1
|
Pirovich DB, Da’dara AA, Skelly PJ. Multifunctional Fructose 1,6-Bisphosphate Aldolase as a Therapeutic Target. Front Mol Biosci 2021; 8:719678. [PMID: 34458323 PMCID: PMC8385298 DOI: 10.3389/fmolb.2021.719678] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/31/2021] [Indexed: 01/01/2023] Open
Abstract
Fructose 1,6-bisphosphate aldolase is a ubiquitous cytosolic enzyme that catalyzes the fourth step of glycolysis. Aldolases are classified into three groups: Class-I, Class-IA, and Class-II; all classes share similar structural features but low amino acid identity. Apart from their conserved role in carbohydrate metabolism, aldolases have been reported to perform numerous non-enzymatic functions. Here we review the myriad "moonlighting" functions of this classical enzyme, many of which are centered on its ability to bind to an array of partner proteins that impact cellular scaffolding, signaling, transcription, and motility. In addition to the cytosolic location, aldolase has been found the extracellular surface of several pathogenic bacteria, fungi, protozoans, and metazoans. In the extracellular space, the enzyme has been reported to perform virulence-enhancing moonlighting functions e.g., plasminogen binding, host cell adhesion, and immunomodulation. Aldolase's importance has made it both a drug target and vaccine candidate. In this review, we note the several inhibitors that have been synthesized with high specificity for the aldolases of pathogens and cancer cells and have been shown to inhibit classical enzyme activity and moonlighting functions. We also review the many trials in which recombinant aldolases have been used as vaccine targets against a wide variety of pathogenic organisms including bacteria, fungi, and metazoan parasites. Most of such trials generated significant protection from challenge infection, correlated with antigen-specific cellular and humoral immune responses. We argue that refinement of aldolase antigen preparations and expansion of immunization trials should be encouraged to promote the advancement of promising, protective aldolase vaccines.
Collapse
Affiliation(s)
- David B. Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | | | | |
Collapse
|
2
|
Stolzenberger J, Lindner SN, Wendisch VF. The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. MICROBIOLOGY-SGM 2013; 159:1770-1781. [PMID: 23760818 DOI: 10.1099/mic.0.067314-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The thermotolerant Gram-positive methylotroph Bacillus methanolicus is able to grow with methanol, glucose or mannitol as a sole carbon and energy source. Fructose 1,6-bisphosphate aldolase (FBA), a key enzyme of glycolysis and gluconeogenesis, is encoded in the genome of B. methanolicus by two putative fba genes, the chromosomally located fba(C) and fba(P) on the naturally occurring plasmid pBM19. Their amino acid sequences share 75 % identity and suggest a classification as class II aldolases. Both enzymes were purified from recombinant Escherichia coli and were found to be active as homotetramers. Both enzymes were activated by either manganese or cobalt ions, and inhibited by ADP, ATP and EDTA. The kinetic parameters allowed us to distinguish the chromosomally encoded FBA(C) from the plasmid encoded FBA(P), since FBA(C) showed higher affinity towards fructose 1,6-bisphosphate (Km of 0.16±0.01 mM as compared to 2±0.08 mM) as well as higher glycolytic catalytic efficiency (31.3 as compared to 0.8 s(-1) mM(-1)) than FBA(P). However, FBA(P) exhibited a higher catalytic efficiency in gluconeogenesis (50.4 as compared to 1.4 s(-1) mM(-1) with dihydroxyacetone phosphate and 4 as compared to 0.4 s(-1) mM(-1) with glyceraldehyde 3-phosphate as limiting substrate). The aldolase-negative Corynebacterium glutamicum mutant Δfda could be complemented with both FBA genes from B. methanolicus. Based on the kinetic data, we propose that FBA(C) acts as major aldolase in glycolysis, whereas FBA(P) acts as major aldolase in gluconeogenesis in B. methanolicus.
