1
|
Okaro U, George S, Anderson B. What Is in a Cat Scratch? Growth of Bartonella henselae in a Biofilm. Microorganisms 2021; 9:835. [PMID: 33919891 PMCID: PMC8070961 DOI: 10.3390/microorganisms9040835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Bartonella henselae (B. henselae) is a gram-negative bacterium that causes cat scratch disease, bacteremia, and endocarditis, as well as other clinical presentations. B. henselae has been shown to form a biofilm in vitro that likely plays a role in the establishment and persistence of the bacterium in the host. Biofilms are also known to form in the cat flea vector; hence, the ability of this bacterium to form a biofilm has broad biological significance. The release of B. henselae from a biofilm niche appears to be important in disease persistence and relapse in the vertebrate host but also in transmission by the cat flea vector. It has been shown that the BadA adhesin of B. henselae is critical for adherence and biofilm formation. Thus, the upregulation of badA is important in initiating biofilm formation, and down-regulation is important in the release of the bacterium from the biofilm. We summarize the current knowledge of biofilm formation in Bartonella species and the role of BadA in biofilm formation. We discuss the evidence that defines possible mechanisms for the regulation of the genes required for biofilm formation. We further describe the regulation of those genes in the conditions that mimic both the arthropod vector and the mammalian host for B. henselae. The treatment for persistent B. henselae infection remains a challenge; hence, a better understanding of the mechanisms by which this bacterium persists in its host is critical to inform future efforts to develop drugs to treat such infections.
Collapse
Affiliation(s)
- Udoka Okaro
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| | - Sierra George
- Department of Molecular Medicine, MDC7, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA;
| | - Burt Anderson
- Department of Molecular Medicine, MDC7, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA;
| |
Collapse
|
2
|
Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Chem Rev 2020; 120:5252-5307. [PMID: 32108471 PMCID: PMC7339862 DOI: 10.1021/acs.chemrev.9b00629] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The metallobiochemistry underlying the formation of the inorganic N-N-bond-containing molecules nitrous oxide (N2O), dinitrogen (N2), and hydrazine (N2H4) is essential to the lifestyles of diverse organisms. Similar reactions hold promise as means to use N-based fuels as alternative carbon-free energy sources. This review discusses research efforts to understand the mechanisms underlying biological N-N bond formation in primary metabolism and how the associated reactions are tied to energy transduction and organismal survival. These efforts comprise studies of both natural and engineered metalloenzymes as well as synthetic model complexes.
Collapse
Affiliation(s)
- Christina Ferousi
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Sean H Majer
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Cherobaeva AS, Kizilova AK, Stepanov AL, Kravchenko IK. Molecular analysis of the diversity of nitrifying bacteria in the soils of the forest and steppe zones of European Russia. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261711030064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
4
|
Responses of aerobic and anaerobic ammonia/ammonium-oxidizing microorganisms to anthropogenic pollution in coastal marine environments. Methods Enzymol 2011; 496:35-62. [PMID: 21514459 DOI: 10.1016/b978-0-12-386489-5.00002-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Up to date, numerous studies have shown that the community structure of aerobic ammonia oxidizers including ammonia-oxidizing Betaproteobacteria (Beta-AOB) and ammonia-oxidizing archaea (AOA) and, more recently, the anaerobic ammonium-oxidizing (anammox) bacteria is responsive to environmental conditions including salinity, pH, selected metal ions, concentrations of inorganic nitrogen, total phosphorus, the ratio of organic carbon and nitrogen, and sedimentological factors such as the sediment median grain size. Identification of these responses to known anthropogenic pollution is of particular interest to better understand the growth dynamics and activities of nitrogen transforming microorganisms in marine environments. This chapter discusses currently available methods including molecular ecological analysis using clone library constructions with specific molecular genetic markers for delineating community changes of Beta-AOB, AOA, and anammox bacteria. Using data on ammonia-oxidizing microbial community structures from Jiaozhou Bay in North China and three marine environments with anthropogenic pollution gradients in South China from coastal Mai Po Nature Reserve of Hong Kong to the South China Sea as examples, statistical analyses packages (DOTUR, UniFrac, and Canoco) are presented as useful tools to illustrate the relationship between changes in nitrogen metabolizing microbial communities and established environmental variables.
Collapse
|
5
|
Abstract
Ammonia oxidizing bacteria extract energy for growth from the oxidation of ammonia to nitrite. Ammonia monooxygenase, which initiates ammonia oxidation, remains enigmatic given the lack of purified preparations. Genetic and biochemical studies support a model for the enzyme consisting of three subunits and metal centers of copper and iron. Knowledge of hydroxylamine oxidoreductase, which oxidizes hydroxylamine formed by ammonia monooxygenase to nitrite, is informed by a crystal structure and detailed spectroscopic and catalytic studies. Other inorganic nitrogen compounds, including NO, N2O, NO2, and N2 can be consumed and/or produced by ammonia-oxidizing bacteria. NO and N2O can be produced as byproducts of hydroxylamine oxidation or through nitrite reduction. NO2 can serve as an alternative oxidant in place of O2 in some ammonia-oxidizing strains. Our knowledge of the diversity of inorganic N metabolism by ammonia-oxidizing bacteria continues to grow. Nonetheless, many questions remain regarding the enzymes and genes involved in these processes and the role of these pathways in ammonia oxidizers.
