1
|
Wang L, Hu J, Li K, Zhao Y, Zhu M. Advancements in gene editing technologies for probiotic-enabled disease therapy. iScience 2024; 27:110791. [PMID: 39286511 PMCID: PMC11403445 DOI: 10.1016/j.isci.2024.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Probiotics typically refer to microorganisms that have been identified for their health benefits, and they are added to foods or supplements to promote the health of the host. A growing number of probiotic strains have been identified lately and developed into valuable regulatory pharmaceuticals for nutritional and medical applications. Gene editing technologies play a crucial role in addressing the need for safe and therapeutic probiotics in disease treatment. These technologies offer valuable assistance in comprehending the underlying mechanisms of probiotic bioactivity and in the development of advanced probiotics. This review aims to offer a comprehensive overview of gene editing technologies applied in the engineering of both traditional and next-generation probiotics. It further explores the potential for on-demand production of customized products derived from enhanced probiotics, with a particular emphasis on the future of gene editing in the development of live biotherapeutics.
Collapse
Affiliation(s)
- Lixuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Gao W, Xie Y, Zuo M, Zhang G, Liu H. Improved genetic transformation by disarmament of type II Restriction-Modification system in Streptococcus zooepidemicus. 3 Biotech 2022; 12:192. [PMID: 35910286 PMCID: PMC9325941 DOI: 10.1007/s13205-022-03227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Streptococcus zooepidemicus, group C Streptococci, is currently used for the industrial production of hyaluronic acid (HA). However, genetic manipulation of S. zooepidemicus is severely limited by its low transformation efficiency, which might be in part due to the Restriction-Modification (R-M) systems. The complete genome sequence of S. zooepidemicus ATCC39920 revealed the presence of two putative R-M systems, type I and type II. The putative type I R-M system is encoded by three closely linked genes: hsdR (SeseC_01315), hsdS, hsdM (SeseC_01318), and the putative type II R-M system consists of two closely linked genes: SeseC_02360 and yhdJ (SeseC_02362). Inactivation of hsdR, encoding the restriction endonuclease (REase) of the type I R-M system, showed no apparent effects on transformation efficiency, implying that disarmament of the type I R-M system alone is not sufficient for increasing transformation efficiency. However, inactivation of SeseC_02360, encoding the REase of the type II R-M system, improved transformation efficiency by 4.97 folds, indicating that type II R-M system is the major barrier that restricts genetic transformation in S. zooepidemicus. Furthermore, S. zooepidemicus strains lacking either of the two R-M systems are phenotypically indistinguishable from the wild-type in terms of cell growth and HA production. In summary, our study revealed that the type II R-M system is the main barrier to genetic transformation in S. zooepidemicus ATCC39920, and that the deletion of the type II R-M system renders S. zooepidemicus more transformable, thus facilitating metabolic engineering of this industrially important microorganism. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03227-x.
Collapse
Affiliation(s)
- Weixia Gao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Yaya Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Meng Zuo
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Guangtong Zhang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 People’s Republic of China
| |
Collapse
|
3
|
Jiang J, Gao L, Bie X, Lu Z, Liu H, Zhang C, Lu F, Zhao H. Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme. BMC Microbiol 2016; 16:31. [PMID: 26957318 PMCID: PMC4784341 DOI: 10.1186/s12866-016-0645-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 02/25/2016] [Indexed: 12/03/2022] Open
Abstract
Background Bacillus subtilis strain PB2-L1 produces the lipopeptide surfactin, a highly potent biosurfactant synthesized by a large multimodular nonribosomal peptide synthetase (NRPS). In the present study, the modules SrfA-A-Leu, SrfA-B-Asp, and SrfA-B-Leu from surfactin NRPS in B. subtilis BP2-L1 were successfully knocked-out using a temperature-sensitive plasmid, pKS2-mediated-based, homologous, recombination method. Results Three novel surfactin products were produced, individually lacking amino acid Leu-3, Asp-5, or Leu-6. These surfactins were detected, isolated, and characterized by HPLC and LC-FTICR-MS/MS. In comparison with native surfactin, [∆Leu3]surfactin and [∆Leu6]surfactin showed evidence of reduced toxicity, while [∆Asp5]surfactin showed stronger inhibition than native surfactin against B. pumilus and Micrococcus luteus. These results showed that the minimum inhibitory concentration of [∆Leu6]surfactin for Fusarium moniliforme was 50 μg/mL, such that [∆Leu6]surfactin could lead to mycelium projection, cell damage, and leakage of nucleic acids and protein. These factors all contributed to stimulating apoptosis in F. moniliforme. Conclusions The present results revealed that [∆Leu6]surfactin showed a significant antifungal activity against F. moniliforme and might successfully be employed to control fungal food contamination and improve food safety.
Collapse
Affiliation(s)
- Jian Jiang
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing, 210095, P.R. China
| | - Ling Gao
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing, 210095, P.R. China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing, 210095, P.R. China.
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing, 210095, P.R. China
| | - Hongxia Liu
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing, 210095, P.R. China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing, 210095, P.R. China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing, 210095, P.R. China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing, 210095, P.R. China
| |
Collapse
|
4
|
Development of an efficient in vivo system (Pjunc-TpaseIS1223) for random transposon mutagenesis of Lactobacillus casei. Appl Environ Microbiol 2012; 78:5417-23. [PMID: 22610425 DOI: 10.1128/aem.00531-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The random transposon mutagenesis system P(junc)-TpaseIS(1223) is composed of plasmids pVI129, expressing IS1223 transposase, and pVI110, a suicide transposon plasmid carrying the P(junc) sequence, the substrate of the IS1223 transposase. This system is particularly efficient in Lactobacillus casei, as more than 10,000 stable, random mutants were routinely obtained via electroporation.
Collapse
|
5
|
Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J Microbiol Methods 2011; 85:155-63. [PMID: 21362445 DOI: 10.1016/j.mimet.2011.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 11/23/2022]
Abstract
Random chemical mutation of a Corynebacterium glutamicum-Escherichia coli shuttle vector derived from plasmid pCGR2 was done using hydroxylamine. It brought about amino acid substitutions G109D and E180K within the replicase superfamily domain of the plasmid's RepA protein and rendered the plasmid highly unstable, especially at higher incubation temperatures. Colony formation of C. glutamicum was consequently completely inhibited at 37°C but not at 25°C. G109 is a semi-conserved residue mutation which resulted in major temperature sensitivity. E180 on the other hand is not conserved even among RepA proteins of closely related C. glutamicum pCG1 family plasmids and its independent mutation caused relatively moderate plasmid instability. Nonetheless, simultaneous mutation of both residues was required to achieve temperature-sensitive colony formation. This new pCGR2-derived temperature-sensitive plasmid enabled highly efficient chromosomal integration in a variety of C. glutamicum wild-type strains, proving its usefulness in gene disruption studies. Based on this, an efficient markerless gene replacement system was demonstrated using a selection system incorporating the temperature-sensitive replicon and Bacillus subtilis sacB selection marker, a system hitherto not used in this bacterium. Single-crossover integrants were accurately selected by temperature-dependent manner and 93% of the colonies obtained by the subsequent sucrose selection were successful double-crossover recombinants.
