1
|
A λ Cro-Like Repressor Is Essential for the Induction of Conjugative Transfer of SXT/R391 Elements in Response to DNA Damage. J Bacteriol 2015; 197:3822-33. [PMID: 26438816 DOI: 10.1128/jb.00638-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/26/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Integrative and conjugative elements (ICEs) of the SXT/R391 family are the main contributors to acquired multidrug resistance in the seventh pandemic lineage of Vibrio cholerae, the etiological agent of the diarrheal disease cholera. Conjugative transfer of SXT/R391 ICEs is triggered by antibiotics and agents promoting DNA damage through RecA-dependent autoproteolysis of SetR, an ICE-encoded λ CI-like repressor. Here, we describe the role of CroS, a distant λ Cro homolog, as a key component contributing to the regulation of expression of the activator SetCD that orchestrates the expression of the conjugative transfer genes. We show that deletion of croS abolishes the SOS response-dependent induction of SXT despite the presence of a functional setR gene. Using quantitative reverse transcription-PCR and lacZ reporter assays, we also show that CroS represses setR and setCD expression by binding to operator sites shared with SetR. Furthermore, we provide evidence of an additional operator site bound by SetR and CroS. Finally, we show that SetCD expression generates a positive feedback loop due to SXT excision and replication in a fraction of the cell population. Together, these results refine our understanding of the genetic regulation governing the propagation of major vectors of multidrug resistance. IMPORTANCE Healthcare systems worldwide are challenged by an alarming drug resistance crisis caused by the massive and rapid propagation of antibiotic resistance genes and the associated emergence of multidrug-resistant pathogenic bacteria. SXT/R391 ICEs contribute to this phenomenon not only in clinical and environmental vibrios but also in several members of the family Enterobacteriaceae. We have identified and characterized here the regulator CroS as a key factor in the stimulation of conjugative transfer of these ICEs in response to DNA-damaging agents. We have also untangled conflicting evidence regarding autoactivation of transfer by the master activator of SXT/R391 ICEs, SetCD. Discovery of CroS provides a clearer and more complete understanding of the regulatory network that governs the dissemination of SXT/R391 ICEs in bacterial populations.
Collapse
|
2
|
Swapna G, Kumari V, Nagaraja V. Different Modes of Transactivation of Bacteriophage Mu Late Promoters by Transcription Factor C. PLoS One 2015; 10:e0129504. [PMID: 26058069 PMCID: PMC4461284 DOI: 10.1371/journal.pone.0129504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/08/2015] [Indexed: 11/18/2022] Open
Abstract
Transactivator protein C is required for the expression of bacteriophage Mu late genes from lys, I, P and mom promoters during lytic life cycle of the phage. The mechanism of transcription activation of mom gene by C protein is well understood. C activates transcription at Pmom by initial unwinding of the promoter DNA, thereby facilitating RNA polymerase (RNAP) recruitment. Subsequently, C interacts with the ß' subunit of RNAP to enhance promoter clearance. The mechanism by which C activates other late genes of the phage is not known. We carried out promoter-polymerase interaction studies with all the late gene promoters to determine the individual step of C mediated activation. Unlike at Pmom, at the other three promoters, RNAP recruitment and closed complex formation are not C dependent. Instead, the action of C at Plys, PI, and PP is during the isomerization from closed complex to open complex with no apparent effect at other steps of initiation pathway. The mechanism of transcription activation of mom and other late promoters by their common activator is different. This distinction in the mode of activation (promoter recruitment and escape versus isomerization) by the same activator at different promoters appears to be important for optimized expression of each of the late genes.
Collapse
Affiliation(s)
- Ganduri Swapna
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Vandana Kumari
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- * E-mail:
| |
Collapse
|
3
|
Abstract
Transcription factors modulate gene expression by distinct, barely understood mechanisms. The crystal structure of a bacterial transcription subcomplex comprising the effector domain of factor PhoB, its target DNA and the σ4 domain of the RNA polymerase σ70 subunit supports the notion that a stronger grip on the promoter-factor complex results in an enhanced RNAP architecture.
Collapse
Affiliation(s)
- Albert Canals
- Institute for Research in Biomedicine, Barcelona, Spain
| | | | | |
Collapse
|
4
|
Blanco AG, Canals A, Bernués J, Solà M, Coll M. The structure of a transcription activation subcomplex reveals how σ(70) is recruited to PhoB promoters. EMBO J 2011; 30:3776-85. [PMID: 21829166 DOI: 10.1038/emboj.2011.271] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 07/15/2011] [Indexed: 11/09/2022] Open
Abstract
PhoB is a two-component response regulator that activates transcription by interacting with the σ(70) subunit of the E. coli RNA polymerase in promoters in which the -35 σ(70)-recognition element is replaced by the pho box. The crystal structure of a transcription initiation subcomplex that includes the σ(4) domain of σ(70) fused with the RNA polymerase β subunit flap tip helix, the PhoB effector domain and the pho box DNA reveals how σ(4) recognizes the upstream pho box repeat. As with the -35 element, σ(4) achieves this recognition through the N-terminal portion of its DNA recognition helix, but contact with the DNA major groove is less extensive. Unexpectedly, the same recognition helix contacts the transactivation loop and helices α2 and α3 of PhoB. This result shows a simple and elegant mechanism for polymerase recruitment to pho box promoters in which the lost -35 element contacts are compensated by new ones with the activator. In addition, σ(4) is reoriented, thereby suggesting a remodelling mechanism for transcription initiation.
Collapse
|
5
|
Decker KB, Chen Q, Hsieh ML, Boucher P, Stibitz S, Hinton DM. Different requirements for σ Region 4 in BvgA activation of the Bordetella pertussis promoters P(fim3) and P(fhaB). J Mol Biol 2011; 409:692-709. [PMID: 21536048 PMCID: PMC3141349 DOI: 10.1016/j.jmb.2011.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 12/31/2022]
Abstract
Bordetella pertussis BvgA is a global response regulator that activates virulence genes, including adhesin-encoding fim3 and fhaB. At the fhaB promoter, P(fhaB), a BvgA binding site lies immediately upstream of the -35 promoter element recognized by Region 4 of the σ subunit of RNA polymerase (RNAP). We demonstrate that σ Region 4 is required for BvgA activation of P(fhaB), a hallmark of Class II activation. In contrast, the promoter-proximal BvgA binding site at P(fim3) includes the -35 region, which is composed of a tract of cytosines that lacks specific sequence information. We demonstrate that σ Region 4 is not required for BvgA activation at P(fim3). Nonetheless, Region 4 mutations that impair its typical interactions with core and with the -35 DNA affect P(fim3) transcription. Hydroxyl radical cleavage using RNAP with σD581C-FeBABE positions Region 4 near the -35 region of P(fim3); cleavage using RNAP with α276C-FeBABE or α302C-FeBABE also positions an α subunit C-terminal domain within the -35 region, on a different helical face from the promoter-proximal BvgA~P dimer. Our results suggest that the -35 region of P(fim3) accommodates a BvgA~P dimer, an α subunit C-terminal domain, and σ Region 4. Molecular modeling suggests how BvgA, σ Region 4, and α might coexist within this DNA in a conformation that suggests a novel mechanism of activation.
Collapse
Affiliation(s)
- Kimberly B. Decker
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qing Chen
- Division of Bacterial, Parasitic, and Allergenic Products, Center For Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | - Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip Boucher
- Division of Bacterial, Parasitic, and Allergenic Products, Center For Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | - Scott Stibitz
- Division of Bacterial, Parasitic, and Allergenic Products, Center For Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Swapna G, Chakraborty A, Kumari V, Sen R, Nagaraja V. Mutations in β' subunit of Escherichia coli RNA polymerase perturb the activator polymerase functional interaction required for promoter clearance. Mol Microbiol 2011; 80:1169-85. [PMID: 21435034 DOI: 10.1111/j.1365-2958.2011.07636.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcription activator C employs a unique mechanism to activate mom gene of bacteriophage Mu. The activation process involves, facilitating the recruitment of RNA polymerase (RNAP) by altering the topology of the promoter and enhancing the promoter clearance by reducing the abortive transcription. To understand the basis of this multi-step activation mechanism, we investigated the nature of the physical interaction between C and RNAP during the process. A variety of assays revealed that only DNA-bound C contacts the β' subunit of RNAP. Consistent to these results, we have also isolated RNAP mutants having mutations in the β' subunit which were compromised in C-mediated activation. Mutant RNAPs show reduced productive transcription and increased abortive initiation specifically at the C-dependent mom promoter. Positive control (pc) mutants of C, defective in interaction with RNAP, retained the property of recruiting RNAP to the promoter but were unable to enhance promoter clearance. These results strongly suggest that the recruitment of RNAP to the mom promoter does not require physical interaction with C, whereas a contact between the β' subunit and the activator, and the subsequent allosteric changes in the active site of the enzyme are essential for the enhancement of promoter clearance.