Collapse
Affiliation(s)
- Daniel J Arp
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | | |
Collapse
|
6
|
Poly F, Wertz S, Brothier E, Degrange V. First exploration of Nitrobacter diversity in soils by a PCR cloning-sequencing approach targeting functional gene nxrA. FEMS Microbiol Ecol 2008; 63:132-40. [DOI: 10.1111/j.1574-6941.2007.00404.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Arp DJ, Chain PSG, Klotz MG. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu Rev Microbiol 2007; 61:503-28. [PMID: 17506671 DOI: 10.1146/annurev.micro.61.080706.093449] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The availability of whole-genome sequences for ammonia-oxidizing bacteria (AOB) has led to dramatic increases in our understanding of these environmentally important microorganisms. Their genomes are smaller than many other members of the proteobacteria and may indicate genome reductions consistent with their limited lifestyle. The genomes have a surprising level of gene repetition including genes for ammonia catabolism, iron acquisition, and insertion sequences. The gene profiles reveal limited genes for catabolism and transport of complex organic compounds, but complete pathways for some other compounds. This led to the observation of chemolithoheterotrophic growth of Nitrosomonas europaea. Genes for sucrose synthesis/degradation were identified. The core metabolic module of aerobic ammonia oxidation, the extraction of electrons from hydroxylamine to generate proton-motive force and reductant, has evolutionary roots in the denitrification inventory of anaerobic sulfur-dependent bacteria. The extension by ammonia monooxygenase provides a mechanism to feed this module using ammonia and O(2).
Collapse
Affiliation(s)
- Daniel J Arp
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA.
| | | | | |
Collapse
|
8
|
Hornek R, Pommerening-Röser A, Koops HP, Farnleitner AH, Kreuzinger N, Kirschner A, Mach RL. Primers containing universal bases reduce multiple amoA gene specific DGGE band patterns when analysing the diversity of beta-ammonia oxidizers in the environment. J Microbiol Methods 2005; 66:147-55. [PMID: 16343671 DOI: 10.1016/j.mimet.2005.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 10/26/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
The gene encoding the active site of the ammonia monooxygenase (amoA) has been exploited as molecular marker for studying ammonia-oxidizing bacteria (AOB) diversity in the environment. Primers amplifying functional genes are often degenerated and therefore produce multiple band patterns, when analysed with the Denaturing gradient gel electrophoresis (DGGE) approach. To improve the DGGE band patterns we have designed new primer sets which contain inosine residues and are specific for the amoA gene. Primers were evaluated analysing pure AOB cultures and two habitats (wastewater treatment plant, soda pools). We found that the application of inosine primers helped to reduce the apparent complexity of the DGGE band pattern. Comparison of sequences from environmental samples using either degenerated or inosine containing amoA primers retrieved both identical and additional sequences. Both primer sets seem to be limited in their ability to detect the presence of all AOB by DGGE analyses.
Collapse
Affiliation(s)
- Romana Hornek
- Institute for Chemical Engineering, Working Group Gene Technology, Vienna University of Technology, Getreidemarkt 9/166/5, Austria.
| | | | | | | | | | | | | |
Collapse
|
9
|
Bergmann DJ, Hooper AB, Klotz MG. Structure and sequence conservation of hao cluster genes of autotrophic ammonia-oxidizing bacteria: evidence for their evolutionary history. Appl Environ Microbiol 2005; 71:5371-82. [PMID: 16151127 PMCID: PMC1214698 DOI: 10.1128/aem.71.9.5371-5382.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparison of the organization and sequence of the hao (hydroxylamine oxidoreductase) gene clusters from the gammaproteobacterial autotrophic ammonia-oxidizing bacterium (aAOB) Nitrosococcus oceani and the betaproteobacterial aAOB Nitrosospira multiformis and Nitrosomonas europaea revealed a highly conserved gene cluster encoding the following proteins: hao, hydroxylamine oxidoreductase; orf2, a putative protein; cycA, cytochrome c(554); and cycB, cytochrome c(m)(552). The deduced protein sequences of HAO, c(554), and c(m)(552) were highly similar in all aAOB despite their differences in species evolution and codon usage. Phylogenetic inference revealed a broad family of multi-c-heme proteins, including HAO, the pentaheme nitrite reductase, and tetrathionate reductase. The c-hemes of this group also have a nearly identical geometry of heme orientation, which has remained conserved during divergent evolution of function. High sequence similarity is also seen within a protein family, including cytochromes c(m)(552), NrfH/B, and NapC/NirT. It is proposed that the hydroxylamine oxidation pathway evolved from a nitrite reduction pathway involved in anaerobic respiration (denitrification) during the radiation of the Proteobacteria. Conservation of the hydroxylamine oxidation module was maintained by functional pressure, and the module expanded into two separate narrow taxa after a lateral gene transfer event between gamma- and betaproteobacterial ancestors of extant aAOB. HAO-encoding genes were also found in six non-aAOB, either singly or tandemly arranged with an orf2 gene, whereas a c(554) gene was lacking. The conservation of the hao gene cluster in general and the uniqueness of the c(554) gene in particular make it a suitable target for the design of primers and probes useful for molecular ecology approaches to detect aAOB.