Collapse
|
6
|
Zakataeva NP, Nikitina OV, Gronskiy SV, Romanenkov DV, Livshits VA. A simple method to introduce marker-free genetic modifications into the chromosome of naturally nontransformable Bacillus amyloliquefaciens strains. Appl Microbiol Biotechnol 2009; 85:1201-9. [DOI: 10.1007/s00253-009-2276-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/23/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
|
7
|
Nomoto K, Kiwaki M, Tsuji H. Genetic Modification of Probiotic Microorganisms. HANDBOOK OF PROBIOTICS AND PREBIOTICS 2008:189-255. [DOI: 10.1002/9780470432624.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Eom HJ, Jin Q, Moon JS, Jeong JY, Han NS. Development of gene expression/knock-out system for genetic engineering of Leuconostoc Citreum. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Helanto M, Kiviharju K, Leisola M, Nyyssölä A. Metabolic engineering of Lactobacillus plantarum for production of L-ribulose. Appl Environ Microbiol 2007; 73:7083-91. [PMID: 17873078 PMCID: PMC2074967 DOI: 10.1128/aem.01180-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
L-Ribulose is a rare and expensive sugar that can be used as a precursor for the production of other rare sugars of high market value such as L-ribose. In this work we describe a production process for L-ribulose using L-arabinose, a common component of polymers of lignocellulosic materials, as the starting material. A ribulokinase-deficient mutant of the heterofermentative lactic acid bacterium Lactobacillus plantarum NCIMB8826 was constructed. Expression of araA, which encodes the critical enzyme L-arabinose isomerase, was repressed by high glucose concentrations in batch cultivations. A fed-batch cultivation strategy was therefore used to maximize L-arabinose isomerase production during growth. Resting cells of the ribulokinase-deficient mutant were used for the production of L-ribulose. The isomerization of L-arabinose to L-ribulose was very unfavorable for L-ribulose formation. However, high L-ribulose yields were obtained by complexing the produced L-ribulose with borate. The process for L-ribulose production in borate buffer by resting cells was optimized using central composite designs. The experiment design suggested that the process has an optimal operation point around an L-arabinose concentration of 100 g liter(-1), a borate concentration of 500 mM, and a temperature of 48 degrees C, where the statistical software predicted an initial L-ribulose production rate of 29.1 g liter(-1) h(-1), a best-achievable process productivity of 14.8 g liter(-1) h(-1), and a conversion of L-arabinose to L-ribulose of 0.70 mol mol(-1).
Collapse
Affiliation(s)
- M Helanto
- Laboratory of Bioprocess Engineering, Department of Chemical Technology, Helsinki University of Technology, PO Box 6100, FIN-02015 Espoo, Finland.
| | | | | | | |
Collapse
|
10
|
Kilpi ER, Kahala M, Steele J, Pihlanto A, Joutsjoki V. Angiotensin I-converting enzyme inhibitory activity in milk fermented by wild-type and peptidase-deletion derivatives of Lactobacillus helveticus CNRZ32. Int Dairy J 2007. [DOI: 10.1016/j.idairyj.2006.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Lambert JM, Bongers RS, Kleerebezem M. Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl Environ Microbiol 2006; 73:1126-35. [PMID: 17142375 PMCID: PMC1828656 DOI: 10.1128/aem.01473-06] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The classic strategy to achieve gene deletion variants is based on double-crossover integration of nonreplicating vectors into the genome. In addition, recombination systems such as Cre-lox have been used extensively, mainly for eukaryotic organisms. This study presents the construction of a Cre-lox-based system for multiple gene deletions in Lactobacillus plantarum that could be adapted for use on gram-positive bacteria. First, an effective mutagenesis vector (pNZ5319) was constructed that allows direct cloning of blunt-end PCR products representing homologous recombination target regions. Using this mutagenesis vector, double-crossover gene replacement mutants could be readily selected based on their antibiotic resistance phenotype. In the resulting mutants, the target gene is replaced by a lox66-P(32)-cat-lox71 cassette, where lox66 and lox71 are mutant variants of loxP and P(32)-cat is a chloramphenicol resistance cassette. The lox sites serve as recognition sites for the Cre enzyme, a protein that belongs to the integrase family of site-specific recombinases. Thus, transient Cre recombinase expression in double-crossover mutants leads to recombination of the lox66-P(32)-cat-lox71 cassette into a double-mutant loxP site, called lox72, which displays strongly reduced recognition by Cre. The effectiveness of the Cre-lox-based strategy for multiple gene deletions was demonstrated by construction of both single and double gene deletions at the melA and bsh1 loci on the chromosome of the gram-positive model organism Lactobacillus plantarum WCFS1. Furthermore, the efficiency of the Cre-lox-based system in multiple gene replacements was determined by successive mutagenesis of the genetically closely linked loci melA and lacS2 in L. plantarum WCFS1. The fact that 99.4% of the clones that were analyzed had undergone correct Cre-lox resolution emphasizes the suitability of the system described here for multiple gene replacement and deletion strategies in a single genetic background.
Collapse
Affiliation(s)
- Jolanda M Lambert
- Wegeningen Centre for Food Science, Microbial Functionality and Safety Programme, Health and Safety Department, P.O. Box 20, 6710 BA Ede, The Netherlands
| | | | | |
Collapse
|
12
|
Broadbent JR, Rodríguez BT, Joseph P, Smith EA, Steele JL. Conversion of Lactococcus lactis cell envelope proteinase specificity by partial allele exchange. J Appl Microbiol 2006; 100:1307-17. [PMID: 16696678 DOI: 10.1111/j.1365-2672.2006.02860.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To determine whether conversion of lactocepin substrate binding regions by gene replacement can alter lactocepin specificity in Lactococcus lactis starter bacteria without affecting other important strain properties. METHODS AND RESULTS We utilized two-step gene replacement to convert substrate-binding determinants in the L. lactis prtP genes encoding group h (bitter) lactocepin in two industrial strains into the corresponding group b (nonbitter) variant. Analysis of lactocepin activity toward alpha(s1)-casein (f 1-23) by reversed-phase high-pressure liquid chromatography demonstrated enzyme specificity among isogenic derivatives had been altered in a manner that was consistent with predicted amino acid substitutions in substrate binding regions. Milk acidification properties of some mutants were not statistically different (P > 0.05) from wild-type parent strains, and strain propensity for autolysis was also not significantly (P > 0.05) changed. CONCLUSIONS Conversion of lactocepin substrate binding regions by allele exchange can effectively alter lactocepin specificity in industrial strains of L. lactis without significantly affecting other important strain properties. SIGNIFICANCE AND IMPACT OF THE STUDY Methodology outlined in this study can be used to alter lactocepin specificity in commercial starter cultures with a propensity for bitter flavour defect, and prtP derivatives developed by this approach should be suitable for commercial application.
Collapse
Affiliation(s)
- J R Broadbent
- Western Dairy Center and Department of Nutrition and Food Sciences, Utah State University, Logan, UT, USA
| | | | | | | | | |
Collapse
|
13
|
Klaenhammer TR, Barrangou R, Buck BL, Azcarate-Peril MA, Altermann E. Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol Rev 2005. [DOI: 10.1016/j.fmrre.2005.04.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
14
|
Shatalin KY, Neyfakh AA. Efficient gene inactivation in Bacillus anthracis. FEMS Microbiol Lett 2005; 245:315-9. [PMID: 15837388 DOI: 10.1016/j.femsle.2005.03.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 03/14/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022] Open
Abstract
A procedure for high-efficiency gene inactivation in Bacillus anthracis has been developed. It is based on a highly temperature-sensitive plasmid vector carrying kanamycin resistance cassette surrounded by DNA fragments flanking the desired insertion site. The approach was tested by constructing glutamate racemase E1 (racE1), glutamate racemase E2 (racE2) and comEC knock-out mutants of B. anthracis strain DeltaANR. Allelic replacements were observed at high frequencies, ranging from approximately 0.5% for racE2 up to 50% for racE1 and comEC. The system can be used for genetic validation of potential drug targets.
