1
|
Li Z, Huang Z, Gu P. Response of Escherichia coli to Acid Stress: Mechanisms and Applications-A Narrative Review. Microorganisms 2024; 12:1774. [PMID: 39338449 PMCID: PMC11434309 DOI: 10.3390/microorganisms12091774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Change in pH in growth conditions is the primary stress for most neutralophilic bacteria, including model microorganism Escherichia coli. However, different survival capacities under acid stress in different bacteria are ubiquitous. Research on different acid-tolerance mechanisms in microorganisms is important for the field of combating harmful gut bacteria and promoting fermentation performance of industrial strains. Therefore, this study aimed to carry out a narrative review of acid-stress response mechanism of E. coli discovered so far, including six AR systems, cell membrane protection, and macromolecular repair. In addition, the application of acid-tolerant E. coli in industry was illustrated, such as production of industrial organic acid and developing bioprocessing for industrial wastes. Identifying these aspects will open the opportunity for discussing development aspects for subsequent research of acid-tolerant mechanisms and application in E. coli.
Collapse
Affiliation(s)
| | | | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (Z.L.); (Z.H.)
| |
Collapse
|
2
|
Simpson BW, Gilmore MC, McLean AB, Cava F, Trent MS. Escherichia coli CadB is capable of promiscuously transporting muropeptides and contributing to peptidoglycan recycling. J Bacteriol 2024; 206:e0036923. [PMID: 38169298 PMCID: PMC10810205 DOI: 10.1128/jb.00369-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
The bacterial peptidoglycan (PG) cell wall is remodeled during growth and division, releasing fragments called muropeptides. Muropeptides can be internalized and reused in a process called PG recycling. Escherichia coli is highly devoted to recycling muropeptides and is known to have at least two transporters, AmpG and OppBCDF, that import them into the cytoplasm. While studying mutants lacking AmpG, we unintentionally isolated mutations that led to the altered expression of a third transporter, CadB. CadB is normally upregulated under acidic pH conditions and is an antiporter for lysine and cadaverine. Here, we explored if CadB was altering PG recycling to assist in the absence of AmpG. Surprisingly, CadB overexpression was able to restore PG recycling when both AmpG and OppBCDF were absent. CadB was found to import freed PG peptides, a subpopulation of muropeptides, through a promiscuous activity. Altogether, our data support that CadB is a third transporter capable of contributing to PG recycling. IMPORTANCE Bacteria produce a rigid mesh cell wall. During growth, the cell wall is remodeled, which releases cell wall fragments. If released into the extracellular environment, cell wall fragments can trigger inflammation by the immune system of a host. Gastrointestinal bacteria, like Escherichia coli, have dedicated pathways to recycle almost all cell wall fragments they produce. E. coli contains two known recycling transporters, AmpG and Opp, that we previously showed are optimized for growth in different environments. Here, we identify that a third transporter, CadB, can also contribute to cell wall recycling. This work expands our understanding of cell wall recycling and highlights the dedication of organisms like E. coli to ensure high recycling in multiple growth environments.
Collapse
Affiliation(s)
- Brent W. Simpson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Michael C. Gilmore
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Amanda Briann McLean
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Paterson JR, Wadsworth JM, Hu P, Sharples GJ. A critical role for iron and zinc homeostatic systems in the evolutionary adaptation of Escherichia coli to metal restriction. Microb Genom 2023; 9:001153. [PMID: 38054971 PMCID: PMC10763504 DOI: 10.1099/mgen.0.001153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023] Open
Abstract
Host nutritional immunity utilizes metal deprivation to help prevent microbial infection. To investigate bacterial adaptation to such restrictive conditions, we conducted experimental evolution with two metal sequestering agents. Ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine pentamethylene phosphonic acid (DTPMP) were selected as ligands because they differentially affect cellular levels of iron, manganese and zinc in Escherichia coli. Mutants of E. coli strain BW25113 were isolated after cultivation at sub-minimum inhibitory concentration (MIC) chelant levels and genetic changes potentially responsible for tolerance were identified by whole-genome sequencing. In EDTA-selected strains, mutations in the promoter region of yeiR resulted in elevated gene expression. The yeiR product, a zinc-specific metallochaperone, was confirmed to be primarily responsible for EDTA resistance. Similarly, in two of the DTPMP-selected strains, a promoter mutation increased expression of the fepA-entD operon, which encodes components of the ferric-enterobactin uptake pathway. However, in this case improved DTPMP tolerance was only detectable following overexpression of FepA or EntD in trans. Additional mutations in the cadC gene product, an acid-response regulator, preserved the neutrality of the growth medium by constitutively activating expression of the cadAB regulon. This study uncovers specific resistance mechanisms for zinc and iron starvation that could emerge by selection against host nutritional immunity or competition with heterologous metallophores. It also provides insight into the specific metals affected by these two widely used chelators critical for their antibacterial mode of action.
Collapse
Affiliation(s)
| | | | - Ping Hu
- Procter and Gamble, Mason Business Center, Cincinnati, Ohio 45040, USA
| | | |
Collapse
|
4
|
Demey LM, Gumerov VM, Xing J, Zhulin IB, DiRita VJ. Transmembrane Transcription Regulators Are Widespread in Bacteria and Archaea. Microbiol Spectr 2023; 11:e0026623. [PMID: 37154724 PMCID: PMC10269533 DOI: 10.1128/spectrum.00266-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
To adapt and proliferate, bacteria must sense and respond to the ever-changing environment. Transmembrane transcription regulators (TTRs) are a family of one-component transcription regulators that respond to extracellular information and influence gene expression from the cytoplasmic membrane. How TTRs function to modulate expression of their target genes while localized to the cytoplasmic membrane remains poorly understood. In part, this is due to a lack of knowledge regarding the prevalence of TTRs among prokaryotes. Here, we show that TTRs are highly diverse and prevalent throughout bacteria and archaea. Our work demonstrates that TTRs are more common than previously appreciated and are enriched within specific bacterial and archaeal phyla and that many TTRs have unique transmembrane region properties that can facilitate association with detergent-resistant membranes. IMPORTANCE One-component signal transduction systems are the major class of signal transduction systems among bacteria and are commonly cytoplasmic. TTRs are a group of unique one-component signal transduction systems that influence transcription from the cytoplasmic membrane. TTRs have been implicated in a wide array of biological pathways critical for both pathogens and human commensal organisms but were considered to be rare. Here, we demonstrate that TTRs are in fact highly diverse and broadly distributed in bacteria and archaea. Our findings suggest that transcription factors can access the chromosome and influence transcription from the membrane in both archaea and bacteria. This study challenges thus the commonly held notion that signal transduction systems require a cytoplasmic transcription factor and highlights the importance of the cytoplasmic membrane in directly influencing signal transduction.