Collapse
Affiliation(s)
- Ganduri Swapna
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
7
|
Zafar MA, Sanchez-Alberola N, Wolf RE. Genetic evidence for a novel interaction between transcriptional activator SoxS and region 4 of the σ(70) subunit of RNA polymerase at class II SoxS-dependent promoters in Escherichia coli. J Mol Biol 2011; 407:333-53. [PMID: 21195716 PMCID: PMC3070153 DOI: 10.1016/j.jmb.2010.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 11/30/2022]
Abstract
Escherichia coli SoxS activates transcription of the genes of the soxRS regulon, which provide the cell's defense against oxidative stress. In response to this stress, SoxS is synthesized de novo. Because the DNA binding site of SoxS is highly degenerate, SoxS efficiently activates transcription by the mechanism of prerecruitment. In prerecruitment, newly synthesized SoxS first forms binary complexes with RNA polymerase. These complexes then scan the chromosome for class I and II SoxS-dependent promoters, using the specific DNA-recognition properties of SoxS and σ(70) to distinguish SoxS-dependent promoters from the vast excess of sequence-equivalent soxboxes that do not reside in promoters. Previously, we determined that SoxS interacts with RNA polymerase in two ways: by making protein-protein interactions with the DNA-binding determinant of the α subunit and by interacting with σ(70) region 4 (σ(70) R4) both "on-DNA" and "off-DNA." Here, we address the question of how SoxS and σ(70) R4 coexist at class II promoters, where the binding site for SoxS either partially or completely overlaps the -35 region of the promoter, which is usually bound by σ(70) R4. To do so, we created a tri-alanine scanning library that covers all of σ(70) R4. We determined that interactions between σ(70) R4 and the DNA in the promoter's -35 region are required for activation of class I promoters, where the binding site lies upstream of the -35 hexamer, but they are not required at class II promoters. In contrast, specific three-amino-acid stretches are required for activation of class I (lac) and class II (galP1) cyclic AMP receptor protein-dependent promoters. We conclude from these data that SoxS and σ(70) R4 interact with each other in a novel way at class II SoxS-dependent promoters such that the two proteins do not accommodate one another in the -35 region but instead SoxS binding there occludes the binding of σ(70) R4.
Collapse
Affiliation(s)
| | - Neus Sanchez-Alberola
- Department of Biological Sciences University of Maryland Baltimore County Baltimore, MD 21250
| | - Richard E. Wolf
- Department of Biological Sciences University of Maryland Baltimore County Baltimore, MD 21250
| |
Collapse
|
8
|
Hinton DM. Transcriptional control in the prereplicative phase of T4 development. Virol J 2010; 7:289. [PMID: 21029433 PMCID: PMC2988021 DOI: 10.1186/1743-422x-7-289] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 10/28/2010] [Indexed: 12/18/2022] Open
Abstract
Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ⁷⁰, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ⁷⁰, which then allows the T4 activator MotA to also interact with σ⁷⁰. In addition, AsiA restructuring of σ⁷⁰ prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 2A-13, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
9
|
Zafar MA, Shah IM, Wolf RE. Protein-protein interactions between sigma(70) region 4 of RNA polymerase and Escherichia coli SoxS, a transcription activator that functions by the prerecruitment mechanism: evidence for "off-DNA" and "on-DNA" interactions. J Mol Biol 2010; 401:13-32. [PMID: 20595001 PMCID: PMC2917807 DOI: 10.1016/j.jmb.2010.05.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 05/12/2010] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
Abstract
According to the prerecruitment hypothesis, Escherichia coli SoxS activates the transcription of the genes of the SoxRS regulon by forming binary complexes with RNA polymerase (RNAP) that scan the chromosome for class I and class II SoxS-dependent promoters. We showed previously that the alpha subunit's C-terminal domain plays a role in activating both classes of promoter by making protein-protein contacts with SoxS; some of these contacts are made in solution in the absence of promoter DNA, a critical prediction of the prerecruitment hypothesis. Here, we identified seven single-alanine substitutions of the region 4 of sigma(70) (sigma(70) R4) of RNAP that reduce SoxS activation of class II promoters. With genetic epistasis tests between these sigma(70) R4 mutants and positive control mutants of SoxS, we identified 10 pairs of amino acids that interact with each other in E. coli. Using the yeast two-hybrid system and affinity immobilization assays, we showed that SoxS and sigma(70) R4 can interact in solution (i.e., "off-DNA"). The interaction requires amino acids of the class I/II (but not the class II) positive control surface of SoxS, and five amino acids of sigma(70) R4 that reduce activation in E. coli also reduce the SoxS-sigma(70) R4 interaction in yeast. One of the epistatic interactions that occur in E. coli also occurs in the yeast two-hybrid system (i.e., off-DNA). Importantly, we infer that the five epistatic interactions occurring in E. coli that require an amino acid of the class II surface occur "on-DNA" at class II promoters. Finding that SoxS contacts sigma(70) R4 both off-DNA and on-DNA is consistent with the prerecruitment hypothesis. Moreover, SoxS is now the first example of an E. coli transcriptional activator that uses a single positive control surface to make specific protein-protein contacts with two different subunits of RNAP.
Collapse
Affiliation(s)
- M. Ammar Zafar
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | | | - Richard E. Wolf
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| |
Collapse
|
10
|
Abstract
6S RNA is a small, non-coding RNA that interacts with sigma(70)-RNA polymerase and downregulates transcription at many promoters during stationary phase. When bound to sigma(70)-RNA polymerase, 6S RNA is engaged in the active site of sigma(70)-RNA polymerase in a manner similar enough to promoter DNA that the RNA can serve as a template for RNA synthesis. It has been proposed that 6S RNA mimics the conformation of DNA during transcription initiation, suggesting contacts between RNA polymerase and 6S RNA or DNA may be similar. Here we demonstrate that region 4.2 of sigma(70) is critical for the interaction between 6S RNA and RNA polymerase. We define an expanded binding surface that encompasses positively charged residues throughout the recognition helix of the helix-turn-helix motif in region 4.2, in contrast to DNA binding that is largely focused on the N-terminal region of this helix. Furthermore, negatively charged residues in region 4.2 weaken binding to 6S RNA but do not similarly affect DNA binding. We propose that the binding sites for promoter DNA and 6S RNA on region 4.2 of sigma(70) are overlapping but distinct, raising interesting possibilities for how core promoter elements contribute to defining promoters that are sensitive to 6S RNA regulation.
Collapse
|
11
|
Bonocora RP, Caignan G, Woodrell C, Werner MH, Hinton DM. A basic/hydrophobic cleft of the T4 activator MotA interacts with the C-terminus of E.coli sigma70 to activate middle gene transcription. Mol Microbiol 2008; 69:331-43. [PMID: 18485078 PMCID: PMC2631437 DOI: 10.1111/j.1365-2958.2008.06276.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transcriptional activation often employs a direct interaction between an activator and RNA polymerase. For activation of its middle genes, bacteriophage T4 appropriates Escherichia coli RNA polymerase through the action of two phage-encoded proteins, MotA and AsiA. Alone, AsiA inhibits transcription from a large class of host promoters by structurally remodelling region 4 of sigma(70), the primary specificity subunit of E. coli RNA polymerase. MotA interacts both with sigma(70) region 4 and with a DNA element present in T4 middle promoters. AsiA-induced remodelling is proposed to make the far C-terminus of sigma(70) region 4 accessible for MotA binding. Here, NMR chemical shift analysis indicates that MotA uses a 'basic/hydrophobic' cleft to interact with the C-terminus of AsiA-remodelled sigma(70), but MotA does not interact with AsiA itself. Mutations within this cleft, at residues K3, K28 and Q76, both impair the interaction of MotA with sigma(70) region 4 and MotA-dependent activation. Furthermore, mutations at these residues greatly decrease phage viability. Most previously described activators that target sigma(70) directly use acidic residues to engage a basic surface of region 4. Our work supports accumulated evidence indicating that 'sigma appropriation' by MotA and AsiA uses a fundamentally different mechanism to activate transcription.