Collapse
Affiliation(s)
- Konstantin Y Shatalin
- Center for Pharmaceutical Biotechnology, University of Illinois, M/C 870, 900 S. Ashland Ave., Chicago, IL 60607, USA.
| | | |
Collapse
|
15
|
Serror P, Ilami G, Chouayekh H, Ehrlich SD, Maguin E. Transposition in Lactobacillus delbrueckii subsp. bulgaricus: identification of two thermosensitive replicons and two functional insertion sequences. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1503-1511. [PMID: 12777490 DOI: 10.1099/mic.0.25827-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this report, it is shown that the rolling circle replicon pG(+)host and the theta replicon pIP501 are thermosensitive in Lactobacillus delbrueckii subsp. bulgaricus (Lactobacillus bulgaricus). Using a pIP501 derivative as a delivery vector for six insertion sequences originating from lactic acid bacteria, it is shown that IS1223 and IS1201 transpose in L. bulgaricus.
Collapse
Affiliation(s)
- Pascale Serror
- Unité Recherche Laitière et Génétique Appliquée, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | - Golnar Ilami
- Génétique Microbienne, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | - Hichem Chouayekh
- Génétique Microbienne, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | - S Dusko Ehrlich
- Génétique Microbienne, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | - Emmanuelle Maguin
- Génétique Microbienne, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| |
Collapse
|
16
|
Christensen JE, Steele JL. Impaired growth rates in milk of Lactobacillus helveticus peptidase mutants can be overcome by use of amino acid supplements. J Bacteriol 2003; 185:3297-306. [PMID: 12754227 PMCID: PMC155375 DOI: 10.1128/jb.185.11.3297-3306.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the contribution of intracellular peptidases to the growth of the 14-amino-acid (aa) auxotroph Lactobacillus helveticus CNRZ32, single- and multiple-peptidase-deletion mutants were constructed. Two broad-specificity aminopeptidases (PepC and PepN) and X-prolyl dipeptidyl aminopeptidase (PepX) were inactivated through successive cycles of chromosomal gene replacement mutagenesis. The inactivation of all three peptidases in JLS247 ((Delta)pepC (Delta)pepN (Delta)pepX) did not affect the growth rate in amino acid-defined medium. However, the peptidase mutants generally had decreased specific growth rates when acquisition of amino acids required hydrolysis of the proteins in milk, the most significant result being a 73% increase in generation time for JLS247. The growth rate deficiencies in milk were overcome by amino acid supplements with some specificity to each of the peptidase mutants. For example, milk supplementation with Pro resulted in the most significant growth rate increase for (Delta)pepX strains and a 7-aa supplement (Asn, Cys, Ile, Pro, Ser, Thr, and Val) resulted in a JLS247 growth rate indistinguishable from that of the wild type. Our results show that characterization of the activities of the broad-specificity aminopeptidases had little predictive value regarding the amino acid supplements found to enhance the milk growth rates of the peptidase mutant strains. These results represent the first determination of the physiological roles with respect to specific amino acid requirements for peptidase mutants grown in milk.
Collapse
|
17
|
7. Genetically modified microorganisms and their potential effects on human health and nutrition. Trends Food Sci Technol 2003. [DOI: 10.1016/s0924-2244(03)00068-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Tuler TR, Callanan MJ, Klaenhammer TR. Overexpression of peptidases in Lactococcus and evaluation of their release from leaky cells. J Dairy Sci 2002; 85:2438-50. [PMID: 12416795 DOI: 10.3168/jds.s0022-0302(02)74326-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Walker and Klaenhammer (2001) developed a novel expression system in Lactococcus lactis that facilitated the release of beta-galactosidase (117 kDa monomer) without the need for secretion or export signals. The system is based on the controlled expression of integrated prophage holin and lysin cassettes via a lactococcal bacteriophage phi31 transcriptional activator (Tac31A) that resides on a high-copy plasmid. Approximately 85% of beta-galactosidase activity was detected in the supernatant of leaky lactococci without evidence of hindered growth, cell lysis, or membrane damage. The objective of this study was to determine if intracellular peptidases were externalized from leaky lactococci. Five L. lactis peptidases (PepA, PepC, PepN, PepO and PepXP) and two Lactobacillus helveticus peptidases (PepN and PepO) were cloned and overexpressed on two high-copy vectors. The lactococcal peptidases were also cloned into the high-copy vector that contained the Tac31A transcriptional activator to determine if they were externalized from the leaky prophage-containing L. lactis subsp. lactis strain NCK203. Two of the lactococcal peptidases (PepA and PepO) required an additional strong promoter (Lactobacillus paracasei P144) and optimized assay conditions to detect enzyme activity. Results showed different levels of enzymatic overexpression associated with the cellular fraction (2 to 250-fold increases in activity) and negligible amounts of activity present within the supernatant fraction (0 to 6% of total peptidase activity). The lactococcal phage-based protein release mechanism did not facilitate the externalization of the lactococcal peptidases investigated in this study.
Collapse
Affiliation(s)
- T R Tuler
- Department of Food Science, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695, USA
| | | | | |
Collapse
|
19
|
Klaenhammer T, Altermann E, Arigoni F, Bolotin A, Breidt F, Broadbent J, Cano R, Chaillou S, Deutscher J, Gasson M, van de Guchte M, Guzzo J, Hartke A, Hawkins T, Hols P, Hutkins R, Kleerebezem M, Kok J, Kuipers O, Lubbers M, Maguin E, McKay L, Mills D, Nauta A, Overbeek R, Pel H, Pridmore D, Saier M, van Sinderen D, Sorokin A, Steele J, O'Sullivan D, de Vos W, Weimer B, Zagorec M, Siezen R. Discovering lactic acid bacteria by genomics. Antonie Van Leeuwenhoek 2002; 82:29-58. [PMID: 12369195 DOI: 10.1007/978-94-017-2029-8_3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, environmental habitat, and its role in fermentation, bioprocessing, or probiotics. For those projects where genome sequence data were available by March 2002, summaries include a listing of key statistics and interesting genomic features. These efforts will revolutionize our molecular view of Gram-positive bacteria, as up to 15 genomes from the low GC content lactic acid bacteria are expected to be available in the public domain by the end of 2003. Our collective view of the lactic acid bacteria will be fundamentally changed as we rediscover the relationships and capabilities of these organisms through genomics.
Collapse
Affiliation(s)
- Todd Klaenhammer
- Department of Food Science, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, NC 27695-7624, USA. ,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mills DA. Mutagenesis in the post genomics era: tools for generating insertional mutations in the lactic acid bacteria. Curr Opin Biotechnol 2001; 12:503-9. [PMID: 11604329 DOI: 10.1016/s0958-1669(00)00254-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The increasing availability of whole genome sequences has increased the demand for effective tools to generate insertional mutations in the lactic acid bacteria (LAB). Several novel approaches, such as shuttle-, transposome- and intron-based mutagenesis methods, are possible additions to the existing repertoire of transposon- and recombination-based tools available for mutagenesis of LAB.