Collapse
Affiliation(s)
| | - Steffen N Lindner
- Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
3
|
Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 2010; 464:1077-81. [PMID: 20348906 DOI: 10.1038/nature08884] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 02/05/2010] [Indexed: 11/08/2022]
Abstract
Most archaeal groups and deeply branching bacterial lineages harbour thermophilic organisms with a chemolithoautotrophic metabolism. They live at high temperatures in volcanic habitats at the expense of inorganic substances, often under anoxic conditions. These autotrophic organisms use diverse carbon dioxide fixation mechanisms generating acetyl-coenzyme A, from which gluconeogenesis must start. Here we show that virtually all archaeal groups as well as the deeply branching bacterial lineages contain a bifunctional fructose 1,6-bisphosphate (FBP) aldolase/phosphatase with both FBP aldolase and FBP phosphatase activity. This enzyme is missing in most other Bacteria and in Eukaryota, and is heat-stabile even in mesophilic marine Crenarchaeota. Its bifunctionality ensures that heat-labile triosephosphates are quickly removed and trapped in stabile fructose 6-phosphate, rendering gluconeogenesis unidirectional. We propose that this highly conserved, heat-stabile and bifunctional FBP aldolase/phosphatase represents the pace-making ancestral gluconeogenic enzyme, and that in evolution gluconeogenesis preceded glycolysis.
Collapse
|
4
|
Dinkelbach M, Hodenius M, Steigel A, Kula MR. Fructose-1,6-Bisphosphate Aldolases from Staphylococcus Carnosus: Stereoselective Enzymatic Synthesis of Ketose-1-Phosphates and Successive Reaction to 1,3-Dioxanes. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420109103516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
|
6
|
Kroth PG, Schroers Y, Kilian O. The peculiar distribution of class I and class II aldolases in diatoms and in red algae. Curr Genet 2005; 48:389-400. [PMID: 16273368 DOI: 10.1007/s00294-005-0033-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/23/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Diatom plastids probably evolved by secondary endocytobiosis from a red alga that was up by a eukaryotic host cell. Apparently, this process increased the complexity of the intracellular distribution of metabolic enzymes. We identified genes encoding fructose-bisphosphate aldolases (FBA) in two centric (Odontella sinensis, Thalassiosira pseudonana) and one pennate (Phaeodactylum tricornutum) diatoms and found that four different aldolases are present in both groups: two plastid targeted class II enzymes (FBAC1 and FBAC2), one cytosolic class II (FBA3) and one cytosolic class I (FBA4) enzyme. The pennate Phaeodactylum possesses an additional plastidic class I enzyme (FBAC5). We verified the classification of the different aldolases in the diatoms by enzymatic characterization of isolated plastids and whole cell extracts. Interestingly, our results imply that in plastids of centric and pennate diatoms mainly either class I or class II aldolases are active. We also identified genes for both class I and class II aldolases in red algal EST databases, thus presenting a fascinating example of the reutilization and recompartmentalization of different aldolase isoenzymes during secondary endocytobiosis but as well demonstrating the limited use of metabolic enzymes as markers for the interpretation of phylogenetic histories in algae.
Collapse
Affiliation(s)
- Peter G Kroth
- Fachbereich Biologie, Universität Konstanz, Postfach M611, Konstanz, Germany.
| | | | | |
Collapse
|
7
|
Gene cloning and characterization of fructose-1,6-bisphosphate aldolase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Biosci Bioeng 2002. [DOI: 10.1016/s1389-1723(02)80156-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Siebers B, Brinkmann H, Dörr C, Tjaden B, Lilie H, van der Oost J, Verhees CH. Archaeal fructose-1,6-bisphosphate aldolases constitute a new family of archaeal type class I aldolase. J Biol Chem 2001; 276:28710-8. [PMID: 11387336 DOI: 10.1074/jbc.m103447200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fructose-1,6-bisphosphate (FBP) aldolase activity has been detected previously in several Archaea. However, no obvious orthologs of the bacterial and eucaryal Class I and II FBP aldolases have yet been identified in sequenced archaeal genomes. Based on a recently described novel type of bacterial aldolase, we report on the identification and molecular characterization of the first archaeal FBP aldolases. We have analyzed the FBP aldolases of two hyperthermophilic Archaea, the facultatively heterotrophic Crenarchaeon Thermoproteus tenax and the obligately heterotrophic Euryarchaeon Pyrococcus furiosus. For enzymatic studies the fba genes of T. tenax and P. furiosus were expressed in Escherichia coli. The recombinant FBP aldolases show preferred substrate specificity for FBP in the catabolic direction and exhibit metal-independent Class I FBP aldolase activity via a Schiff-base mechanism. Transcript analyses reveal that the expression of both archaeal genes is induced during sugar fermentation. Remarkably, the fbp gene of T. tenax is co-transcribed with the pfp gene that codes for the reversible PP(i)-dependent phosphofructokinase. As revealed by phylogenetic analyses, orthologs of the T. tenax and P. furiosus enzyme appear to be present in almost all sequenced archaeal genomes, as well as in some bacterial genomes, strongly suggesting that this new enzyme family represents the typical archaeal FBP aldolase. Because this new family shows no significant sequence similarity to classical Class I and II enzymes, a new name is proposed, archaeal type Class I FBP aldolases (FBP aldolase Class IA).