Collapse
Affiliation(s)
- David J Bergmann
- University of Louisville, Department of Biology, 139 Life Science Building, Louisville, KY 40292, USA
| | | | | |
Collapse
|
10
|
Stralis-Pavese N, Sessitsch A, Weilharter A, Reichenauer T, Riesing J, Csontos J, Murrell JC, Bodrossy L. Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environ Microbiol 2004; 6:347-63. [PMID: 15008813 DOI: 10.1111/j.1462-2920.2004.00582.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Landfill sites are responsible for 6-12% of global methane emission. Methanotrophs play a very important role in decreasing landfill site methane emissions. We investigated the methane oxidation capacity and methanotroph diversity in lysimeters simulating landfill sites with different plant vegetations. Methane oxidation rates were 35 g methane m-2 day-1 or higher for planted lysimeters and 18 g methane m-2 day-1 or less for bare soil controls. Best methane oxidation, as displayed by gas depth profiles, was found under a vegetation of grass and alfalfa. Methanotroph communities were analysed at high throughput and resolution using a microbial diagnostic microarray targeting the particulate methane monooxygenase (pmoA) gene of methanotrophs and functionally related bacteria. Members of the genera Methylocystis and Methylocaldum were found to be the dominant members in landfill site simulating lysimeters. Soil bacterial communities in biogas free control lysimeters, which were less abundant in methanotrophs, were dominated by Methylocaldum. Type Ia methanotrophs were found only in the top layers of bare soil lysimeters with relatively high oxygen and low methane concentrations. A competetive advantage of type II methanotrophs over type Ia methanotrophs was indicated under all plant covers investigated. Analysis of average and individual results from parallel samples was used to identify general trends and variations in methanotroph community structures in relation to depth, methane supply and plant cover. The applicability of the technology for the detection of environmental perturbations was proven by an erroneous result, where an unexpected community composition detected with the microarray indicated a potential gas leakage in the lysimeter being investigated.
Collapse
Affiliation(s)
- Nancy Stralis-Pavese
- Department of Biotechnology, ARC Seibersdorf research GmbH, A-2444 Seibersdorf, Austria
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Avrahami S, Liesack W, Conrad R. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ Microbiol 2003; 5:691-705. [PMID: 12871236 DOI: 10.1046/j.1462-2920.2003.00457.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the effect of temperature on the activity of soil ammonia oxidizers caused by changes in the availability of ammonium and in the microbial community structure. Both short (5 days) and long (6.5, 16 and 20 weeks) incubation of an agricultural soil resulted in a decrease in ammonium concentration that was more pronounced at temperatures between 10 and 25 degrees C than at either 4 degrees C or 30-37 degrees C. Consistently, potential nitrification was higher between 10 and 25 degrees C than at either 4 degrees C or 37 degrees C. However, as long as ammonium was not limiting, release rates of N2O increased monotonously between 4 and 37 degrees C after short-term temperature adaptation, with nitrification accounting for about 35-50% of the N2O production between 4 and 25 degrees C. In order to see whether temperature may also affect the community structure of ammonia oxidizers, we studied moist soil during long incubation at low and high concentrations of commercial fertilizer. The soil was also incubated in buffered (pH 7) slurry amended with urea. Communities of ammonia oxidizers were assayed by denaturant gradient gel electrophoresis (DGGE) of the amoA gene coding for the alpha subunit of ammonia monooxygenase. We found that a polymerase chain reaction (PCR) system using a non-degenerated reverse primer (amoAR1) gave the best results. Community shifts occurred in all soil treatments after 16 weeks of incubation. The community shifts were obviously influenced by the different fertilizer treatments, indicating that ammonium was a selective factor for different ammonia oxidizer populations. Temperature was also a selective factor, in particular as community shifts were also observed in the soil slurries, in which ammonium concentrations and pH were better controlled. Cloning and sequencing of selected DGGE bands indicated that amoA sequences belonging to Nitrosospira cluster 1 were dominant at low temperatures (4-10 degrees C), but were absent after long incubation at low fertilizer treatment. Sequences of Nitrosospira cluster 9 could only be detected at low ammonium concentrations, whereas those of Nitrosospira cluster 3 were found at most ammonium concentrations and temperatures, although individual clones of this cluster exhibited trends with temperature. Obviously, ammonia oxidizers are able to adapt to soil conditions by changes in the community structure if sufficient time (several weeks) is available.
Collapse
Affiliation(s)
- Sharon Avrahami
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str., 35043 Marburg, Germany
| | | | | |
Collapse
|
12
|
Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J, Sayavedra-Soto L, Arciero D, Hommes N, Whittaker M, Arp D. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 2003; 185:2759-73. [PMID: 12700255 PMCID: PMC154410 DOI: 10.1128/jb.185.9.2759-2773.2003] [Citation(s) in RCA: 361] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrosomonas europaea (ATCC 19718) is a gram-negative obligate chemolithoautotroph that can derive all its energy and reductant for growth from the oxidation of ammonia to nitrite. Nitrosomonas europaea participates in the biogeochemical N cycle in the process of nitrification. Its genome consists of a single circular chromosome of 2,812,094 bp. The GC skew analysis indicates that the genome is divided into two unequal replichores. Genes are distributed evenly around the genome, with approximately 47% transcribed from one strand and approximately 53% transcribed from the complementary strand. A total of 2,460 protein-encoding genes emerged from the modeling effort, averaging 1,011 bp in length, with intergenic regions averaging 117 bp. Genes necessary for the catabolism of ammonia, energy and reductant generation, biosynthesis, and CO(2) and NH(3) assimilation were identified. In contrast, genes for catabolism of organic compounds are limited. Genes encoding transporters for inorganic ions were plentiful, whereas genes encoding transporters for organic molecules were scant. Complex repetitive elements constitute ca. 5% of the genome. Among these are 85 predicted insertion sequence elements in eight different families. The strategy of N. europaea to accumulate Fe from the environment involves several classes of Fe receptors with more than 20 genes devoted to these receptors. However, genes for the synthesis of only one siderophore, citrate, were identified in the genome. This genome has provided new insights into the growth and metabolism of ammonia-oxidizing bacteria.