Collapse
Affiliation(s)
- D A Mills
- Department of Viticulture and Enology, University of California, 1 Shields Avenue, Davis, CA 95616-8749, USA.
| |
Collapse
|
21
|
Takamatsu D, Osaki M, Sekizaki T. Thermosensitive suicide vectors for gene replacement in Streptococcus suis. Plasmid 2001; 46:140-8. [PMID: 11591139 DOI: 10.1006/plas.2001.1532] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three thermosensitive (Ts) suicide vectors, pSET4s, pSET5s, and pSET6s, have been constructed for gene replacement in Streptococcus suis. Each vector contains an antibiotic-resistance gene (spc or cat), a Ts replication origin of pWV01 lineage, multiple cloning sites, lacZ', and the ColE1 replication origin of pUC19. These vectors could be propagated at 37 degrees C in Escherichia coli, but their replication was blocked above 37 degrees C in S. suis. Moreover, the thermosensitivity of the replication origin was confirmed in S. equi ssp. equi, S. equi ssp. zooepidemicus, and S. dysgalactiae by using pSET4s. For inactivation of the sly gene, which encodes a thiol-activated hemolysin of S. suis, pSLYK, in which the sly gene was interrupted by the cat gene, was constructed using pSET4s and introduced into S. suis DAT2. After growth at the nonpermissive temperature under the antibiotic pressure, the chromosomal sly gene was replaced with the sly::cat gene of pSLYK by a double-crossover event at a rate of 2.6% among chloramphenicol-resistant cells. Moreover, complementation of the sly gene by use of the previously reported S. suis-E. coli shuttle vector pSET2 was demonstrated. These results indicate that the Ts suicide vectors described here will facilitate the genetic analysis of S. suis and other streptococci of veterinary importance by means of allelic exchange of the genes of interest via homologous recombination.
Collapse
Affiliation(s)
- D Takamatsu
- Molecular Bacteriology Section, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | | | | |
Collapse
|
22
|
Russell WM, Klaenhammer TR. Identification and cloning of gusA, encoding a new beta-glucuronidase from Lactobacillus gasseri ADH. Appl Environ Microbiol 2001; 67:1253-61. [PMID: 11229918 PMCID: PMC92721 DOI: 10.1128/aem.67.3.1253-1261.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gusA gene, encoding a new beta-glucuronidase enzyme, has been cloned from Lactobacillus gasseri ADH. This is the first report of a beta-glucuronidase gene cloned from a bacterial source other than Escherichia coli. A plasmid library of L. gasseri chromosomal DNA was screened for complementation of an E. coli gus mutant. Two overlapping clones that restored beta-glucuronidase activity in the mutant strain were sequenced and revealed three complete and two partial open reading frames. The largest open reading frame, spanning 1,797 bp, encodes a 597-amino-acid protein that shows 39% identity to beta-glucuronidase (GusA) of E. coli K-12 (EC 3.2.1.31). The other two complete open reading frames, which are arranged to be separately transcribed, encode a putative bile salt hydrolase and a putative protein of unknown function with similarities to MerR-type regulatory proteins. Overexpression of GusA was achieved in a beta-glucuronidase-negative L. gasseri strain by expressing the gusA gene, subcloned onto a low-copy-number shuttle vector, from the strong Lactobacillus P6 promoter. GusA was also expressed in E. coli from a pET expression system. Preliminary characterization of the GusA protein from crude cell extracts revealed that the enzyme was active across an acidic pH range and a broad temperature range. An analysis of other lactobacilli identified beta-glucuronidase activity and gusA homologs in other L. gasseri isolates but not in other Lactobacillus species tested.
Collapse
Affiliation(s)
- W M Russell
- Department of Microbiology, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|
23
|
Gosalbes MJ, Esteban CD, Galán JL, Pérez-Martínez G. Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol 2000; 66:4822-8. [PMID: 11055930 PMCID: PMC92386 DOI: 10.1128/aem.66.11.4822-4828.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lactose operon from Lactobacillus casei is regulated by very tight glucose repression and substrate induction mechanisms, which made it a tempting candidate system for the expression of foreign genes or metabolic engineering. An integrative vector was constructed, allowing stable gene insertion in the chromosomal lactose operon of L. casei. This vector was based on the nonreplicative plasmid pRV300 and contained two DNA fragments corresponding to the 3' end of lacG and the complete lacF gene. Four unique restriction sites were created, as well as a ribosome binding site that would allow the cloning and expression of new genes between these two fragments. Then, integration of the cloned genes into the lactose operon of L. casei could be achieved via homologous recombination in a process that involved two selection steps, which yielded highly stable food-grade mutants. This procedure has been successfully used for the expression of the E. coli gusA gene and the L. lactis ilvBN genes in L. casei. Following the same expression pattern as that for the lactose genes, beta-glucuronidase activity and diacetyl production were repressed by glucose and induced by lactose. This integrative vector represents a useful tool for strain improvement in L. casei that could be applied to engineering fermentation processes or used for expression of genes for clinical and veterinary uses.
Collapse
Affiliation(s)
- M J Gosalbes
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, 46100-Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
24
|
Kylä-Nikkilä K, Hujanen M, Leisola M, Palva A. Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L-(+)-lactic acid. Appl Environ Microbiol 2000; 66:3835-41. [PMID: 10966398 PMCID: PMC92228 DOI: 10.1128/aem.66.9.3835-3841.2000] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of D-(-)-lactate dehydrogenase (D-LDH) and L-(+)-LDH genes (ldhD and ldhL, respectively) and production of D-(-)- and L-(+)-lactic acid were studied in Lactobacillus helveticus CNRZ32. In order to develop a host for production of pure L-(+)-isomer of lactic acid, two ldhD-negative L. helveticus CNRZ32 strains were constructed using gene replacement. One of the strains was constructed by deleting the promoter region of the ldhD gene, and the other was constructed by replacing the structural gene of ldhD with an additional copy of the structural gene (ldhL) of L-LDH of the same species. The resulting strains were designated GRL86 and GRL89, respectively. In strain GRL89, the second copy of the ldhL structural gene was expressed under the ldhD promoter. The two D-LDH-negative strains produced only L-(+)-lactic acid in an amount equal to the total lactate produced by the wild type. The maximum L-LDH activity was found to be 53 and 93% higher in GRL86 and GRL89, respectively, than in the wild-type strain. Furthermore, process variables for L-(+)-lactic acid production by GRL89 were optimized using statistical experimental design and response surface methodology. The temperature and pH optima were 41 degrees C and pH 5.9. At low pH, when the growth and lactic acid production are uncoupled, strain GRL89 produced approximately 20% more lactic acid than GRL86.