Collapse
Affiliation(s)
- Lucas M. Demey
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Vadim M. Gumerov
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jiawei Xing
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Igor B. Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Victor J. DiRita
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Iwadate Y, Golubeva YA, Slauch JM. Cation Homeostasis: Coordinate Regulation of Polyamine and Magnesium Levels in Salmonella. mBio 2023; 14:e0269822. [PMID: 36475749 PMCID: PMC9972920 DOI: 10.1128/mbio.02698-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Polyamines are organic cations that are important in all domains of life. Here, we show that in Salmonella, polyamine levels and Mg2+ levels are coordinately regulated and that this regulation is critical for viability under both low and high concentrations of polyamines. Upon Mg2+ starvation, polyamine synthesis is induced, as is the production of the high-affinity Mg2+ transporters MgtA and MgtB. Either polyamine synthesis or Mg2+ transport is required to maintain viability. Mutants lacking the polyamine exporter PaeA, the expression of which is induced by PhoPQ in response to low Mg2+, lose viability in the stationary phase. This lethality is suppressed by blocking either polyamine synthesis or Mg2+ transport, suggesting that once Mg2+ levels are reestablished, the excess polyamines must be excreted. Thus, it is the relative levels of both Mg2+ and polyamines that are regulated to maintain viability. Indeed, sensitivity to high concentrations of polyamines is proportional to the Mg2+ levels in the medium. These results are recapitulated during infection. Polyamine synthesis mutants are attenuated in a mouse model of systemic infection, as are strains lacking the MgtB Mg2+ transporter. The loss of MgtB in the synthesis mutant background confers a synthetic phenotype, confirming that Mg2+ and polyamines are required for the same process(es). Mutants lacking PaeA are also attenuated, but deleting paeA has no phenotype in a polyamine synthesis mutant background. These data support the idea that the cell coordinately controls both the polyamine and Mg2+ concentrations to maintain overall cation homeostasis, which is critical for survival in the macrophage phagosome. IMPORTANCE Polyamines are organic cations that are important in all life forms and are essential in plants and animals. However, their physiological functions and regulation remain poorly understood. We show that polyamines are critical for the adaptation of Salmonella to low Mg2+ conditions, including those found in the macrophage phagosome. Polyamines are synthesized upon low Mg2+ stress and partially replace Mg2+ until cytoplasmic Mg2+ levels are restored. Indeed, it is the sum of Mg2+ and polyamines in the cell that is critical for viability. While Mg2+ and polyamines compensate for one another, too little of both or too much of both is lethal. After cytoplasmic Mg2+ levels are reestablished, polyamines must be exported to avoid the toxic effects of excess divalent cations.
Collapse
Affiliation(s)
- Yumi Iwadate
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yekaterina A. Golubeva
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - James M. Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
7
|
Lee B, Wang T. A Modular Scaffold for Controlling Transcriptional Activation via Homomeric Protein-Protein Interactions. ACS Synth Biol 2022; 11:3198-3206. [PMID: 36215660 DOI: 10.1021/acssynbio.2c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protein-protein interactions (PPIs) have been extensively utilized in synthetic biology to construct artificial gene networks. However, synthetic regulation of gene expression by PPIs in E. coli has largely relied upon repressors, and existing PPI-controlled transcriptional activators have generally been employed with heterodimeric interactions. Here we report a highly modular, PPI-dependent transcriptional activator, cCadC, that was designed to be compatible with homomeric interactions. We describe the process of engineering cCadC from a transmembrane protein into a soluble cytosolic regulator. We then show that gene transcription by cCadC can be controlled by homomeric PPIs and furthermore discriminates between dimeric and higher-order interactions. Finally, we demonstrate that cCadC activity can be placed under small molecule regulation using chemically induced dimerization or ligand dependent stabilization. This work should greatly expand the scope of PPIs that can be employed in artificial gene circuits in E. coli and complements the existing repertoire of tools for transcriptional regulation in synthetic biology.
Collapse
Affiliation(s)
- ByungUk Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Tina Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Islam SI, Mou MJ, Sanjida S. Application of reverse vaccinology to design a multi-epitope subunit vaccine against a new strain of Aeromonas veronii. J Genet Eng Biotechnol 2022; 20:118. [PMID: 35939149 PMCID: PMC9358925 DOI: 10.1186/s43141-022-00391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Aeromonas veronii is one of the most common pathogens of freshwater fishes that cause sepsis and ulcers. There are increasing numbers of cases showing that it is a significant zoonotic and aquatic agent. Epidemiological studies have shown that A. veronii virulence and drug tolerance have both increased over the last few years as a result of epidemiological investigations. Cadaverine reverse transporter (CadB) and maltoporin (LamB protein) contribute to the virulence of A. veronii TH0426. TH0426 strain is currently showing severe cases on fish species, and its resistance against therapeutic has been increasing. Despite these devastating complications, there is still no effective cure or vaccine for this strain of A.veronii. RESULTS In this regard, an immunoinformatic method was used to generate an epitope-based vaccine against this pathogen. The immunodominant epitopes were identified using the CadB and LamB protein of A. veronii. The final constructed vaccine sequence was developed to be immunogenic, non-allergenic as well as have better solubility. Molecular dynamic simulation revealed significant binding stability and structural compactness. Finally, using Escherichia coli K12 as a model, codon optimization yielded ideal GC content and a higher CAI value, which was then included in the cloning vector pET2+ (a). CONCLUSION Altogether, our outcomes imply that the proposed peptide vaccine might be a good option for A. veronii TH0426 prophylaxis.
Collapse
Affiliation(s)
- Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- The International Graduate Program of Veterinary Science and Technology (VST), Department of Veterinary Microbiology, Faculty of Veterinary Science and Technology, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Moslema Jahan Mou
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Science, University of Rajshahi, Rajshahi, Bangladesh
| | - Saloa Sanjida
- Department of Environmental Science and Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
9
|
Hummels KR, Kearns DB. Translation elongation factor P (EF-P). FEMS Microbiol Rev 2020; 44:208-218. [PMID: 32011712 DOI: 10.1093/femsre/fuaa003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/30/2020] [Indexed: 01/01/2023] Open
Abstract
Translation elongation factor P (EF-P) is conserved in all three domains of life (called eIF5A and aIF5A in eukaryotes and archaea, respectively) and functions to alleviate ribosome pausing during the translation of specific sequences, including consecutive proline residues. EF-P was identified in 1975 as a factor that stimulated the peptidyltransferase reaction in vitro but its involvement in the translation of tandem proline residues was not uncovered until 2013. Throughout the four decades of EF-P research, perceptions of EF-P function have changed dramatically. In particular, while EF-P was thought to potentiate the formation of the first peptide bond in a protein, it is now broadly accepted to act throughout translation elongation. Further, EF-P was initially reported to be essential, but recent work has shown that the requirement of EF-P for growth is conditional. Finally, it is thought that post-translational modification of EF-P is strictly required for its function but recent studies suggest that EF-P modification may play a more nuanced role in EF-P activity. Here, we review the history of EF-P research, with an emphasis on its initial isolation and characterization as well as the discoveries that altered our perceptions of its function.
Collapse
Affiliation(s)
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN USA
| |
Collapse
|
10
|
Arcari T, Feger ML, Guerreiro DN, Wu J, O’Byrne CP. Comparative Review of the Responses of Listeria monocytogenes and Escherichia coli to Low pH Stress. Genes (Basel) 2020; 11:genes11111330. [PMID: 33187233 PMCID: PMC7698193 DOI: 10.3390/genes11111330] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Acidity is one of the principal physicochemical factors that influence the behavior of microorganisms in any environment, and their response to it often determines their ability to grow and survive. Preventing the growth and survival of pathogenic bacteria or, conversely, promoting the growth of bacteria that are useful (in biotechnology and food production, for example), might be improved considerably by a deeper understanding of the protective responses that these microorganisms deploy in the face of acid stress. In this review, we survey the molecular mechanisms used by two unrelated bacterial species in their response to low pH stress. We chose to focus on two well-studied bacteria, Escherichia coli (phylum Proteobacteria) and Listeria monocytogenes (phylum Firmicutes), that have both evolved to be able to survive in the mammalian gastrointestinal tract. We review the mechanisms that these species use to maintain a functional intracellular pH as well as the protective mechanisms that they deploy to prevent acid damage to macromolecules in the cells. We discuss the mechanisms used to sense acid in the environment and the regulatory processes that are activated when acid is encountered. We also highlight the specific challenges presented by organic acids. Common themes emerge from this comparison as well as unique strategies that each species uses to cope with acid stress. We highlight some of the important research questions that still need to be addressed in this fascinating field.