Collapse
Affiliation(s)
- Richard P. Bonocora
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, MD
| | - Gregori Caignan
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY
| | | | - Milton H. Werner
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, MD
| |
Collapse
|
12
|
Kedzierska B, Szambowska A, Herman-Antosiewicz A, Lee DJ, Busby SJ, Wegrzyn G, Thomas MS. The C-terminal domain of the Escherichia coli RNA polymerase alpha subunit plays a role in the CI-dependent activation of the bacteriophage lambda pM promoter. Nucleic Acids Res 2007; 35:2311-20. [PMID: 17389649 PMCID: PMC1874639 DOI: 10.1093/nar/gkm123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/14/2007] [Accepted: 02/14/2007] [Indexed: 11/26/2022] Open
Abstract
The bacteriophage lambda p(M) promoter is required for maintenance of the lambda prophage in Escherichia coli, as it facilitates transcription of the cI gene, encoding the lambda repressor (CI). CI levels are maintained through a transcriptional feedback mechanism whereby CI can serve as an activator or a repressor of p(M). CI activates p(M) through cooperative binding to the O(R)1 and O(R)2 sites within the O(R) operator, with the O(R)2-bound CI dimer making contact with domain 4 of the RNA polymerase sigma subunit (sigma(4)). Here we demonstrate that the 261 and 287 determinants of the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD), as well as the DNA-binding determinant, are important for CI-dependent activation of p(M). We also show that the location of alphaCTD at the p(M) promoter changes in the presence of CI. Thus, in the absence of CI, one alphaCTD is located on the DNA at position -44 relative to the transcription start site, whereas in the presence of CI, alphaCTD is located at position -54, between the CI-binding sites at O(R)1 and O(R)2. These results suggest that contacts between CI and both alphaCTD and sigma are required for efficient CI-dependent activation of p(M).
Collapse
Affiliation(s)
- Barbara Kedzierska
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anna Szambowska
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anna Herman-Antosiewicz
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - David J. Lee
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Stephen J.W. Busby
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Mark S. Thomas
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
13
|
Gregory BD, Deighan P, Hochschild A. An artificial activator that contacts a normally occluded surface of the RNA polymerase holoenzyme. J Mol Biol 2005; 353:497-506. [PMID: 16185714 DOI: 10.1016/j.jmb.2005.08.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 08/16/2005] [Accepted: 08/18/2005] [Indexed: 11/26/2022]
Abstract
Many activators of transcription are sequence-specific DNA-binding proteins that stimulate transcription initiation through interaction with RNA polymerase (RNAP). Such activators can be constructed artificially by fusing a DNA-binding protein to a protein domain that can interact with an accessible surface of RNAP. In these cases, the artificial activator is directed to a target promoter bearing a recognition site for the DNA-binding protein. Here we describe an artificial activator that functions by contacting a normally occluded surface of promoter-bound RNAP holoenzyme. This artificial activator consists of a DNA-binding protein fused to the bacteriophage T4-encoded transcription regulator AsiA. On its own, AsiA inhibits transcription by Escherichia coli RNAP because it remodels the holoenzyme, disrupting an intersubunit interaction that is required for recognition of the major class of bacterial promoters. However, when tethered to the DNA via a DNA-binding protein, AsiA can exert a strong stimulatory effect on transcription by disrupting the same intersubunit interaction, contacting an otherwise occluded surface of the holoenzyme. We show that mutations that affect the intersubunit interaction targeted by AsiA modulate the stimulatory effect of this artificial activator. Our results thus demonstrate that changes in the accessibility of a normally occluded surface of the RNAP holoenzyme can modulate the activity of a gene-specific regulator of transcription.
Collapse
Affiliation(s)
- Brian D Gregory
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
14
|
Michalowski CB, Little JW. Positive autoregulation of cI is a dispensable feature of the phage lambda gene regulatory circuitry. J Bacteriol 2005; 187:6430-42. [PMID: 16159777 PMCID: PMC1236637 DOI: 10.1128/jb.187.18.6430-6442.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 06/24/2005] [Indexed: 11/20/2022] Open
Abstract
Complex gene regulatory circuits contain many features that are likely to contribute to their operation. It is unclear, however, whether all these features are necessary for proper circuit behavior or whether certain ones are refinements that make the circuit work better but are dispensable for qualitatively normal behavior. We have addressed this question using the phage lambda regulatory circuit, which can persist in two stable states, the lytic state and the lysogenic state. In the lysogenic state, the CI repressor positively regulates its own expression by stimulating transcription from the P(RM) promoter. We tested whether this feature is an essential part of the regulatory circuitry. Several phages with a cI mutation preventing positive autoregulation and an up mutation in the P(RM) promoter showed near-normal behavior. We conclude that positive autoregulation is not necessary for proper operation of the lambda circuitry and speculate that it serves a partially redundant function of stabilizing a bistable circuit, a form of redundancy we term "circuit-level redundancy." We discuss our findings in the context of a two-stage model for evolution and elaboration of regulatory circuits from simpler to more complex forms.
Collapse
Affiliation(s)
- Christine B Michalowski
- Department of Biochemistry and Molecular Biophysics, Life Sciences South Bldg., 1007 E. Lowell St., University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
15
|
Kim JH, Yang YK, Chambliss GH. Evidence that Bacillus catabolite control protein CcpA interacts with RNA polymerase to inhibit transcription. Mol Microbiol 2005; 56:155-62. [PMID: 15773986 DOI: 10.1111/j.1365-2958.2005.04496.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Summary Bacilluscatabolite control protein (CcpA) mediates carbon catabolite repression (CCR) by controlling expression of catabolite responsive (CR) genes or operons through interaction with catabolite responsive elements (cres) located within or outside of CR promoters. Here, we investigated how CcpA inhibits the transcription of CR promoters in vitro. CcpA has different affinities for different cres, but this does not correlate with its ability to inhibit transcription. In the amyE promoter, which overlaps a CcpA binding site (amyE cre centred at +4.5), CcpA does not prevent RNA polymerase (RNAP) binding to the promoter; it may even interact with RNAP. Inserting non-integral turns of helix (1.5 and 2.5) between the amyE promoter (-10 hexamer) and the amyE cre relieved CCR of amyE expression. In the xyl operon, despite the downstream location of its cre (a major cre centred at +130.5), CcpA blocked transcription initiation, not elongation (roadblock) at the site of the cre. Taken together, our results strongly suggest that CcpA requires interactions with RNAP to inhibit transcription.
Collapse
Affiliation(s)
- Jeong-Ho Kim
- Department of Bacteriology, 420 Henry Mall, Madison, Wisconsin, WI 53706, USA
| | | | | |
Collapse
|
16
|
Svenningsen SL, Costantino N, Court DL, Adhya S. On the role of Cro in lambda prophage induction. Proc Natl Acad Sci U S A 2005; 102:4465-9. [PMID: 15728734 PMCID: PMC555511 DOI: 10.1073/pnas.0409839102] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lysogenic state of bacteriophage lambda is exceptionally stable yet the prophage is readily induced in response to DNA damage. This delicate epigenetic switch is believed to be regulated by two proteins; the lysogenic maintenance promoting protein CI and the early lytic protein Cro. First, we confirm, in the native configuration, the previous observation that the DNA loop mediated by oligomerization of CI bound to two distinct operator regions (O(L) and O(R)), increases repression of the early lytic promoters and is important for stable maintenance of lysogeny. Second, we show that the presence of the cro gene might be unimportant for the lysogenic to lytic switch during induction of the lambda prophage. We revisit the idea that Cro's primary role in induction is instead to mediate weak repression of the early lytic promoters.
Collapse
|
17
|
Wegrzyn G, Wegrzyn A. Genetic switches during bacteriophage lambda development. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:1-48. [PMID: 16096026 DOI: 10.1016/s0079-6603(04)79001-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Grzegorz Wegrzyn
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | | |
Collapse
|
18
|
Michalowski CB, Short MD, Little JW. Sequence tolerance of the phage lambda PRM promoter: implications for evolution of gene regulatory circuitry. J Bacteriol 2004; 186:7988-99. [PMID: 15547271 PMCID: PMC529058 DOI: 10.1128/jb.186.23.7988-7999.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 09/01/2004] [Indexed: 11/20/2022] Open
Abstract
Much of the gene regulatory circuitry of phage lambda centers on a complex region called the O(R) region. This approximately 100-bp region is densely packed with regulatory sites, including two promoters and three repressor-binding sites. The dense packing of this region is likely to impose severe constraints on its ability to change during evolution, raising the question of how the specific arrangement of sites and their exact sequences could evolve to their present form. Here we ask whether the sequence of a cis-acting site can be widely varied while retaining its function; if it can, evolution could proceed by a larger number of paths. To help address this question, we developed a lambda cloning vector that allowed us to clone fragments spanning the O(R) region. By using this vector, we carried out intensive mutagenesis of the P(RM) promoter, which drives expression of CI repressor and is activated by CI itself. We made a pool of fragments in which 8 of the 12 positions in the -35 and -10 regions were randomized and cloned this pool into the vector, making a pool of P(RM) variant phage. About 10% of the P(RM) variants were able to lysogenize, suggesting that the lambda regulatory circuitry is compatible with a wide range of P(RM) sequences. Analysis of several of these phages indicated a range of behaviors in prophage induction. Several isolates had induction properties similar to those of the wild type, and their promoters resembled the wild type in their responses to CI. We term this property of different sequences allowing roughly equivalent function "sequence tolerance " and discuss its role in the evolution of gene regulatory circuitry.
