1
|
Yun S, Huang J, Zhang M, Wang X, Wang X, Zhou Y. Preliminary identification and semi-quantitative characterization of a multi-faceted high-stability alginate lyase from marine microbe Seonamhaeicola algicola with anti-biofilm effect on Pseudomonas aeruginosa. Enzyme Microb Technol 2024; 175:110408. [PMID: 38309052 DOI: 10.1016/j.enzmictec.2024.110408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Alginate lyases with unique characteristics for degrading alginate into size-defined oligosaccharide fractions, were considered as the potential agents for disrupting Pseudomonas aeruginosa biofilms. In our study, a novel endolytic PL-7 alginate lyase, named AlyG2, was cloned and expressed through Escherichia coli. This enzyme exhibited excellent properties: it maintained more than 85% activity at low temperatures of 4 °C and high temperatures of 70 °C. After 1 h of incubation at 4 °C, it still retained over 95% activity, demonstrating the ability to withstand low temperature. The acid-base and salt tolerance properties shown it preserves more than 50% activity in the pH range of 5.0 to 11.0 and in a high salt environment at 3000 mM NacCl, indicating its high stability in several aspects. More importantly, AlyG2 in our research was revealed to be effective at removing mature biofilms and inhibiting biofilm formation produced by Pseudomonas aeruginosa, and the inhibition and disruption rates were 47.25 ± 4.52% and 26.5 ± 6.72%, respectively. Additionally, the enzyme AlyG2 promoted biofilm disruption in combination with antibiotics, particularly manifesting the synergistic effect with erythromycin (FIC=0.5). In all, these results offered that AlyG2 with unique characteristics may be an effective technique for the clearance or disruption of biofilm produced by P. aeruginosa.
Collapse
Affiliation(s)
- Shuaiting Yun
- Marine College, Shandong University, Weihai 264209, China
| | - Jinping Huang
- Marine College, Shandong University, Weihai 264209, China
| | - Mingjing Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Xueting Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaochen Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Yanxia Zhou
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
2
|
Hulen C. The GDP-Mannose Dehydrogenase of Pseudomonas aeruginosa: An Old and New Target to Fight against Antibiotics Resistance of Mucoid Strains. Antibiotics (Basel) 2023; 12:1649. [PMID: 38136683 PMCID: PMC10740432 DOI: 10.3390/antibiotics12121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
Alginates play an important role in the resistance of mucoid strains of Pseudomonas aeruginosa to antibiotics, as well as their persistence by escaping the immune defense system. GDP-mannose dehydrogenase (GMD) is the key enzyme in alginate biosynthesis by catalyzing the irreversible double oxidation of GDP-mannose to GDP-mannuronate. GDP-mannose dehydrogenase purified from mucoid strains exhibits strong negative cooperativity for its substrate, the GDP-mannose, with a KM of 13 µM for the site of strong affinity and 3 mM for this weak of a binding. The presence of a nucleotide strongly associated with the enzyme was detected, confirming the fact that the substrate oxidation reaction takes place in two distinct steps, with the substrate blocked on the enzyme in a half-oxidation state in the form of a hemiacetal. As the GMD polypeptide has only one site for substrate binding, our results tend to confirm the fact that the enzyme functions in a dimer form. The GDP-mannose dehydrogenase inhibition strategy that we developed a few years ago, based on the synthesis of substrate analogs, has shown its effectiveness. The addition of an alkynyl radical on carbon 6 of the mannose grafted to an amino-sulfonyl-guanosine allows, at a concentration of 0.5 mM, to inhibit GMD by 90%. As we had previously shown the effectiveness of these analogs on the sensitivity of mucoid strains of Pseudomonas aeruginosa to aminoglycosides, this revives the interest in the synthesis of new inhibitors of GDP-mannose dehydrogenase.
Collapse
Affiliation(s)
- Christian Hulen
- Bacterial Communication and Antimicrobial Strategies Research Unit, University of Rouen Normandy, 55 Rue Saint Germain, 27000 Evreux, France
| |
Collapse
|
3
|
Gheorghita AA, Wozniak DJ, Parsek MR, Howell PL. Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation. FEMS Microbiol Rev 2023; 47:fuad060. [PMID: 37884397 PMCID: PMC10644985 DOI: 10.1093/femsre/fuad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
The biofilm matrix is a fortress; sheltering bacteria in a protective and nourishing barrier that allows for growth and adaptation to various surroundings. A variety of different components are found within the matrix including water, lipids, proteins, extracellular DNA, RNA, membrane vesicles, phages, and exopolysaccharides. As part of its biofilm matrix, Pseudomonas aeruginosa is genetically capable of producing three chemically distinct exopolysaccharides - alginate, Pel, and Psl - each of which has a distinct role in biofilm formation and immune evasion during infection. The polymers are produced by highly conserved mechanisms of secretion, involving many proteins that span both the inner and outer bacterial membranes. Experimentally determined structures, predictive modelling of proteins whose structures are yet to be solved, and structural homology comparisons give us insight into the molecular mechanisms of these secretion systems, from polymer synthesis to modification and export. Here, we review recent advances that enhance our understanding of P. aeruginosa multiprotein exopolysaccharide biosynthetic complexes, and how the glycoside hydrolases/lyases within these systems have been commandeered for antimicrobial applications.
Collapse
Affiliation(s)
- Andreea A Gheorghita
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, 776 Biomedical Research Tower, 460 W 12th Ave, Columbus, OH 43210, United States
- Department of Microbiology, The Ohio State University College, Biological Sciences Bldg, 105, 484 W 12th Ave, Columbus, OH 43210, United States
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Health Sciences Bldg, 1705 NE Pacific St, Seattle, WA 98195-7735, United States
| | - P Lynne Howell
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
4
|
Low KE, Gheorghita AA, Tammam SD, Whitfield GB, Li YE, Riley LM, Weadge JT, Caldwell SJ, Chong PA, Walvoort MTC, Kitova EN, Klassen JS, Codée JDC, Howell PL. Pseudomonas aeruginosa AlgF is a protein-protein interaction mediator required for acetylation of the alginate exopolysaccharide. J Biol Chem 2023; 299:105314. [PMID: 37797696 PMCID: PMC10641220 DOI: 10.1016/j.jbc.2023.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Enzymatic modifications of bacterial exopolysaccharides enhance immune evasion and persistence during infection. In the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, acetylation of alginate reduces opsonic killing by phagocytes and improves reactive oxygen species scavenging. Although it is well known that alginate acetylation in P. aeruginosa requires AlgI, AlgJ, AlgF, and AlgX, how these proteins coordinate polymer modification at a molecular level remains unclear. Here, we describe the structural characterization of AlgF and its protein interaction network. We characterize direct interactions between AlgF and both AlgJ and AlgX in vitro and demonstrate an association between AlgF and AlgX, as well as AlgJ and AlgI, in P. aeruginosa. We determine that AlgF does not exhibit acetylesterase activity and is unable to bind to polymannuronate in vitro. Therefore, we propose that AlgF functions to mediate protein-protein interactions between alginate acetylation enzymes, forming the periplasmic AlgJFXK (AlgJ-AlgF-AlgX-AlgK) acetylation and export complex required for robust biofilm formation.
Collapse
Affiliation(s)
- Kristin E Low
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andreea A Gheorghita
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie D Tammam
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory B Whitfield
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yancheng E Li
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Laura M Riley
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joel T Weadge
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shane J Caldwell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - P Andrew Chong
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Elena N Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - John S Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Shift of Choline/Betaine Pathway in Recombinant Pseudomonas for Cobalamin Biosynthesis and Abiotic Stress Protection. Int J Mol Sci 2022; 23:ijms232213934. [PMID: 36430408 PMCID: PMC9699165 DOI: 10.3390/ijms232213934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The B12-producing strains Pseudomonas nitroreducens DSM 1650 and Pseudomonas sp. CCUG 2519 (both formerly Pseudomonas denitrificans), with the most distributed pathway among bacteria for exogenous choline/betaine utilization, are promising recombinant hosts for the endogenous production of B12 precursor betaine by direct methylation of bioavailable glycine or non-proteinogenic β-alanine. Two plasmid-based de novo betaine pathways, distinguished by their enzymes, have provided an expression of the genes encoding for N-methyltransferases of the halotolerant cyanobacterium Aphanothece halophytica or plant Limonium latifolium to synthesize the internal glycine betaine or β-alanine betaine, respectively. These betaines equally allowed the recombinant pseudomonads to grow effectively and to synthesize a high level of cobalamin, as well as to increase their protective properties against abiotic stresses to a degree comparable with the supplementation of an exogenous betaine. Both de novo betaine pathways significantly enforced the protection of bacterial cells against lowering temperature to 15 °C and increasing salinity to 400 mM of NaCl. However, the expression of the single plant-derived gene for the β-alanine-specific N-methyltransferase additionally increased the effectiveness of exogenous glycine betaine almost twofold on cobalamin biosynthesis, probably due to the Pseudomonas' ability to use two independent pathways, their own choline/betaine pathway and the plant β-alanine betaine biosynthetic pathway.