Collapse
Affiliation(s)
- Patrick Chain
- Joint Genome Institute, Walnut Creek, California 94598, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hommes NG, Sayavedra-Soto LA, Arp DJ. Transcript analysis of multiple copies of amo (encoding ammonia monooxygenase) and hao (encoding hydroxylamine oxidoreductase) in Nitrosomonas europaea. J Bacteriol 2001; 183:1096-100. [PMID: 11208810 PMCID: PMC94979 DOI: 10.1128/jb.183.3.1096-1100.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes encoding ammonia monooxygenase (amoCAB), hydroxylamine oxidoreductase (hao), and the c-type cytochrome c-554 (hcy) are present in multiple copies in the genome of Nitrosomonas europaea. The upstream regions of the two copies of amoC, the three copies of hao, and one copy of hcy were cloned and sequenced. Primer extension reactions were done to identify transcription start sites for these genes, as well as for amoA. Putative sigma(70) promoter sequences were found associated with all but one of the mapped transcription start sites. Primer extensions were done with amoC primers using RNA harvested from cells incubated with and without ammonium. The experiments suggested that N. europaea cells may be able to use different promoters in the presence and absence of ammonium.
Collapse
Affiliation(s)
- N G Hommes
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331-2902, USA
| | | | | |
Collapse
|
14
|
Bothe H, Jost G, Schloter M, Ward BB, Witzel K. Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 2000; 24:673-90. [PMID: 11077158 DOI: 10.1111/j.1574-6976.2000.tb00566.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
This review summarizes aspects of the current knowledge about the ecology of ammonia-oxidizing and denitrifying bacteria. The development of molecular techniques has contributed enormously to the rapid recent progress in the field. Different techniques for doing so are discussed. The characterization of ammonia-oxidizing and -denitrifying bacteria by sequencing the genes encoding 16S rRNA and functional proteins opened the possibility of constructing specific probes. It is now possible to monitor the occurrence of a particular species of these bacteria in any habitat and to get an estimate of the relative abundance of different types, even if they are not culturable as yet. These data indicate that the composition of nitrifying and denitrifying communities is complex and apparently subject to large fluctuations, both in time and in space. More attempts are needed to enrich and isolate those bacteria which dominate the processes, and to characterize them by a combination of physiological, biochemical and molecular techniques. While PCR and probing with nucleotides or antibodies are primarily used to study the structure of nitrifying and denitrifying communities, studies of their function in natural habitats, which require quantification at the transcriptional level, are currently not possible.
Collapse
Affiliation(s)
- H Bothe
- Botanical Institute, University of Cologne, Germany
| | | | | | | | | |
Collapse
|
15
|
Stein LY, Sayavedra-Soto LA, Hommes NG, Arp DJ. Differential regulation of amoA and amoB gene copies in Nitrosomonas europaea. FEMS Microbiol Lett 2000; 192:163-8. [PMID: 11064189 DOI: 10.1111/j.1574-6968.2000.tb09376.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Nitrosomonas europaea contains two nearly identical copies of the operon, amoCAB, which encodes the ammonia monooxygenase (AMO) enzyme. Cells of N. europaea containing single mutations in either amoA or amoB gene copies were incubated in ammonium both prior to and after exposure to acetylene or light. For each strain, the O(2) consumption rates and amounts of AmoA polypeptide, the active site-containing subunit of AMO, produced in each strain were determined. Strains carrying a mutation in either the amoA(2) or amoB(2) genes responded similarly to wild-type cells, but the strains carrying mutations in the amoA(1) or amoB(1) genes responded differently from the wild-type, or from each other. These results suggest that the copies of amoA and amoB are differentially regulated upon exposure to different external stimuli.
Collapse
Affiliation(s)
- L Y Stein
- Laboratory for Nitrogen Fixation Research, Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley, Corvallis, OR 97331-2902, USA
| | | | | | | |
Collapse
|
16
|
Whittaker M, Bergmann D, Arciero D, Hooper AB. Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:346-55. [PMID: 11004450 DOI: 10.1016/s0005-2728(00)00171-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The combined action of ammonia monooxygenase, AMO, (NH(3)+2e(-)+O(2)-->NH(2)OH) and hydroxylamine oxidoreductase, HAO, (NH(2)OH+H(2)O-->HNO(2)+4e(-)+4H(+)) accounts for ammonia oxidation in Nitrosomonas europaea. Pathways for electrons from HAO to O(2), nitrite, NO, H(2)O(2) or AMO are reviewed and some recent advances described. The membrane cytochrome c(M)552 is proposed to participate in the path between HAO and ubiquinone. A bc(1) complex is shown to mediate between ubiquinol and the terminal oxidase and is shown to be downstream of HAO. A novel, red, low-potential, periplasmic copper protein, nitrosocyanin, is introduced. Possible mechanisms for the inhibition of ammonia oxidation in cells by protonophores are summarized. Genes for nitrite- and NO-reductase but not N(2)O or nitrate reductase are present in the genome of Nitrosomonas. Nitrite reductase is not repressed by growth on O(2); the flux of nitrite reduction is controlled at the substrate level.