Collapse
Affiliation(s)
- B Siebers
- Department of Microbiology, Universität Essen, 45117 Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
Schurmann M, Sprenger GA. Fructose-6-phosphate aldolase is a novel class I aldolase from Escherichia coli and is related to a novel group of bacterial transaldolases. J Biol Chem 2001; 276:11055-61. [PMID: 11120740 DOI: 10.1074/jbc.m008061200] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned an open reading frame from the Escherichia coli K-12 chromosome that had been assumed earlier to be a transaldolase or a transaldolase-related protein, termed MipB. Here we show that instead a novel enzyme activity, fructose-6-phosphate aldolase, is encoded by this open reading frame, which is the first report of an enzyme that catalyzes an aldol cleavage of fructose 6-phosphate from any organism. We propose the name FSA (for fructose-six phosphate aldolase; gene name fsa). The recombinant protein was purified to apparent homogeneity by anion exchange and gel permeation chromatography with a yield of 40 mg of protein from 1 liter of culture. By using electrospray tandem mass spectroscopy, a molecular weight of 22,998 per subunit was determined. From gel filtration a size of 257,000 (+/- 20,000) was calculated. The enzyme most likely forms either a decamer or dodecamer of identical subunits. The purified enzyme displayed a V(max) of 7 units mg(-)1 of protein for fructose 6-phosphate cleavage (at 30 degrees C, pH 8.5 in 50 mm glycylglycine buffer). For the aldolization reaction a V(max) of 45 units mg(-)1 of protein was found; K(m) values for the substrates were 9 mm for fructose 6-phosphate, 35 mm for dihydroxyacetone, and 0.8 mm for glyceraldehyde 3-phosphate. FSA did not utilize fructose, fructose 1-phosphate, fructose 1,6-bisphosphate, or dihydroxyacetone phosphate. FSA is not inhibited by EDTA which points to a metal-independent mode of action. The lysine 85 residue is essential for its action as its exchange to arginine (K85R) resulted in complete loss of activity in line with the assumption that the reaction mechanism involves a Schiff base formation through this lysine residue (class I aldolase). Another fsa-related gene, talC of Escherichia coli, was shown to also encode fructose-6-phosphate aldolase activity and not a transaldolase as proposed earlier.
Collapse
Affiliation(s)
- M Schurmann
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | |
Collapse
|
10
|
|
11
|
Schoevaart R, van Rantwijk F, Sheldon RA. Class I fructose-1,6-bisphosphate aldolases as catalysts for asymmetric aldol reactions. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0957-4166(99)00044-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Thomson GJ, Howlett GJ, Ashcroft AE, Berry A. The dhnA gene of Escherichia coli encodes a class I fructose bisphosphate aldolase. Biochem J 1998; 331 ( Pt 2):437-45. [PMID: 9531482 PMCID: PMC1219373 DOI: 10.1042/bj3310437] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gene encoding the Escherichia coli Class I fructose-1, 6-bisphosphate aldolase (FBP aldolase) has been cloned and the protein overproduced in high amounts. This gene sequence has previously been identified as encoding an E. coli dehydrin in the GenBanktrade mark database [gene dhnA; entry code U73760; Close and Choi (1996) Submission to GenBanktrade mark]. However, the purified protein overproduced from the dhnA gene shares all its properties with those known for the E. coli Class I FBP aldolase. The protein is an 8-10-mer with a native molecular mass of approx. 340 kDa, each subunit consisting of 349 amino acids. The Class I enzyme shows low sequence identity with other known FBP aldolases, both Class I and Class II (in the order of 20%), which may be reflected by some novel properties of this FBP aldolase. The active-site peptide has been isolated and the Schiff-base-forming lysine residue (Lys236) has been identified by a combination of site-directed mutagenesis, kinetics and electrospray-ionization MS. A second lysine residue (Lys238) has been implicated in substrate binding. The cloning of this gene and the high levels of overexpression obtained will facilitate future structure-function studies.