Collapse
Affiliation(s)
- K Kylä-Nikkilä
- Agricultural Research Centre of Finland, Food Research Institute, FIN-31600 Jokioinen, Finland
| | | | | | | |
Collapse
|
25
|
Varmanen P, Savijoki K, Avall S, Palva A, Tynkkynen S. X-prolyl dipeptidyl aminopeptidase gene (pepX) is part of the glnRA operon in Lactobacillus rhamnosus. J Bacteriol 2000; 182:146-54. [PMID: 10613874 PMCID: PMC94251 DOI: 10.1128/jb.182.1.146-154.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A peptidase gene expressing X-prolyl dipeptidyl aminopeptidase (PepX) activity was cloned from Lactobacillus rhamnosus 1/6 by using the chromogenic substrate L-glycyl-L-prolyl-beta-naphthylamide for screening of a genomic library in Escherichia coli. The nucleotide sequence of a 3.5-kb HindIII fragment expressing the peptidase activity revealed one complete open reading frame (ORF) of 2,391 nucleotides. The 797-amino-acid protein encoded by this ORF was shown to be 40, 39, and 36% identical with PepXs from Lactobacillus helveticus, Lactobacillus delbrueckii, and Lactococcus lactis, respectively. By Northern analysis with a pepX-specific probe, transcripts of 4.5 and 7.0 kb were detected, indicating that pepX is part of a polycistronic operon in L. rhamnosus. Cloning and sequencing of the upstream region of pepX revealed the presence of two ORFs of 360 and 1,338 bp that were shown to be able to encode proteins with high homology to GlnR and GlnA proteins, respectively. By multiple primer extension analyses, the only functional promoter in the pepX region was located 25 nucleotides upstream of glnR. Northern analysis with glnA- and pepX-specific probes indicated that transcription from glnR promoter results in a 2.0-kb dicistronic glnR-glnA transcript and also in a longer read-through polycistronic transcript of 7.0 kb that was detected with both probes in samples from cells in exponential growth phase. The glnA gene was disrupted by a single-crossover recombinant event using a nonreplicative plasmid carrying an internal part of glnA. In the disruption mutant, glnRA-specific transcription was derepressed 10-fold compared to the wild type, but the 7.0-kb transcript was no longer detectable with either the glnA- or pepX-specific probe, demonstrating that pepX is indeed part of glnRA operon in L. rhamnosus. Reverse transcription-PCR analysis further supported this operon structure. An extended stem-loop structure was identified immediately upstream of pepX in the glnA-pepX intergenic region, a sequence that showed homology to a 23S-5S intergenic spacer and to several other L. rhamnosus-related entries in data banks.
Collapse
Affiliation(s)
- P Varmanen
- R&D, Valio Ltd., FIN-00039 Valio, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
26
|
Lapierre L, Germond JE, Ott A, Delley M, Mollet B. D-Lactate dehydrogenase gene (ldhD) inactivation and resulting metabolic effects in the Lactobacillus johnsonii strains La1 and N312. Appl Environ Microbiol 1999; 65:4002-7. [PMID: 10473408 PMCID: PMC99733 DOI: 10.1128/aem.65.9.4002-4007.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus johnsonii La1, a probiotic bacterium with demonstrated health effects, grows in milk, where it ferments lactose to D- and L-lactate in a 60:40% ratio. The D-lactate dehydrogenase (D-LDH) gene (ldhD) of this strain was isolated, and an in vitro-truncated copy of that gene was used to inactivate the genomic copy in two strains, La1 and N312, by gene replacement. For that, an 8-bp deletion was generated within the cloned ldhD gene to inactivate its function. The plasmid containing the altered ldhD was transferred to L. johnsonii via conjugative comobilization with Lactococcus lactis carrying pAMbeta1. Crossover integrations of the plasmid at the genomic ldhD site were selected, and appropriate resolution of the cointegrate structures resulted in mutants that had lost the plasmid and in which the original ldhD was replaced by the truncated copy. These mutants completely lacked D-LDH activity. Nevertheless, the lower remaining L-LDH activity of the cells was sufficient to reroute most of the accumulating pyruvate to L-lactate. Only a marginal increase in production of the secondary end products acetaldehyde, diacetyl, and acetoin was observed. It can be concluded that in L. johnsonii D- and L-LDH are present in substantial excess for their role to eliminate pyruvate and regenerate NAD(+) and that accumulated pyruvate is therefore not easily redirected in high amounts to secondary metabolic routes.
Collapse
Affiliation(s)
- L Lapierre
- Nestlé Research Center, Nestlé Ltd., Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Pederson JA, Mileski GJ, Weimer BC, Steele JL. Genetic characterization of a cell envelope-associated proteinase from Lactobacillus helveticus CNRZ32. J Bacteriol 1999; 181:4592-7. [PMID: 10419958 PMCID: PMC103591 DOI: 10.1128/jb.181.15.4592-4597.1999] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cell envelope-associated proteinase gene (prtH) was identified in Lactobacillus helveticus CNRZ32. The prtH gene encodes a protein of 1,849 amino acids and with a predicted molecular mass of 204 kDa. The deduced amino acid sequence of the prtH product has significant identity (45%) to that of the lactococcal PrtP proteinases. Southern blot analysis indicates that prtH is not broadly distributed within L. helveticus. A prtH deletion mutant of CNRZ32 was constructed to evaluate the physiological role of PrtH. PrtH is not required for rapid growth or fast acid production in milk by CNRZ32. Cell surface proteinase activity and specificity were determined by hydrolysis of alpha(s1)-casein fragment 1-23 by whole cells. A comparison of CNRZ32 and its prtH deletion mutant indicates that CNRZ32 has at least two cell surface proteinases that differ in substrate specificity.
Collapse
Affiliation(s)
- J A Pederson
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
28
|
Smeds A, Varmanen P, Palva A. Molecular characterization of a stress-inducible gene from Lactobacillus helveticus. J Bacteriol 1998; 180:6148-53. [PMID: 9829922 PMCID: PMC107698 DOI: 10.1128/jb.180.23.6148-6153.1998] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene (htrA) coding for a stress-inducible HtrA-like protein from Lactobacillus helveticus CNRZ32 was cloned, sequenced, and characterized. The deduced amino acid sequence of the gene exhibited 30% identity with the HtrA protein from Escherichia coli; the putative catalytic triad and a PDZ domain that characterize the HtrA family of known bacterial serine proteases were also found in the sequence. Expression of the L. helveticus htrA gene in a variety of stress conditions was analyzed at the transcriptional level. The strongest induction, resulting in over an eightfold increase in the htrA transcription level, was found in growing CNRZ32 cells exposed to 4% (wt/vol) NaCl. Enhanced htrA mRNA expression was also seen in CNRZ32 cells after exposure to puromycin, ethanol, or heat. The reporter gene gusA was integrated in the Lactobacillus chromosome downstream of the htrA promoter by a double-crossover event which also interrupted the wild-type gene. The expression of gusA in the stress conditions tested was similar to that of htrA itself. In addition, the presence of an intact htrA gene facilitated growth under heat stress but not under salt stress.