Collapse
|
6
|
Kumar S, Paliya BS, Singh BN. Superior inhibition of virulence and biofilm formation of Pseudomonas aeruginosa PAO1 by phyto-synthesized silver nanoparticles through anti-quorum sensing activity. Microb Pathog 2022; 170:105678. [PMID: 35820580 DOI: 10.1016/j.micpath.2022.105678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022]
Abstract
Quorum sensing (QS)-regulated bacterial biofilm formation is a crucial issue in causing resistance against existing antibiotics. There is a considerable necessity to disrupt the interrelationship between bacterial QS, virulence, and biofilm formation. Disabling QS could be a novel tactic of great clinical importance. Here, we biosynthesized silver nanoparticles (Ka-AgNPs) using the aqueous leaf extract of Koelreuteria paniculata as a reducing and capping agents. The UV-Vis spectroscopy confirmed the synthesis of Ka-AgNPs as a characterization peak observed at 420 nm. TEM image revealed the spherical shape distribution of Ka-AgNPs with average particle size of 30.0 ± 5 nm. The anti-QS activity of Ka-AgNPs was tested against a bio-indicator bacterium Chromobacterium violaceum 12472 and a multi-drug resistant model strain of Pseudomonas aeruginosa (PAO1). The results demonstrated that the Ka-AgNPs superiorly inhibited QS-regulated virulence factors in PAO1 without affecting cell viability compared to chemically synthesized AgNPs (Cs-AgNPs). The Ka-AgNPs effectively suppressed the formation of biofilm of PAO1. RT-PCR results revealed that the Ka-AgNPs inhibited the expression of QS-regulated virulence genes of PAO1. These results suggest that the phyto-synthesized AgNPs could be used as promising anti-infective agents for treating drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Sanket Kumar
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Balwant S Paliya
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Brahma N Singh
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Cation complexation by mucoid Pseudomonas aeruginosa extracellular polysaccharide. PLoS One 2021; 16:e0257026. [PMID: 34473773 PMCID: PMC8412252 DOI: 10.1371/journal.pone.0257026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
Mucoid Pseudomonas aeruginosa is a prevalent cystic fibrosis (CF) lung colonizer, producing an extracellular matrix (ECM) composed predominantly of the extracellular polysaccharide (EPS) alginate. The ECM limits antimicrobial penetration and, consequently, CF sufferers are prone to chronic mucoid P. aeruginosa lung infections. Interactions between cations with elevated concentrations in the CF lung and the anionic EPS, enhance the structural rigidity of the biofilm and exacerbates virulence. In this work, two large mucoid P. aeruginosa EPS models, based on β-D-mannuronate (M) and β-D-mannuronate-α-L-guluronate systems (M-G), and encompassing thermodynamically stable acetylation configurations–a structural motif unique to mucoid P. aeruginosa–were created. Using highly accurate first principles calculations, stable coordination environments adopted by the cations have been identified and thermodynamic stability quantified. These models show the weak cross-linking capability of Na+ and Mg2+ ions relative to Ca2+ ions and indicate a preference for cation binding within M-G blocks due to the smaller torsional rearrangements needed to reveal stable binding sites. The geometry of the chelation site influences the stability of the resulting complexes more than electrostatic interactions, and the results show nuanced chemical insight into previous experimental observations.
Collapse
|
8
|
Sun X, Zhang J. Bacterial exopolysaccharides: Chemical structures, gene clusters and genetic engineering. Int J Biol Macromol 2021; 173:481-490. [PMID: 33493567 DOI: 10.1016/j.ijbiomac.2021.01.139] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
In recent decades, the composition, structure, biosynthesis, and function of bacterial extracellular polysaccharides (EPS) have been extensively studied. EPS are synthesized through different biosynthetic pathways. The genes responsible for EPS synthesis are usually clustered on the genome or large plasmids of bacteria. Generally, different EPS synthesis gene clusters direct the synthesis of EPS with different chemical structures and biological activities. A better understanding of the gene functions involved in EPS biosynthesis is critical for the production of EPS with special biological activities. Genetic engineering methods are usually used to study EPS synthesis related genes. This review organizes the available information on EPS, including their structures, synthesis of related genes, and highlights the research progress of modifying EPS gene clusters through gene-editing methods.
Collapse
Affiliation(s)
- Xiaqing Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
9
|
Mahajan S, Ramya TNC. Cellulophaga algicola alginate lyase inhibits biofilm formation of a clinical Pseudomonas aeruginosa strain MCC 2081. IUBMB Life 2020; 73:444-462. [PMID: 33350564 DOI: 10.1002/iub.2442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
Alginate lyases are potential agents for disrupting alginate-rich Pseudomonas biofilms in the infected lungs of cystic fibrosis patients but there is as yet no clinically approved alginate lyase that can be used as a therapeutic. We report here the endolytic alginate lyase activity of a recombinant Cellulophaga algicola alginate lyase domain (CaAly) encoded by a gene that also codes for an N-terminal carbohydrate-binding module, CBM6, and a central F-type lectin domain (CaFLD). CaAly degraded both polyM and polyG alginates with optimal temperature and pH of 37°C and pH 7, respectively, with greater preference for polyG. Recombinant CaFLD bound to fucosylated glycans with a preference for H-type 2 glycan motif, and did not have any apparent effect on the enzyme activity of the co-associated alginate lyase domain in the recombinant protein construct, CaFLD_Aly. We assessed the potential of CaAly and other alginate lyases previously reported in published literature to inhibit biofilm formation by a clinical strain, Pseudomonas aeruginosa MCC 2081. Of all the alginate lyases tested, CaAly displayed most inhibition of in vitro biofilm formation on plastic surfaces. We also assessed its inhibitory ability against P. aeruginosa 2081 biofilms formed over a monolayer of A549 lung epithelial cells. Our study indicated that CaAly is efficacious in inhibition of biofilm formation even on A549 lung epithelial cell line monolayers.
Collapse
Affiliation(s)
- Sonal Mahajan
- Protein Science and Engineering Department, Institute of Microbial Technology, Chandigarh, India
| | | |
Collapse
|
10
|
Blanco-Cabra N, Paetzold B, Ferrar T, Mazzolini R, Torrents E, Serrano L, LLuch-Senar M. Characterization of different alginate lyases for dissolving Pseudomonas aeruginosa biofilms. Sci Rep 2020; 10:9390. [PMID: 32523130 PMCID: PMC7287115 DOI: 10.1038/s41598-020-66293-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
Aggregates of Pseudomonas aeruginosa form a protective barrier against antibiotics and the immune system. These barriers, known as biofilms, are associated with several infectious diseases. One of the main components of these biofilms is alginate, a homo- and hetero-polysaccharide that consists of β-D-mannuronate (M) and α-L-guluronate (G) units. Alginate lyases degrade this sugar and have been proposed as biotherapeutic agents to dissolve P. aeruginosa biofilms. However, there are contradictory reports in the literature regarding the efficacy of alginate lyases against biofilms and their synergistic effect with antibiotics. We found that most positive reports used a commercial crude extract from Flavobacterium multivorum as the alginate lyase source. By using anion exchange chromatography coupled to nano LC MS/MS, we identified two distinct enzymes in this extract, one has both polyM and polyG (polyM/G) degradation activities and it is similar in sequence to a broad-spectrum alginate lyase from Flavobacterium sp. S20 (Alg2A). The other enzyme has only polyG activity and it is similar in sequence to AlyA1 from Zobellia galactanivorans. By characterizing both of these enzymes together with three recombinant alginate lyases (a polyM, a polyG and a polyM/G), we showed that only enzymes with polyM/G activity such as Alg2A and A1-II' (alginate lyase from Sphingomonas sp.) are effective in dissolving biofilms. Furthermore, both activities are required to have a synergistic effect with antibiotics.
Collapse
Affiliation(s)
- Núria Blanco-Cabra
- Bacterial infections and antimicrobial therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Tony Ferrar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain
| | - Rocco Mazzolini
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain
| | - Eduard Torrents
- Bacterial infections and antimicrobial therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| | - Maria LLuch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain.
| |
Collapse
|
11
|
Chanasit W, Gonzaga ZJC, Rehm BHA. Analysis of the alginate O-acetylation machinery in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2020; 104:2179-2191. [PMID: 31900562 DOI: 10.1007/s00253-019-10310-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/06/2019] [Accepted: 12/08/2019] [Indexed: 12/11/2022]
Abstract
O-acetylation of alginate produced by the opportunistic human pathogen Pseudomonas aeruginosa significantly contributes to its pathogenesis. Three proteins, AlgI, AlgJ and AlgF have been implicated to form a complex and act together with AlgX for O-acetylation of alginate. AlgI was proposed to transfer the acetyl group across the cytoplasmic membrane, while periplasmic AlgJ was hypothesised to transfer the acetyl group to AlgX that acetylates alginate. To elucidate the proposed O-acetylation multiprotein complex, isogenic knockout mutants of algI, algJ and algF genes were generated in the constitutively alginate overproducing P. aeruginosa PDO300 to enable mutual stability studies. All knockout mutants were O-acetylation negative and complementation with the respective genes in cis or trans restored O-acetylation of alginate. Interestingly, only the AlgF deletion impaired alginate production suggesting a link to the alginate polymerisation/secretion multiprotein complex. Mutual stability experiments indicated that AlgI and AlgF interact independent of AlgJ as well as impact on stability of the alginate polymerisation/secretion multiprotein complex. Deletion of AlgJ did not destabilise AlgX and vice versa. When the alginate polymerase, Alg8, was absent, then AlgI and AlgF stability was strongly impaired supporting a link of the O-acetylation machinery with alginate polymerisation. Pull-down experiments suggested that AlgI interacts with AlgJ, while AlgF interacts with AlgJ and AlgI. Overall, these results suggested that AlgI-AlgJ-AlgF form a multiprotein complex linked via Alg8 to the envelope-spanning alginate polymerisation/secretion multiprotein complex to mediate O-acetylation of nascent alginate. Here, we provide the first insight on how the O-acetylation machinery is associated with alginate production.
