1
|
Song F, Qin Z, Qiu K, Huang Z, Wang L, Zhang H, Shan X, Meng H, Liu X, Zhou J. Development of a vitamin B 5 hyperproducer in Escherichia coli by multiple metabolic engineering. Metab Eng 2024; 84:158-168. [PMID: 38942195 DOI: 10.1016/j.ymben.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Vitamin B5 [D-pantothenic acid (D-PA)] is an essential water-soluble vitamin that is widely used in the food and feed industries. Currently, the relatively low fermentation efficiency limits the industrial application of D-PA. Here, a plasmid-free D-PA hyperproducer was constructed using systematic metabolic engineering strategies. First, pyruvate was enriched by deleting the non-phosphotransferase system, inhibiting pyruvate competitive branches, and dynamically controlling the TCA cycle. Next, the (R)-pantoate pathway was enhanced by screening the rate-limiting enzyme PanBC and regulating the other enzymes of this pathway one by one. Then, to enhance NADPH sustainability, NADPH regeneration was achieved through the novel "PEACES" system by (1) expressing the NAD + kinase gene ppnk from Clostridium glutamicum and the NADP + -dependent gapCcae from Clostridium acetobutyricum and (2) knocking-out the endogenous sthA gene, which interacts with ilvC and panE in the D-PA biosynthesis pathway. Combined with transcriptome analysis, it was found that the membrane proteins OmpC and TolR promoted D-PA efflux by increasing membrane fluidity. Strain PA132 produced a D-PA titer of 83.26 g/L by two-stage fed-batch fermentation, which is the highest D-PA titer reported so far. This work established competitive producers for the industrial production of D-PA and provided an effective strategy for the production of related products.
Collapse
Affiliation(s)
- Fuqiang Song
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhijie Qin
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Kun Qiu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhongshi Huang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Lian Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Heng Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xiaoyu Shan
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Hao Meng
- Hunan Chengda Biotechnology Co., Ltd., Malukou, Anhua, Hunan, 413506, China
| | - Xirong Liu
- Hunan Chengda Biotechnology Co., Ltd., Malukou, Anhua, Hunan, 413506, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Schramm T, Lubrano P, Pahl V, Stadelmann A, Verhülsdonk A, Link H. Mapping temperature-sensitive mutations at a genome scale to engineer growth switches in Escherichia coli. Mol Syst Biol 2023; 19:e11596. [PMID: 37642940 PMCID: PMC10568205 DOI: 10.15252/msb.202311596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Temperature-sensitive (TS) mutants are a unique tool to perturb and engineer cellular systems. Here, we constructed a CRISPR library with 15,120 Escherichia coli mutants, each with a single amino acid change in one of 346 essential proteins. 1,269 of these mutants showed temperature-sensitive growth in a time-resolved competition assay. We reconstructed 94 TS mutants and measured their metabolism under growth arrest at 42°C using metabolomics. Metabolome changes were strong and mutant-specific, showing that metabolism of nongrowing E. coli is perturbation-dependent. For example, 24 TS mutants of metabolic enzymes overproduced the direct substrate metabolite due to a bottleneck in their associated pathway. A strain with TS homoserine kinase (ThrBF267D ) produced homoserine for 24 h, and production was tunable by temperature. Finally, we used a TS subunit of DNA polymerase III (DnaXL289Q ) to decouple growth from arginine overproduction in engineered E. coli. These results provide a strategy to identify TS mutants en masse and demonstrate their large potential to produce bacterial metabolites with nongrowing cells.
Collapse
Affiliation(s)
- Thorben Schramm
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections”University of TübingenTübingenGermany
- Present address:
Department of Biology, Institute of Molecular Systems BiologyETH ZurichZürichSwitzerland
| | - Paul Lubrano
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections”University of TübingenTübingenGermany
| | - Vanessa Pahl
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections”University of TübingenTübingenGermany
| | - Amelie Stadelmann
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections”University of TübingenTübingenGermany
| | - Andreas Verhülsdonk
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections”University of TübingenTübingenGermany
| | - Hannes Link
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections”University of TübingenTübingenGermany
| |
Collapse
|
3
|
Marín-Valls R, Hernández K, Bolte M, Parella T, Joglar J, Bujons J, Clapés P. Biocatalytic Construction of Quaternary Centers by Aldol Addition of 3,3-Disubstituted 2-Oxoacid Derivatives to Aldehydes. J Am Chem Soc 2020; 142:19754-19762. [PMID: 33147013 DOI: 10.1021/jacs.0c09994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The congested nature of quaternary carbons hinders their preparation, most notably when stereocontrol is required. Here we report a biocatalytic method for the creation of quaternary carbon centers with broad substrate scope, leading to different compound classes bearing this structural feature. The key step comprises the aldol addition of 3,3-disubstituted 2-oxoacids to aldehydes catalyzed by metal dependent 3-methyl-2-oxobutanoate hydroxymethyltransferase from E. coli (KPHMT) and variants thereof. The 3,3,3-trisubstituted 2-oxoacids thus produced were converted into 2-oxolactones and 3-hydroxy acids and directly to ulosonic acid derivatives, all bearing gem-dialkyl, gem-cycloalkyl, and spirocyclic quaternary centers. In addition, some of these reactions use a single enantiomer from racemic nucleophiles to afford stereopure quaternary carbons. The notable substrate tolerance and stereocontrol of these enzymes are indicative of their potential for the synthesis of structurally intricate molecules.