Collapse
|
11
|
Nguyen-Vo TP, Ko S, Ryu H, Kim JR, Kim D, Park S. Systems evaluation reveals novel transporter YohJK renders 3-hydroxypropionate tolerance in Escherichia coli. Sci Rep 2020; 10:19064. [PMID: 33149261 PMCID: PMC7642389 DOI: 10.1038/s41598-020-76120-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
Previously, we have reported that 3-hydroxypropionate (3-HP) tolerance in Escherichia coli W is improved by deletion of yieP, a less-studied transcription factor. Here, through systems analyses along with physiological and functional studies, we suggest that the yieP deletion improves 3-HP tolerance by upregulation of yohJK, encoding putative 3-HP transporter(s). The tolerance improvement by yieP deletion was highly specific to 3-HP, among various C2-C4 organic acids. Mapping of YieP binding sites (ChIP-exo) coupled with transcriptomic profiling (RNA-seq) advocated seven potential genes/operons for further functional analysis. Among them, the yohJK operon, encoding for novel transmembrane proteins, was the most responsible for the improved 3-HP tolerance; deletion of yohJK reduced 3-HP tolerance regardless of yieP deletion, and their subsequent complementation fully restored the tolerance in both the wild-type and yieP deletion mutant. When determined by 3-HP-responsive biosensor, a drastic reduction of intracellular 3-HP was observed upon yieP deletion or yohJK overexpression, suggesting that yohJK encodes for novel 3-HP exporter(s).
Collapse
Affiliation(s)
- Thuan Phu Nguyen-Vo
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Seyoung Ko
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Huichang Ryu
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Jung Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea.
| | - Sunghoon Park
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea.
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
12
|
Tao L, Kang Y, Zhang L, Shi Q, Li Y, Wu T, Qian A, Sun W, Shan X. Cadaverine reverse transporter (CadB protein) contributes to the virulence of Aeromonas veronii TH0426. Int Microbiol 2020; 23:489-499. [PMID: 31950405 DOI: 10.1007/s10123-020-00120-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 11/25/2022]
Abstract
Aeromonas veronii is one of the main pathogens causing sepsis and ulcer syndrome in freshwater fish. Analysis of the results of epidemiological investigations in recent years has revealed that the virulence of A. veronii and its tolerance to drugs have been increasing year by year. Currently, most of the research on A. veronii focuses on its isolation, identification, and drug susceptibility, whereas research on its virulence factors and pathogenesis mechanisms is relatively rare. In this study, we identified and obtained the highly expressed TH0426 cadaverine reverse transporter (CadB) of A. veronii. We used efficient suicide plasmid-mediated homologous recombination to delete the cadB gene in TH0426 and constructed a cadB deletion strain. The LD50 of ΔcadB was 93.2 times higher than that of TH0426 in zebrafish, the toxicity of ΔcadB was 9.5 times less than that of TH0426 in EPC cells, and the biofilm formation ability of ΔcadB was 5.6-fold greater than that of TH0426. In addition, motility detection results indicated that ΔcadB had lost its swimming ability. The results of flagellar staining and TEM demonstrated that ΔcadB shed the flagella. In summary, the virulence and adhesion of A. veronii TH0426 were significantly decreased by the deletion of cadB, which might provide a theoretical basis for research into A. veronii virulence factors.
Collapse
Affiliation(s)
- LuoTao Tao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - YuanHuan Kang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Qiumei Shi
- Key Laboratory of Hebei Province Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
| | - Ying Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Tonglei Wu
- Key Laboratory of Hebei Province Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
| | - Aidong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - WuWen Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
13
|
Bañares AB, Valdehuesa KNG, Ramos KRM, Nisola GM, Lee WK, Chung WJ. A pH-responsive genetic sensor for the dynamic regulation of D-xylonic acid accumulation in Escherichia coli. Appl Microbiol Biotechnol 2020; 104:2097-2108. [PMID: 31900554 DOI: 10.1007/s00253-019-10297-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 11/25/2022]
Abstract
The xylose oxidative pathway (XOP) is continuously gaining prominence as an alternative for the traditional pentose assimilative pathways in prokaryotes. It begins with the oxidation of D-xylose to D-xylonic acid, which is further converted to α-ketoglutarate or pyruvate + glycolaldehyde through a series of enzyme reactions. The persistent drawback of XOP is the accumulation of D-xylonic acid intermediate that causes culture media acidification. This study addresses this issue through the development of a novel pH-responsive synthetic genetic controller that uses a modified transmembrane transcription factor called CadCΔ. This genetic circuit was tested for its ability to detect extracellular pH and to control the buildup of D-xylonic acid in the culture media. Results showed that the pH-responsive genetic sensor confers dynamic regulation of D-xylonic acid accumulation, which adjusts with the perturbation of culture media pH. This is the first report demonstrating the use of a pH-responsive transmembrane transcription factor as a transducer in a synthetic genetic circuit that was designed for XOP. This may serve as a benchmark for the development of other genetic controllers for similar pathways that involve acidic intermediates.
Collapse
Affiliation(s)
- Angelo B Bañares
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea
| | - Kris Niño G Valdehuesa
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea
| | - Kristine Rose M Ramos
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea
| | - Grace M Nisola
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea.
| | - Wook-Jin Chung
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
14
|
|
15
|
Brameyer S, Rösch TC, El Andari J, Hoyer E, Schwarz J, Graumann PL, Jung K. DNA-binding directs the localization of a membrane-integrated receptor of the ToxR family. Commun Biol 2019; 2:4. [PMID: 30740540 PMCID: PMC6320335 DOI: 10.1038/s42003-018-0248-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/30/2018] [Indexed: 11/28/2022] Open
Abstract
All living cells have a large number of proteins that are anchored with one transmembrane helix in the cytoplasmic membrane. Almost nothing is known about their spatiotemporal organization in whole cells. Here we report on the localization and dynamics of one representative, the pH sensor and transcriptional regulator CadC in Escherichia coli. Fluorophore-tagged CadC was detectable as distinct cluster only when the receptor was activated by external stress, which results in DNA-binding. Clusters immediately disappeared under non-stress conditions. CadC variants that mimic the active state of CadC independent of environmental stimuli corroborated the correlation between CadC clustering and binding to the DNA, as did altering the number or location of the DNA-binding site(s) in whole cells. These studies reveal a novel diffusion-and-capture mechanism to organize a membrane-integrated receptor dependent on the DNA in a rod-shaped bacterium.
Collapse
Affiliation(s)
- Sophie Brameyer
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Thomas C. Rösch
- LOEWE SYNMIKRO, LOEWE Center for Synthetic Microbiology and Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Strasse, Marburg, Germany
| | - Jihad El Andari
- LOEWE SYNMIKRO, LOEWE Center for Synthetic Microbiology and Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Strasse, Marburg, Germany
| | - Elisabeth Hoyer
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Julia Schwarz
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Peter L. Graumann
- LOEWE SYNMIKRO, LOEWE Center for Synthetic Microbiology and Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Strasse, Marburg, Germany
| | - Kirsten Jung
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
16
|
Structure-function analysis of the DNA-binding domain of a transmembrane transcriptional activator. Sci Rep 2017; 7:1051. [PMID: 28432336 PMCID: PMC5430869 DOI: 10.1038/s41598-017-01031-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/23/2017] [Indexed: 11/08/2022] Open
Abstract
The transmembrane DNA-binding protein CadC of E. coli, a representative of the ToxR-like receptor family, combines input and effector domains for signal sensing and transcriptional activation, respectively, in a single protein, thus representing one of the simplest signalling systems. At acidic pH in a lysine-rich environment, CadC activates the transcription of the cadBA operon through recruitment of the RNA polymerase (RNAP) to the two cadBA promoter sites, Cad1 and Cad2, which are directly bound by CadC. However, the molecular details for its interaction with DNA have remained elusive. Here, we present the crystal structure of the CadC DNA-binding domain (DBD) and show that it adopts a winged helix-turn-helix fold. The interaction with the cadBA promoter site Cad1 is studied by using nuclear magnetic resonance (NMR) spectroscopy, biophysical methods and functional assays and reveals a preference for AT-rich regions. By mutational analysis we identify amino acids within the CadC DBD that are crucial for DNA-binding and functional activity. Experimentally derived structural models of the CadC-DNA complex indicate that the CadC DBD employs mainly non-sequence-specific over a few specific contacts. Our data provide molecular insights into the CadC-DNA interaction and suggest how CadC dimerization may provide high-affinity binding to the Cad1 promoter.