Collapse
Affiliation(s)
- Wankuson Chanasit
- Department of Biology, Faculty of Science, Thaksin University, Pa Phayom, Patthalung, 93210, Thailand
| | - Zennia Jean C Gonzaga
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Brisbane, QLD, 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
12
|
Brott AS, Sychantha D, Clarke AJ. Assays for the Enzymes Catalyzing the O-Acetylation of Bacterial Cell Wall Polysaccharides. Methods Mol Biol 2019; 1954:115-136. [PMID: 30864128 DOI: 10.1007/978-1-4939-9154-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The polysaccharides that comprise bacterial cell walls are commonly O-acetylated. This modification confers resistance to hydrolases of innate immune systems and/or controls endogenous autolytic activity. Herein, we present protocols for the compositional analysis of bacterial cell wall O-acetylation, and assays for monitoring O-acetyltransferases and O-acetylesterases. The assays are amenable for the development of high-throughput screens in search of inhibitors of the respective enzymes.
Collapse
Affiliation(s)
- Ashley S Brott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - David Sychantha
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
13
|
|
14
|
Muhammadi, Shafiq S. Genetic, structural and pharmacological characterization of polymannuronate synthesized by algG mutant indigenous soil bacterium Pseudomonas aeruginosa CMG1421. J Appl Microbiol 2018; 126:113-126. [PMID: 30179291 DOI: 10.1111/jam.14098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/29/2018] [Accepted: 08/24/2018] [Indexed: 11/28/2022]
Abstract
AIMS It was aimed to study the genetic, structural and pharmacological characteristics of polymannuronate synthesized by Pseudomonas aeruginosa CMG1421. METHODS AND RESULTS Synthesis was analysed by transmission electron microscopy, FT/IR, 1 H-NMR and gel permeation chromatography followed by in vitro bioassays. Colony PCR followed by sequence analysis was employed for screening of structural genes. FT/IR analysis indicated the presence of hydroxyl, carboxyl and O-acetyl groups linked to mannuronate. 1 H-NMR analysis indicated M-M bond characteristics for mannuronic acid residues. The average relative molecular weight was found in range of 20 000-250 000 Da. The amplified DNA fragments were identified as 16S rRNA, algD, alg8, alg44, algG, algE and algX genes showing 99-100% homology with those of P. aeruginosa. However, in algG there were transition mutations of adenine and cytosine at nucleotide position 766 and 769, and 878 and 881 respectively. Polymannuronate and its oligomannuronates respectively showed moderate and significant antioxidant, anti-inflammatory, anti-obesity and antidiabetic activities. CONCLUSIONS Alginate synthesized by ∆algG mutant P. aeruginosa CMG1421 was bioactive and solely consists of acetylated d-mannuronates. SIGNIFICANCE AND IMPACT OF THE STUDY We investigated biocompatible, nonimmunogenic and nontoxic pharmacological agents for treatment and attenuation of degenerative, inflammatory, autoimmune disease, and metabolic disorders such as obesity and diabetes.
Collapse
Affiliation(s)
- Muhammadi
- Centre for Bioresource Research, Islamabad, Pakistan
| | - S Shafiq
- Centre for Bioresource Research, Islamabad, Pakistan
| |
Collapse
|
15
|
Lasiosan, a new exopolysaccharide from Lasiodiplodia sp. strain B2 (MTCC 6000): Structural characterization and biological evaluation. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Belik AA, Silchenko AS, Kusaykin MI, Zvyagintseva TN, Ermakova SP. Alginate Lyases: Substrates, Structure, Properties, and Prospects of Application. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018040040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Cho H, Huang X, Lan Piao Y, Eun Kim D, Yeon Lee S, Jeong Yoon E, Hee Park S, Lee K, Ho Jang C, Zhan CG. Molecular modeling and redesign of alginate lyase from Pseudomonas aeruginosa for accelerating CRPA biofilm degradation. Proteins 2016; 84:1875-1887. [PMID: 27676452 DOI: 10.1002/prot.25171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/31/2016] [Accepted: 09/16/2016] [Indexed: 11/12/2022]
Abstract
Administration of an efficient alginate lyase (AlgL) or AlgL mutant may be a promising therapeutic strategy for treatment of cystic fibrosis patients with Pseudomonas aeruginosa infections. Nevertheless, the catalytic activity of wild-type AlgL is not sufficiently high. It is highly desired to design and discover an AlgL mutant with significantly improved catalytic efficiency against alginate substrates. For the purpose of identifying an AlgL mutant with significantly improved catalytic activity, in this study, we first constructed and validated a structural model of AlgL interacting with substrate, providing a better understanding of the interactions between AlgL and its substrate. Based on the modeling insights, further enzyme redesign and experimental testing led to discovery of AlgL mutants, including the K197D/K321A mutant, with significantly improved catalytic activities against alginate and acetylated alginate in ciprofloxacin-resistant P. aeruginosa (CRPA) biofilms. Further anti-biofilm activity assays have confirmed that the K197D/K321A mutant with piperacillin/tazobactam is indeed effective in degrading the CRPA biofilms. Co-administration of the potent mutant AlgL and an antibiotic (such as a nebulizer) could be effective for therapeutic treatment of CRPA-infected patients with cystic fibrosis. Proteins 2016; 84:1875-1887. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hoon Cho
- Department of Polymer Science & Engineering, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Xiaoqin Huang
- Molecular Modeling and Biopharmaceutical Center, Center of Pharmaceutical Research and Innovation, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Yu Lan Piao
- Department of Polymer Science & Engineering, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Da Eun Kim
- Department of Polymer Science & Engineering, Chosun University, Gwangju, 501-759, Republic of Korea
| | - So Yeon Lee
- Department of Polymer Science & Engineering, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Eun Jeong Yoon
- Department of Polymer Science & Engineering, Chosun University, Gwangju, 501-759, Republic of Korea
| | - So Hee Park
- Department of Polymer Science & Engineering, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Kyoung Lee
- Department of Microbiology, Changwon National University, Changwon, Kyongnam, 641-773, Republic of Korea
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, 501-757, Republic of Korea
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, Center of Pharmaceutical Research and Innovation, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
18
|
Bianco MI, Toum L, Yaryura PM, Mielnichuk N, Gudesblat GE, Roeschlin R, Marano MR, Ielpi L, Vojnov AA. Xanthan Pyruvilation Is Essential for the Virulence of Xanthomonas campestris pv. campestris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:688-699. [PMID: 27464764 DOI: 10.1094/mpmi-06-16-0106-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Xanthan, the main exopolysaccharide (EPS) synthesized by Xanthomonas spp., contributes to bacterial stress tolerance and enhances attachment to plant surfaces by helping in biofilm formation. Therefore, xanthan is essential for successful colonization and growth in planta and has also been proposed to be involved in the promotion of pathogenesis by calcium ion chelation and, hence, in the suppression of the plant defense responses in which this cation acts as a signal. The aim of this work was to study the relationship between xanthan structure and its role as a virulence factor. We analyzed four Xanthomonas campestris pv. campestris mutants that synthesize structural variants of xanthan. We found that the lack of acetyl groups that decorate the internal mannose residues, ketal-pyruvate groups, and external mannose residues affects bacterial adhesion and biofilm architecture. In addition, the mutants that synthesized EPS without pyruvilation or without the external mannose residues did not develop disease symptoms in Arabidopsis thaliana. We also observed that the presence of the external mannose residues and, hence, pyruvilation is required for xanthan to suppress callose deposition as well as to interfere with stomatal defense. In conclusion, pyruvilation of xanthan seems to be essential for Xanthomonas campestris pv. campestris virulence.