Collapse
Affiliation(s)
- A Smeds
- Agricultural Research Centre of Finland, Food Research Institute, Jokioinen 31600, Finland
| | | | | |
Collapse
|
29
|
Chen YS, Steele JL. Genetic characterization and physiological role of endopeptidase O from Lactobacillus helveticus CNRZ32. Appl Environ Microbiol 1998; 64:3411-5. [PMID: 9726890 PMCID: PMC106740 DOI: 10.1128/aem.64.9.3411-3415.1998] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A previously identified insert expressing an endopeptidase from a Lactobacillus helveticus CNRZ32 genomic library was characterized. Nucleotide sequence analysis revealed an open reading frame of 1,941 bp encoding a putative protein of 71.2 kDa which contained a zinc-protease motif. Protein homology searches revealed that this enzyme has 40% similarity with endopeptidase O (PepO) from Lactococcus lactis P8-2-47. Northern hybridization revealed that pepO is monocistronic and is expressed throughout the growth phase. CNRZ32 derivatives lacking PepO activity were constructed via gene replacement. Enzyme assays revealed that the PepO mutant had significantly reduced endopeptidase activity when compared to CNRZ32 with two of the three substrates examined. Growth studies indicated that PepO has no detectable effect on growth rate or acid production by Lactobacillus helveticus CNRZ32 in amino acid defined or skim milk medium.
Collapse
Affiliation(s)
- Y S Chen
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
30
|
Abstract
Lactobacilli play a substantial role in food biotechnology and influence our quality of life by their fermentative and probiotic properties. Despite their obvious importance in fermentation ecology and biotechnology only recent years have brought some insight into the genetics of lactobacilli. These genetic investigations allow the elucidation of traits determinative for competitiveness and ecology and thus product safety and quality. They have concentrated only on a small selection of lactobacilli whereas others are hardly touched or remained recalcitrant to genetic analysis and manipulation. The knowledge gained on the biochemistry, physiology, ecology and especially genetics is a prerequisite for the deliberate application and improved handling of lactobacilli in traditional and novel applications. In this review, the achievements in the genetics of lactobacilli are described including detection systems, genetic elements, host vector systems, gene cloning and expression and risk assessment of genetically engineered lactobacilli.
Collapse
Affiliation(s)
- R F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising-Weihenstephan, Germany
| | | |
Collapse
|
31
|
Low D, Ahlgren JA, Horne D, McMahon DJ, Oberg CJ, Broadbent JR. Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide in cheese moisture retention. Appl Environ Microbiol 1998; 64:2147-51. [PMID: 9603827 PMCID: PMC106291 DOI: 10.1128/aem.64.6.2147-2151.1998] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent work by our group has shown that an exopolysaccharide (EPS)-producing starter pair, Streptococcus thermophilus MR-1C and Lactobacillus delbrueckii subsp. bulgaricus MR-1R, can significantly increase moisture retention in low-fat mozzarella (D. B. Perry, D. J. McMahon, and C. J. Oberg, J. Dairy Sci. 80:799-805, 1997). The objectives of this study were to determine whether MR-1C, MR-1R, or both of these strains are required for enhanced moisture retention and to establish the role of EPS in this phenomenon. Analysis of low-fat mozzarella made with different combinations of MR-1C, MR-1R, and the non-EPS-producing starter culture strains S. thermophilus TA061 and Lactobacillus helveticus LH100 showed that S. thermophilus MR-1C was responsible for the increased cheese moisture level. To investigate the role of the S. thermophilus MR-1C EPS in cheese moisture retention, the epsE gene in this bacterium was inactivated by gene replacement. Low-fat mozzarella made with L. helveticus LH100 plus the non-EPS-producing mutant S. thermophilus DM10 had a significantly lower moisture content than did cheese made with strains LH100 and MR-1C, which confirmed that the MR-1C capsular EPS was responsible for the water-binding properties of this bacterium in cheese. Chemical analysis of the S. thermophilus MR-1C EPS indicated that the polymer has a novel basic repeating unit composed of D-galactose, L-rhamnose, and L-fucose in a ratio of 5:2:1.
Collapse
Affiliation(s)
- D Low
- Department of Nutrition and Food Sciences, Utah State University, Logan, Utah 84322-8700, USA
| | | | | | | | | | | |
Collapse
|
32
|
Varmanen P, Rantanen T, Palva A, Tynkkynen S. Cloning and characterization of a prolinase gene (pepR) from Lactobacillus rhamnosus. Appl Environ Microbiol 1998; 64:1831-6. [PMID: 9572959 PMCID: PMC106238 DOI: 10.1128/aem.64.5.1831-1836.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A peptidase gene expressing L-proline-beta-naphthylamide-hydrolyzing activity was cloned from a gene library of Lactobacillus rhamnosus 1/6 isolated from cheese. Peptidase-expressing activity was localized in a 1.5-kb SacI fragment. A sequence analysis of the SacI fragment revealed the presence of one complete open reading frame (ORF1) that was 903 nucleotides long. The ORF1-encoded 34.2-kDa protein exhibited 68% identity with the PepR protein from Lactobacillus helveticus. Additional sequencing revealed the presence of another open reading frame (ORF2) following pepR; this open reading frame was 459 bp long. Northern (RNA) and primer extension analyses indicated that pepR is expressed both as a monocistronic transcriptional unit and as a dicistronic transcriptional unit with ORF2. Gene replacement was used to construct a PepR-negative strain of L. rhamnosus. PepR was shown to be the primary enzyme capable of hydrolyzing Pro-Leu in L. rhamnosus. However, the PepR-negative mutant did not differ from the wild type in its ability to grow and produce acid in milk. The cloned pepR expressed activity against dipeptides with N-terminal proline residues. Also, Met-Ala, Leu-Leu, and Leu-Gly-Gly and the chromogenic substrates L-leucine-beta-naphthylamide and L-phenylalanine-beta-naphthylamide were hydrolyzed by the PepR of L. rhamnosus.
Collapse
Affiliation(s)
- P Varmanen
- Research and Development, Valio Ltd., Helsinki, Finland.
| | | | | | | |
Collapse
|
33
|
Shao W, Yüksel GU, Dudley EG, Parkin KL, Steele JL. Biochemical and molecular characterization of PepR, a dipeptidase, from Lactobacillus helveticus CNRZ32. Appl Environ Microbiol 1997; 63:3438-43. [PMID: 9292995 PMCID: PMC168651 DOI: 10.1128/aem.63.9.3438-3443.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A dipeptidase with prolinase activity from Lactobacillus helveticus CNRZ32, which was designated PepR, was purified to gel electrophoretic homogeneity and characterized. The NH2-terminal amino acid sequence of the purified protein had 96% identity to the deduced NH2-terminal amino acid sequence of the pepR gene, which was previously designated pepPN, from L. helveticus CNRZ32. The purified enzyme hydrolyzed Pro-Met, Thr-Leu, and Ser-Phe as well as dipeptides containing neutral, nonpolar amino acid residues at the amino terminus. Purified PepR was determined to have a molecular mass of 125 kDa with subunits of 33 kDa. The isoelectric point of the enzyme was determined to be 4.5. The optimal reaction conditions, as determined with Pro-Leu as substrate, were pH 6.0 to 6.5 and 45 to 50 degrees C. The purified PepR had a Km of 4.9 to 5.2 mM and a Vmax of 260 to 270 mumol of protein per min/mg at pH 6.5 and 37 degrees C. The activity of purified PepR was inhibited by Zn2+ but not by other cations or cysteine, serine, aspartic, or metal-containing protease inhibitors or reducing agents. Results obtained by site-directed mutagenesis indicated that PepR is a serine-dependent protease. Gene replacement was employed to construct a PepR-deficient derivative of CNRZ32. This mutant did not differ from the wild-type strain in its ability to acidify milk. However, the PepR-deficient construct was determined to have reduced dipeptidase activity compared to the wild-type strain with all dipeptide substrates examined.