Collapse
Affiliation(s)
- M Whittaker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
17
|
Hirota R, Yamagata A, Kato J, Kuroda A, Ikeda T, Takiguchi N, Ohtake H. Physical map location of the multicopy genes coding for ammonia monooxygenase and hydroxylamine oxidoreductase in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11. J Bacteriol 2000; 182:825-8. [PMID: 10633121 PMCID: PMC94350 DOI: 10.1128/jb.182.3.825-828.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pulsed-field gel electrophoresis of PmeI digests of the Nitrosomonas sp. strain ENI-11 chromosome produced four bands ranging from 1,200 to 480 kb in size. Southern hybridizations suggested that a 487-kb PmeI fragment contained two copies of the amoCAB genes, coding for ammonia monooxygenase (designated amoCAB(1) and amoCAB(2)), and three copies of the hao gene, coding for hydroxylamine oxidoreductase (hao(1), hao(2), and hao(3)). In this DNA fragment, amoCAB(1) and amoCAB(2) were about 390 kb apart, while hao(1), hao(2), and hao(3) were separated by at least about 100 kb from each other. Interestingly, hao(1) and hao(2) were located relatively close to amoCAB(1) and amoCAB(2), respectively. DNA sequence analysis revealed that hao(1) and hao(2) shared 160 identical nucleotides immediately upstream of each translation initiation codon. However, hao(3) showed only 30% nucleotide identity in the 160-bp corresponding region.
Collapse
Affiliation(s)
- R Hirota
- Department of Fermentation Technology, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Yamagata A, Kato J, Hirota R, Kuroda A, Ikeda T, Takiguchi N, Ohtake H. Isolation and characterization of two cryptic plasmids in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11. J Bacteriol 1999; 181:3375-81. [PMID: 10348848 PMCID: PMC93803 DOI: 10.1128/jb.181.11.3375-3381.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/1998] [Accepted: 03/31/1999] [Indexed: 11/20/2022] Open
Abstract
Two plasmids were discovered in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11, which was isolated from activated sludge. The plasmids, designated pAYS and pAYL, were relatively small, being approximately 1.9 kb long. They were cryptic plasmids, having no detectable plasmid-linked antibiotic resistance or heavy metal resistance markers. The complete nucleotide sequences of pAYS and pAYL were determined, and their physical maps were constructed. There existed two major open reading frames, ORF1 in pAYS and ORF2 in pAYL, each of which was more than 500 bp long. The predicted product of ORF2 was 28% identical to part of the replication protein of a Bacillus plasmid, pBAA1. However, no significant similarity to any known protein sequences was detected with the predicted product of ORF1. pAYS and pAYL had a highly homologous region, designated HHR, of 262 bp. The overall identity was 98% between the two nucleotide sequences. Interestingly, HHR-homologous sequences were also detected in the genomes of ENI-11 and the plasmidless strain Nitrosomonas europaea IFO14298. Deletion analysis of pAYS and pAYL indicated that HHR, together with either ORF1 or ORF2, was essential for plasmid maintenance in ENI-11. To our knowledge, pAYS and pAYL are the first plasmids found in the ammonia-oxidizing autotrophic bacteria.
Collapse
Affiliation(s)
- A Yamagata
- Department of Fermentation Technology, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Svanem BI, Skjåk-Braek G, Ertesvåg H, Valla S. Cloning and expression of three new Aazotobacter vinelandii genes closely related to a previously described gene family encoding mannuronan C-5-epimerases. J Bacteriol 1999; 181:68-77. [PMID: 9864314 PMCID: PMC103533 DOI: 10.1128/jb.181.1.68-77.1999] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cloning and expression of a family of five modular-type mannuronan C-5-epimerase genes from Azotobacter vinelandii (algE1 to -5) has previously been reported. The corresponding proteins catalyze the Ca2+-dependent polymer-level epimerization of beta-D-mannuronic acid to alpha-L-guluronic acid (G) in the commercially important polysaccharide alginate. Here we report the identification of three additional structurally similar genes, designated algE6, algE7, and algY. All three genes were sequenced and expressed in Escherichia coli. AlgE6 introduced contiguous stretches of G residues into its substrate (G blocks), while AlgE7 acted as both an epimerase and a lyase. The epimerase activity of AlgE7 leads to formation of alginates with both single G residues and G blocks. AlgY did not display epimerase activity, but a hybrid gene in which the 5'-terminal part was exchanged with the corresponding region in algE4 expressed an active epimerase. Southern blot analysis of genomic A. vinelandii DNA, using the 5' part of algE2 as a probe, indicated that all hybridization signals originated from algE1 to -5 or the three new genes reported here.
Collapse
Affiliation(s)
- B I Svanem
- UNIGEN Center for Molecular Biology, Norwegian University of Science and Technology, N-7005 Trondheim, Norway
| | | | | | | |
Collapse
|
20
|
Timkovich R, Bergmann D, Arciero DM, Hooper AB. Primary sequence and solution conformation of ferrocytochrome c-552 from Nitrosomonas europaea. Biophys J 1998; 75:1964-72. [PMID: 9746537 PMCID: PMC1299867 DOI: 10.1016/s0006-3495(98)77637-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cytochrome c-552 from Nitrosomonas europaea is a 9.1-kDa monoheme protein that is a member of the bacterial cytochrome c-551 family. The gene encoding for c-552 has been cloned and sequenced and the primary sequence of the product deduced. Proton resonance assignments were made for all main-chain and most side-chain protons in the diamagnetic, reduced form by two-dimensional NMR techniques. Distance constraints (1056) were determined from nuclear Overhauser enhancements, and torsion angle constraints (88) were determined from scalar coupling estimates. Solution conformations for the protein were computed by the hybrid distance geometry-simulated annealing approach. For 20 computed structures, the root mean squared deviation from the average position of equivalent atoms was 0.84 A (sigma = 0.12) for backbone atoms over all residues. Analysis by residue revealed there were three regions clearly less well defined than the rest of the protein: the first two residues at the N-terminus, the last two at the C-terminus, and a loop region from residues 34 to 40. Omitting these regions from the comparison, the root mean squared deviation was 0.61 A (sigma = 0.13) for backbone atoms, 0.86 A (sigma = 0.12) for all associated heavy atoms, and 0. 43 A (sigma = 0.17) for the heme group. The global folding of the protein is consistent with others in the c-551 family. A deletion at the N-terminus relative to other family members had no impact on the global folding, whereas an insertion at residue 65 did affect the way the polypeptide packs against the methionine-ligated side of the heme. The effects of specific substitutions will be discussed. The structure of c-552 serves to delineate essential features of the c-551 family.