Collapse
|
17
|
Piepenbreier H, Fritz G, Gebhard S. Transporters as information processors in bacterial signalling pathways. Mol Microbiol 2017; 104:1-15. [DOI: 10.1111/mmi.13633] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Hannah Piepenbreier
- LOEWE Center for Synthetic Microbiology; Philipps-University Marburg; Germany
| | - Georg Fritz
- LOEWE Center for Synthetic Microbiology; Philipps-University Marburg; Germany
| | - Susanne Gebhard
- Milner Centre for Evolution, Department of Biology and Biochemistry; University of Bath; UK
| |
Collapse
|
18
|
Amino acid decarboxylase-dependent acid tolerance, selected phenotypic, and virulence gene expression responses of Salmonella enterica serovar Heidelberg. Food Res Int 2017; 92:33-39. [DOI: 10.1016/j.foodres.2016.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 11/17/2022]
|
19
|
Li N, Chou H, Xu Y. Improved cadaverine production from mutantKlebsiella oxytocalysine decarboxylase. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Naiqiang Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi P. R. China
- Cathay Industrial Biotech Ltd; Shanghai P. R. China
| | - Howard Chou
- Cathay Industrial Biotech Ltd; Shanghai P. R. China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi P. R. China
| |
Collapse
|
20
|
Friedrich T, Dekovic DK, Burschel S. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (respiratory complex I). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:214-23. [PMID: 26682761 DOI: 10.1016/j.bbabio.2015.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/13/2022]
Abstract
Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of four protons across the membrane. The Escherichia coli complex I is made up of 13 different subunits encoded by the so-called nuo-genes. The electron transfer is catalyzed by nine cofactors, a flavin mononucleotide and eight iron-sulfur (Fe/S)-clusters. The individual subunits and the cofactors have to be assembled together in a coordinated way to guarantee the biogenesis of the active holoenzyme. Only little is known about the assembly of the bacterial complex compared to the mitochondrial one. Due to the presence of so many Fe/S-clusters the assembly of complex I is intimately connected with the systems responsible for the biogenesis of these clusters. In addition, a few other proteins have been reported to be required for an effective assembly of the complex in other bacteria. The proposed role of known bacterial assembly factors is discussed and the information from other bacterial species is used in this review to draw an as complete as possible model of bacterial complex I assembly. In addition, the supramolecular organization of the complex in E. coli is briefly described. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof. Conrad Mullineaux.
Collapse
Affiliation(s)
- Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany; Spemann Graduate School of Biology and Medicine, Albertstr. 19A, 79104 Freiburg i. Br., Germany.
| | - Doris Kreuzer Dekovic
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany; Spemann Graduate School of Biology and Medicine, Albertstr. 19A, 79104 Freiburg i. Br., Germany
| | - Sabrina Burschel
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany
| |
Collapse
|
21
|
Lassak J, Wilson DN, Jung K. Stall no more at polyproline stretches with the translation elongation factors EF-P and IF-5A. Mol Microbiol 2015; 99:219-35. [PMID: 26416626 DOI: 10.1111/mmi.13233] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 01/18/2023]
Abstract
Synthesis of polyproline proteins leads to translation arrest. To overcome this ribosome stalling effect, bacteria depend on a specialized translation elongation factor P (EF-P), being orthologous and functionally identical to eukaryotic/archaeal elongation factor e/aIF-5A (recently renamed 'EF5'). EF-P binds to the stalled ribosome between the peptidyl-tRNA binding and tRNA-exiting sites, and stimulates peptidyl-transferase activity, thus allowing translation to resume. In their active form, both EF-P and e/aIF-5A are post-translationally modified at a positively charged residue, which protrudes toward the peptidyl-transferase center when bound to the ribosome. While archaeal and eukaryotic IF-5A strictly depend on (deoxy-) hypusination (hypusinylation) of a conserved lysine, bacteria have evolved diverse analogous modification strategies to activate EF-P. In Escherichia coli and Salmonella enterica a lysine is extended by β-lysinylation and subsequently hydroxylated, whereas in Pseudomonas aeruginosa and Shewanella oneidensis an arginine in the equivalent position is rhamnosylated. Inactivation of EF-P, or the corresponding modification systems, reduces not only bacterial fitness, but also impairs virulence. Here, we review the function of EF-P and IF-5A and their unusual posttranslational protein modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377, Munich, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, D-82152, Martinsried, Germany
| | - Daniel N Wilson
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377, Munich, Germany.,Gene Center, Department for Biochemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Kirsten Jung
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377, Munich, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, D-82152, Martinsried, Germany
| |
Collapse
|
22
|
Development of engineered Escherichia coli whole-cell biocatalysts for high-level conversion of l-lysine into cadaverine. ACTA ACUST UNITED AC 2015; 42:1481-91. [DOI: 10.1007/s10295-015-1678-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 08/21/2015] [Indexed: 11/25/2022]
Abstract
Abstract
A whole-cell biocatalytic system for the production of cadaverine from l-lysine has been developed. Among the investigated lysine decarboxylases from different microorganisms, Escherichia coli LdcC showed the best performance on cadaverine synthesis when E. coli XL1-Blue was used as the host strain. Six different strains of E. coli expressing E. coli LdcC were investigated and recombinant E. coli XL1-Blue, BL21(DE3) and W were chosen for further investigation since they showed higher conversion yield of lysine into cadaverine. The effects of substrate pH, substrate concentrations, buffering conditions, and biocatalyst concentrations have been investigated. Finally, recombinant E. coli XL1-Blue concentrated to an OD600 of 50, converted 192.6 g/L (1317 mM) of crude lysine solution, obtained from an actual lysine manufacturing process, to 133.7 g/L (1308 mM) of cadaverine with a molar yield of 99.90 %. The whole-cell biocatalytic system described herein is expected to be applicable to the development of industrial bionylon production process.
Collapse
|
23
|
Abstract
Early investigations on arginine biosynthesis brought to light basic features of metabolic regulation. The most significant advances of the last 10 to 15 years concern the arginine repressor, its structure and mode of action in both E. coli and Salmonella typhimurium, the sequence analysis of all arg structural genes in E. coli and Salmonella typhimurium, the resulting evolutionary inferences, and the dual regulation of the carAB operon. This review provides an overall picture of the pathways, their interconnections, the regulatory circuits involved, and the resulting interferences between arginine and polyamine biosynthesis. Carbamoylphosphate is a precursor common to arginine and the pyrimidines. In both Escherichia coli and Salmonella enterica serovar Typhimurium, it is produced by a single synthetase, carbamoylphosphate synthetase (CPSase), with glutamine as the physiological amino group donor. This situation contrasts with the existence of separate enzymes specific for arginine and pyrimidine biosynthesis in Bacillus subtilis and fungi. Polyamine biosynthesis has been particularly well studied in E. coli, and the cognate genes have been identified in the Salmonella genome as well, including those involved in transport functions. The review summarizes what is known about the enzymes involved in the arginine pathway of E. coli and S. enterica serovar Typhimurium; homologous genes were identified in both organisms, except argF (encoding a supplementary OTCase), which is lacking in Salmonella. Several examples of putative enzyme recruitment (homologous enzymes performing analogous functions) are also presented.