Collapse
Affiliation(s)
- María Isabel Bianco
- 1 Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 (C1440FFX), Ciudad de Buenos Aires, Argentina
| | - Laila Toum
- 1 Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 (C1440FFX), Ciudad de Buenos Aires, Argentina
| | - Pablo Marcelo Yaryura
- 2 Centro de Investigaciones y Transferencia (CIT Villa María), CONICET-Instituto de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María. Av. Arturo Jauretche 1555, (5900), Villa María, Córdoba, Argentina
| | - Natalia Mielnichuk
- 1 Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 (C1440FFX), Ciudad de Buenos Aires, Argentina
| | - Gustavo Eduardo Gudesblat
- 1 Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 (C1440FFX), Ciudad de Buenos Aires, Argentina
- 3 Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Departamento de Biodiversidad y Biología Experimental (DBBE), CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires (C1428EGA), Argentina
| | - Roxana Roeschlin
- 4 Instituto de Biología Molecular y Celular de Rosario (IBR)-CONICET, Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda s/n, (S2000FHN) Rosario, Argentina; and
| | - María Rosa Marano
- 4 Instituto de Biología Molecular y Celular de Rosario (IBR)-CONICET, Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda s/n, (S2000FHN) Rosario, Argentina; and
| | - Luis Ielpi
- 5 Laboratorio de Genética Bacteriana, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-CONICET, Patricias Argentinas 435 (C1405BWE), Ciudad de Buenos Aires, Argentina
| | - Adrián A Vojnov
- 1 Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 (C1440FFX), Ciudad de Buenos Aires, Argentina
| |
Collapse
|
19
|
Jang CH, Piao YL, Huang X, Yoon EJ, Park SH, Lee K, Zhan CG, Cho H. Modeling and Re-Engineering of Azotobacter vinelandii Alginate Lyase to Enhance Its Catalytic Efficiency for Accelerating Biofilm Degradation. PLoS One 2016; 11:e0156197. [PMID: 27253324 PMCID: PMC4890793 DOI: 10.1371/journal.pone.0156197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023] Open
Abstract
Alginate is known to prevent elimination of Pseudomonas aeruginosa biofilms. Alginate lyase (AlgL) might therefore facilitate treatment of Pseudomonas aeruginosa-infected cystic fibrosis patients. However, the catalytic activity of wild-type AlgL is not sufficiently high. Therefore, molecular modeling and site-directed mutagenesis of AlgL might assist in enzyme engineering for therapeutic development. AlgL, isolated from Azotobacter vinelandii, catalyzes depolymerization of alginate via a β-elimination reaction. AlgL was modeled based on the crystal structure template of Sphingomonas AlgL species A1-III. Based on this computational analysis, AlgL was subjected to site-directed mutagenesis to improve its catalytic activity. The kcat/Km of the K194E mutant showed a nearly 5-fold increase against the acetylated alginate substrate, as compared to the wild-type. Double and triple mutants (K194E/K245D, K245D/K319A, K194E/K245D/E312D, and K194E/K245D/K319A) were also prepared. The most potent mutant was observed to be K194E/K245D/K319A, which has a 10-fold improved kcat value (against acetylated alginate) compared to the wild-type enzyme. The antibiofilm effect of both AlgL forms was identified in combination with piperacillin/tazobactam (PT) and the disruption effect was significantly higher in mutant AlgL combined with PT than wild-type AlgL. However, for both the wild-type and K194E/K245D/K319A mutant, the use of the AlgL enzyme alone did not show significant antibiofilm effect.
Collapse
Affiliation(s)
- Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, 501–757, Republic of Korea
| | - Yu Lan Piao
- Department of Polymer Science & Engineering, Chosun University, Gwangju, 501–759, South Korea
| | - Xiaoqin Huang
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, United States of America
| | - Eun Jeong Yoon
- Department of Polymer Science & Engineering, Chosun University, Gwangju, 501–759, South Korea
| | - So Hee Park
- Department of Polymer Science & Engineering, Chosun University, Gwangju, 501–759, South Korea
| | - Kyoung Lee
- Department of Microbiology, Changwon National University, Changwon, Kyongnam, 641–773, Republic of Korea
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, United States of America
| | - Hoon Cho
- Department of Polymer Science & Engineering, Chosun University, Gwangju, 501–759, South Korea
| |
Collapse
|
20
|
Abstract
Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms.
Collapse
|
21
|
Abstract
During the first step of biofilm formation, initial attachment is dictated by physicochemical and electrostatic interactions between the surface and the bacterial envelope. Depending on the nature of these interactions, attachment can be transient or permanent. To achieve irreversible attachment, bacterial cells have developed a series of surface adhesins promoting specific or nonspecific adhesion under various environmental conditions. This article reviews the recent advances in our understanding of the secretion, assembly, and regulation of the bacterial adhesins during biofilm formation, with a particular emphasis on the fimbrial, nonfimbrial, and discrete polysaccharide adhesins in Gram-negative bacteria.
Collapse
|
22
|
Roux D, Cywes-Bentley C, Zhang YF, Pons S, Konkol M, Kearns DB, Little DJ, Howell PL, Skurnik D, Pier GB. Identification of Poly-N-acetylglucosamine as a Major Polysaccharide Component of the Bacillus subtilis Biofilm Matrix. J Biol Chem 2015; 290:19261-72. [PMID: 26078454 DOI: 10.1074/jbc.m115.648709] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
Bacillus subtilis is intensively studied as a model organism for the development of bacterial biofilms or pellicles. A key component is currently undefined exopolysaccharides produced from proteins encoded by genes within the eps locus. Within this locus are four genes, epsHIJK, known to be essential for pellicle formation. We show they encode proteins synthesizing the broadly expressed microbial carbohydrate poly-N-acetylglucosamine (PNAG). PNAG was present in both pellicle and planktonic wild-type B. subtilis cells and in strains with deletions in the epsA-G and -L-O genes but not in strains deleted for epsH-K. Cloning of the B. subtilis epsH-K genes into Escherichia coli with in-frame deletions in the PNAG biosynthetic genes pgaA-D, respectively, restored PNAG production in E. coli. Cloning the entire B. subtilis epsHIJK locus into pga-deleted E. coli, Klebsiella pneumoniae, or alginate-negative Pseudomonas aeruginosa restored or conferred PNAG production. Bioinformatic and structural predictions of the EpsHIJK proteins suggest EpsH and EpsJ are glycosyltransferases (GT) with a GT-A fold; EpsI is a GT with a GT-B fold, and EpsK is an α-helical membrane transporter. B. subtilis, E. coli, and pga-deleted E. coli carrying the epsHIJK genes on a plasmid were all susceptible to opsonic killing by antibodies to PNAG. The immunochemical and genetic data identify the genes and proteins used by B. subtilis to produce PNAG as a significant carbohydrate factor essential for pellicle formation.
Collapse
Affiliation(s)
- Damien Roux
- From the Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and
| | - Colette Cywes-Bentley
- From the Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and
| | - Yi-Fan Zhang
- From the Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Stephanie Pons
- From the Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and
| | - Melissa Konkol
- the Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Daniel B Kearns
- the Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Dustin J Little
- the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and the Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - P Lynne Howell
- the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and the Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - David Skurnik
- From the Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and
| | - Gerald B Pier
- From the Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and
| |
Collapse
|
23
|
Ertesvåg H. Alginate-modifying enzymes: biological roles and biotechnological uses. Front Microbiol 2015; 6:523. [PMID: 26074905 PMCID: PMC4444821 DOI: 10.3389/fmicb.2015.00523] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/11/2015] [Indexed: 11/26/2022] Open
Abstract
Alginate denotes a group of industrially important 1-4-linked biopolymers composed of the C-5-epimers β-D-mannuronic acid (M) and α-L-guluronic acid (G). The polysaccharide is manufactured from brown algae where it constitutes the main structural cell wall polymer. The physical properties of a given alginate molecule, e.g., gel-strength, water-binding capacity, viscosity and biocompatibility, are determined by polymer length, the relative amount and distribution of G residues and the acetyl content, all of which are controlled by alginate modifying enzymes. Alginate has also been isolated from some bacteria belonging to the genera Pseudomonas and Azotobacter, and bacterially synthesized alginate may be O-acetylated at O-2 and/or O-3. Initially, alginate is synthesized as polymannuronic acid, and some M residues are subsequently epimerized to G residues. In bacteria a mannuronan C-5-epimerase (AlgG) and an alginate acetylase (AlgX) are integral parts of the protein complex necessary for alginate polymerization and export. All alginate-producing bacteria use periplasmic alginate lyases to remove alginate molecules aberrantly released to the periplasm. Alginate lyases are also produced by organisms that utilize alginate as carbon source. Most alginate-producing organisms encode more than one mannuronan C-5 epimerase, each introducing its specific pattern of G residues. Acetylation protects against further epimerization and from most alginate lyases. An enzyme from Pseudomonas syringae with alginate deacetylase activity has been reported. Functional and structural studies reveal that alginate lyases and epimerases have related enzyme mechanisms and catalytic sites. Alginate lyases are now utilized as tools for alginate characterization. Secreted epimerases have been shown to function well in vitro, and have been engineered further in order to obtain enzymes that can provide alginates with new and desired properties for use in medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Helga Ertesvåg
- Department of Biotechnology, Norwegian University of Science and Technology Trondheim, Norway
| |
Collapse
|
24
|
Whitfield GB, Marmont LS, Howell PL. Enzymatic modifications of exopolysaccharides enhance bacterial persistence. Front Microbiol 2015; 6:471. [PMID: 26029200 PMCID: PMC4432689 DOI: 10.3389/fmicb.2015.00471] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022] Open
Abstract
Biofilms are surface-attached communities of bacterial cells embedded in a self-produced matrix that are found ubiquitously in nature. The biofilm matrix is composed of various extracellular polymeric substances, which confer advantages to the encapsulated bacteria by protecting them from eradication. The matrix composition varies between species and is dependent on the environmental niche that the bacteria inhabit. Exopolysaccharides (EPS) play a variety of important roles in biofilm formation in numerous bacterial species. The ability of bacteria to thrive in a broad range of environmental settings is reflected in part by the structural diversity of the EPS produced both within individual bacterial strains as well as by different species. This variability is achieved through polymerization of distinct sugar moieties into homo- or hetero-polymers, as well as post-polymerization modification of the polysaccharide. Specific enzymes that are unique to the production of each polymer can transfer or remove non-carbohydrate moieties, or in other cases, epimerize the sugar units. These modifications alter the physicochemical properties of the polymer, which in turn can affect bacterial pathogenicity, virulence, and environmental adaptability. Herein, we review the diversity of modifications that the EPS alginate, the Pel polysaccharide, Vibrio polysaccharide, cepacian, glycosaminoglycans, and poly-N-acetyl-glucosamine undergo during biosynthesis. These are EPS produced by human pathogenic bacteria for which studies have begun to unravel the effect modifications have on their physicochemical and biological properties. The biological advantages these polymer modifications confer to the bacteria that produce them will be discussed. The expanding list of identified modifications will allow future efforts to focus on linking these modifications to specific biosynthetic genes and biofilm phenotypes.
