and intraspecific genetic polymorphism in Gram-positive bacteria revealed by pulsed-field gel electrophoresis. Electrophoresis 1998; 19:582-8. [PMID: 9588806 DOI: 10.1002/elps.1150190420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pulsed-field gel electrophoresis (PFGE) proved to be a powerful approach to study bacterial genomics. The genome structure and genetic polymorphism of Gram-positive bacteria from the high G+C (Streptomyces) and low G+C (Streptococcus) groups have been studied. PFGE allowed the estimation of the size of their genome at about 8 Mbp and 1.8 Mbp, respectively, and to get an insight into their chromosome geometry. Thus, physical mapping of the genome of wild-type Streptomyces ambofaciens strains revealed the linearity of the 8 Mbp chromosomal DNA and its typical invertron structure, while the 1.8 Mbp chromosome of Streptococcus thermophilus was shown to be circular. These findings disproved the long-standing idea of universality of bacterial chromosome circularity. In addition, strains belonging to the species S. ambofaciens and S. thermophilus allowed us to characterize the genetic polymorphism at the intraspecific level. Within the S. thermophilus species, comparison of the physical maps showed a relative conservation of gene order as well as restriction sites along the chromosome. In contrast, variable loci were characterized that revealed localized genome rearrangements. The most spectacular of these corresponded to horizontal gene transfer events of sequences. In S. ambofaciens, the physical maps of three isolates pointed to the conservation of the genetic organization. However, a strong polymorphism was observed in the terminal regions of the linear chromosomal DNA. Previous PFGE studies in S. ambofaciens gave proof of a high structural instability of a limited region of the chromosome called unstable region (i.e., DNA rearrangements such as deletions and amplifications). These intraclonal rearrangements create an impressive intraspecific polymorphism of genome size and shape (linear or circular). In both organisms, the DNA rearrangements are restricted to particular regions of the chromosome.
Collapse
Affiliation(s)
- P Leblond
- Laboratorie de Génétique et Microbiologie, UA INRA 952, Université Henri Poincaré, Nancy, France.
| | | |
Collapse
|