Collapse
|
24
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
25
|
Linares DM, Del Rio B, Redruello B, Ladero V, Martin MC, de Jong A, Kuipers OP, Fernandez M, Alvarez MA. AguR, a Transmembrane Transcription Activator of the Putrescine Biosynthesis Operon in Lactococcus lactis, Acts in Response to the Agmatine Concentration. Appl Environ Microbiol 2015; 81:6145-57. [PMID: 26116671 PMCID: PMC4542264 DOI: 10.1128/aem.00959-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/23/2015] [Indexed: 12/14/2022] Open
Abstract
Dairy industry fermentative processes mostly use Lactococcus lactis as a starter. However, some dairy L. lactis strains produce putrescine, a biogenic amine that raises food safety and spoilage concerns, via the agmatine deiminase (AGDI) pathway. The enzymatic activities responsible for putrescine biosynthesis in this bacterium are encoded by the AGDI gene cluster. The role of the catabolic genes aguB, aguD, aguA, and aguC has been studied, but knowledge regarding the role of aguR (the first gene in the cluster) remains limited. In the present work, aguR was found to be a very low level constitutively expressed gene that is essential for putrescine biosynthesis and is transcribed independently of the polycistronic mRNA encoding the catabolic genes (aguBDAC). In response to agmatine, AguR acts as a transcriptional activator of the aguB promoter (PaguB), which drives the transcription of the aguBDAC operon. Inverted sequences required for PaguB activity were identified by deletion analysis. Further work indicated that AguR is a transmembrane protein which might function as a one-component signal transduction system that senses the agmatine concentration of the medium and, accordingly, regulates the transcription of the aguBDAC operon through a C-terminal cytoplasmic DNA-binding domain typically found in LuxR-like proteins.
Collapse
Affiliation(s)
- Daniel M Linares
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Villaviciosa, Spain
| | - Beatriz Del Rio
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Villaviciosa, Spain
| | - Begoña Redruello
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Villaviciosa, Spain
| | - Victor Ladero
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Villaviciosa, Spain
| | - M Cruz Martin
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Villaviciosa, Spain
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Maria Fernandez
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Villaviciosa, Spain
| | - Miguel A Alvarez
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Villaviciosa, Spain
| |
Collapse
|
26
|
Buchner S, Schlundt A, Lassak J, Sattler M, Jung K. Structural and Functional Analysis of the Signal-Transducing Linker in the pH-Responsive One-Component System CadC of Escherichia coli. J Mol Biol 2015; 427:2548-2561. [DOI: 10.1016/j.jmb.2015.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
|
27
|
Li N, Chou H, Yu L, Xu Y. Cadaverine production by heterologous expression of Klebsiella oxytoca lysine decarboxylase. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0352-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Imaging live cells at the nanometer-scale with single-molecule microscopy: obstacles and achievements in experiment optimization for microbiology. Molecules 2014; 19:12116-49. [PMID: 25123183 PMCID: PMC4346097 DOI: 10.3390/molecules190812116] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/01/2014] [Accepted: 08/01/2014] [Indexed: 12/19/2022] Open
Abstract
Single-molecule fluorescence microscopy enables biological investigations inside living cells to achieve millisecond- and nanometer-scale resolution. Although single-molecule-based methods are becoming increasingly accessible to non-experts, optimizing new single-molecule experiments can be challenging, in particular when super-resolution imaging and tracking are applied to live cells. In this review, we summarize common obstacles to live-cell single-molecule microscopy and describe the methods we have developed and applied to overcome these challenges in live bacteria. We examine the choice of fluorophore and labeling scheme, approaches to achieving single-molecule levels of fluorescence, considerations for maintaining cell viability, and strategies for detecting single-molecule signals in the presence of noise and sample drift. We also discuss methods for analyzing single-molecule trajectories and the challenges presented by the finite size of a bacterial cell and the curvature of the bacterial membrane.
Collapse
|
29
|
New Insights into the Interplay Between the Lysine Transporter LysP and the pH Sensor CadC in Escherichia Coli. J Mol Biol 2014; 426:215-29. [DOI: 10.1016/j.jmb.2013.09.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/12/2013] [Accepted: 09/15/2013] [Indexed: 11/20/2022]
|
30
|
Lee YH, Kim S, Kim JH, Bang IS, Lee IS, Bang SH, Park YK. A phosphotransferase system permease is a novel component of CadC signaling in Salmonella enterica. FEMS Microbiol Lett 2012; 338:54-61. [PMID: 23066934 DOI: 10.1111/1574-6968.12025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/11/2012] [Accepted: 10/08/2012] [Indexed: 11/30/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium, proteolytic cleavage of the membrane-bound transcriptional regulator CadC acts as a switch to activate genes of the lysine decarboxylase system in response to low pH and lysine signals. To identify the genetic factors required for the proteolytic activation of CadC, we performed genome-wide random mutagenesis. We show that a phosphotransferase system (PTS) permease STM4538 acts as a positive modulator of CadC function. The transposon insertion in STM4538 reduces the expression of the CadC target operon cadBA under permissive conditions. In addition, deletional inactivation of STM4538 in the wild-type background leads to the impaired proteolytic cleavage of CadC. We also show that only the low pH signal is involved in the proteolytic processing of CadC, but the lysine signal plays a role in the repression of the lysP gene encoding a lysine-specific permease, which negatively controls expression of the cadBA operon. Our data suggest that the PTS permease STM4538 affects proteolytic processing, which is a necessary but not sufficient step for CadC activation, rendering CadC able to activate target genes.
Collapse
Affiliation(s)
- Yong Heon Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.
| | | | | | | | | | | | | |
Collapse
|
31
|
Deactivation of the E. coli pH Stress Sensor CadC by Cadaverine. J Mol Biol 2012; 424:15-27. [DOI: 10.1016/j.jmb.2012.08.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/12/2012] [Accepted: 08/27/2012] [Indexed: 11/15/2022]
|
32
|
Lohinai Z, Keremi B, Szoko E, Tabi T, Szabo C, Tulassay Z, Levine M. Bacterial lysine decarboxylase influences human dental biofilm lysine content, biofilm accumulation, and subclinical gingival inflammation. J Periodontol 2011; 83:1048-56. [PMID: 22141361 DOI: 10.1902/jop.2011.110474] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study are to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR) and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for 1 week. METHODS Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm, and saliva before OHR and in dental biofilm after OHR. RESULTS Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After 1 week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine after OHR, unless biofilm lysine exceeded the minimal blood plasma content, in which case PI was further increased but GCF exudation was reduced. CONCLUSIONS After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis.