Collapse
Affiliation(s)
- Roser Marín-Valls
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Karel Hernández
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Michael Bolte
- Institut für Anorganische Chemie, J.-W.-Goethe-Universität, Frankfurt/Main, Germany
| | - Teodor Parella
- Servei de Ressonancia Magnetica Nuclear, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jesús Joglar
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jordi Bujons
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Pere Clapés
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
4
|
Khanppnavar B, Chatterjee R, Choudhury GB, Datta S. Genome-wide survey and crystallographic analysis suggests a role for both horizontal gene transfer and duplication in pantothenate biosynthesis pathways. Biochim Biophys Acta Gen Subj 2019; 1863:1547-1559. [DOI: 10.1016/j.bbagen.2019.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 01/13/2023]
|
5
|
Marín-Valls R, Hernández K, Bolte M, Joglar J, Bujons J, Clapés P. Chemoenzymatic Hydroxymethylation of Carboxylic Acids by Tandem Stereodivergent Biocatalytic Aldol Reaction and Chemical Decarboxylation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01646] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Roser Marín-Valls
- Instituto de Química Avanzada de Cataluña IQAC−CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Karel Hernández
- Instituto de Química Avanzada de Cataluña IQAC−CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Michael Bolte
- Institut für Anorganische Chemie, J.-W.-Goethe-Universität, D-60438 Frankfurt/Main, Germany
| | - Jesús Joglar
- Instituto de Química Avanzada de Cataluña IQAC−CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jordi Bujons
- Instituto de Química Avanzada de Cataluña IQAC−CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Pere Clapés
- Instituto de Química Avanzada de Cataluña IQAC−CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
6
|
Abstract
The biosynthesis of serine, glycine, and one-carbon (C1) units constitutes a major metabolic pathway in Escherichia coli and Salmonella enterica serovar Typhimurium. C1 units derived from serine and glycine are used in the synthesis of purines, histidine, thymine, pantothenate, and methionine and in the formylation of the aminoacylated initiator fMet-TRNAfMet used to start translation in E. coli and serovar Typhimurium. The need for serine, glycine, and C1 units in many cellular functions makes it necessary for the genes encoding enzymes for their synthesis to be carefully regulated to meet the changing demands of the cell for these intermediates. This review discusses the regulation of the following genes: serA, serB, and serC; gly gene; gcvTHP operon; lpdA; gcvA and gcvR; and gcvB genes. Threonine utilization (the Tut cycle) constitutes a secondary pathway for serine and glycine biosynthesis. L-Serine inhibits the growth of E. coli cells in GM medium, and isoleucine releases this growth inhibition. The E. coli glycine transport system (Cyc) has been shown to transport glycine, D-alanine, D-serine, and the antibiotic D-cycloserine. Transport systems often play roles in the regulation of gene expression, by transporting effector molecules into the cell, where they are sensed by soluble or membrane-bound regulatory proteins.
Collapse
|
7
|
Abstract
Pantothenate is vitamin B5 and is the key precursor for the biosynthesis of coenzyme A (CoA), a universal and essential cofactor involved in a myriad of metabolic reactions, including the synthesis of phospholipids, the synthesis and degradation of fatty acids, and the operation of the tricarboxylic acid cycle. CoA is also the only source of the phosphopantetheine prosthetic group for enzymes that shuttle intermediates between the active sites of enzymes involved in fatty acid, nonribosomal peptide, and polyketide synthesis. Pantothenate can be synthesized de novo and/or transported into the cell through a pantothenatepermease. Pantothenate uptake is essential for those organisms that lack the genes to synthesize this vitamin. The intracellular levels of CoA are controlled by the balance between synthesis and degradation. In particular, CoA is assembled in five enzymatic steps, starting from the phosphorylation of pantothenate to phosphopantothenatecatalyzed by pantothenate kinase, the product of the coaA gene. In some bacteria, the production of phosphopantothenate by pantothenate kinase is the rate limiting and most regulated step in the biosynthetic pathway. CoA synthesis additionally networks with other vitamin-associated pathways, such as thiamine and folic acid.