Collapse
Affiliation(s)
- R Timkovich
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487-0336, USA.
| | | | | | | |
Collapse
|
21
|
Hommes NG, Sayavedra-Soto LA, Arp DJ. Mutagenesis and expression of amo, which codes for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol 1998; 180:3353-9. [PMID: 9642187 PMCID: PMC107289 DOI: 10.1128/jb.180.13.3353-3359.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitrosomonas europaea has two copies of the operon encoding ammonia monooxygenase (AMO). The nucleotide sequences of the two copies of amoA were obtained, and they were found to differ by one nucleotide. To determine if both copies of amoA were functional, insertional mutagenesis was performed to inactivate either copy of amoA alone. A DNA cassette containing the lacZ and kan genes inserted into amoA was constructed. Mutagenesis was done by using transformation and homologous recombination to mobilize the cassette into the chromosomal copies of amoA. Mutations were obtained in both copies of amoA. Either copy of amoA was sufficient to support growth when the other copy was disrupted. However, inactivation of one copy of amoA, but not the other, resulted in slower growth. Measurements of ammonia-dependent O2 consumption, which depends on AMO, confirmed that the slower-growing mutant had lower activity while the faster-growing mutant had near wild-type levels of activity. Similarly, as measured by [14C]acetylene label incorporation, there was less active AMO present in the slower-growing mutant than in the faster-growing mutant or in the wild type. Northern blot analysis of transcription likewise showed that the slower-growing mutant had less full-sized AMO mRNA.
Collapse
Affiliation(s)
- N G Hommes
- Laboratory for Nitrogen Fixation Research, Oregon State University, Corvallis 97331-2902, USA
| | | | | |
Collapse
|
22
|
Crossman LC, Moir JWB, Enticknap JJ, Richardson DJ, Spiro S. Heterologous expression of heterotrophic nitrification genes. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 12):3775-3783. [PMID: 9421902 DOI: 10.1099/00221287-143-12-3775] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Paracoccus denitrificans is a heterotrophic organism capable of oxidizing ammonia to nitrite during growth on an organic carbon and energy source. This pathway, termed heterotrophic nitrification, requires the concerted action of an ammonia monooxygenase (AMO) and hydroxylamine oxidase (HAO). The genes required for heterotrophic nitrification have been isolated by introducing a Pa. denitrificans genomic library into Pseudomonas putida and screening for the accumulation of nitrite. In contrast to the situation in chemolithoautotrophic ammonia oxidizers, the genes encoding AMO and HAO are present in single linked copies in the genome of Pa. denitrificans. AMO from Pa. denitrificans expressed in Ps. putida is capable of oxidizing ethene (ethylene) to epoxyethane (ethylene oxide), which is indicative of a relaxed substrate specificity. Further, when expressed in the methylotroph Methylobacterium extorquens AM1, the AMO endows on this organism the ability to grow on ethene and methane. Thus, the Pa. denitrificans AMO is capable of oxidizing methane to methanol, as is the case for the AMO from Nitrosomonas europaea. The heterotrophic nitrification genes are moderately toxic in M. extorquens, more toxic in Ps. putida, and non-toxic in Escherichia coli. Toxicity is due to the activity of the gene products in M. extorquens, and both expression and activity in Ps. putida. This is the first time that the genes encoding an active AMO have been expressed in a heterologous host.
Collapse
Affiliation(s)
- Lisa C Crossman
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Stephen Spiro
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
23
|
Igarashi N, Moriyama H, Fujiwara T, Fukumori Y, Tanaka N. The 2.8 A structure of hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea. NATURE STRUCTURAL BIOLOGY 1997; 4:276-84. [PMID: 9095195 DOI: 10.1038/nsb0497-276] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The 2.8 A crystal structure of hydroxylamine oxidoreductase of a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea, is described. Twenty-four haems lie in the centre bottom of the trimeric molecule, localized in four clusters within each monomer. The haem clusters within the trimer are aligned to form a ring that has inlet and outlet sites. The inlet is occupied by a novel haem, P460, and there are two possible outlet sites per monomer formed by paired haems lying within a cavity or cleft on the protein surface. The structure suggests pathways by which electron transfer may occur through the precisely arranged haems and provides a framework for the interpretation of previous and future biochemical and genetic observations.