Collapse
Affiliation(s)
- W Shao
- Department of Food Science, University of Wisconsin-Madison 53706, USA
| | | | | | | | | |
Collapse
|
34
|
Allison GE, Klaenhammer TR. Functional analysis of the gene encoding immunity to lactacin F, lafI, and its use as a Lactobacillus-specific, food-grade genetic marker. Appl Environ Microbiol 1996; 62:4450-60. [PMID: 8953716 PMCID: PMC168271 DOI: 10.1128/aem.62.12.4450-4460.1996] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Lactacin F is a two-component class II bacteriocin produced by Lactobacillus johnsonii VPI 11088. The laf operon is composed of the bacteriocin structural genes, lafA and lafX, and a third open reading frame, ORFZ. Two strategies were employed to study the function of ORFZ. This gene was disrupted in the chromosome of NCK64, a lafA729 lafX ORFZ derivative of VPI 11088. A disruption cassette consisting of ORFZ interrupted with a cat gene was cloned into pSA3 and introduced into NCK64. Manipulation of growth temperatures and antibiotic selection resulted in homologous recombination which disrupted the chromosomal copy of ORFZ with the cat gene. This ORFZ mutation resulted in loss of immunity to lactacin F but had little effect on production of LafX, which is not bactericidal without LafA. Expression of ORFZ in this ORFZ- background rescued the immune phenotype. Expression of ORFZ in a bacteriocin-sensitive derivative of VPI 11088 also reestablished immunity. These data indicate that ORFZ, renamed lafI, encodes the immunity factor for the lactacin F system. The sensitivity of various Lactobacillus strains to lactacin F was further evaluated. Lactacin F inhibited 11 strains including several members of the A1, A2, A3, A4, B1, and B2 L. acidophilus homology groups. Expression of lafI in bacteriocin-sensitive strains L. acidophilus ATCC 4356, L. acidophilus NCFM/N2, L. fermentum NCDO1750, L. gasseri ATCC 33323, and L. johnsonii ATCC 33200 provided immunity to lactacin F. Furthermore, it was shown that lactacin F production by VPI 11088 could be used to select for L. fermentum NCDO1750 transformants containing the recombinant plasmid encoding LafI. The data demonstrate that lafI is functional in heterologous hosts, suggesting that it may be a suitable food-grade genetic marker for use in lactobacillus species.
Collapse
Affiliation(s)
- G E Allison
- Department of Microbiology, North Carolina State University, Raleigh 27695-7624, USA
| | | |
Collapse
|
35
|
Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN. The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 1996; 70:187-221. [PMID: 8879407 DOI: 10.1007/bf00395933] [Citation(s) in RCA: 465] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proteolysis in dairy lactic acid bacteria has been studied in great detail by genetic, biochemical and ultrastructural methods. From these studies the picture emerges that the proteolytic systems of lactococci and lactobacilli are remarkably similar in their components and mode of action. The proteolytic system consists of an extracellularly located serine-proteinase, transport systems specific for di-tripeptides and oligopeptides (> 3 residues), and a multitude of intracellular peptidases. This review describes the properties and regulation of individual components as well as studies that have led to identification of their cellular localization. Targeted mutational techniques developed in recent years have made it possible to investigate the role of individual and combinations of enzymes in vivo. Based on these results as well as in vitro studies of the enzymes and transporters, a model for the proteolytic pathway is proposed. The main features are: (i) proteinases have a broad specificity and are capable of releasing a large number of different oligopeptides, of which a large fraction falls in the range of 4 to 8 amino acid residues; (ii) oligopeptide transport is the main route for nitrogen entry into the cell; (iii) all peptidases are located intracellularly and concerted action of peptidases is required for complete degradation of accumulated peptides.
Collapse
Affiliation(s)
- E R Kunji
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Davidson BE, Kordias N, Dobos M, Hillier AJ. Genomic organization of lactic acid bacteria. Antonie Van Leeuwenhoek 1996; 70:161-83. [PMID: 8879406 DOI: 10.1007/bf00395932] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Current knowledge of the genomes of the lactic acid bacteria, Lactococcus lactis and Streptococcus thermophilus, and members of the genera Lactobacillus, Leuconostoc, Pediococcus and Carnobacterium, is reviewed. The genomes contain a chromosome within the size range of 1.8 to 3.4 Mbp. Plasmids are common in Lactococcus lactis (most strains carry 4-7 different plasmids), some of the lactobacilli and pediococci, but they are not frequently present in S. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus or the intestinal lactobacilli. Five IS elements have been found in L. lactis and most strains carry multiple copies of at least two of them; some strains also carry a 68-kbp conjugative transposon. IS elements have been found in the genera Lactobacillus and Leuconostoc, but not in S. thermophilus. Prophages are also a normal component of the L. lactis genome and lysogeny is common in the lactobacilli, however it appears to be rare in S. thermophilus. Physical and genetic maps for two L. lactis subsp. lactis strains, two L. lactis subsp. cremoris strains and S. thermophilus A054 have been constructed and each reveals the presence of six rrn operons clustered in less than 40% of the chromosome. The L. lactis subsp. cremoris MG1363 map contains 115 genetic loci and the S. thermophilus map has 35. The maps indicate significant plasticity in the L. lactis subsp. cremoris chromosome in the form of a number of inversions and translocations. The cause(s) of these rearrangements is (are) not known. A number of potentially powerful genetic tools designed to analyse the L. lactis genome have been constructed in recent years. These tools enable gene inactivation, gene replacement and gene recovery experiments to be readily carried out with this organism, and potentially with other lactic acid bacteria and Gram-positive bacteria. Integration vectors based on temperate phage attB sites and the random insertion of IS elements have also been developed for L. lactis and the intestinal lactobacilli. In addition, a L. lactis sex factor that mobilizes the chromosome in a manner reminiscent to that seen with Escherichia coli Hfr strains has been discovered and characterized. With the availability of this new technology, research into the genome of the lactic acid bacteria is poised to undertake a period of extremely rapid information accrual.
Collapse
Affiliation(s)
- B E Davidson
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
37
|
Dudley EG, Husgen AC, He W, Steele JL. Sequencing, distribution, and inactivation of the dipeptidase A gene (pepDA) from Lactobacillus helveticus CNRZ32. J Bacteriol 1996; 178:701-4. [PMID: 8550503 PMCID: PMC177715 DOI: 10.1128/jb.178.3.701-704.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Previously, the gene for a general dipeptidase (pepDA) was isolated from a gene bank of Lactobacillus helveticus CNRZ32. The pepDA gene consists of a 1,422-bp open reading frame which could encode a polypeptide of 53.5 kDa. No significant identity was found between the deduced amino acid sequence of the pepDA product and the sequence for other polypeptides reported in GenBank. Southern hybridization studies with a pepDA probe indicated that the nucleotide sequence for pepDA is not well conserved among a variety of lactic acid bacteria. Growth studies indicated that a pepDA deletion had no detectable effect on growth rate or acid production by L. helveticus CNRZ32 in milk. Furthermore, no difference in total cellular dipeptidase activity was detected between the mutant and wild-type strains during logarithmic growth in MRS medium.