Collapse
|
8
|
Tomita H, Imanaka T, Atomi H. Identification and characterization of an archaeal ketopantoate reductase and its involvement in regulation of coenzyme A biosynthesis. Mol Microbiol 2013; 90:307-21. [PMID: 23941541 DOI: 10.1111/mmi.12363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2013] [Indexed: 11/30/2022]
Abstract
Coenzyme A (CoA) biosynthesis in bacteria and eukaryotes is regulated primarily by feedback inhibition towards pantothenate kinase (PanK). As most archaea utilize a modified route for CoA biosynthesis and do not harbour PanK, the mechanisms governing regulation of CoA biosynthesis are unknown. Here we performed genetic and biochemical studies on the ketopantoate reductase (KPR) from the hyperthermophilic archaeon Thermococcus kodakarensis. KPR catalyses the second step in CoA biosynthesis, the reduction of 2-oxopantoate to pantoate. Gene disruption of TK1968, whose product was 20-29% identical to previously characterized KPRs from bacteria/eukaryotes, resulted in a strain with growth defects that were complemented by addition of pantoate. The TK1968 protein (Tk-KPR) displayed reductase activity specific for 2-oxopantoate and preferred NADH as the electron donor, distinct to the bacterial/eukaryotic NADPH-dependent enzymes. Tk-KPR activity decreased dramatically in the presence of CoA and KPR activity in cell-free extracts was also inhibited by CoA. Kinetic studies indicated that CoA inhibits KPR by competing with NADH. Inhibition of ketopantoate hydroxymethyltransferase, the first enzyme of the pathway, by CoA was not observed. Our results suggest that CoA biosynthesis in T. kodakarensis is regulated by feedback inhibition of KPR, providing a feasible regulation mechanism of CoA biosynthesis in archaea.
Collapse
Affiliation(s)
- Hiroya Tomita
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | | | | |
Collapse
|
9
|
Stuecker TN, Hodge KM, Escalante-Semerena JC. The missing link in coenzyme A biosynthesis: PanM (formerly YhhK), a yeast GCN5 acetyltransferase homologue triggers aspartate decarboxylase (PanD) maturation in Salmonella enterica. Mol Microbiol 2012; 84:608-19. [PMID: 22497218 PMCID: PMC3345047 DOI: 10.1111/j.1365-2958.2012.08046.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coenzyme A (CoA) is an essential cofactor for all forms of life. The biochemistry underpinning the assembly of CoA in Escherichia coli and other enterobacteria is well understood, except for the events leading to maturation of the L-aspartate-α-decarboxylase (PanD) enzyme that converts pantothenate to β-alanine. PanD is synthesized as pro-PanD, which undergoes an auto-proteolytic cleavage at residue Ser25 to yield the catalytic pyruvoyl moiety of the enzyme. Since 1990, it has been known that E. coli yhhK strains are pantothenate auxotrophs, but the role of YhhK in pantothenate biosynthesis remained an enigma. Here we show that Salmonella enterica yhhK strains are also pantothenate auxotrophs. In vivo and in vitro evidence shows that YhhK interacts directly with PanD, and that such interactions accelerate pro-PanD maturation. We also show that S. enterica yhhK strains accumulate pro-PanD, and that not all pro-PanD proteins require YhhK for maturation. For example, the Corynebacterium glutamicum panD(+) gene corrected the pantothenate auxotrophy of a S. enterica yhhK strain, supporting in vitro evidence obtained by others that some pro-PanD proteins autocleave at faster rates. We propose the name PanM for YhhK to reflect its role as a trigger of pro-PanD maturation by stabilizing pro-PanD in an autocleavage-prone conformation.
Collapse
Affiliation(s)
- Tara N. Stuecker
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, WI 53706-1521 USA
| | - Kelsey M. Hodge
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, WI 53706-1521 USA
| | | |
Collapse
|
10
|
Chakauya E, Coxon KM, Wei M, Macdonald MV, Barsby T, Abell C, Smith AG. Towards engineering increased pantothenate (vitamin B(5)) levels in plants. PLANT MOLECULAR BIOLOGY 2008; 68:493-503. [PMID: 18726075 DOI: 10.1007/s11103-008-9386-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 07/31/2008] [Indexed: 05/26/2023]
Abstract
Pantothenate (vitamin B(5)) is the precursor of the 4'-phosphopantetheine moiety of coenzyme A and acyl-carrier protein. It is made by plants and microorganisms de novo, but is a dietary requirement for animals. The pantothenate biosynthetic pathway is well-established in bacteria, comprising four enzymic reactions catalysed by ketopantoate hydroxymethyltransferase (KPHMT), L: -aspartate-alpha-decarboxylase (ADC), pantothenate synthetase (PS) and ketopantoate reductase (KPR) encoded by panB, panD, panC and panE genes, respectively. In higher plants, the genes encoding the first (KPHMT) and last (PS) enzymes have been identified and characterised in several plant species. Commercially, pantothenate is chemically synthesised and used in vitamin supplements, feed additives and cosmetics. Biotransformation is an attractive alternative production system that would circumvent the expensive procedures of separating racemic intermediates. We explored the possibility of manipulating pantothenate biosynthesis in plants. Transgenic oilseed rape (Brassica napus) lines were generated in which the E. coli KPHMT and PS genes were expressed under a strong constitutive CaMV35SS promoter. No significant change of pantothenate levels in PS transgenic lines was observed. In contrast plants expressing KPHMT had elevated pantothenate levels in leaves, flowers siliques and seed in the range of 1.5-2.5 fold increase compared to the wild type plant. Seeds contained the highest vitamin content, indicating that they might be the ideal target for production purposes.