Collapse
Affiliation(s)
- Christine B Michalowski
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
19
|
Wickstrum JR, Egan SM. Amino acid contacts between sigma 70 domain 4 and the transcription activators RhaS and RhaR. J Bacteriol 2004; 186:6277-85. [PMID: 15342598 PMCID: PMC515164 DOI: 10.1128/jb.186.18.6277-6285.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RhaS and RhaR proteins are transcription activators that respond to the availability of L-rhamnose and activate transcription of the operons in the Escherichia coli L-rhamnose catabolic regulon. RhaR activates transcription of rhaSR, and RhaS activates transcription of the operon that encodes the L-rhamnose catabolic enzymes, rhaBAD, as well as the operon that encodes the L-rhamnose transport protein, rhaT. RhaS is 30% identical to RhaR at the amino acid level, and both are members of the AraC/XylS family of transcription activators. The RhaS and RhaR binding sites overlap the -35 hexamers of the promoters they regulate, suggesting they may contact the sigma70 subunit of RNA polymerase as part of their mechanisms of transcription activation. In support of this hypothesis, our lab previously identified an interaction between RhaS residue D241 and sigma70 residue R599. In the present study, we first identified two positively charged amino acids in sigma70, K593 and R599, and three negatively charged amino acids in RhaR, D276, E284, and D285, that were important for RhaR-mediated transcription activation of the rhaSR operon. Using a genetic loss-of-contact approach we have obtained evidence for a specific contact between RhaR D276 and sigma70 R599. Finally, previous results from our lab separately showed that RhaS D250A and sigma70 K593A were defective at the rhaBAD promoter. Our genetic loss-of-contact analysis of these residues indicates that they identify a second site of contact between RhaS and sigma70.
Collapse
Affiliation(s)
- Jason R Wickstrum
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | |
Collapse
|
20
|
Seredick SD, Spiegelman GB. The Bacillus subtilis response regulator Spo0A stimulates sigmaA-dependent transcription prior to the major energetic barrier. J Biol Chem 2004; 279:17397-403. [PMID: 14976210 DOI: 10.1074/jbc.m311190200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At the spoIIG promoter phosphorylated Spo0A (Spo0A approximately P) binds 0A boxes overlapping the -35 element, interacting with RNA polymerase to facilitate open complex formation. We have compared in vitro transcription from a series of heteroduplex templates containing denatured regions within the promoters. Transcription from heteroduplex templates with 12, 8, or 6 base pairs denatured was independent of Spo0A approximately P, but heteroduplexes with 4 or 2 base pairs denatured required Spo0A approximately P for maximal levels of transcription. Investigation of the thermal dependence of transcription suggested that strand separation was the primary thermodynamic barrier to transcription initiation but indicated that Spo0A approximately P does not reduce this energetic barrier. Kinetic assays revealed that Spo0A approximately P stimulated both the rate of formation of initiated complexes as well as increasing the number of complexes capable of initiating transcription. These results imply that Spo0A approximately P stimulates transcription at least in part by stabilizing the RNA polymerase-spoIIG complex until contacts between RNA polymerase and the -10 element induce strand separation.
Collapse
Affiliation(s)
- Steve D Seredick
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
21
|
Marr MT, Roberts JW, Brown SE, Klee M, Gussin GN. Interactions among CII protein, RNA polymerase and the lambda PRE promoter: contacts between RNA polymerase and the -35 region of PRE are identical in the presence and absence of CII protein. Nucleic Acids Res 2004; 32:1083-90. [PMID: 14872063 PMCID: PMC373397 DOI: 10.1093/nar/gkh261] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The DNA recognition sequence for the transcriptional activator, CII protein, which is critical for lysogenization by bacteriophage lambda, overlaps the -35 region of the P(RE) promoter. Data presented here show that activation by CII does not change the pattern of cleavage of the -35 region of P(RE) by iron (S)-1-(p-bromoacetamidobenzyl)-EDTA (Fe-BABE) conjugated to the sigma subunit of RNA polymerase (RNAP). Thus, the overall interaction between sigma and the -35 region of P(RE) is not significantly altered by CII. Therefore, the effects of the activator on RNAP binding to the promoter and formation of open complexes do not reflect a large-scale qualitative change in the nature of the interaction between RNAP and promoter DNA. The ability of CII to stimulate lysogenization is reduced in the presence of plasmid-borne rpoA variants encoding alanine substitutions at several positions in the C-terminal domain of the alpha subunit. However, it has not been possible to identify residues that directly affect the interaction between the activator and RNA polymerase.
Collapse
Affiliation(s)
- Michael T Marr
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
22
|
Chen H, Tang H, Ebright RH. Functional interaction between RNA polymerase alpha subunit C-terminal domain and sigma70 in UP-element- and activator-dependent transcription. Mol Cell 2003; 11:1621-33. [PMID: 12820974 DOI: 10.1016/s1097-2765(03)00201-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We show that the Escherichia coli RNA polymerase (RNAP) alpha subunit C-terminal domain (alphaCTD) functionally interacts with sigma(70) at a subset of UP-element- and activator-dependent promoters, we define the determinants of alphaCTD and sigma(70) required for the interaction, and we present a structural model for the interaction. The alphaCTD-sigma(70) interaction spans the upstream promoter and core promoter, thereby linking recognition of UP-elements and activators in the upstream promoter with recognition of the -35 element in the core promoter. We propose that the alphaCTD-sigma(70) interaction permits UP-elements and activators not only to "recruit" RNAP through direct interaction with alphaCTD, but also to "remodel" RNAP-core-promoter interaction through indirect, alphaCTD-bridged interactions with sigma(70).
Collapse
Affiliation(s)
- Hao Chen
- Waksman Institute, Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
23
|
Ross W, Schneider DA, Paul BJ, Mertens A, Gourse RL. An intersubunit contact stimulating transcription initiation by E coli RNA polymerase: interaction of the alpha C-terminal domain and sigma region 4. Genes Dev 2003; 17:1293-307. [PMID: 12756230 PMCID: PMC196054 DOI: 10.1101/gad.1079403] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The C-terminal domain of the Escherichia coli RNA polymerase (RNAP) alpha subunit (alphaCTD) stimulates transcription initiation by interacting with upstream (UP) element DNA and a variety of transcription activators. Here we identify specific substitutions in region 4.2 of sigma 70 (sigma(70)) and in alphaCTD that decrease transcription initiation from promoters containing some, but not all, UP elements. This decrease in transcription derives from a decrease in the initial equilibrium constant for RNAP binding (K(B)). The open complexes formed by the mutant and wild-type RNAPs differ in DNAse I sensitivity at the junction of the alphaCTD and sigma DNA binding sites, correlating with the differences in transcription. A model of the DNA-alphaCTD-sigma region 4.2 ternary complex, constructed from the previously determined X-ray structures of the Thermus aquaticus sigma region 4.2-DNA complex and the E. coli alphaCTD-DNA complex, indicates that the residues identified by mutation in sigma region 4.2 and in alphaCTD are in very close proximity. Our results strongly suggest that alphaCTD, when bound to an UP element proximal subsite, contacts the RNAP sigma(70) subunit, increasing transcription. Previous data from the literature suggest that this same sigma-alphaCTD interaction also plays a role in transcription factor-mediated activation.
Collapse
Affiliation(s)
- Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Bacterial sigma factors play a key role in promoter recognition, making direct contact with conserved promoter elements. Most sigma factors belong to the sigma70 family, named for the primary sigma factor in Escherichia coli. Members of the sigma70 family typically share four conserved regions and, here, we focus on region 4, which is directly involved in promoter recognition and serves as a target for a variety of regulators of transcription initiation. We review recent advances in the understanding of the mechanism of action of regulators that target region 4 of sigma.