Collapse
Affiliation(s)
- Zsolt Lohinai
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
33
|
Marbaniang CN, Gowrishankar J. Role of ArgP (IciA) in lysine-mediated repression in Escherichia coli. J Bacteriol 2011; 193:5985-96. [PMID: 21890697 PMCID: PMC3194910 DOI: 10.1128/jb.05869-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 08/24/2011] [Indexed: 11/20/2022] Open
Abstract
Initially identified as an inhibitor of oriC-initiated DNA replication in vitro, the ArgP or IciA protein of Escherichia coli has subsequently been described as a nucleoid-associated protein and also as a transcriptional regulator of genes involved in DNA replication (dnaA and nrdA) and amino acid metabolism (argO, dapB, and gdhA [the last in Klebsiella pneumoniae]). ArgP mediates lysine (Lys) repression of argO, dapB, and gdhA in vivo, for which two alternative mechanisms have been identified: at the dapB and gdhA regulatory regions, ArgP binding is reduced upon the addition of Lys, whereas at argO, RNA polymerase is trapped at the step of promoter clearance by Lys-bound ArgP. In this study, we have examined promoter-lac fusions in strains that were argP(+) or ΔargP or that were carrying dominant argP mutations in order to identify several new genes that are ArgP-regulated in vivo, including lysP, lysC, lysA, dapD, and asd (in addition to argO, dapB, and gdhA). All were repressed upon Lys supplementation, and in vitro studies demonstrated that ArgP binds to the corresponding regulatory regions in a Lys-sensitive manner (with the exception of argO, whose binding to ArgP was Lys insensitive). Neither dnaA nor nrdA was ArgP regulated in vivo, although their regulatory regions exhibited low-affinity binding to ArgP. Our results suggest that ArgP is a transcriptional regulator for Lys repression of genes in E. coli but that it is noncanonical in that it also exhibits low-affinity binding, without apparent direct regulatory effect, to a number of additional sites in the genome.
Collapse
Affiliation(s)
- Carmelita N. Marbaniang
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 001, India
| | - J. Gowrishankar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 001, India
| |
Collapse
|
34
|
Ruiz J, Haneburger I, Jung K. Identification of ArgP and Lrp as transcriptional regulators of lysP, the gene encoding the specific lysine permease of Escherichia coli. J Bacteriol 2011; 193:2536-48. [PMID: 21441513 PMCID: PMC3133163 DOI: 10.1128/jb.00815-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 03/14/2011] [Indexed: 11/20/2022] Open
Abstract
Expression of lysP, which encodes the lysine-specific transporter LysP in Escherichia coli, is regulated by the concentration of exogenous available lysine. In this study, the LysR-type transcriptional regulator ArgP was identified as the activator of lysP expression. At lysine concentrations higher than 25 μM, lysP expression was shut off and phenocopied an argP deletion mutant. Purified ArgP-His(6) bound to the lysP promoter/control region at a sequence containing a conserved T-N(11)-A motif. Its affinity increased in the presence of lysine but not in the presence of the other known coeffector, arginine. In vivo data suggest that lysine-loaded ArgP and arginine-loaded ArgP compete at the lysP promoter. We propose that lysine-loaded ArgP prevents lysP transcription at the promoter clearance step, as described for the lysine-dependent regulation of argO (R. S. Laishram and J. Gowrishankar, Genes Dev. 21:1258-1272, 2007). The global regulator Lrp also bound to the lysP promoter/control region. An lrp mutant exhibited reduced lysP expression in the absence of external lysine. These results indicate that ArgP is a major regulator of lysP expression but that Lrp modulates lysP transcription under lysine-limiting conditions.
Collapse
Affiliation(s)
| | - Ina Haneburger
- Ludwig-Maximilians-Universität München, Munich Center for integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Ludwig-Maximilians-Universität München, Munich Center for integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| |
Collapse
|
35
|
Detection and function of an intramolecular disulfide bond in the pH-responsive CadC of Escherichia coli. BMC Microbiol 2011; 11:74. [PMID: 21486484 PMCID: PMC3096576 DOI: 10.1186/1471-2180-11-74] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 04/12/2011] [Indexed: 01/13/2023] Open
Abstract
Background In an acidic and lysine-rich environment Escherichia coli induces expression of the cadBA operon which encodes CadA, the lysine decarboxylase, and CadB, the lysine/cadaverine antiporter. cadBA expression is dependent on CadC, a membrane-integrated transcriptional activator which belongs to the ToxR-like protein family. Activation of CadC requires two stimuli, lysine and low pH. Whereas lysine is detected by an interplay between CadC and the lysine-specific transporter LysP, pH alterations are sensed by CadC directly. Crystal structural analyses revealed a close proximity between two periplasmic cysteines, Cys208 and Cys272. Results Substitution of Cys208 and/or Cys272 by alanine resulted in CadC derivatives that were active in response to only one stimulus, either lysine or pH 5.8. Differential in vivo thiol trapping revealed a disulfide bond between these two residues at pH 7.6, but not at pH 5.8. When Cys208 and Cys272 were replaced by aspartate and lysine, respectively, virtually wild-type behavior was restored indicating that the disulfide bond could be mimicked by a salt bridge. Conclusion A disulfide bond was found in the periplasmic domain of CadC that supports an inactive state of CadC at pH 7.6. At pH 5.8 disulfide bond formation is prevented which transforms CadC into a semi-active state. These results provide new insights into the function of a pH sensor.
Collapse
|
36
|
Haneburger I, Eichinger A, Skerra A, Jung K. New insights into the signaling mechanism of the pH-responsive, membrane-integrated transcriptional activator CadC of Escherichia coli. J Biol Chem 2011; 286:10681-9. [PMID: 21216950 DOI: 10.1074/jbc.m110.196923] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-integrated transcriptional regulator CadC of Escherichia coli activates expression of the cadBA operon at low external pH with concomitantly available lysine, providing adaptation to mild acidic stress. CadC is a representative of the ToxR-like proteins that combine sensory, signal transduction, and DNA-binding activities within a single polypeptide. Although several ToxR-like regulators such as CadC, as well as the main regulator of Vibrio cholerae virulence, ToxR itself, which activate gene expression at acidic pH, have been intensively investigated, their molecular activation mechanism is still unclear. In this study, a structure-guided mutational analysis was performed to elucidate the mechanism by which CadC detects acidification of the external milieu. Thus, a cluster of negatively charged amino acids (Asp-198, Asp-200, Glu-461, Glu-468, and Asp-471) was found to be crucial for pH detection. These amino acids form a negatively charged patch on the surface of the periplasmic domain of CadC that stretches across its two subdomains. The results of different combinations of amino acid replacements within this patch indicated that the N-terminal subdomain integrates and transduces the signals coming from both subdomains to the transmembrane domain. Alterations in the phospholipid composition did not influence pH-dependent cadBA expression, and therefore, interplay of the acidic surface patch with the negatively charged headgroups is unlikely. Models are discussed according to which protonation of these acidic amino acid side chains reduces repulsive forces between the two subdomains and/or between two monomers within a CadC dimer and thereby enables receptor activation upon lowering of the environmental pH.
Collapse
Affiliation(s)
- Ina Haneburger
- Center of Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
37
|
Krin E, Danchin A, Soutourina O. Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in Escherichia coli. BMC Microbiol 2010; 10:273. [PMID: 21034467 PMCID: PMC2984483 DOI: 10.1186/1471-2180-10-273] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/29/2010] [Indexed: 11/23/2022] Open
Abstract
Background H-NS regulates the acid stress resistance. The present study aimed to characterize the H-NS-dependent cascade governing the acid stress resistance pathways and to define the interplay between the different regulators. Results We combined mutational, phenotypic and gene expression analyses, to unravel the regulatory hierarchy in acid resistance involving H-NS, RcsB-P/GadE complex, HdfR, CadC, AdiY regulators, and DNA-binding assays to separate direct effects from indirect ones. RcsB-P/GadE regulatory complex, the general direct regulator of glutamate-, arginine- and lysine-dependent acid resistance pathways plays a central role in the regulatory cascade. However, H-NS also directly controls specific regulators of these pathways (e.g. cadC) and genes involved in general stress resistance (hdeAB, hdeD, dps, adiY). Finally, we found that in addition to H-NS and RcsB, a third regulator, HdfR, inversely controls glutamate-dependent acid resistance pathway and motility. Conclusions H-NS lies near the top of the hierarchy orchestrating acid response centred on RcsB-P/GadE regulatory complex, the general direct regulator of glutamate-, arginine- and lysine-dependent acid resistance pathways.