Collapse
Affiliation(s)
- Ereck Chakauya
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| | | | | | | | | | | | | |
Collapse
|
11
|
Webb ME, Marquet A, Mendel RR, Rébeillé F, Smith AG. Elucidating biosynthetic pathways for vitamins and cofactors. Nat Prod Rep 2007; 24:988-1008. [PMID: 17898894 DOI: 10.1039/b703105j] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The elucidation of the pathways to the water-soluble vitamins and cofactors has provided many biochemical and chemical challenges. This is a reflection both of their complex chemical nature, and the fact that they are often made in small amounts, making detection of the enzyme activities and intermediates difficult. Here we present an orthogonal review of how these challenges have been overcome using a combination of methods, which are often ingenious. We make particular reference to some recent developments in the study of biotin, pantothenate, folate, pyridoxol, cobalamin, thiamine, riboflavin and molybdopterin biosynthesis.
Collapse
Affiliation(s)
- Michael E Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | | | | | | | | |
Collapse
|
12
|
Lu Z, Feng X, Song L, Han Y, Kim A, Herzberg O, Woodson WR, Martin BM, Mariano PS, Dunaway-Mariano D. Diversity of Function in the Isocitrate Lyase Enzyme Superfamily: The Dianthus caryophyllus Petal Death Protein Cleaves α-Keto and α-Hydroxycarboxylic Acids. Biochemistry 2005; 44:16365-76. [PMID: 16342929 DOI: 10.1021/bi051776l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The work described in this paper was carried out to define the chemical function a new member of the isocitrate lyase enzyme family derived from the flowering plant Dianthus caryophyllus. This protein (Swiss-Prot entry Q05957) is synthesized in the senescent flower petals and is named the "petal death protein" or "PDP". On the basis of an analysis of the structural contexts of sequence markers common to the C-C bond lyases of the isocitrate lyase/phosphoenolpyruvate mutase superfamily, a substrate screen that employed a (2R)-malate core structure was designed. Accordingly, stereochemically defined C(2)- and C(3)-substituted malates were synthesized and tested as substrates for PDP-catalyzed cleavage of the C(2)-C(3) bond. The screen identified (2R)-ethyl, (3S)-methylmalate, and oxaloacetate [likely to bind as the hydrate, C(2)(OH)(2) gem-diol] as the most active substrates (for each, k(cat)/K(m) = 2 x 10(4) M(-)(1) s(-)(1)). In contrast to the stringent substrate specificities previously observed for the Escherichia coli isocitrate and 2-methylisocitrate lyases, the PDP tolerated hydrogen, methyl, and to a much lesser extent acetate substituents at the C(3) position (S configuration only) and hydoxyl, methyl, ethyl, propyl, and to a much lesser extent isobutyl substituents at C(2) (R configuration only). It is hypothesized that PDP functions in oxalate production in Ca(2+) sequestering and/or in carbon scavenging from alpha-hydroxycarboxylate catabolites during the biochemical transition accompanying petal senescence.
Collapse
Affiliation(s)
- Zhibing Lu
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
von Delft F, Inoue T, Saldanha SA, Ottenhof HH, Schmitzberger F, Birch LM, Dhanaraj V, Witty M, Smith AG, Blundell TL, Abell C. Structure of E. coli ketopantoate hydroxymethyl transferase complexed with ketopantoate and Mg2+, solved by locating 160 selenomethionine sites. Structure 2003; 11:985-96. [PMID: 12906829 DOI: 10.1016/s0969-2126(03)00158-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the crystal structure of E. coli ketopantoate hydroxymethyltransferase (KPHMT) at 1.9 A resolution, in complex with its product, ketopantoate. KPHMT catalyzes the first step in the biosynthesis of pantothenate (vitamin B(5)), the precursor of coenzyme A and the acyl carrier protein cofactor. The structure of the decameric enzyme was solved by multiwavelength anomalous dispersion to locate 160 selenomethionine sites and phase 560 kDa of protein, making it the largest structure solved by this approach. KPHMT adopts the (betaalpha)(8) barrel fold and is a member of the phosphoenolpyruvate/pyruvate superfamily. The active site contains a ketopantoate bidentately coordinated to Mg(2+). Similar binding is likely for the substrate, alpha-ketoisovalerate, orienting the C3 for deprotonation.