Collapse
Affiliation(s)
- Gregory B Whitfield
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children Toronto, ON, Canada ; Department of Biochemistry, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Lindsey S Marmont
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children Toronto, ON, Canada ; Department of Biochemistry, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - P Lynne Howell
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children Toronto, ON, Canada ; Department of Biochemistry, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| |
Collapse
|
25
|
Abstract
The molecular mechanisms of alginate polymerization/modification/secretion by a proposed envelope-spanning multiprotein complex are unknown. Here, bacterial two-hybrid assays and pulldown experiments showed that the catalytic subunit Alg8 directly interacts with the proposed copolymerase Alg44 while embedded in the cytoplasmic membrane. Alg44 additionally interacts with the lipoprotein AlgK bridging the periplasmic space. Site-specific mutagenesis of Alg44 showed that protein-protein interactions and stability were independent of conserved amino acid residues R17 and R21, which are involved in c-di-GMP binding, the N-terminal PilZ domain, and the C-terminal 26 amino acids. Site-specific mutagenesis was employed to investigate the c-di-GMP-mediated activation of alginate polymerization by the PilZAlg44 domain and Alg8. Activation was found to be different from the proposed activation mechanism for cellulose synthesis. The interactive role of Alg8, Alg44, AlgG (epimerase), and AlgX (acetyltransferase) on alginate polymerization and modification was studied by using site-specific deletion mutants, inactive variants, and overproduction of subunits. The compositions, molecular masses, and material properties of resulting novel alginates were analyzed. The molecular mass was reduced by epimerization, while it was increased by acetylation. Interestingly, when overproduced, Alg44, AlgG, and the nonepimerizing variant AlgG(D324A) increased the degree of acetylation, while epimerization was enhanced by AlgX and its nonacetylating variant AlgX(S269A). Biofilm architecture analysis showed that acetyl groups promoted cell aggregation while nonacetylated polymannuronate alginate promoted stigmergy. Overall, this study sheds new light on the arrangement of the multiprotein complex involved in alginate production. Furthermore, the activation mechanism and the interplay between polymerization and modification of alginate were elucidated. This study provides new insights into the molecular mechanisms of the synthesis of the unique polysaccharide, alginate, which not only is an important virulence factor of the opportunistic human pathogen Pseudomonas aeruginosa but also has, due to its material properties, many applications in medicine and industry. Unraveling the assembly and composition of the alginate-synthesizing and envelope-spanning multiprotein complex will be of tremendous significance for the scientific community. We identified a protein-protein interaction network inside the multiprotein complex and studied its relevance with respect to alginate polymerization/modification as well as the c-di-GMP-mediated activation mechanism. A relationship between alginate polymerization and modification was shown. Due to the role of alginate in pathogenesis as well as its unique material properties harnessed in numerous applications, results obtained in this study will aid the design and development of inhibitory drugs as well as the commercial bacterial production of tailor-made alginates.
Collapse
|
26
|
Complete Genome Sequence of Pseudomonas aeruginosa Mucoid Strain FRD1, Isolated from a Cystic Fibrosis Patient. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00153-15. [PMID: 25792066 PMCID: PMC4395061 DOI: 10.1128/genomea.00153-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We announce here the complete genome sequence of the Pseudomonas aeruginosa mucoid strain FRD1, isolated from the sputum of a cystic fibrosis patient. The complete genome of P. aeruginosa FRD1 is 6,712,339 bp. This genome will allow comparative genomics to be used to identify genes associated with virulence, especially those involved in chronic pulmonary infections.
Collapse
|
27
|
Jung JY, Shin JS, Rhee Y, Cho CW, Lee MK, Hong HD, Lee KT. In vitro
and in vivo
immunostimulatory activity of an exopolysaccharide-enriched fraction from Bacillus subtilis. J Appl Microbiol 2015; 118:739-52. [DOI: 10.1111/jam.12742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/24/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022]
Affiliation(s)
- J.-Y. Jung
- Department of Pharmaceutical Biochemistry; College of Pharmacy; Kyung Hee University; Seoul Republic of Korea
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul Republic of Korea
| | - J.-S. Shin
- Department of Pharmaceutical Biochemistry; College of Pharmacy; Kyung Hee University; Seoul Republic of Korea
- Reactive Oxygen Species Medical Research Center; School of Medicine; Kyung Hee University; Seoul Republic of Korea
| | - Y.K. Rhee
- Korea Food Research Institute; Seongnam Republic of Korea
| | - C.-W. Cho
- Korea Food Research Institute; Seongnam Republic of Korea
| | - M.-K. Lee
- Korea Food Research Institute; Seongnam Republic of Korea
| | - H.-D. Hong
- Korea Food Research Institute; Seongnam Republic of Korea
| | - K.-T. Lee
- Department of Pharmaceutical Biochemistry; College of Pharmacy; Kyung Hee University; Seoul Republic of Korea
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul Republic of Korea
| |
Collapse
|
28
|
Jadaun V, Prateeksha P, Singh BR, Paliya BS, Upreti DK, Rao CV, Rawat AKS, Singh BN. Honey enhances the anti-quorum sensing activity and anti-biofilm potential of curcumin. RSC Adv 2015. [DOI: 10.1039/c5ra14427b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this investigation, the potential of curcumin (50 μg mL−1) plus 1% of honey (ChC) in reducing QS-mediated production of virulence factors and biofilm formation inPseudomonas aeruginosaPAO1 was studied.
Collapse
Affiliation(s)
- V. Jadaun
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - Prateeksha Prateeksha
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - Braj R. Singh
- Centre of Excellence in Materials Science (Nanomaterials)
- Z.H. College of Engineering & Technology
- Aligarh Muslim University
- Aligarh-202002
- India
| | - B. S. Paliya
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - D. K. Upreti
- Lichenology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - Ch. V. Rao
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - A. K. S. Rawat
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - Brahma N. Singh
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| |
Collapse
|
29
|
Barnes RJ, Bandi RR, Chua F, Low JH, Aung T, Barraud N, Fane AG, Kjelleberg S, Rice SA. The roles of Pseudomonas aeruginosa extracellular polysaccharides in biofouling of reverse osmosis membranes and nitric oxide induced dispersal. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.04.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Baker P, Ricer T, Moynihan PJ, Kitova EN, Walvoort MTC, Little DJ, Whitney JC, Dawson K, Weadge JT, Robinson H, Ohman DE, Codée JDC, Klassen JS, Clarke AJ, Howell PL. P. aeruginosa SGNH hydrolase-like proteins AlgJ and AlgX have similar topology but separate and distinct roles in alginate acetylation. PLoS Pathog 2014; 10:e1004334. [PMID: 25165982 PMCID: PMC4148444 DOI: 10.1371/journal.ppat.1004334] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/08/2014] [Indexed: 02/05/2023] Open
Abstract
The O-acetylation of polysaccharides is a common modification used by pathogenic organisms to protect against external forces. Pseudomonas aeruginosa secretes the anionic, O-acetylated exopolysaccharide alginate during chronic infection in the lungs of cystic fibrosis patients to form the major constituent of a protective biofilm matrix. Four proteins have been implicated in the O-acetylation of alginate, AlgIJF and AlgX. To probe the biological function of AlgJ, we determined its structure to 1.83 Å resolution. AlgJ is a SGNH hydrolase-like protein, which while structurally similar to the N-terminal domain of AlgX exhibits a distinctly different electrostatic surface potential. Consistent with other SGNH hydrolases, we identified a conserved catalytic triad composed of D190, H192 and S288 and demonstrated that AlgJ exhibits acetylesterase activity in vitro. Residues in the AlgJ signature motifs were found to form an extensive network of interactions that are critical for O-acetylation of alginate in vivo. Using two different electrospray ionization mass spectrometry (ESI-MS) assays we compared the abilities of AlgJ and AlgX to bind and acetylate alginate. Binding studies using defined length polymannuronic acid revealed that AlgJ exhibits either weak or no detectable polymer binding while AlgX binds polymannuronic acid specifically in a length-dependent manner. Additionally, AlgX was capable of utilizing the surrogate acetyl-donor 4-nitrophenyl acetate to catalyze the O-acetylation of polymannuronic acid. Our results, combined with previously published in vivo data, suggest that the annotated O-acetyltransferases AlgJ and AlgX have separate and distinct roles in O-acetylation. Our refined model for alginate acetylation places AlgX as the terminal acetlytransferase and provides a rationale for the variability in the number of proteins required for polysaccharide O-acetylation. Bacteria utilize many defense strategies to protect themselves against external forces. One mechanism used by the bacterium Pseudomonas aeruginosa is the production of the long sugar polymer alginate. The bacteria use this polymer to form a biofilm – a barrier to protect against antibiotics and the host immune response. During its biosynthesis alginate undergoes a chemical modification whereby acetate is added to the polymer. Acetylation of alginate is important as this modification makes the bacterial biofilm less susceptible to recognition and clearance by the host immune system. In this paper we present the atomic structure of AlgJ; one of four proteins required for O-acetylation of the polymer. AlgJ is structurally similar to AlgX, which we have shown previously is also required for alginate acetylation. To understand why both enzymes are required for O-acetylation we functionally characterized the proteins and found that although AlgJ exhibits acetylesterase activity – catalyzing the removal of acetyl groups from a surrogate substrate – it does not bind to short mannuornic acid polymers. In contrast, AlgX bound alginate in a length-dependent manner and was capable of transfering acetate from a surrogate substrate onto alginate. This has allowed us to not only understand how acetate is added to alginate, but increases our understanding of how acetate is added to other bacterial sugar polymers.