Collapse
Affiliation(s)
- Evelyne Krin
- Unité de Plasticité du Génome Bactérien, Institut Pasteur, France.
| | | | | |
Collapse
|
38
|
Zhao B, Houry WA. Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survivalThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases” and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:301-14. [DOI: 10.1139/o09-182] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Enteric bacteria such as Escherichia coli have acquired a wide array of acid stress response systems to counteract the extreme acidity encountered when invading the host’s digestive or urinary tracts. These acid stress response systems are both enzyme and chaperone based. The 3 main enzyme-based acid resistance pathways are glutamate-, arginine-, and lysine-decarboxylase pathways. They are under a complex regulatory network allowing the bacteria to fine tune its response to the external environment. HdeA and HdeB are the main chaperones involved in acid stress response. The decarboxylase systems are also found in Vibrio cholera, Vibrio vulnifus, Shigella flexneri, and Salmonella typhimurium, although some differences exist in their functional mechanism and regulation.
Collapse
Affiliation(s)
- Boyu Zhao
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
39
|
Kitko RD, Cleeton RL, Armentrout EI, Lee GE, Noguchi K, Berkmen MB, Jones BD, Slonczewski JL. Cytoplasmic acidification and the benzoate transcriptome in Bacillus subtilis. PLoS One 2009; 4:e8255. [PMID: 20011599 PMCID: PMC2788229 DOI: 10.1371/journal.pone.0008255] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 11/20/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Bacillus subtilis encounters a wide range of environmental pH. The bacteria maintain cytoplasmic pH within a narrow range. Response to acid stress is a poorly understood function of external pH and of permeant acids that conduct protons into the cytoplasm. METHODS AND PRINCIPAL FINDINGS Cytoplasmic acidification and the benzoate transcriptome were observed in Bacillus subtilis. Cytoplasmic pH was measured with 4-s time resolution using GFPmut3b fluorimetry. Rapid external acidification (pH 7.5 to 6.0) acidified the B. subtilis cytoplasm, followed by partial recovery. Benzoate addition up to 60 mM at external pH 7 depressed cytoplasmic pH but left a transmembrane Delta pH permitting growth; this robust adaptation to benzoate exceeds that seen in E. coli. Cytoplasmic pH was depressed by 0.3 units during growth with 30 mM benzoate. The transcriptome of benzoate-adapted cells was determined by comparing 4,095 gene expression indices following growth at pH 7, +/- 30 mM benzoate. 164 ORFs showed > or = 2-fold up-regulation by benzoate (30 mM benzoate/0 mM), and 102 ORFs showed > or = 2-fold down-regulation. 42% of benzoate-dependent genes are regulated up or down, respectively, at pH 6 versus pH 7; they are candidates for cytoplasmic pH response. Acid-stress genes up-regulated by benzoate included drug resistance genes (yhbI, yhcA, yuxJ, ywoGH); an oligopeptide transporter (opp); glycine catabolism (gcvPA-PB); acetate degradation (acsA); dehydrogenases (ald, fdhD, serA, yrhEFG, yjgCD); the TCA cycle (citZ, icd, mdh, sucD); and oxidative stress (OYE-family yqjM, ohrB). Base-stress genes down-regulated by benzoate included malate metabolism (maeN), sporulation control (spo0M, spo0E), and the SigW alkali shock regulon. Cytoplasmic pH could mediate alkali-shock induction of SigW. CONCLUSIONS B. subtilis maintains partial pH homeostasis during growth, and withstands high concentrations of permeant acid stress, higher than for gram-negative neutralophile E. coli. The benzoate adaptation transcriptome substantially overlaps that of external acid, contributing to a cytoplasmic pH transcriptome.
Collapse
Affiliation(s)
- Ryan D. Kitko
- Department of Biology, Kenyon College, Gambier, Ohio, United States of America
| | - Rebecca L. Cleeton
- Department of Biology, Kenyon College, Gambier, Ohio, United States of America
| | - Erin I. Armentrout
- Department of Biology, Kenyon College, Gambier, Ohio, United States of America
| | - Grace E. Lee
- Department of Biology, Kenyon College, Gambier, Ohio, United States of America
| | - Ken Noguchi
- Department of Biology, Kenyon College, Gambier, Ohio, United States of America
| | - Melanie B. Berkmen
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, United States of America
| | - Brian D. Jones
- Department of Mathematics, Kenyon College, Gambier, Ohio, United States of America
| | - Joan L. Slonczewski
- Department of Biology, Kenyon College, Gambier, Ohio, United States of America
| |
Collapse
|
40
|
Fritz G, Koller C, Burdack K, Tetsch L, Haneburger I, Jung K, Gerland U. Induction Kinetics of a Conditional pH Stress Response System in Escherichia coli. J Mol Biol 2009; 393:272-86. [DOI: 10.1016/j.jmb.2009.08.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 08/06/2009] [Accepted: 08/13/2009] [Indexed: 11/26/2022]
|
41
|
Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 2009; 55:1-79, 317. [PMID: 19573695 DOI: 10.1016/s0065-2911(09)05501-5] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Of all the molecular determinants for growth, the hydronium and hydroxide ions are found naturally in the widest concentration range, from acid mine drainage below pH 0 to soda lakes above pH 13. Most bacteria and archaea have mechanisms that maintain their internal, cytoplasmic pH within a narrower range than the pH outside the cell, termed "pH homeostasis." Some mechanisms of pH homeostasis are specific to particular species or groups of microorganisms while some common principles apply across the pH spectrum. The measurement of internal pH of microbes presents challenges, which are addressed by a range of techniques under varying growth conditions. This review compares and contrasts cytoplasmic pH homeostasis in acidophilic, neutralophilic, and alkaliphilic bacteria and archaea under conditions of growth, non-growth survival, and biofilms. We present diverse mechanisms of pH homeostasis including cell buffering, adaptations of membrane structure, active ion transport, and metabolic consumption of acids and bases.
Collapse
|
42
|
Tetsch L, Jung K. The regulatory interplay between membrane-integrated sensors and transport proteins in bacteria. Mol Microbiol 2009; 73:982-91. [PMID: 19708919 DOI: 10.1111/j.1365-2958.2009.06847.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacteria sense environmental stimuli and transduce this information to cytoplasmic components of the signal transduction machinery to cope with and to adapt to ever changing conditions. Hence, bacteria are equipped with numerous membrane-integrated proteins responsible for sensing such as histidine kinases, chemoreceptors and ToxR-like proteins. There is increasing evidence that sensors employ transport proteins as co-sensors. Transport proteins are well-suited information carriers as they bind low-molecular-weight molecules in the external medium and transport them into the cytoplasm, allowing them to provide dynamic information on the metabolic flux. This review explores the sensing capabilities of secondary permeases, primary ABC-transporters, and soluble substrate-binding proteins. Employing transporters as co-sensors seems to be a sophisticated and probably widely distributed mechanism.