Collapse
Affiliation(s)
- Frank von Delft
- Department of Biochemistry, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chaudhuri BN, Sawaya MR, Kim CY, Waldo GS, Park MS, Terwilliger TC, Yeates TO. The crystal structure of the first enzyme in the pantothenate biosynthetic pathway, ketopantoate hydroxymethyltransferase, from M tuberculosis. Structure 2003; 11:753-64. [PMID: 12842039 DOI: 10.1016/s0969-2126(03)00106-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ketopantoate hydroxymethyltransferase (KPHMT) catalyzes the first committed step in the biosynthesis of pantothenate, which is a precursor to coenzyme A and is required for penicillin biosynthesis. The crystal structure of KPHMT from Mycobacterium tuberculosis was determined by the single anomalous substitution (SAS) method at 2.8 A resolution. KPHMT adopts a structure that is a variation on the (beta/alpha) barrel fold, with a metal binding site proximal to the presumed catalytic site. The protein forms a decameric complex, with subunits in opposing pentameric rings held together by a swapping of their C-terminal alpha helices. The structure reveals KPHMT's membership in a small, recently discovered group of (beta/alpha) barrel enzymes that employ domain swapping to form a variety of oligomeric assemblies. The apparent conservation of certain detailed structural characteristics suggests that KPHMT is distantly related by divergent evolution to enzymes in unrelated pathways, including isocitrate lyase and phosphoenolpyruvate mutase.
Collapse
Affiliation(s)
- Barnali N Chaudhuri
- UCLA Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Sugantino M, Zheng R, Yu M, Blanchard JS. Mycobacterium tuberculosis ketopantoate hydroxymethyltransferase: tetrahydrofolate-independent hydroxymethyltransferase and enolization reactions with alpha-keto acids. Biochemistry 2003; 42:191-9. [PMID: 12515554 DOI: 10.1021/bi020516q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The panB gene that encodes ketopantoate hydroxymethyltransferase has been cloned from Mycobacterium tuberculosis, expressed, and purified to homogeneity. 1H NMR spectroscopy was used to determine the rate of (i) tetrahydrofolate-independent hydroxymethyltransferase chemistry between formaldehyde and alpha-ketoisovalerate and (ii) deuterium exchange in the methylenetetrahydrofolate-independent enolization of alpha-ketoisovalerate and other alpha-keto acids, catalyzed by PanB. These studies have demonstrated that substrate enolization by PanB is divalent metal-dependent with a preference of Mg2+ > Zn2+ > Co2+ > Ni2+ > Ca2+. The rate of enolization is pH-dependent with optimal activity in the range of 7.0-7.5. The pH profile was bell-shaped, depending on the ionization state of two ionizable groups with apparent pK values of 6.2 and 8.3. Enolization and isotope exchange occurs with some alpha-keto acids (e.g., pyruvate and alpha-ketobutyrate), resulting in the complete exchange of all beta-hydrogens. Enzyme-catalyzed enolization and isotope exchange occur with other long-chain and branched alpha-keto acids, resulting in the stereospecific exchange of only one of the beta-hydrogen atoms. These results are discussed in the context of steric restrictions present in the enzyme active site and the stereochemistry of base-catalyzed isotope exchange.
Collapse
Affiliation(s)
- Michele Sugantino
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
16
|
Rubio A, Downs DM. Elevated levels of ketopantoate hydroxymethyltransferase (PanB) lead to a physiologically significant coenzyme A elevation in Salmonella enterica serovar Typhimurium. J Bacteriol 2002; 184:2827-32. [PMID: 11976313 PMCID: PMC135036 DOI: 10.1128/jb.184.10.2827-2832.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pantothenate is the product of the ATP-dependent condensation of pantoate and beta-alanine and is a direct precursor of coenzyme A. A connection exists between pantothenate biosynthesis and thiamine biosynthesis in Salmonella enterica serovar Typhimurium since derivatives of a purF mutant that can grow (on glucose medium) in the absence of thiamine excrete pantothenate. We show here that the causative mutation in three such mutants was the addition of a CG base pair upstream of the panB gene. This base addition brings the spacing between the -10 and -35 hexamers of the promoter to a consensus spacing of 17 bp and results in increased transcription of the pan operon. Furthermore, overexpression of PanB caused by this mutation, or by other means, was necessary and sufficient to increase pantothenate production and allow PurF-independent thiamine synthesis on glucose medium.