Collapse
Affiliation(s)
- Perrin Baker
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tyler Ricer
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Patrick J. Moynihan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Dustin J. Little
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John C. Whitney
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen Dawson
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Joel T. Weadge
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Howard Robinson
- Photon Sciences Division, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Dennis E. Ohman
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center and McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Anthony J. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - P. Lynne Howell
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
31
|
Sarkisova SA, Lotlikar SR, Guragain M, Kubat R, Cloud J, Franklin MJ, Patrauchan MA. A Pseudomonas aeruginosa EF-hand protein, EfhP (PA4107), modulates stress responses and virulence at high calcium concentration. PLoS One 2014; 9:e98985. [PMID: 24918783 PMCID: PMC4053335 DOI: 10.1371/journal.pone.0098985] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/09/2014] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa is a facultative human pathogen, and a major cause of nosocomial infections and severe chronic infections in endocarditis and in cystic fibrosis (CF) patients. Calcium (Ca2+) accumulates in pulmonary fluids of CF patients, and plays a role in the hyperinflammatory response to bacterial infection. Earlier we showed that P. aeruginosa responds to increased Ca2+ levels, primarily through the increased production of secreted virulence factors. Here we describe the role of putative Ca2+-binding protein, with an EF-hand domain, PA4107 (EfhP), in this response. Deletion mutations of efhP were generated in P. aeruginosa strain PAO1 and CF pulmonary isolate, strain FRD1. The lack of EfhP abolished the ability of P. aeruginosa PAO1 to maintain intracellular Ca2+ homeostasis. Quantitative high-resolution 2D-PAGE showed that the efhP deletion also affected the proteomes of both strains during growth with added Ca2+. The greatest proteome effects occurred when the pulmonary isolate was cultured in biofilms. Among the proteins that were significantly less abundant or absent in the mutant strains were proteins involved in iron acquisition, biosynthesis of pyocyanin, proteases, and stress response proteins. In support, the phenotypic responses of FRD1 ΔefhP showed that the mutant strain lost its ability to produce pyocyanin, developed less biofilm, and had decreased resistance to oxidative stress (H2O2) when cultured at high [Ca2+]. Furthermore, the mutant strain was unable to produce alginate when grown at high [Ca2+] and no iron. The effect of the ΔefhP mutations on virulence was determined in a lettuce model of infection. Growth of wild-type P. aeruginosa strains at high [Ca2+] causes an increased area of disease. In contrast, the lack of efhP prevented this Ca2+-induced increase in the diseased zone. The results indicate that EfhP is important for Ca2+ homeostasis and virulence of P. aeruginosa when it encounters host environments with high [Ca2+].
Collapse
Affiliation(s)
- Svetlana A. Sarkisova
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Shalaka R. Lotlikar
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Manita Guragain
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Ryan Kubat
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - John Cloud
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Michael J. Franklin
- Department of Microbiology, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| |
Collapse
|
32
|
Tielen P, Kuhn H, Rosenau F, Jaeger KE, Flemming HC, Wingender J. Interaction between extracellular lipase LipA and the polysaccharide alginate of Pseudomonas aeruginosa. BMC Microbiol 2013; 13:159. [PMID: 23848942 PMCID: PMC3733896 DOI: 10.1186/1471-2180-13-159] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/08/2013] [Indexed: 12/21/2022] Open
Abstract
Background As an opportunistic human pathogen Pseudomonas aeruginosa is able to cause acute and chronic infections. The biofilm mode of life significantly contributes to the growth and persistence of P. aeruginosa during an infection process and mediates the pathogenicity of the bacterium. Within a biofilm mucoid strains of P. aeruginosa simultaneously produce and secrete several hydrolytic enzymes and the extracellular polysaccharide alginate. The focus of the current study was the interaction between extracellular lipase LipA and alginate, which may be physiologically relevant in biofilms of mucoid P. aeruginosa. Results Fluorescence microscopy of mucoid P. aeruginosa biofilms were performed using fluorogenic lipase substrates. It showed a localization of the extracellular enzyme near the cells. A microtiter plate-based binding assay revealed that the polyanion alginate is able to bind LipA. A molecular modeling approach showed that this binding is structurally based on electrostatic interactions between negatively charged residues of alginate and positively charged amino acids of the protein localized opposite of the catalytic centre. Moreover, we showed that the presence of alginate protected the lipase activity by protection from heat inactivation and from degradation by the endogenous, extracellular protease elastase LasB. This effect was influenced by the chemical properties of the alginate molecules and was enhanced by the presence of O-acetyl groups in the alginate chain. Conclusion We demonstrate that the extracellular lipase LipA from P. aeruginosa interacts with the polysaccharide alginate in the self-produced extracellular biofilm matrix of P. aeruginosa via electrostatic interactions suggesting a role of this interaction for enzyme immobilization and accumulation within biofilms. This represents a physiological advantage for the cells. Especially in the biofilm lifestyle, the enzyme is retained near the cell surface, with the catalytic centre exposed towards the substrate and is protected from denaturation and proteolytic degradation.
Collapse
Affiliation(s)
- Petra Tielen
- Department of Aquatic Microbiology, University of Duisburg-Essen, Faculty of Chemistry, Biofilm Centre, Essen, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Riley LM, Weadge JT, Baker P, Robinson H, Codée JDC, Tipton PA, Ohman DE, Howell PL. Structural and functional characterization of Pseudomonas aeruginosa AlgX: role of AlgX in alginate acetylation. J Biol Chem 2013; 288:22299-314. [PMID: 23779107 DOI: 10.1074/jbc.m113.484931] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The exopolysaccharide alginate, produced by mucoid Pseudomonas aeruginosa in the lungs of cystic fibrosis patients, undergoes two different chemical modifications as it is synthesized that alter the properties of the polymer and hence the biofilm. One modification, acetylation, causes the cells in the biofilm to adhere better to lung epithelium, form microcolonies, and resist the effects of the host immune system and/or antibiotics. Alginate biosynthesis requires 12 proteins encoded by the algD operon, including AlgX, and although this protein is essential for polymer production, its exact role is unknown. In this study, we present the X-ray crystal structure of AlgX at 2.15 Å resolution. The structure reveals that AlgX is a two-domain protein, with an N-terminal domain with structural homology to members of the SGNH hydrolase superfamily and a C-terminal carbohydrate-binding module. A number of residues in the carbohydrate-binding module form a substrate recognition "pinch point" that we propose aids in alginate binding and orientation. Although the topology of the N-terminal domain deviates from canonical SGNH hydrolases, the residues that constitute the Ser-His-Asp catalytic triad characteristic of this family are structurally conserved. In vivo studies reveal that site-specific mutation of these residues results in non-acetylated alginate. This catalytic triad is also required for acetylesterase activity in vitro. Our data suggest that not only does AlgX protect the polymer as it passages through the periplasm but that it also plays a role in alginate acetylation. Our results provide the first structural insight for a wide group of closely related bacterial polysaccharide acetyltransferases.