Collapse
Affiliation(s)
- N Igarashi
- Department of Life Science, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | |
Collapse
|
24
|
Hommes NG, Sayavedra-Soto LA, Arp DJ. Mutagenesis of hydroxylamine oxidoreductase in Nitrosomonas europaea by transformation and recombination. J Bacteriol 1996; 178:3710-4. [PMID: 8682770 PMCID: PMC232626 DOI: 10.1128/jb.178.13.3710-3714.1996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mutagenesis of Nitrosomonas europaea was achieved by electroporation and recombination. To demonstrate this, an aminoglycoside 3'-phosphotransferase (kan) gene was specifically inserted into each of the three gene copies of hao individually. Southern hybridizations and PCR analysis showed the incorporation of the kan gene at the chosen genetic loci. The isolation of mutant strains was achieved in 7 to 14 days when the strains were grown on solid medium. The induced mutations were stable even in the absence of kanamycin-selective pressure for periods of up to 45 days in culture. The mutant strains did not show an observable phenotype different from that of the wild type when grown under the same conditions.
Collapse
Affiliation(s)
- N G Hommes
- Laboratory for Nitrogen Fixation Research, Oregon State University, Corvallis, Oregon 97331-2902, USA
| | | | | |
Collapse
|
25
|
Norton JM, Low JM, Klotz MG. The gene encoding ammonia monooxygenase subunit A exists in three nearly identical copies in Nitrosospira sp. NpAV. FEMS Microbiol Lett 1996; 139:181-8. [PMID: 8674986 DOI: 10.1111/j.1574-6968.1996.tb08200.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The gene encoding ammonia monooxygenase subunit A (AmoA) was found in three copies of the genome of the chemolithotrophic soil bacterium, Nitrosospira sp. NpAV. The open reading frame and flanking regions of the three copies were isolated from digested size fractionated genomic DNA using oligodeoxyribonucleotide primers and polymerase chain reaction. The three gene copies of amoA were sequenced and the sequences compared to each other. The open reading frames and the upstream and downstream flanking regions were nearly identical in the three copies. All three copies were expressed in recombinant Escherichia coli strains from the indigenous promoter producing a product of approximately 30 kDa. All amoA copies encode 274 amino acid polypeptides which have similarity to the ammonia monooxygenase acetylene-binding protein from Nitrosomonas europaea.
Collapse
Affiliation(s)
- J M Norton
- Department of Plants, Soils and Biometerology, Utah State University, Logan 84322-4820, USA
| | | | | |
Collapse
|
26
|
Sinigalliano CD, Kuhn DN, Jones RD. Amplification of the amoA gene from diverse species of ammonium-oxidizing bacteria and from an indigenous bacterial population from seawater. Appl Environ Microbiol 1995; 61:2702-6. [PMID: 7618882 PMCID: PMC167542 DOI: 10.1128/aem.61.7.2702-2706.1995] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Because the chemolithotrophic ammonium-oxidizing bacteria are an integral component of nitrogen biogeochemistry, a sensitive and accurate method to detect this ecologically important group of microorganisms is needed. The amoA gene of these organisms encodes the active site of ammonia monooxygenase, an enzyme unique to this group of nitrifying bacteria. We report here the use of the PCR technique to detect the amoA gene from pure cultures of chemolithotrophic ammonium-oxidizing bacteria, ammonium oxidizers introduced into filtered seawater, and the natural bacterial population of an unfiltered seawater sample. Oligonucleotide primers, based on the published amoA sequence from Nitrosomonas europaea, were used to amplify DNA from pure cultures of Nitrosomonas europaea, Nitrosomonas cryotolerans, and Nitrosococcus oceanus and from bacteria in seawater collected offshore near the Florida Keys. Partial sequencing of the amplification products verified that they were amoA. These primers, used in conjunction with a radiolabeled amoA gene probe from Nitrosomonas europaea, could detect Nitrosococcus oceanus inoculated into filter-sterilized seawater at 10(4) cells liter-1. Native marine bacteria containing amoA could also be detected at their naturally occurring titer in oligotrophic seawater. Amplification of the gene for ammonia monooxygenase may provide a method to estimate the distribution and relative abundance of chemolithotrophic ammonium-oxidizing bacteria in the environment.
Collapse
Affiliation(s)
- C D Sinigalliano
- Southeast Environmental Research Program, Florida International University, Miami 33199, USA
| | | | | |
Collapse
|
27
|
Bergmann DJ, Hooper AB. The primary structure of cytochrome P460 of Nitrosomonas europaea: presence of a c-heme binding motif. FEBS Lett 1994; 353:324-6. [PMID: 7957885 DOI: 10.1016/0014-5793(94)01072-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytochrome P460 and hydroxyamine oxidoreductase of Nitrosomonas europaea both catalyze the oxidation of hydroxylamine and contain a 460 nm-absorbing chromophore. The gene (cyp) encoding cytochrome P460 was cloned and sequenced. The predicted amino acid sequence contains a single c-heme binding motif (CXXCH) near the carboxy-terminus. Cytochrome P460 shows little sequence homology to other c-cytochromes including hydroxyamine oxidoreductase. The presence of a signal peptide and a possible c-heme binding site suggest that the cytochrome P460 of N. europaea is periplasmic.