Collapse
Affiliation(s)
- Aileen Rubio
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
17
|
Abstract
Coenzyme A (I) and enzyme-bound phosphopantetheine (II) function as acyl carriers and as carbonyl activating groups for Claisen reactions as well as for amide-, ester-, and thioester-forming reactions in the cell. In so doing, these cofactors play a key role in the biosynthesis and breakdown of fatty acids and in the biosynthesis of polyketides and nonribosomal peptides. Coenzyme A is biosynthesized in bacteria in nine steps. The biosynthesis begins with the decarboxylation of aspartate to give beta-alanine. Pantoic acid is formed by the hydroxymethylation of alpha-ketoisovalerate followed by reduction. These intermediates are then condensed to give pantothenic acid. Phosphorylation of pantothenic acid followed by condensation with cysteine and decarboxylation gives 4'-phosphopantetheine. Adenylation and phosphorylation of 4'-phosphopantetheine completes the biosynthesis of coenzyme A. This review will focus on the mechanistic enzymology of coenzyme A biosynthesis in bacteria.
Collapse
Affiliation(s)
- T P Begley
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | | | | |
Collapse
|
18
|
Shimoi H, Okuda M, Ito K. Molecular cloning and application of a gene complementing pantothenic acid auxotrophy of sake yeast kyokai no. 7. J Biosci Bioeng 2000. [DOI: 10.1016/s1389-1723(00)90010-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Shimoi H, Okuda M, Ito K. Molecular Cloning and Application of a Gene Complementing Pantothenic Acid Auxotrophy of Sake Yeast Kyokai No.7. J Biosci Bioeng 2000; 90:643-7. [PMID: 16232925 DOI: 10.1263/jbb.90.643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2000] [Accepted: 09/28/2000] [Indexed: 11/17/2022]
Abstract
Kyokai no. 7 is the most widely used yeast in sake brewing. This yeast is a pantothenic acid auxotroph at 35 degrees C, and this phenotype has been used to distinguish Kyokai no. 7 from other sake yeasts. We cloned a DNA fragment complementing the pantothenic acid auxotrophy from a genomic library of a Saccharomyces cerevisiae laboratory strain. DNA sequence analysis revealed that the DNA fragment encodes ECM31, the deletion of which had previously been identified as a calcofluor white-sensitive mutation. The ECM31 product is similar to the Escherichia coli ketopantoate hydroxymethyltransferase. Disruption of ECM31 in a laboratory S. cerevisiae strain resulted in pantothenic acid auxotrophy, indicating that ECM31 is also involved in pantothenic acid synthesis in yeast. A hybrid of a Kyokai no. 7 haploid and the ecm31 disruptant required pantothenic acid at 35 degrees C for its growth, suggesting that Kyokai no. 7 possesses a temperature-sensitive allele of ECM31. Thus, the ECM31 gene can be used as a selective marker in the transformation of Kyokai no. 7.
Collapse
Affiliation(s)
- H Shimoi
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | | | | |
Collapse
|
20
|
Genschel U, Powell CA, Abell C, Smith AG. The final step of pantothenate biosynthesis in higher plants: cloning and characterization of pantothenate synthetase from Lotus japonicus and Oryza sativum (rice). Biochem J 1999; 341 ( Pt 3):669-78. [PMID: 10417331 PMCID: PMC1220405 DOI: 10.1042/0264-6021:3410669] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have isolated a Lotus japonicus cDNA for pantothenate (vitamin B(5)) synthetase (PS) by functional complementation of an Escherichia coli panC mutant (AT1371). A rice (Oryza sativum) expressed sequence tag, identified by sequence similarity to PS, was also able to complement the E. coli auxotroph, as was an open reading frame from Saccharomyces cerevisiae (baker's yeast). The Lotus and rice cDNAs encode proteins of approx. 34 kDa, which are 65% similar at the amino acid level and do not appear to encode N-terminal extensions by comparison with PS sequences from other organisms. Furthermore, analysis of genomic sequence flanking the coding sequence for PS in Lotus suggests the original cDNA is full-length. The Lotus and rice PSs are therefore likely to be cytosolic. Southern analysis of Lotus genomic DNA indicates that there is a single gene for PS. Recombinant PS from Lotus, overexpressed in E. coli AT1371, is a dimer. The enzyme requires d-pantoate, beta-alanine and ATP for activity and has a higher affinity for pantoate (K(m) 45 microM) than for beta-alanine (K(m) 990 microM). Uncompetitive substrate inhibition becomes significant at pantoate concentrations above 1 mM. The enzyme displays optimal activity at about 0.5 mM pantoate (k(cat) 0.63 s(-1)) and at pH 7.8. Neither oxopantoate nor pantoyl-lactone can replace pantoate as substrate. Antibodies raised against recombinant PS detected a band of 34 kDa in Western blots of Lotus proteins from both roots and leaves. The implications of these findings for pantothenate biosynthesis in plants are discussed.