Collapse
Affiliation(s)
- Laura M Riley
- Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sarabhai S, Sharma P, Capalash N. Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One 2013; 8:e53441. [PMID: 23320085 PMCID: PMC3539995 DOI: 10.1371/journal.pone.0053441] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/28/2012] [Indexed: 11/25/2022] Open
Abstract
Background Burgeoning antibiotic resistance in Pseudomonas aeruginosa has necessitated the development of anti pathogenic agents that can quench acylhomoserine lactone (AHL) mediated QS with least risk of resistance. This study explores the anti quorum sensing potential of T. chebula Retz. and identification of probable compounds(s) showing anti QS activity and the mechanism of attenuation of P. aeruginosa PAO1 virulence factors. Methods and Results Methanol extract of T. chebula Retz. fruit showed anti QS activity using Agrobacterium tumefaciens A136. Bioactive fraction (F7), obtained by fractionation of methanol extract using Sephadex LH20, showed significant reduction (p<0.001) in QS regulated production of extracellular virulence factors in P. aeruginosa PAO1. Biofilm formation and alginate were significantly (p<0.05) reduced with enhanced (20%) susceptibility to tobramycin. Real Time PCR of F7 treated P. aeruginosa showed down regulation of autoinducer synthase (lasI and rhlI) and their cognate receptor (lasR and rhlR) genes by 89, 90, 90 and 93%, respectively. Electrospray Ionization Mass Spectrometry also showed 90 and 64% reduction in the production of 3-oxo-C12HSL and C4HSL after treatment. Decrease in AHLs as one of the mechanisms of quorum quenching by F7 was supported by the reversal of inhibited swarming motility in F7-treated P. aeruginosa PAO1 on addition of C4HSL. F7 also showed antagonistic activity against 3-oxo-C12HSL-dependent QS in E. coli bioreporter. C. elegans fed on F7-treated P. aeruginosa showed enhanced survival with LT50 increasing from 24 to 72 h. LC-ESI-MS of F7 revealed the presence of ellagic acid derivatives responsible for anti QS activity in T. chebula extract. Conclusions This is the first report on anti QS activity of T. chebula fruit linked to EADs which down regulate the expression of lasIR and rhlIR genes with concomitant decrease in AHLs in P. aeruginosa PAO1 causing attenuation of its virulence factors and enhanced sensitivity of its biofilm towards tobramycin.
Collapse
Affiliation(s)
- Sajal Sarabhai
- Department of Microbiology, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
35
|
Whitney JC, Howell PL. Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol 2012; 21:63-72. [PMID: 23117123 DOI: 10.1016/j.tim.2012.10.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/28/2012] [Accepted: 10/03/2012] [Indexed: 01/26/2023]
Abstract
The biosynthesis and export of bacterial cell-surface polysaccharides is known to occur through several distinct mechanisms. Recent advances in the biochemistry and structural biology of several proteins in synthase-dependent polysaccharide secretion systems have identified key conserved components of this pathway in Gram-negative bacteria. These components include an inner-membrane-embedded polysaccharide synthase, a periplasmic tetratricopeptide repeat (TPR)-containing scaffold protein, and an outer-membrane β-barrel porin. There is also increasing evidence that many synthase-dependent systems are post-translationally regulated by the bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Here, we compare these core proteins in the context of the alginate, cellulose, and poly-β-D-N-acetylglucosamine (PNAG) secretion systems.
Collapse
Affiliation(s)
- J C Whitney
- Program in Molecular Structure and Function, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | | |
Collapse
|
36
|
Fabich HT, Vogt SJ, Sherick ML, Seymour JD, Brown JR, Franklin MJ, Codd SL. Microbial and algal alginate gelation characterized by magnetic resonance. J Biotechnol 2012; 161:320-7. [PMID: 22728394 DOI: 10.1016/j.jbiotec.2012.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/10/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
Advanced magnetic resonance (MR) relaxation and diffusion correlation measurements and imaging provide a means to non-invasively monitor gelation for biotechnology applications. In this study, MR is used to characterize physical gelation of three alginates with distinct chemical structures; an algal alginate, which is not O-acetylated but contains poly guluronate (G) blocks, bacterial alginate from Pseudomonas aeruginosa, which does not have poly-G blocks, but is O-acetylated at the C2 and/or C3 of the mannuronate residues, and alginate from a P. aeruginosa mutant that lacks O-acetyl groups. The MR data indicate that diffusion-reaction front gelation with Ca(2+) ions generates gels of different bulk homogeneities dependent on the alginate structure. Shorter spin-spin T(2) magnetic relaxation times in the alginate gels that lack O-acetyl groups indicate stronger molecular interaction between the water and biopolymer. The data characterize gel differences over a hierarchy of scales from molecular to system size.
Collapse
Affiliation(s)
- Hilary T Fabich
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717-3920, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Correa E, Sletta H, Ellis DI, Hoel S, Ertesvåg H, Ellingsen TE, Valla S, Goodacre R. Rapid reagentless quantification of alginate biosynthesis in Pseudomonas fluorescens bacteria mutants using FT-IR spectroscopy coupled to multivariate partial least squares regression. Anal Bioanal Chem 2012; 403:2591-9. [PMID: 22585056 DOI: 10.1007/s00216-012-6068-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/14/2012] [Accepted: 04/19/2012] [Indexed: 11/26/2022]
Abstract
Alginate is an important medical and commercial product and currently is isolated from seaweeds. Certain microorganisms also produce alginate and these polymers have the potential to replace seaweed alginates in some applications, mainly because such production will allow much better and more reproducible control of critical qualitative polymer properties. The research conducted here presents the development of a new approach to this problem by analysing a transposon insertion mutant library constructed in an alginate-producing derivative of the Pseudomonas fluorescens strain SBW25. The procedure is based on the non-destructive and reagent-free method of Fourier transform infrared (FT-IR) spectroscopy which is used to generate a complex biochemical infrared fingerprint of the medium after bacterial growth. First, we investigate the potential differences caused by the growth media fructose and glycerol on the bacterial phenotype and alginate synthesis in 193 selected P. fluorescens mutants and show that clear phenotypic differences are observed in the infrared fingerprints. In order to quantify the level of the alginate we also report the construction and interpretation of multivariate partial least squares regression models which were able to quantify alginate levels successfully with typical normalized root-mean-square error in predictions of only approximately 14%. We have demonstrated that this high-throughput approach can be implemented in alginate screens and we believe that this FT-IR spectroscopic methodology, when combined with the most appropriate chemometrics, could easily be modified for the quantification of other valuable microbial products and play a valuable screening role for synthetic biology.
Collapse
Affiliation(s)
- Elon Correa
- School of Chemistry, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 2012; 33:3279-305. [DOI: 10.1016/j.biomaterials.2012.01.007] [Citation(s) in RCA: 983] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/04/2012] [Indexed: 12/14/2022]
|
39
|
Gille S, Pauly M. O-acetylation of plant cell wall polysaccharides. FRONTIERS IN PLANT SCIENCE 2012; 3:12. [PMID: 22639638 PMCID: PMC3355586 DOI: 10.3389/fpls.2012.00012] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/12/2012] [Indexed: 05/17/2023]
Abstract
Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides - the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production.
Collapse
Affiliation(s)
- Sascha Gille
- Energy Biosciences Institute, University of California BerkeleyBerkeley, CA, USA
| | - Markus Pauly
- Energy Biosciences Institute, University of California BerkeleyBerkeley, CA, USA
- *Correspondence: Markus Pauly, Calvin Lab, Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94720, USA. e-mail:
| |
Collapse
|
40
|
Franklin MJ, Nivens DE, Weadge JT, Howell PL. Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl. Front Microbiol 2011; 2:167. [PMID: 21991261 PMCID: PMC3159412 DOI: 10.3389/fmicb.2011.00167] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/19/2011] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the Psl and Pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation.
Collapse
|
41
|
Browne P, Barret M, O'Gara F, Morrissey JP. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria. BMC Microbiol 2010; 10:300. [PMID: 21108798 PMCID: PMC3003667 DOI: 10.1186/1471-2180-10-300] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. RESULTS In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. CONCLUSIONS Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate nutritional status cues with the regulation of traits that are of ecological, industrial and clinical importance.
Collapse
Affiliation(s)
- Patrick Browne
- BIOMERIT Research Centre, Microbiology Department University College Cork, Ireland
| | | | | | | |
Collapse
|
42
|
|
43
|
Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. ISME JOURNAL 2008; 2:843-52. [PMID: 18480848 DOI: 10.1038/ismej.2008.47] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacteria and protozoa coexist in a wide range of biofilm communities of natural, technical and medical importance. Generally, this interaction is characterized by the extensive grazing activity of protozoa on bacterial prey populations. We hypothesized that the close spatial coexistence in biofilms should allow opportunistic pathogenic bacteria to utilize their eukaryote-targeting arsenal to attack and exploit protozoan host cells. Studying cocultures of the environmental pathogen Pseudomonas aeruginosa and the amoeba Acanthamoeba castellanii, we found that P. aeruginosa rapidly colonized and killed biofilm-associated amoebae by a quorum-sensing independent mechanism. Analysis of the amoeba-induced transcriptome indicated the involvement of the P. aeruginosa type III secretion system (T3SS) in this interaction. A comparison of mutants with specific defects in the T3SS demonstrated the use of the secretion apparatus and the effectors ExoU, ExoS and ExoT in the killing process, of which ExoU had the greatest impact. T3SS-mediated virulence towards A. castellanii was found to be controlled by the global regulators RpoN and RpoS and through modulation of cAMP and alginate biosynthesis. Our findings suggest that conserved virulence pathways and specifically the T3SS play a central role in bacteria-protozoa interactions in biofilms and may be instrumental for the environmental persistence and evolution of opportunistic bacterial pathogens.