Collapse
Affiliation(s)
- G J Thomson
- Department of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | | | | | | |
Collapse
|
13
|
Wagner E, Doskar J, Götz F. Physical and genetic map of the genome of Staphylococcus carnosus TM300. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 2):509-517. [PMID: 9493387 DOI: 10.1099/00221287-144-2-509] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A genome map of Staphylococcus carnosus TM300, an important micro-organism in the food industry and long used as a starter culture, was constructed by pulsed-field gel electrophoresis of DNA fragments obtained after digestion with NotI, SfiI and ApaI. The size of the chromosome was estimated to be 2590 kb. The fragments were assembled into a physical map using a combination of complementary methods including multiple and partial digests of genomic DNA, hybridization with homologous gene probes, and cross-Southern hybridization. Fifteen genes or gene clusters were positioned on the physical map by Southern hybridization analysis. The map provides a basis for further analysis of the S. carnosus chromosome.
Collapse
Affiliation(s)
- Elke Wagner
- Lehrstuhl für Mikrobielle Genetik, Universität Tübingen, 72076 Tübingen, Germany
| | - Jirí Doskar
- Department of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Friedrich Götz
- Lehrstuhl für Mikrobielle Genetik, Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
14
|
Arth HL, Fessner WD. Practical synthesis of 4-hydroxy-3-oxobutylphosphonic acid and its evaluation as a bio-isosteric substrate of DHAP aldolase. Carbohydr Res 1997; 305:313-21. [PMID: 9648254 DOI: 10.1016/s0008-6215(97)10026-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An efficient four step synthesis of the title compound 4-hydroxy-3-oxobutylphosphonate (2) has been developed based on inexpensive 4-ethoxy-1-hydroxybutane-2-one using an Arbusow reaction (59% overall yield). Several dihydroxyacetone-dependent aldolases having different stereospecificities were tested for their acceptance of this phosphonomethyl substrate mimic as the aldol donor. Individual enzymes belonging to both type I (Schiff base formation) and type II (Zn2+ catalysis) mechanistic classes were found to catalyze the stereoselective addition of 2 to simple aldehydes to provide bio-isosteric analogs of sugar 1-phosphates in high yields. The lack of acceptance by specific enzymes is discussed with regard to recent protein X-ray data.
Collapse
Affiliation(s)
- H L Arth
- Institut für Organische Chemie der RWTH Aachen, Germany
| | | |
Collapse
|
15
|
Sprenger GA, Schörken U, Sprenger G, Sahm H. Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains. J Bacteriol 1995; 177:5930-6. [PMID: 7592346 PMCID: PMC177421 DOI: 10.1128/jb.177.20.5930-5936.1995] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A previously recognized open reading frame (T. Yura, H. Mori, H. Nagai, T. Nagata, A. Ishihama, N. Fujita, K. Isono, K. Mizobuchi, and A. Nakata, Nucleic Acids Res. 20:3305-3308) from the 0.2-min region of the Escherichia coli K-12 chromosome is shown to encode a functional transaldolase activity. After cloning of the gene onto high-copy-number vectors, transaldolase B (D-sedoheptulose-7-phosphate:D-glyceraldehyde-3-phosphate dihydroxyacetone transferase; EC 2.2.1.2) was overexpressed up to 12.7 U mg of protein-1 compared with less than 0.1 U mg of protein-1 in wild-type homogenates. The enzyme was purified from recombinant E. coli K-12 cells by successive ammonium sulfate precipitations (45 to 80% and subsequently 55 to 70%) and two anion-exchange chromatography steps (Q-Sepharose FF, Fractogel EMD-DEAE tentacle column; yield, 130 mg of protein from 12 g of cell wet weight) and afforded an apparently homogeneous protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a subunit size of 35,000 +/- 1,000 Da. As the enzyme had a molecular mass of 70,000 Da by gel filtration, transaldolase B is likely to form a homodimer. N-terminal amino acid sequencing of the protein verified its identity with the product of the cloned gene talB. The specific activity of the purified enzyme determined at 30 degrees C with the substrates fructose-6-phosphate (donor of C3 compound) and erythrose-4-phosphate (acceptor) at an optimal pH (50 mM glycylglycine [pH 8.5]) was 60 U mg-1.Km values for the substrates fructose-6-phosphate and erythrose-4-phosphate were determined at 1,200 and 90 microM, respectively. Kinetic constants for the other two physiological reactants, D,L-glyceraldehyde 3-phosphate (Km, 38 microM; relative activity [V(rel)], 8%) and sedoheptulose-7-phosphate (K(m), 285 microM; V(rel), 5%) were also determined. Fructose acted as a C(3) donor at a high apparent K(m) (>/=M) and with a V(rel) of 12%. The enzyme was inhibited by Tris-HCl, phosphate, or sugars with the L configuration at C(2) (L-glyceraldehyde, D-arabinose-5-phosphate).