Collapse
Affiliation(s)
- U Genschel
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, U.K
| | | | | | | |
Collapse
|
21
|
Sahm H, Eggeling L. D-Pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction. Appl Environ Microbiol 1999; 65:1973-9. [PMID: 10223988 PMCID: PMC91285 DOI: 10.1128/aem.65.5.1973-1979.1999] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
D-Pantothenate is synthesized via four enzymes from ketoisovalerate, which is an intermediate of branched-chain amino acid synthesis. We quantified three of these enzyme activities in Corynebacterium glutamicum and determined specific activities ranging from 0.00014 to 0.001 micromol/min mg (protein)-1. The genes encoding the ketopantoatehydroxymethyl transferase and the pantothenate synthetase were cloned, sequenced, and functionally characterized. These studies suggest that panBC constitutes an operon. By using panC, an assay system was developed to quantify D-pantothenate. The wild type of C. glutamicum was found to accumulate 9 micrograms of this vitamin per liter. A strain was constructed (i) to abolish L-isoleucine synthesis, (ii) to result in increased ketoisovalerate formation, and (iii) to enable its further conversion to D-pantothenate. The best resulting strain has ilvA deleted from its chromosome and has two plasmids to overexpress genes of ketoisovalerate (ilvBNCD) and D-pantothenate (panBC) synthesis. With this strain a D-pantothenate accumulation of up to 1 g/liter is achieved, which is a 10(5)-fold increase in concentration compared to that of the original wild-type strain. From the series of strains analyzed it follows that an increased ketoisovalerate availability is mandatory to direct the metabolite flux into the D-pantothenate-specific part of the pathway and that the availability of beta-alanine is essential for D-pantothenate formation.
Collapse
Affiliation(s)
- H Sahm
- Institut für Biotechnologie, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | |
Collapse
|
22
|
Hoppensack A, Rehm BH, Steinbüchel A. Analysis of 4-phosphopantetheinylation of polyhydroxybutyrate synthase from Ralstonia eutropha: generation of beta-alanine auxotrophic Tn5 mutants and cloning of the panD gene region. J Bacteriol 1999; 181:1429-35. [PMID: 10049372 PMCID: PMC93530 DOI: 10.1128/jb.181.5.1429-1435.1999] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The postulated posttranslational modification of the polyhydroxybutyrate (PHA) synthase from Ralstonia eutropha by 4-phosphopantetheine was investigated. Four beta-alanine auxotrophic Tn5-induced mutants of R. eutropha HF39 were isolated, and two insertions were mapped in an open reading frame with strong similarity to the panD gene from Escherichia coli, encoding L-aspartate-1-decarboxylase (EC 4.1.1.15), whereas two other insertions were mapped in an open reading frame (ORF) with strong similarity to the NAD(P)+ transhydrogenase (EC 1.6.1.1) alpha 1 subunit, encoded by the pntAA gene from Escherichia coli. The panD gene was cloned by complementation of the panD mutant of R. eutropha Q20. DNA sequencing of the panD gene region (3,312 bp) revealed an ORF of 365 bp, encoding a protein with 63 and 67% amino acid sequence similarity to PanD from E. coli and Bacillus subtilis, respectively. Subcloning of only this ORF into vectors pBBR1MCS-3 and pBluescript KS- led to complementation of the panD mutants of R. eutropha and E. coli SJ16, respectively. panD-encoded L-aspartate-1-decarboxylase was further confirmed by an enzymatic assay. Upstream of panD, an ORF with strong similarity to pntAA from E. coli, encoding NAD(P)+ transhydrogenase subunit alpha 1 was found; downstream of panD, two ORFs with strong similarity to pntAB and pntB, encoding subunits alpha 2 and beta of the NAD(P)+ transhydrogenase, respectively, were identified. Thus, a hitherto undetermined organization of pan and pnt genes was found in R. eutropha. Labeling experiments using one of the R. eutropha panD mutants and [2-14C]beta-alanine provided no evidence that R. eutropha PHA synthase is covalently modified by posttranslational attachment of 4-phosphopantetheine, nor did the E. coli panD mutant exhibit detectable labeling of functional PHA synthase from R. eutropha.