Collapse
|
44
|
Son MS, Matthews WJ, Kang Y, Nguyen DT, Hoang TT. In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun 2007; 75:5313-24. [PMID: 17724070 PMCID: PMC2168270 DOI: 10.1128/iai.01807-06] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the hallmarks of Pseudomonas aeruginosa infection in cystic fibrosis (CF) patients is very-high-cell-density (HCD) replication in the lung, allowing this bacterium to induce virulence controlled by the quorum-sensing systems. However, the nutrient sources sustaining HCD replication in this chronic infection are largely unknown. Here, we performed microarray studies of P. aeruginosa directly isolated from the lungs of CF patients to demonstrate its metabolic capability and virulence in vivo. In vivo microarray data, confirmed by real-time reverse transcription-PCR, indicated that the P. aeruginosa population expressed several genes for virulence, drug resistance, and utilization of multiple nutrient sources (lung surfactant lipids and amino acids) contributing to HCD replication. The most abundant lung surfactant lipid molecule, phosphatidylcholine (PC), induces key genes of P. aeruginosa pertinent to PC degradation in vitro as well as in vivo within the lungs of CF patients. The results support recent research indicating that P. aeruginosa exists in the lungs of CF patients as a diverse population with full virulence potential. The data also indicate that there is deregulation of several pathways, suggesting that there is in vivo evolution by deregulation of a large portion of the transcriptome during chronic infection in CF patients. To our knowledge, this is the first in vivo transcriptome analysis of P. aeruginosa in a natural infection in CF patients, and the results indicate several important aspects of P. aeruginosa pathogenesis, drug resistance, nutrient utilization, and general metabolism within the lungs of CF patients.
Collapse
Affiliation(s)
- Mike S Son
- Department of Microbiology, College of Natural Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | | | | | |
Collapse
|
45
|
Muhammadi, Ahmed N. Genetics of bacterial alginate: alginate genes distribution, organization and biosynthesis in bacteria. Curr Genomics 2007; 8:191-202. [PMID: 18645604 PMCID: PMC2435354 DOI: 10.2174/138920207780833810] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 02/26/2007] [Accepted: 03/21/2007] [Indexed: 11/22/2022] Open
Abstract
Bacterial alginate genes are chromosomal and fairly widespread among rRNA homology group I Pseudomonads and Azotobacter. In both genera, the genetic pathway of alginate biosynthesis is mostly similar and the identified genes are identically organized into biosynthetic, regulatory and genetic switching clusters. In spite of these similarities,still there are transcriptional and functional variations between P. aeruginosa and A. vinelandii. In P. aeruginosa all biosynthetic genes except algC transcribe in polycistronic manner under the control of algD promoter while in A. vinelandii, these are organized into many transcriptional units. Of these, algA and algC are transcribed each from two different and algD from three different promoters. Unlike P. aeruginosa, the promoters of these transcriptional units except one of algC and algD are algT-independent. Both bacterial species carry homologous algG gene for Ca(2+)-independent epimerization. But besides algG, A. vinelandii also has algE1-7 genes which encode C-5-epimerases involved in the complex steps of Ca(2+)-dependent epimerization. A hierarchy of alginate genes expression under sigma(22)(algT) control exists in P. aeruginosa where algT is required for transcription of the response regulators algB and algR, which in turn are necessary for expression of algD and its downstream biosynthetic genes. Although algTmucABCD genes cluster play similar regulatory roles in both P. aeruginosa and A. vinelandii but unlike, transcription of A. vinelandii, algR is independent of sigma(22). These differences could be due to the fact that in A. vinelandii alginate plays a role as an integrated part in desiccation-resistant cyst which is not found in P. aeruginosa.
Collapse
Affiliation(s)
| | - Nuzhat Ahmed
- Centre for Molecular Genetics, University of Karachi, Karachi-75270,
Pakistan
| |
Collapse
|
46
|
Keiski CL, Yip P, Robinson H, Burrows LL, Howell PL. Expression, purification, crystallization and preliminary X-ray analysis of Pseudomonas fluorescens AlgK. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:415-8. [PMID: 17565185 PMCID: PMC2335008 DOI: 10.1107/s1744309107016880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 04/04/2007] [Indexed: 11/11/2022]
Abstract
AlgK is an outer-membrane lipoprotein involved in the biosynthesis of alginate in Pseudomonads and Azotobacter vinelandii. A recombinant form of Pseudomonas fluorescens AlgK with a C-terminal polyhistidine affinity tag has been expressed and purified from the periplasm of Escherichia coli cells and diffraction-quality crystals of AlgK have been grown using the hanging-drop vapour-diffusion method. The crystals grow as flat plates with unit-cell parameters a = 79.09, b = 107.85, c = 119.15 A, beta = 96.97 degrees. The crystals exhibit the symmetry of space group P2(1) and diffract to a minimum d-spacing of 2.5 A at Station X29 of the National Synchrotron Light Source, Brookhaven National Laboratory. On the basis of the Matthews coefficient (V(M) = 2.53 A3 Da(-1)), four protein molecules are estimated to be present in the asymmetric unit.
Collapse
Affiliation(s)
- Carrie-Lynn Keiski
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Patrick Yip
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - Lori L. Burrows
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - P. Lynne Howell
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Correspondence e-mail:
| |
Collapse
|
47
|
Shankar S, Ye RW, Schlictman D, Chakrabarty AM. Exopolysaccharide alginate synthesis in Pseudomonas aeruginosa: enzymology and regulation of gene expression. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 70:221-55. [PMID: 8638483 DOI: 10.1002/9780470123164.ch4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- S Shankar
- Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago, USA
| | | | | | | |
Collapse
|
48
|
Remminghorst U, Rehm BHA. Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 2006; 28:1701-12. [PMID: 16912921 DOI: 10.1007/s10529-006-9156-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 07/01/2006] [Indexed: 12/23/2022]
Abstract
Alginate is a polysaccharide belonging to the family of linear (unbranched), non-repeating copolymers, consisting of variable amounts of beta-D-mannuronic acid and its C5-epimer alpha- L-guluronic acid linked via beta-1,4-glycosidic bonds. Like DNA, alginate is a negatively charged polymer, imparting material properties ranging from viscous solutions to gel-like structures in the presence of divalent cations. Bacterial alginates are synthesized by only two bacterial genera, Pseudomonas and Azotobacter, and have been extensively studied over the last 40 years. While primarily synthesized in form of polymannuronic acid, alginate undergoes chemical modifications comprising acetylation and epimerization, which occurs during periplasmic transfer and before final export through the outer membrane. Alginate with its unique material properties and characteristics has been increasingly considered as biomaterial for medical applications. The genetic modification of alginate producing microorganisms could enable biotechnological production of new alginates with unique, tailor-made properties, suitable for medical and industrial applications.
Collapse
Affiliation(s)
- Uwe Remminghorst
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | |
Collapse
|
49
|
|
50
|
Remminghorst U, Rehm BHA. In vitro alginate polymerization and the functional role of Alg8 in alginate production by Pseudomonas aeruginosa. Appl Environ Microbiol 2006; 72:298-305. [PMID: 16391057 PMCID: PMC1352289 DOI: 10.1128/aem.72.1.298-305.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An enzymatic in vitro alginate polymerization assay was developed by using 14C-labeled GDP-mannuronic acid as a substrate and subcellular fractions of alginate overproducing Pseudomonas aeruginosa FRD1 as a polymerase source. The highest specific alginate polymerase activity was detected in the envelope fraction, suggesting that cytoplasmic and outer membrane proteins constitute the functional alginate polymerase complex. Accordingly, no alginate polymerase activity was detected using cytoplasmic membrane or outer membrane proteins, respectively. To determine the requirement of Alg8, which has been proposed as catalytic subunit of alginate polymerase, nonpolar isogenic alg8 knockout mutants of alginate-overproducing P. aeruginosa FRD1 and P. aeruginosa PDO300 were constructed, respectively. These mutants were deficient in alginate biosynthesis, and alginate production was restored by introducing only the alg8 gene. Surprisingly, this resulted in significant alginate overproduction of the complemented P. aeruginosa Deltaalg8 mutants compared to nonmutated strains, suggesting that Alg8 is the bottleneck in alginate biosynthesis. (1)H-NMR analysis of alginate isolated from these complemented mutants showed that the degree of acetylation increased from 4.7 to 9.3% and the guluronic acid content was reduced from 38 to 19%. Protein topology prediction indicated that Alg8 is a membrane protein. Fusion protein analysis provided evidence that Alg8 is located in the cytoplasmic membrane with a periplasmic C terminus. Subcellular fractionation suggested that the highest specific PhoA activity of Alg8-PhoA is present in the cytoplasmic membrane. A structural model of Alg8 based on the structure of SpsA from Bacillus subtilis was developed.
Collapse
Affiliation(s)
- Uwe Remminghorst
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | |
Collapse
|