Collapse
Affiliation(s)
- Simon L Dove
- Division of Infectious Diseases, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
25
|
Lambert LJ, Schirf V, Demeler B, Werner MH. Molecular Analysis of Activator Engagement with RNA Polymerase. Methods Enzymol 2003; 370:505-21. [PMID: 14712671 DOI: 10.1016/s0076-6879(03)70043-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Lester J Lambert
- Laboratory of Moelcular Biophysics, Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
26
|
Nickels BE, Dove SL, Murakami KS, Darst SA, Hochschild A. Protein-protein and protein-DNA interactions of sigma70 region 4 involved in transcription activation by lambdacI. J Mol Biol 2002; 324:17-34. [PMID: 12421556 DOI: 10.1016/s0022-2836(02)01043-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cI protein of bacteriophage lambda (lambdacI) activates transcription from promoter P(RM) through an acidic patch on the surface of its DNA-binding domain. Genetic evidence suggests that this acidic patch stimulates transcription from P(RM) through contact with the C-terminal domain (region 4) of the sigma(70) subunit of Escherichia coli RNA polymerase. Here, we identify two basic residues in region 4 of sigma(70) that are critical for lambdacI-mediated activation of transcription from P(RM). On the basis of structural modeling, we propose that one of these sigma(70) residues, K593, facilitates the interaction between lambdacI and region 4 of sigma(70) by inducing a bend in the DNA upstream of the -35 element, whereas the other, R588, interacts directly with a critical acidic residue within the activating patch of lambdacI. Residue R588 of sigma(70) has been shown to play an important role in promoter recognition; our findings suggest that the R588 side-chain has a dual function at P(RM), facilitating the interaction of region 4 with the promoter -35 element and participating directly in the protein-protein interaction with lambdacI.
Collapse
Affiliation(s)
- Bryce E Nickels
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
The non-lambdoid coliphage 186 provides an alternative model to the lytic-lysogenic switch of phage lambda. Like lambda, the key switch regulator, the CI repressor, associates to octamers. Unlike lambda, the lytic promoter (pR) and the lysogenic promoter (pL) are face-to-face, 62 bp apart and are flanked by distal CI binding sites (FL and FR) located approximately 300 bp away. Using reporter and footprinting studies, we show that the outcome, but not the mechanism, of regulation by 186 CI is very similar to lambda. 186 CI stimulates pL transcription indirectly by repressing convergent interfering transcription from pR. However, in the absence of the flanking FL and FR sites, CI bound at pR interacts co-operatively with a weak CI binding site at pL and represses both promoters. FL and FR play a critical role; they assist repression of pR and simultaneously alleviate repression of pL, thus allowing high pL activity. We propose that the 186 switch is regulated by a novel mechanism in which a CI octamer bound at pR forms alternative DNA loops to pL or to a flanking site, depending on CI concentration.
Collapse
Affiliation(s)
- Ian B Dodd
- Department of Molecular Biosciences (Biochemistry), University of Adelaide, South Australia, Australia.
| | | |
Collapse
|
28
|
Pande S, Makela A, Dove SL, Nickels BE, Hochschild A, Hinton DM. The bacteriophage T4 transcription activator MotA interacts with the far-C-terminal region of the sigma70 subunit of Escherichia coli RNA polymerase. J Bacteriol 2002; 184:3957-64. [PMID: 12081968 PMCID: PMC135182 DOI: 10.1128/jb.184.14.3957-3964.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2001] [Accepted: 04/24/2002] [Indexed: 11/20/2022] Open
Abstract
Transcription from bacteriophage T4 middle promoters uses Escherichia coli RNA polymerase together with the T4 transcriptional activator MotA and the T4 coactivator AsiA. AsiA binds tightly within the C-terminal portion of the sigma70 subunit of RNA polymerase, while MotA binds to the 9-bp MotA box motif, which is centered at -30, and also interacts with sigma70. We show here that the N-terminal half of MotA (MotA(NTD)), which is thought to include the activation domain, interacts with the C-terminal region of sigma70 in an E. coli two-hybrid assay. Replacement of the C-terminal 17 residues of sigma70 with comparable sigma38 residues abolishes the interaction with MotA(NTD) in this assay, as does the introduction of the amino acid substitution R608C. Furthermore, in vitro transcription experiments indicate that a polymerase reconstituted with a sigma70 that lacks C-terminal amino acids 604 to 613 or 608 to 613 is defective for MotA-dependent activation. We also show that a proteolyzed fragment of MotA that contains the C-terminal half (MotA(CTD)) binds DNA with a K(D(app)) that is similar to that of full-length MotA. Our results support a model for MotA-dependent activation in which protein-protein contact between DNA-bound MotA and the far-C-terminal region of sigma70 helps to substitute functionally for an interaction between sigma70 and a promoter -35 element.
Collapse
Affiliation(s)
- Suchira Pande
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | | | | | | | |
Collapse
|
29
|
Crater DL, Wade KH, Resnekov O, Ichikawa HT, Kroos L, Brannigan JA, Moran CP. A mutation in GerE that affects cotC promoter activation in Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:30-8. [PMID: 12031481 DOI: 10.1016/s0167-4781(02)00294-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The DNA-binding protein GerE acts as both a repressor and an activator of transcription of genes transcribed by sigma(K)-RNA polymerase (RNA-P) during the later stages of endospore formation in Bacillus subtilis. GerE represses transcription from the sigK promoter, and activates transcription from other promoters, including cotC and cotX. Two different regions of GerE (AR1 and AR2) are required for activation of cotC and cotX, respectively. We used a genetic screen to seek mutations that would define additional regions of GerE required for promoter activation. We found that a substitution of proline for leucine at position 12 of GerE (L12P) decreased cotC promoter activity but did not interfere with GerE-dependent repression of the sigK promoter or with activation of the cotX promoter in vivo. We also found that the L12P substitution had no effect on binding to cotC in vitro. However, the L12P-substituted GerE failed to stimulate cotC transcription in vitro, whereas it stimulated transcription from PcotX. The crystal structure of GerE suggests that L12 is not exposed on the surface of the molecule. Therefore, we propose that the L12P substitution reduces the flexibility of the N-terminal arm, preventing an interaction of AR1 with RNA-P that is essential for activation of the cotC promoter.
Collapse
Affiliation(s)
- Dinene L Crater
- Department of Microbiology and Immunology, Emory University School of Medicine, 3001 Rollins Research Center, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
González-Pérez MM, Marqués S, Domínguez-Cuevas P, Ramos JL. XylS activator and RNA polymerase binding sites at the Pm promoter overlap. FEBS Lett 2002; 519:117-22. [PMID: 12023029 DOI: 10.1016/s0014-5793(02)02730-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Transcription from the TOL plasmid meta-cleavage pathway operon, Pm, depends on the XylS protein being activated by a benzoate effector. The XylS binding sites are two imperfect 5'-TGCAN(6)GGNTA-3' direct repeats located between positions -70/-56 and -49/-35 [González-Pérez et al. (1999) J. Biol. Chem. 274, 2286-2290]. An intrinsic bending of 40 degrees, which is not essential for transcription, is centered at position -43. We have determined the potential overlap between the XylS and RNA polymerase binding sites. The insertion of 2 or more bp between C and T at positions -37 and -36 abolished transcription activation by the wild-type XylS and by XylSS229I, a mutant with increased affinity for the XylS binding sites. In contrast, a 1-bp insertion at -37 was permissible, although when in addition to the 1-bp insertion at -37 the mutant promoter had a point mutation at the XylS binding site (C-47-->T), transcription was abolished with the wild-type XylS protein, but not with XylSS229I. The overlap between the proximal XylS binding site and the -35 region recognized by RNA polymerase at positions -35 and -36 appears to be critical for transcription.
Collapse
Affiliation(s)
- M Mar González-Pérez
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, Spain
| | | | | | | |
Collapse
|
31
|
Campbell EA, Muzzin O, Chlenov M, Sun JL, Olson CA, Weinman O, Trester-Zedlitz ML, Darst SA. Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol Cell 2002; 9:527-39. [PMID: 11931761 DOI: 10.1016/s1097-2765(02)00470-7] [Citation(s) in RCA: 394] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The sigma subunit is the key regulator of bacterial transcription. Proteolysis of Thermus aquaticus sigma(A), which occurred in situ during crystallization, reveals three domains, sigma(2), sigma(3), and sigma(4), connected by flexible linkers. Crystal structures of each domain were determined, as well as of sigma(4) complexed with -35 element DNA. Exposed surfaces of each domain are important for RNA polymerase binding. Universally conserved residues important for -10 element recognition and melting lie on one face of sigma(2), while residues important for extended -10 recognition lie on sigma(3). Genetic studies correctly predicted that a helix-turn-helix motif in sigma(4) recognizes the -35 element but not the details of the protein-DNA interactions. Positive control mutants in sigma(4) cluster in two regions, positioned to interact with activators bound just upstream or downstream of the -35 element.
Collapse
Affiliation(s)
- Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Marr MT, Datwyler SA, Meares CF, Roberts JW. Restructuring of an RNA polymerase holoenzyme elongation complex by lambdoid phage Q proteins. Proc Natl Acad Sci U S A 2001; 98:8972-8. [PMID: 11481468 PMCID: PMC55358 DOI: 10.1073/pnas.161253298] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2001] [Indexed: 11/18/2022] Open
Abstract
The structure of an intermediate in the initiation to elongation transition of Escherichia coli RNA polymerase has been visualized through region-specific DNA cleavage by the hydroxyl radical reagent FeBABE. FeBABE was tethered to specific sites of the final sigma(70) subunit and incorporated into two specialized paused elongation complexes that obligatorily retain the final sigma(70) initiation subunit and are targets for modification by lambdoid phage late gene antiterminators. The FeBABE cleavage pattern reveals structures similar to open complex, except for notable changes to region 3 of final sigma(70) that might reflect the presence of stably bound transcript. Binding of the antiterminator protein Q displaces the reactivity of FeBABE conjugated to region 4 of final sigma(70), suggesting that final sigma(70) subunit rearrangement is a step in conversion of RNAP to the antiterminating form.