Collapse
Affiliation(s)
- G A Sprenger
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | |
Collapse
|
16
|
Pelzer-Reith B, Freund S, Schnarrenberger C, Yatsuki H, Hori K. The plastid aldolase gene from Chlamydomonas reinhardtii: intron/exon organization, evolution, and promoter structure. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:481-6. [PMID: 7565612 DOI: 10.1007/bf02191648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Genomic clones encoding the plastidic fructose-1,6-bisphosphate aldolase of Chlamydomonas reinhardtii were isolated and sequenced. The gene contains three introns which are located within the coding sequence for the mature protein. No introns are located within or near the sequence encoding the transit-peptide, in contrast to the genes for plastidic aldolases of higher plants. Neither the number nor the positions of the three introns of the C. reinhardtii aldolase gene are conserved in the plastidic or cytosolic aldolase genes of higher plants and animals. The 5' border sequences of introns in the aldolase gene of C. reinhardtii exhibit the conserved plant consensus sequence. The 3' acceptor splice sites for introns 1 and 3 show much less similarity to the eukaryotic consensus sequences than do those of intron 2. The plastidic aldolase gene has two tandemly repeated CAAT box motifs in the promoter region. Genomic Southern blots indicate that the gene is encoded by a single locus in the C. reinhardtii genome.
Collapse
Affiliation(s)
- B Pelzer-Reith
- Institut für Pflanzenphysiologie und Mikrobiologie Königin-Luise-Strasse, Berlin, Germany
| | | | | | | | | |
Collapse
|
17
|
Witke C, Götz F. Cloning and nucleotide sequence of the signal peptidase II (lsp)-gene from Staphylococcus carnosus. FEMS Microbiol Lett 1995; 126:233-9. [PMID: 7729667 DOI: 10.1111/j.1574-6968.1995.tb07424.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Staphylococcus carnosus TM300 is able to synthesize at least seven lipoproteins with molecular masses between 15 and 45 kDa; the proteins are located in the membrane fraction. It can be concluded that this strain also posesses the enzymes involved in lipoprotein modification and prolipoprotein signal peptidase (signal peptidase II) processing. The gene encoding the prolipoprotein signal peptidase, lsp, from Staphylococcus carnosus TM300 was cloned in Escherichia coli and sequenced. The deduced amino acid sequence of the Lsp showed amino acid similarities with the Lsp's of S. aureus, Enterobacter aerogenes, E. coli, and Pseudomonas fluorescens. The hydropathy profile reveals four hydrophobic segments which are homologous to the putative transmembrane regions of the E. coli signal peptidase II. E. coli strains carrying lsp of S. carnosus exhibited an increased globomycin resistance.
Collapse
Affiliation(s)
- C Witke
- Mikrobielle Genetik, Universität Tübingen, Germany
| | | |
Collapse
|
18
|
Demleitner G, Götz F. Evidence for importance of the Staphylococcus hyicus lipase pro-peptide in lipase secretion, stability and activity. FEMS Microbiol Lett 1994; 121:189-97. [PMID: 7926670 DOI: 10.1111/j.1574-6968.1994.tb07098.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To investigate the function of the pro-peptide (PP) region of the Staphylococcus hyicus exolipase, restriction sites were created in the lipase gene to facilitate the construction of deletions in this region. Lipase gene expression was carried out in Staphylococcus carnosus. In the presence of the entire PP region, the 86-kDa pro-lipase was efficiently exported, had high lipolytic activity, and hardly any degradation products were seen in Western blot analysis. In addition to the 86-kDa pro-lipase, the membrane fraction contained a 106-kDa immunoreactive form. If the PP was completely or partially deleted, signal peptide processing, lipase secretion, lipase activity and/or lipase stability were impaired. The results obtained with lipase PP deletion mutants indicate that the PP region may have two functional domains. The N-terminal region of the lipase PP appears to be more important for lipase activity and the C-terminal portion for lipase secretion and proteolytic stability. In the presence of only the C-terminal part of the PP lipase, secretion was hardly affected. However, the activity of the extracellular lipase was markedly reduced. If only a small portion of the C-terminal part of the PP was present, lipase secretion was again markedly reduced and no lipase activity was detectable. In the presence of the N-terminal half of the PP region, lipase secretion was affected to a lesser extent. However, the resulting 60-kDa form, which showed comparably good specific lipase activity, suffered severe proteolytic degradation.
Collapse
|