Collapse
Affiliation(s)
- E G Dudley
- Department of Bacteriology, University of Wisconsin-Madison 53706, USA
| | | | | | | |
Collapse
|
38
|
Yüksel GU, Steele JL. DNA sequence analysis, expression, distribution, and physiological role of the Xaa-prolyldipeptidyl aminopeptidase gene from Lactobacillus helveticus CNRZ32. Appl Microbiol Biotechnol 1996; 44:766-73. [PMID: 8867635 DOI: 10.1007/bf00178616] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lactobacillus helveticus CNRZ32 possesses an Xaa-prolyldipeptidyl aminopeptidase (PepX), which releases amino-terminal dipeptides from peptides containing proline residues in the penultimate position. The PepX gene, designated pepX, from Lb. helveticus CNRZ32 was sequenced. Analysis of the sequence identified a putative 2379-bp pepX open-reading frame, which encodes a polypeptide of 793 amino acid residues with a deduced molecular mass of 88,111 Da. The gene shows significant sequence identity with sequenced pepX genes from lactic acid bacteria. The product of the gene contains a motif that is almost identical with the active-site motif of the serine-dependent PepX from lactococci. The introduction of pepX into Lactococcus lactis LM0230 on either pGK12 (a low-copy-number plasmid vector) or pIL253 (a high-copy-number plasmid vector) did not result in a significant increase in PepX activity, while the introduction of pepX into CNRZ32 on pGK12 resulted in a four-fold increase in PepX activity. Southern hybridization experiments revealed that the pepX gene from CNRZ32 is well conserved in lactobacilli, pediococci and streptococci. The physiological role of PepX during growth in lactobacillus MRS (a rich medium containing protein hydrolysates along with other ingredients) and milk was examined by comparing growth of CNRZ32 and a CNRZ32 PepX-negative derivative. No difference in growth rate or acid production was observed between CNRZ32 and its PepX-negative derivative in MRS. However, the CNRZ32 PepX-negative derivative grew in milk at a reduced specific growth rate when compared to wild-type CNRZ32. Introduction of the cloned PepX determinant into the CNRZ32 PepX-negative derivative resulted in a construct with a specific growth rate similar to that of wild-type CNRZ32.
Collapse
Affiliation(s)
- G U Yüksel
- Department of Food Science, University of Wisconsin-Madison 53706, USA
| | | |
Collapse
|
39
|
Steele JL. Contribution of lactic acid bacteria to cheese ripening. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 367:209-20. [PMID: 7572362 DOI: 10.1007/978-1-4615-1913-3_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J L Steele
- University of Wisconsin-Madison, Department of Food Science 53706, USA
| |
Collapse
|
40
|
|
41
|
Walker DC, Klaenhammer TR. Isolation of a novel IS3 group insertion element and construction of an integration vector for Lactobacillus spp. J Bacteriol 1994; 176:5330-40. [PMID: 8071209 PMCID: PMC196718 DOI: 10.1128/jb.176.17.5330-5340.1994] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An insertion sequence (IS) element from Lactobacillus johnsonii was isolated, characterized, and exploited to construct an IS-based integration vector. L. johnsonii NCK61, a high-frequency conjugal donor of bacteriocin production (Laf+) and immunity (Lafr), was transformed to erythromycin resistance (Emr) with the shuttle vector pSA3. The NCK61 conjugative functions were used to mobilize pSA3 into a Laf- Lafs EMs recipient. DNA from the Emr transconjugants transformed into Escherichia coli MC1061 yielded a resolution plasmid with the same size as that of pSA3 with a 1.5-kb insertion. The gram-positive replication region of the resolution plasmid was removed to generate a pSA3-based suicide vector (pTRK327) bearing the 1.5-kb insert of Lactobacillus origin. Plasmid pTRK327 inserted randomly into the chromosomes of both Lactobacillus gasseri ATCC 33323 and VPI 11759. No homology was detected between plasmid and total host DNAs, suggesting a Rec-independent insertion. The DNA sequence of the 1.5-kb region revealed the characteristics of an IS element (designated IS1223): a length of 1,492 bp; flanking, 25-bp, imperfect inverted repeats; and two overlapping open reading frames (ORFs). Sequence comparisons revealed 71.1% similarity, including 35.7% identity, between the deduced ORFB protein of the E. coli IS element IS150 and the putative ORFB protein encoded by the Lactobacillus IS element. A putative frameshift site was detected between the overlapping ORFs of the Lactobacillus IS element. It is proposed that, similar to IS150, IS1223 produces an active transposase via translational frameshifting between two tandem, overlapping ORFs.
Collapse
Affiliation(s)
- D C Walker
- Department of Microbiology, North Carolina State University, Raleigh 27695-7624
| | | |
Collapse
|
42
|
Dudley EG, Steele JL. Nucleotide sequence and distribution of the pepPN gene from Lactobacillus helveticus CNRZ32. FEMS Microbiol Lett 1994; 119:41-5. [PMID: 8039668 DOI: 10.1111/j.1574-6968.1994.tb06864.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Lactobacillus helveticus CNRZ32 gene encoding a di-/tri- pepidase with prolinase activity (pepPN) was sequenced. An open reading frame of 912 base pairs was identified corresponding to a peptide with a molecular mass of 35.04 kDa. Southern hybridization indicated that the gene sequence is well conserved in strains of lactobacilli and pediococci.
Collapse
Affiliation(s)
- E G Dudley
- Department of Food Science, University of Wisconsin-Madison 53706
| | | |
Collapse
|
43
|
Cloning, characterization and insertional inactivation of the Lactobacillus helveticus D(?) lactate dehydrogenase gene. Appl Microbiol Biotechnol 1994. [DOI: 10.1007/bf00212254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Bhowmik T, Steele JL. Cloning, characterization and insertional inactivation of the Lactobacillus helveticus D(-) lactate dehydrogenase gene. Appl Microbiol Biotechnol 1994; 41:432-9. [PMID: 7765104 DOI: 10.1007/bf00939032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A plasmid, designated pSUW100, encoding the D(-)lactate dehydrogenase [D(-)-LDH; NAD+ oxidoreductase, EC 1.1.1.28] from Lactobacillus helveticus CNRZ32 was identified from a genomic library by complementation of Escherichia coli FMJ39. The D(-)LDH gene was localized by Tn5 mutagenesis and subcloning to a 1.4-kb region of pSUW100. A 2-kb DraI fragment of pSUW100 encoding D(-)LDH activity was subcloned and its nucleotide sequence determined. Analysis of this sequence identified a putative 1,014-bp D(-)LDH open reading frame that encodes a polypeptide of 337 amino acid residues with a deduced molecular mass of 38 kDa. The distribution of homology to the CNRZ32 D(-)LDH gene in several lactic acid bacteria was determined by Southern hybridization using an internal fragment of the D(-)LDH gene as a probe. Hybridization was detected in leuconostocs and pediococci but not in lactococci or Lactobacillus casei. An integration plasmid was constructed from pSA3 and a 0.60-kb internal fragment of the D(-)LDH gene. This plasmid was used to construct a D(-)LDH-negative derivative of L. helveticus CNRZ 32 by gene disruption; this derivative was determined as producing only L(+)lactic acid. No significant difference in growth or total lactic acid production was observed between CNRZ32 and its D(-)LDH mutant.
Collapse
Affiliation(s)
- T Bhowmik
- Department of Food Science, University of Wisconsin-Madison 53706
| | | |
Collapse
|