Collapse
Affiliation(s)
- M T Marr
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
33
|
Jishage M, Dasgupta D, Ishihama A. Mapping of the Rsd contact site on the sigma 70 subunit of Escherichia coli RNA polymerase. J Bacteriol 2001; 183:2952-6. [PMID: 11292818 PMCID: PMC99515 DOI: 10.1128/jb.183.9.2952-2956.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Accepted: 02/20/2001] [Indexed: 11/20/2022] Open
Abstract
Rsd (regulator of sigma D) is an anti-sigma factor for the Escherichia coli RNA polymerase sigma(70) subunit. The contact site of Rsd on sigma(70) was analyzed after mapping of the contact-dependent cleavage sites by Rsd-tethered iron-p-bromoacetamidobenzyl EDTA and by analysis of the complex formation between Ala-substituted sigma(70) and Rsd. Results indicate that the Rsd contact site is located downstream of the promoter -35 recognition helix-turn-helix motif within region 4, overlapping with the regions involved in interaction with both core enzyme and sigma(70) contact transcription factors.
Collapse
Affiliation(s)
- M Jishage
- National Institute of Genetics, Department of Molecular Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
34
|
Cicero MP, Sharp MM, Gross CA, Kreuzer KN. Substitutions in bacteriophage T4 AsiA and Escherichia coli sigma(70) that suppress T4 motA activation mutations. J Bacteriol 2001; 183:2289-97. [PMID: 11244069 PMCID: PMC95136 DOI: 10.1128/jb.183.7.2289-2297.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage T4 middle-mode transcription requires two phage-encoded proteins, the MotA transcription factor and AsiA coactivator, along with Escherichia coli RNA polymerase holoenzyme containing the sigma(70) subunit. A motA positive control (pc) mutant, motA-pc1, was used to select for suppressor mutations that alter other proteins in the transcription complex. Separate genetic selections isolated two AsiA mutants (S22F and Q51E) and five sigma(70) mutants (Y571C, Y571H, D570N, L595P, and S604P). All seven suppressor mutants gave partial suppressor phenotypes in vivo as judged by plaque morphology and burst size measurements. The S22F mutant AsiA protein and glutathione S-transferase fusions of the five mutant sigma(70) proteins were purified. All of these mutant proteins allowed normal levels of in vitro transcription when tested with wild-type MotA protein, but they failed to suppress the mutant MotA-pc1 protein in the same assay. The sigma(70) substitutions affected the 4.2 region, which binds the -35 sequence of E. coli promoters. In the presence of E. coli RNA polymerase without T4 proteins, the L595P and S604P substitutions greatly decreased transcription from standard E. coli promoters. This defect could not be explained solely by a disruption in -35 recognition since similar results were obtained with extended -10 promoters. The generalized transcriptional defect of these two mutants correlated with a defect in binding to core RNA polymerase, as judged by immunoprecipitation analysis. The L595P mutant, which was the most defective for in vitro transcription, failed to support E. coli growth.
Collapse
Affiliation(s)
- M P Cicero
- Departments of Microbiology and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
35
|
Landini P, Volkert MR. Regulatory responses of the adaptive response to alkylation damage: a simple regulon with complex regulatory features. J Bacteriol 2000; 182:6543-9. [PMID: 11073893 PMCID: PMC111391 DOI: 10.1128/jb.182.23.6543-6549.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- P Landini
- Department of Environmental Microbiology and Molecular Ecotoxicology, Swiss Institute for Environmental Technology, 8600 Duebendorf, Switzerland
| | | |
Collapse
|
36
|
Dove SL, Huang FW, Hochschild A. Mechanism for a transcriptional activator that works at the isomerization step. Proc Natl Acad Sci U S A 2000; 97:13215-20. [PMID: 11087868 PMCID: PMC27205 DOI: 10.1073/pnas.97.24.13215] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2000] [Indexed: 11/18/2022] Open
Abstract
Transcriptional activators in prokaryotes have been shown to stimulate different steps in the initiation process including the initial binding of RNA polymerase (RNAP) to the promoter and a postbinding step known as the isomerization step. Evidence suggests that activators that affect initial binding can work by a cooperative binding mechanism by making energetically favorable contacts with RNAP, but the mechanism by which activators affect the isomerization step is unclear. A well-studied example of an activator that normally exerts its effect exclusively on the isomerization step is the bacteriophage lambda cI protein (lambdacI), which has been shown genetically to interact with the C-terminal region of the final sigma(70) subunit of RNAP. We show here that the interaction between lambdacI and final sigma can stimulate transcription even when the relevant portion of final sigma is transplanted to another subunit of RNAP. This activation depends on the ability of lambdacI to stabilize the binding of the transplanted final sigma moiety to an ectopic -35 element. Based on these and previous findings, we discuss a simple model that explains how an activator's ability to stabilize the binding of an RNAP subdomain to the DNA can account for its effect on either the initial binding of RNAP to a promoter or the isomerization step.
Collapse
Affiliation(s)
- S L Dove
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
37
|
Lamberg KE, Kiley PJ. FNR-dependent activation of the class II dmsA and narG promoters of Escherichia coli requires FNR-activating regions 1 and 3. Mol Microbiol 2000; 38:817-27. [PMID: 11115116 DOI: 10.1046/j.1365-2958.2000.02172.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, the anaerobic expression of genes encoding the nitrate (narGHJI) and dimethyl sulphoxide (dmsABC) terminal reductases is stimulated by the global anaerobic regulator FNR. The ability of FNR to activate transcription initiation has been proposed to be dependent on protein-protein interactions between RNA polymerase and two activating regions (AR) of FNR, FNR-AR1 and FNR-AR3. To further our understanding of the role of FNR-AR1 and FNR-AR3 in transcription activation, we measured the effects of FNR-AR mutants on expression of the narG and dmsA promoters, PnarG and PdmsA. All the FNR-AR1 (FNR-S73F, FNR-T118A, FNR-S187P), FNR-AR3 (FNR-G85A) and FNR-AR1-AR3 (FNR-G85A-S187P) mutants that were tested decreased expression from PnarG and PdmsA in vivo. Transcription assays of PdmsA also showed that the FNR-AR mutant proteins impaired transcription activation in vitro. Furthermore, DNase I footprinting analysis confirmed that this transcription defect was not a result of altered DNA-binding properties. The function of FNR-S187P and FNR-G85A was also measured in strains containing sigma70 mutants (sigma70-K593A, sigma70-R596A and sigma70-K597A) known to be impaired in FNR-dependent transcription activation. Of all of the combinations analysed, only FNR-G85 and sigma70-K597 showed a genetic interaction, supporting the notion that FNR-AR3 and sigma70 interact functionally in the process of transcription activation. Lastly, the transcription activation defect of the FNR-AR1 and FNR-AR3 mutants was greatly reduced when expression of PnarG was assayed in the presence of nitrate. As these growth conditions promote maximal activity of PnarG as a result of the combined function of NarL, IHF and FNR, these results suggest that the requirements for FNR-AR1 and FNR-AR3 are altered in the presence of additional activators.
Collapse
Affiliation(s)
- K E Lamberg
- Departments of Bacteriology and Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
38
|
Lewis RJ, Krzywda S, Brannigan JA, Turkenburg JP, Muchová K, Dodson EJ, Barák I, Wilkinson AJ. The trans-activation domain of the sporulation response regulator Spo0A revealed by X-ray crystallography. Mol Microbiol 2000; 38:198-212. [PMID: 11069648 DOI: 10.1046/j.1365-2958.2000.02134.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sporulation in Bacillus involves the induction of scores of genes in a temporally and spatially co-ordinated programme of cell development. Its initiation is under the control of an expanded two-component signal transduction system termed a phosphorelay. The master control element in the decision to sporulate is the response regulator, Spo0A, which comprises a receiver or phosphoacceptor domain and an effector or transcription activation domain. The receiver domain of Spo0A shares sequence similarity with numerous response regulators, and its structure has been determined in phosphorylated and unphosphorylated forms. However, the effector domain (C-Spo0A) has no detectable sequence similarity to any other protein, and this lack of structural information is an obstacle to understanding how DNA binding and transcription activation are controlled by phosphorylation in Spo0A. Here, we report the crystal structure of C-Spo0A from Bacillus stearothermophilus revealing a single alpha-helical domain comprising six alpha-helices in an unprecedented fold. The structure contains a helix-turn-helix as part of a three alpha-helical bundle reminiscent of the catabolite gene activator protein (CAP), suggesting a mechanism for DNA binding. The residues implicated in forming the sigmaA-activating region clearly cluster in a flexible segment of the polypeptide on the opposite side of the structure from that predicted to interact with DNA. The structural results are discussed in the context of the rich array of existing mutational data.