Collapse
Affiliation(s)
- D J Bergmann
- Graduate Program in Biochemistry, University of Minnesota, St. Paul 55108
| | | |
Collapse
|
28
|
Zahn JA, Duncan C, DiSpirito AA. Oxidation of hydroxylamine by cytochrome P-460 of the obligate methylotroph Methylococcus capsulatus Bath. J Bacteriol 1994; 176:5879-87. [PMID: 7928947 PMCID: PMC196803 DOI: 10.1128/jb.176.19.5879-5887.1994] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An enzyme capable of the oxidation of hydroxylamine to nitrite was isolated from the obligate methylotroph Methylococcus capsulatus Bath. The absorption spectra in cell extracts, electron paramagnetic resonance spectra, molecular weight, covalent attachment of heme group to polypeptide, and enzymatic activities suggest that the enzyme is similar to cytochrome P-460, a novel iron-containing protein previously observed only in Nitrosomonas europaea. The native and subunit molecular masses of the M. capsulatus Bath protein were 38,900 and 16,390 Da, respectively; the isoelectric point was 6.98. The enzyme has approximately one iron and one copper atom per subunit. The electron paramagnetic resonance spectrum of the protein showed evidence for a high-spin ferric heme. In contrast to the enzyme from N. europaea, a 13-nm blue shift in the soret band of the ferrocytochrome (463 nm in cell extracts to 450 nm in the final sample) occurred during purification. The amino acid composition and N-terminal amino acid sequence of the enzyme from M. capsulatus Bath was similar but not identical to those of cytochrome P-460 of N. europaea. In cell extracts, the identity of the biological electron acceptor is as yet unestablished. Cytochrome c-555 is able to accept electrons from cytochrome P-460, although the purified enzyme required phenazine methosulfate for maximum hydroxylamine oxidation activity (specific activity, 366 mol of O2 per s per mol of enzyme). Hydroxylamine oxidation rates were stimulated approximately 2-fold by 1 mM cyanide and 1.5-fold by 0.1 mM 8-hydroxyquinoline.
Collapse
Affiliation(s)
- J A Zahn
- Department of Microbiology, Immunology, and Preventive Medicine, Iowa State University, Ames 50011
| | | | | |
Collapse
|
29
|
Hommes NG, Sayavedra-Soto LA, Arp DJ. Sequence of hcy, a gene encoding cytochrome c-554 from Nitrosomonas europaea. Gene 1994; 146:87-9. [PMID: 8063110 DOI: 10.1016/0378-1119(94)90838-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytochrome c-554 (Cyt c-554) was purified from Nitrosomonas europaea. The N-terminal and internal amino acid sequences were determined. A synthetic oligodeoxyribonucleotide primer based on the N-terminal sequence was used to construct a PCR clone. This clone was used to identify genomic DNA fragments containing the gene encoding Cyt c-554. We determined the nucleotide sequence of this gene and named it hcy for hydroxylamine oxidoreductase-linked cytochrome.
Collapse
Affiliation(s)
- N G Hommes
- Laboratory for Nitrogen Fixation Research, Oregon State University, Corvallis 97331-2902
| | | | | |
Collapse
|
30
|
Bergmann DJ, Arciero DM, Hooper AB. Organization of the hao gene cluster of Nitrosomonas europaea: genes for two tetraheme c cytochromes. J Bacteriol 1994; 176:3148-53. [PMID: 8195067 PMCID: PMC205482 DOI: 10.1128/jb.176.11.3148-3153.1994] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The organization of genes for three proteins involved in ammonia oxidation in Nitrosomonas europaea has been investigated. The amino acid sequence of the N-terminal region and four heme-containing peptides produced by proteolysis of the tetraheme cytochrome c554 of N. europaea were determined by Edman degradation. The gene (cycA) encoding this cytochrome is present in three copies per genome (H. McTavish, F. LaQuier, D. Arciero, M. Logan, G. Mundfrom, J.A. Fuchs, and A. B. Hooper, J. Bacteriol. 175:2445-2447, 1993). Three clones, representing at least two copies of cycA, were isolated and sequenced by the dideoxy-chain termination procedure. In both copies, the sequences of 211 amino acids derived from the gene sequence are identical and include all amino acids predicted by the proteolytic peptides. In two copies, the cycA open reading frame (ORF) is followed closely (three bases in one copy) by a second ORF predicted to encode a 28-kDa tetraheme c cytochrome not previously characterized but similar to the nirT gene product of Pseudomonas stutzeri. In one copy of the cycA gene cluster, the second ORF is absent.
Collapse
Affiliation(s)
- D J Bergmann
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108
| | | | | |
Collapse
|
31
|
Sayavedra-Soto LA, Hommes NG, Arp DJ. Characterization of the gene encoding hydroxylamine oxidoreductase in Nitrosomonas europaea. J Bacteriol 1994; 176:504-10. [PMID: 8288544 PMCID: PMC205074 DOI: 10.1128/jb.176.2.504-510.1994] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hydroxylamine oxidoreductase (HAO) catalyzes the oxidation of hydroxylamine to nitrite in Nitrosomonas europaea. The electrons released in the reaction are partitioned to ammonium monooxygenase and to the respiratory chain. The immediate acceptor of electrons from HAO is believed to be cytochrome c-554 (Cyt c-554). We have isolated a genomic DNA fragment containing the structural gene encoding HAO (hao) and a part of the gene for Cyt c-554. The nucleotide sequence of hao was determined, and its transcription was analyzed. The open reading frame (ORF) encodes amino acid sequences matching the purified peptides of HAO. A 64.28-kDa protein is encoded in this ORF, in close agreement with the empirically determined molecular mass of 63 kDa. The N terminus was located 24 amino acids from the start codon, suggesting the presence of a leader sequence. The putative eight heme-binding peptides were localized in this ORF. The gene for Cyt c-554 was located 1,200 bp downstream from the 3' end of hao. An ORF was identified in the upstream region from hao and may encode a protein of unknown function. Data bank searches did not reveal proteins with substantial similarities to HAO, but they did reveal similarities between Cyt c-554 and other c-type cytochromes.
Collapse
Affiliation(s)
- L A Sayavedra-Soto
- Laboratory for Nitrogen Fixation Research, Oregon State University, Corvallis 97331-2902
| | | | | |
Collapse
|