Collapse
Affiliation(s)
- A Hoppensack
- Institut für Mikrobiologie der Westfälischen Wilhelms-Universität Münster, D-48149 Münster, Germany
| | | | | |
Collapse
|
23
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
24
|
So AK, Espie GS. Cloning, characterization and expression of carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. PLANT MOLECULAR BIOLOGY 1998; 37:205-15. [PMID: 9617794 DOI: 10.1023/a:1005959200390] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A 3.3 kb HindIII restriction-digest DNA fragment was isolated from a Synechocystis sp. strain PCC6803 subgenomic plasmid library which strongly hybridized to a 349 bp fragment of the icfA (ccaA) gene from Synechococcus sp. strain PCC7942. DNA sequence analysis of the fragment revealed three open reading frames (ORFs), two of which potentially coded for pantothenate synthetase (ORF275) and cytidylate kinase (ORF230). The third, ORF274, was 825 bp in length, encoding a deduced polypeptide of 274 aa (Mr, 30747) that bears 55% sequence identity to the Synechococcus icfA (ccaA) translation product, a beta-type carbonic anhydrase (CA). A 932 bp EcoRI fragment containing ORF274 was subcloned into an expression vector and the construct was transformed into Escherichia coli for overexpression. Electrometric assays for CA activity revealed that whole cell extracts containing the recombinant protein significantly enhanced the rate of conversion of CO2 to HCO3- and that 98% of this catalytic activity was inhibited by ethoxyzolamide, a well-characterized CA inhibitor. Antisera derived against the overexpressed protein recognized a 30.7 kDa protein that was predominantly associated with the isolated carboxysome fraction from Synechocystis. These results provide molecular and physiological evidence for the identification of a ccaA homologue in Synechocystis PCC6803 that encodes a carboxysomal beta-type CA.
Collapse
Affiliation(s)
- A K So
- Department of Botany, University of Toronto at Mississauga, Ontario, Canada
| | | |
Collapse
|
25
|
|
26
|
Ramjee MK, Genschel U, Abell C, Smith AG. Escherichia coli L-aspartate-alpha-decarboxylase: preprotein processing and observation of reaction intermediates by electrospray mass spectrometry. Biochem J 1997; 323 ( Pt 3):661-9. [PMID: 9169598 PMCID: PMC1218368 DOI: 10.1042/bj3230661] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Escherichia coli panD gene, encoding l-aspartate-alpha-decarboxylase, was cloned by PCR, and shown to complement a panD mutant defective in beta-alanine biosynthesis. Aspartate decarboxylase is a pyruvoyl-dependent enzyme, and is synthesized initially as an inactive proenzyme (the pi-protein), which is proteolytically cleaved at a specific X-Ser bond to produce a beta-subunit with XOH at its C-terminus and an alpha-subunit with a pyruvoyl group at its N-terminus, derived from the serine. The recombinant enzyme, as purified, is a tetramer, and comprises principally the unprocessed pi-subunit (of 13.8 kDa), with a small proportion of the alpha- and beta-subunits (11 kDa and 2.8 kDa respectively). Incubation of the purified enzyme at elevated temperatures for several hours results in further processing. Using fluorescein thiosemicarbazide, the completely processed enzyme was shown to contain three pyruvoyl groups per tetrameric enzyme. The presence of unchanged serine at the N-terminus of some of the alpha-subunits was confirmed by electrospray mass spectrometry (ESMS) and N-terminal amino acid sequencing. A novel HPLC assay for aspartate decarboxylase was established and used to determine the Km and kcat for l-aspartate as 151+/-16 microM and 0.57 s-1 respectively. ESMS was also used to observe substrate and product adducts trapped on the pyruvoyl group by sodium cyanoborohydride treatment.
Collapse
Affiliation(s)
- M K Ramjee
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | | | | | | |
Collapse
|
27
|
Merkel WK, Nichols BP. Characterization and sequence of the Escherichia coli panBCD gene cluster. FEMS Microbiol Lett 1996; 143:247-52. [PMID: 8837478 DOI: 10.1111/j.1574-6968.1996.tb08488.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A 4589 bp DNA segment containing the Escherichia coli panBCD gene cluster was sequenced, and found to contain 6 complete open reading frames. panB, panC, and panD were identified by subcloning and insertional mutagenesis. The orientation of panD was also confirmed by orientation-specific expression of asparate-1-decarboxylase. panB and panC lie adjacent to one another, but are separated from panD by orf3, which is oriented in the opposite direction. Interruptions in the remaining open reading frames did not affect growth on glucose-minimal medium. No significant similarity to sequences in databases was found for orf1 and orf2. Orf3 contained extensive similarity to reading frames defined by E. coli yjiP, yjiQ, yhgA, and yafD. The function of these amino acid sequences is as yet undefined.
Collapse
Affiliation(s)
- W K Merkel
- Department of Biological Sciences, University of Illinois at Chicago 60607, USA
| | | |
Collapse
|
28
|
|