Collapse
Affiliation(s)
- R J Lewis
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Xu J, Koudelka GB. DNA sequence requirements for the activation of 434 P(RM) transcription by 434 repressor. DNA Cell Biol 2000; 19:621-30. [PMID: 11058965 DOI: 10.1089/104454900750019380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A dimer of the 434 repressor bound at O(R)2 activated transcription initiation from P(RM) by contacting RNA polymerase. Although DNA-binding site mutations at either end of O(R)2 decreased the ability of the repressor to activate P(RM) transcription, mutations proximal to the promoter had a greater effect on transcription activation. Orienting a repressor subunit bearing the altered specificity Gln-28 --> Ala mutation to the halfsite of O(R)2 proximal to the P(RM) promoter decreased the repressor's ability to activate transcription initiation at 434 P(RM) to a much greater extent than if this subunit was placed in the O(R)2 half-site distal to P(RM). In addition to showing that the downstream (promoter proximal) subunit of the O(R)2-bound 434 repressor functions in activating 434 P(RM), the results indicated that DNA sequence-dependent conformational changes alter the efficiency with which the repressor activates P(RM) transcription. These unexpected findings highlight the importance of the structure of the repressor-DNA interface in activating transcription from P(RM).
Collapse
Affiliation(s)
- J Xu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260-1300, USA
| | | |
Collapse
|
40
|
Dhiman A, Schleif R. Recognition of overlapping nucleotides by AraC and the sigma subunit of RNA polymerase. J Bacteriol 2000; 182:5076-81. [PMID: 10960090 PMCID: PMC94654 DOI: 10.1128/jb.182.18.5076-5081.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1999] [Accepted: 06/14/2000] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli promoter p(BAD), under the control of the AraC protein, drives the expression of mRNA encoding the AraB, AraA, and AraD gene products of the arabinose operon. The binding site of AraC at p(BAD) overlaps the RNA polymerase -35 recognition region by 4 bases, leaving 2 bases of the region not contacted by AraC. This overlap raises the question of whether AraC substitutes for the sigma subunit of RNA polymerase in recognition of the -35 region or whether both AraC and sigma make important contacts with the DNA in the -35 region. If sigma does not contact DNA near the -35 region, p(BAD) activity should be independent of the identity of the bases in the hexamer region that are not contacted by AraC. We have examined this issue in the p(BAD) promoter and in a second promoter where the AraC binding site overlaps the -35 region by only 2 bases. In both cases promoter activity is sensitive to changes in bases not contacted by AraC, showing that despite the overlap, sigma does read DNA in the -35 region. Since sigma and AraC are thus closely positioned at p(BAD), it is possible that AraC and sigma contact one another during transcription initiation. DNA migration retardation assays, however, showed that there exists only a slight degree of DNA binding cooperativity between AraC and sigma, thus suggesting either that the normal interactions between AraC and sigma are weak or that the presence of the entire RNA polymerase is necessary for significant interaction.
Collapse
Affiliation(s)
- A Dhiman
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
41
|
Gourse RL, Ross W, Gaal T. UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol Microbiol 2000; 37:687-95. [PMID: 10972792 DOI: 10.1046/j.1365-2958.2000.01972.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In recent years, it has become clear that promoter recognition by bacterial RNA polymerase involves interactions not only between core promoter elements and the sigma subunit, but also between a DNA element upstream of the core promoter and the alpha subunit. DNA binding by alpha can increase transcription dramatically. Here we review the current state of our understanding of the alpha interaction with DNA during basal transcription initiation (i.e. in the absence of proteins other than RNA polymerase) and activated transcription initiation (i.e. when stimulated by transcription factors).
Collapse
Affiliation(s)
- R L Gourse
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
42
|
Bell CE, Frescura P, Hochschild A, Lewis M. Crystal structure of the lambda repressor C-terminal domain provides a model for cooperative operator binding. Cell 2000; 101:801-11. [PMID: 10892750 DOI: 10.1016/s0092-8674(00)80891-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactions between transcription factors bound to separate operator sites commonly play an important role in gene regulation by mediating cooperative binding to the DNA. However, few detailed structural models for understanding the molecular basis of such cooperativity are available. The c1 repressor of bacteriophage lambda is a classic example of a protein that binds to its operator sites cooperatively. The C-terminal domain of the repressor mediates dimerization as well as a dimer-dimer interaction that results in the cooperative binding of two repressor dimers to adjacent operator sites. Here, we present the x-ray crystal structure of the lambda repressor C-terminal domain determined by multiwavelength anomalous diffraction. Remarkably, the interactions that mediate cooperativity are captured in the crystal, where two dimers associate about a 2-fold axis of symmetry. Based on the structure and previous genetic and biochemical data, we present a model for the cooperative binding of two lambda repressor dimers at adjacent operator sites.
Collapse
Affiliation(s)
- C E Bell
- The Johnson Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
43
|
Rhodius VA, Busby SJ. Interactions between activating region 3 of the Escherichia coli cyclic AMP receptor protein and region 4 of the RNA polymerase sigma(70) subunit: application of suppression genetics. J Mol Biol 2000; 299:311-24. [PMID: 10860740 DOI: 10.1006/jmbi.2000.3737] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Escherichia coli cyclic AMP receptor protein, CRP, induces transcription at Class II CRP-dependent promoters by making three different activatory contacts with different surfaces of holo RNA polymerase. One contact surface of CRP, known as Activating Region 3 (AR3), is functional in the downstream subunit of the CRP dimer and is predicted to interact with region 4 of the RNAP sigma(70) subunit. We have previously shown that a mutant CRP derivative that activates transcription primarily via AR3, CRP HL159 KE101 KN52, requires the positively charged residues K593, K597 and R599 in sigma(70) for activation. Here, we have used the positive control substitution, EK58, to disrupt AR3-dependent activation by CRP HL159 KE101 KN52. We then screened random mutant libraries and an alanine scan library of sigma(70) for candidates that restore activation by CRP HL159 KE101 KN52 EK58. We found that changes at R596 and R599 in sigma(70) can restore activation by CRP HL159 KE101 KN52 EK58. This suggests that the side-chains of both R596 and R599 in sigma(70) clash with K58 in CRP. Maximal activation by CRP HL159 KE101 KN52 EK58 is achieved with the substitutions RE596 or RD596 in sigma(70). We propose that there are specific charge-charge interactions between E596 or D596 in sigma(70) and K58 in AR3. Thus, no increase in activation is observed in the presence of another positive control substitution, EG58 (CRP HL159 KE101 KN52 EG58). Similarly, both sigma(70) RE596 and sigma(70) RD596 can restore activation by CRP EK58 but not CRP EG58, and they both decrease activation by wild-type CRP. We suggest that E596 and D596 in sigma(70) can positively interact with K58 in AR3, thereby enhancing activation, but negatively interact with E58, thereby decreasing activation. The substitution, KA52 in AR3 increases Class II CRP-dependent activation by removing an inhibitory lysine residue. However, this increase is not observed in the presence of either sigma(70) RE596 or sigma(70) RD596. We conclude that the inhibitory side-chain, K52 in AR3, clashes with R596 in sigma(70). Finally, we show that the sigma(70) RE596 and RD596 substitutions affect CRP-dependent activation from Class II, but not Class I, promoters.
Collapse
Affiliation(s)
- V A Rhodius
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
44
|
Xu J, Koudelka GB. Mutually exclusive utilization of P(R) and P(RM) promoters in bacteriophage 434 O(R). J Bacteriol 2000; 182:3165-74. [PMID: 10809696 PMCID: PMC94503 DOI: 10.1128/jb.182.11.3165-3174.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Establishment and maintenance of a lysogen of the lambdoid bacteriophage 434 require that the 434 repressor both activate transcription from the P(RM) promoter and repress transcription from the divergent P(R) promoter. Several lines of evidence indicate that the 434 repressor activates initiation of P(RM) transcription by occupying a binding site adjacent to the P(RM) promoter and directly contacting RNA polymerase. The overlapping architecture of the P(RM) and P(R) promoters suggests that an RNA polymerase bound at P(R) may repress P(RM) transcription initiation. Hence, part of the stimulatory effect of the 434 repressor may be relief of interference between RNA polymerase binding to the P(RM) promoter and to the P(R) promoter. Consistent with this proposal, we show that the repressor cannot activate P(RM) transcription if RNA polymerase binds at P(R) prior to addition of the 434 repressor. However, unlike the findings with the related lambda phage, formation of RNA polymerase promoter complexes at P(RM) and at P(R) apparently are mutually exclusive. We find that the RNA polymerase-mediated inhibition of repressor-stimulated P(RM) transcription requires the presence of an open complex at P(R). Taken together, these results indicate that establishment of an open complex at P(R) directly prevents formation of an RNA polymerase-P(RM) complex.
Collapse
Affiliation(s)
- J Xu
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260, USA
| | | |
Collapse
|
45
|
Wade KH, Schyns G, Opdyke JA, Moran CP. A region of sigmaK involved in promoter activation by GerE in Bacillus subtilis. J Bacteriol 1999; 181:4365-73. [PMID: 10400595 PMCID: PMC93939 DOI: 10.1128/jb.181.14.4365-4373.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During endospore formation in Bacillus subtilis, the DNA binding protein GerE stimulates transcription from several promoters that are used by RNA polymerase containing sigmaK. GerE binds to a site on one of these promoters, cotX, that overlaps its -35 region. We tested the model that GerE interacts with sigmaK at the cotX promoter by seeking amino acid substitutions in sigmaK that interfered with GerE-dependent activation of the cotX promoter but which did not affect utilization of the sigmaK-dependent, GerE-independent promoter gerE. We identified two amino acid substitutions in sigmaK, E216K and H225Y, that decrease cotX promoter utilization but do not affect gerE promoter activity. Alanine substitutions at these positions had similar effects. We also examined the effects of the E216A and H225Y substitutions in sigmaK on transcription in vitro. We found that these substitutions specifically reduced utilization of the cotX promoter. These and other results suggest that the amino acid residues at positions 216 and 225 are required for GerE-dependent cotX promoter activity, that the histidine at position 225 of sigmaK may interact with GerE at the cotX promoter, and that this interaction may facilitate the initial binding of sigmaK RNA polymerase to the cotX promoter. We also found that the alanine substitutions at positions 216 and 225 of sigmaK had no effect on utilization of the GerE-dependent promoter cotD, which contains GerE binding sites that do not overlap with its -35 region.
Collapse
Affiliation(s)
- K H Wade
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
46
|
Gross CA, Chan C, Dombroski A, Gruber T, Sharp M, Tupy J, Young B. The functional and regulatory roles of sigma factors in transcription. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:141-55. [PMID: 10384278 DOI: 10.1101/sqb.1998.63.141] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- C A Gross
- Department of Stomatology, University of California at San Francisco 94143, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
García P, Ladero V, Alonso JC, Suárez JE. Cooperative interaction of CI protein regulates lysogeny of Lactobacillus casei by bacteriophage A2. J Virol 1999; 73:3920-9. [PMID: 10196287 PMCID: PMC104170 DOI: 10.1128/jvi.73.5.3920-3929.1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temperate bacteriophage A2 forms stable lysogens in Lactobacillus casei. The A2-encoded cI product (CI), which is responsible for maintaining the A2 prophage in the lysogenic state, has been purified. The CI protein, which is a monomer of 25.3 kDa in solution, specifically binds to a 153-bp DNA fragment that contains two divergent promoters, PL and PR. These promoters mediate transcription from cI and a putative cro, respectively. Three similar, although not identical, 20-bp inverted repeated DNA segments (operator sites O1, O2, and O3) were found in this segment. CI selectively interacts with O1, which is placed downstream from the transcription start point of the cro gene, and with O2 and O3, which overlap with the -35 region of the two promoters. Using a heterologous RNA polymerase, we have determined the transcription start points of PL and PR. CI exerts a negative effect on the in vitro transcription of PR by repositioning the RNA polymerase in a concentration-dependent manner. CI, when bound to O1 and O2, enhances the positioning of the RNA polymerase with the PL promoter. Our data indicate that the CI protein regulates the lytic and lysogenic pathways of the A2 phage.
Collapse
Affiliation(s)
- P García
- Area de Microbiología, Facultad de Medicina, Universidad de Oviedo, 33007 Oviedo, Spain
| | | | | | | |
Collapse
|
48
|
Kulkarni RD, Summers AO. MerR cross-links to the alpha, beta, and sigma 70 subunits of RNA polymerase in the preinitiation complex at the merTPCAD promoter. Biochemistry 1999; 38:3362-8. [PMID: 10079080 DOI: 10.1021/bi982814m] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MerR, the metalloregulator of the mercury resistance (mer) operon, binds the operator (merO)between -10 and -35 of the merTPCAD promoter (PT) and sequesters RNA polymerase (RNAP) in a closed complex. MerR represses PT until Hg(II) induces it to underwind merO DNA and thus facilitate open complex formation. We used cross-linking to determine if direct contacts between MerR and RNAP also occur during this process. MerR cross-linked to the alpha, beta, and sigma70 subunits of RNAP alone, indicating stable contacts which were further stabilized upon forming the preinitiation complex at PT. Hg(II) did not eliminate any of the MerR-RNAP cross-links but did increase the relative abundance of a MerR dimer conformer. Interference by MerR with self-cross-links among RNAP subunits and the formation of an electrophoretically stable association between MerR and RNAP also indicated MerR-RNAP interactions. This is the first evidence for stable physical contacts between MerR and RNAP and for a Hg(II)-induced allosteric change in MerR in the transcription-competent complex.
Collapse
Affiliation(s)
- R D Kulkarni
- Department of Microbiology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
49
|
Landini P, Busby SJ. The Escherichia coli Ada protein can interact with two distinct determinants in the sigma70 subunit of RNA polymerase according to promoter architecture: identification of the target of Ada activation at the alkA promoter. J Bacteriol 1999; 181:1524-9. [PMID: 10049384 PMCID: PMC93542 DOI: 10.1128/jb.181.5.1524-1529.1999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methylated form of the Ada protein (meAda) activates transcription from the Escherichia coli ada, aidB, and alkA promoters with different mechanisms. In this study we identify amino acid substitutions in region 4 of the RNA polymerase subunit sigma70 that affect Ada-activated transcription at alkA. Substitution to alanine of residues K593, K597, and R603 in sigma70 region 4 results in decreased Ada-dependent binding of RNA polymerase to the alkA promoter in vitro and impairs alkA transcription both in vivo and in vitro, suggesting that these residues define a determinant for meAda-sigma70 interaction. In a previous study (P. Landini, J. A. Bown, M. R. Volkert, and S. J. W. Busby, J. Biol. Chem. 273:13307-13312, 1998), we showed that a set of negatively charged amino acids in sigma70 region 4 is involved in meAda-sigma70 interaction at the ada and aidB promoters. However, the alanine substitutions of positively charged residues K593, K597, and R603 do not affect meAda-dependent transcription at ada and aidB. Unlike the sigma70 amino acids involved in the interaction with meAda at the ada and aidB promoters, K593, K597, and R603 are not conserved in sigmaS, an alternative sigma subunit of RNA polymerase mainly expressed during the stationary phase of growth. While meAda is able to promote transcription by the sigmaS form of RNA polymerase (EsigmaS) at ada and aidB, it fails to do so at alkA. We propose that meAda can activate transcription at different promoters by contacting distinct determinants in sigma70 region 4 in a manner dependent on the location of the Ada binding site.
Collapse
Affiliation(s)
- P Landini
- School of Biochemistry, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | |
Collapse
|
50
|
Lonetto MA, Rhodius V, Lamberg K, Kiley P, Busby S, Gross C. Identification of a contact site for different transcription activators in region 4 of the Escherichia coli RNA polymerase sigma70 subunit. J Mol Biol 1998; 284:1353-65. [PMID: 9878355 DOI: 10.1006/jmbi.1998.2268] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sigma subunit of RNA polymerase orchestrates basal transcription by first binding to core RNA polymerase and then recognizing promoters. Using a series of 16 alanine-substitution mutations, we show that residues in a narrow region of Escherichia coli sigma70 (590 to 603) are involved in transcription activation by a mutationally altered CRP derivative, FNR and AraC. Homology modeling of region 4 of sigma70 to the closely related NarL or 434 Cro proteins, suggests that the five basic residues implicated in activation are either in the C terminus of a long recognition helix that includes residues recognizing the -35 hexamer region of the promoter, or in the subsequent loop, and are ideally positioned to permit interaction with activators. The only substitution that has a significant effect on activator-independent transcription is at R603, indicating that this residue of sigma70 may play a distinct role in transcription initiation.
Collapse
Affiliation(s)
- M A Lonetto
- Department of Stomatology, University of California at San Francisco, San Francisco, CA, 94143, USA
| | | | | | | | | | | |
Collapse
|