Collapse
Affiliation(s)
- Larissa Tetsch
- Center for Integrated Protein Science Munich (CiPSM) at the Department of Biology I, Microbiology of the Ludwig-Maximilians-Universität, Martinsried, Germany.
| | | |
Collapse
|
43
|
Liu Y, Zeng L, Burne RA. AguR is required for induction of the Streptococcus mutans agmatine deiminase system by low pH and agmatine. Appl Environ Microbiol 2009; 75:2629-37. [PMID: 19270124 PMCID: PMC2681689 DOI: 10.1128/aem.02145-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 02/22/2009] [Indexed: 11/20/2022] Open
Abstract
Acidic conditions and the presence of exogenous agmatine are required to achieve maximal expression of the agmatine deiminase system (AgDS) of Streptococcus mutans. Here we demonstrate that the transcriptional activator of the AgDS, AguR, is required for the responses to agmatine and to low pH. Linker scanning mutagenesis was used to create a panel of mutated aguR genes that were utilized to complement an aguR deletion mutant of S. mutans. The level of production of the mutant proteins was shown to be comparable to that of the wild-type AguR protein. Mutations in the predicted DNA binding domain of AguR eliminated activation of the agu operon. Insertions into the region connecting the DNA binding domain to the predicted extracellular and transmembrane domains were well tolerated. In contrast, a variety of mutants were isolated that had a diminished capacity to respond to low pH but retained the ability to activate AgDS gene expression in response to agmatine, and vice versa. Also, a number of mutants were unable to respond to either agmatine or low pH. AguD, which is a predicted agmatine-putrescine antiporter, was found to be a negative regulator of AgDS gene expression in the absence of exogenous agmatine but was not required for low-pH induction of the AgDS genes. This study reveals that the control of AgDS gene expression by both agmatine and low pH is coordinated through the AguR protein and begins to identify domains of the protein involved in sensing and signaling.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, FL 32610-0424, USA
| | | | | |
Collapse
|
44
|
Chalova VI, Woodward CL, Ricke SC. Induction of cadBA in an Escherichia coli lysine auxotroph transformed with a cad-gfp transcriptional fusion. Antonie van Leeuwenhoek 2009; 95:305-10. [PMID: 19241138 DOI: 10.1007/s10482-009-9314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 02/05/2009] [Indexed: 11/27/2022]
Abstract
CadBA functions as a part of overall Escherichia coli response to low extracellular pH. A gfpmut3 structural gene transcriptionally fused to the cadBA promoter (Pcad) was used as a reporter to monitor changes in intracellular lysine as a potential factor influencing cadBA induction. Different patterns of cadBA induction were observed in two E. coli strains with different lysine biosynthetic capabilities. In E. coli ZK126 (pJBA25-Pcad), a lysine prototroph, maximum levels of induction were detected 3 h after the transfer of bacterial cells under inducing conditions (pH 5.8; 3.4 microM extracellular lysine). The induction subsequently decreased until hour 7 after which no further change in expression was observed. However, in the lysine depleted strain E. coli ATCC 23812 (pJBA25-Pcad) which is an auxotroph for lysine, no decrease in cadBA expression was observed over time under the same induction conditions. Although no time dependent statistical differences in intracellular lysine were observed, bacterial cells depleted for no longer than 4 h (1.38 +/- 0.25 micromol lysine/g cell dry weight) exhibited more rapid induction of cadBA (after 3 h) and a lower maximum level of induction compared to cells with relatively lower intracellular lysine (approximately 1.08 micromol/g cell dry weight). For the latter, the detectable level of induction was delayed for 1 h but the maximum level of induction response was higher.
Collapse
Affiliation(s)
- V I Chalova
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
45
|
Tetsch L, Jung K. How are signals transduced across the cytoplasmic membrane? Transport proteins as transmitter of information. Amino Acids 2009; 37:467-77. [PMID: 19198980 DOI: 10.1007/s00726-009-0235-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 12/29/2008] [Indexed: 01/18/2023]
Abstract
In order to adapt to ever changing environmental conditions, bacteria sense environmental stimuli, and convert them into signals that are transduced intracellularly. Several mechanisms have evolved by which receptors transmit signals across the cytoplasmic membrane. Stimulus perception may trigger receptor dimerization and/or conformational changes. Another mechanism involves the proteolytic procession of a receptor whereby a diffusible cytoplasmic protein is generated. Finally, there is increasing evidence that transport proteins play an important role in transducing signals across the membrane. Transport proteins either directly translocate signaling molecules into the cytoplasm, or transmit information via conformational changes to their interacting partners such as membrane-integrated or soluble components of signal transduction cascades. Employing transport proteins as sensors and regulators of signal transduction represents a sophisticated way of interconnecting metabolic flux and transcriptional regulation in cells.
Collapse
Affiliation(s)
- Larissa Tetsch
- Department of Biology I, Center for Integrated Protein Science Munich, Microbiology of the Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | | |
Collapse
|
46
|
Acid and base stress and transcriptomic responses in Bacillus subtilis. Appl Environ Microbiol 2008; 75:981-90. [PMID: 19114526 DOI: 10.1128/aem.01652-08] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived <15%. Cells grown at pH 9.0 survived 40 to 100% at pH 10, whereas cells grown at pH 7.0 survived <5%. Thus, growth in a moderate acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K(+)/H(+) antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids.
Collapse
|
47
|
|
48
|
Kannan G, Wilks JC, Fitzgerald DM, Jones BD, Bondurant SS, Slonczewski JL. Rapid acid treatment of Escherichia coli: transcriptomic response and recovery. BMC Microbiol 2008; 8:37. [PMID: 18302792 PMCID: PMC2270276 DOI: 10.1186/1471-2180-8-37] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 02/26/2008] [Indexed: 11/10/2022] Open
Abstract
Background Many E. coli genes show pH-dependent expression during logarithmic growth in acid (pH 5–6) or in base (pH 8–9). The effect of rapid pH change, however, has rarely been tested. Rapid acid treatment could distinguish between genes responding to external pH, and genes responding to cytoplasmic acidification, which occurs transiently following rapid external acidification. It could reveal previously unknown acid-stress genes whose effects are transient, as well as show which acid-stress genes have a delayed response. Results Microarray hybridization was employed to observe the global gene expression of E. coli K-12 W3110 following rapid acidification of the external medium, from pH 7.6 to pH 5.5. Fluorimetric observation of pH-dependent tetR-YFP showed that rapid external acidification led to a half-unit drop in cytoplasmic pH (from pH 7.6 to pH 6.4) which began to recover within 20 s. Following acid treatment, 630 genes were up-regulated and 586 genes were down-regulated. Up-regulated genes included amino-acid decarboxylases (cadA, adiY, gadA), succinate dehydrogenase (sdhABCD), biofilm-associated genes (bdm, gatAB, and ymgABC), and the Gad, Fur and Rcs regulons. Genes with response patterns consistent with cytoplasmic acid stress were revealed by addition of benzoate, a membrane-permeant acid that permanently depresses cytoplasmic pH without affecting external pH. Several genes (yagU, ygiN, yjeI, and yneI) were up-regulated specifically by external acidification, while other genes (fimB, ygaC, yhcN, yhjX, ymgABC, yodA) presented a benzoate response consistent with cytoplasmic pH stress. Other genes (the nuo operon for NADH dehydrogenase I, and the HslUV protease) showed delayed up-regulation by acid, with expression rising by 10 min following the acid shift. Conclusion Transcriptomic profiling of E. coli K-12 distinguished three different classes of change in gene expression following rapid acid treatment: up-regulation with or without recovery, and delayed response to acid. For eight genes showing acid response and recovery (fimB, ygaC, yhcN, yhjX, ymgABC, yodA), responses to the permeant acid benzoate revealed expression patterns consistent with sensing of cytoplasmic pH. The delayed acid response of nuo genes shows that NADH dehydrogenase I is probably induced as a secondary result of acid-associated metabolism, not as a direct response to cytoplasmic acidification.
Collapse
Affiliation(s)
- Geetha Kannan
- Department of Biology, Kenyon College, Gambier, OH, 43022 USA.
| | | | | | | | | | | |
Collapse
|
49
|
Tetsch L, Koller C, Haneburger I, Jung K. The membrane-integrated transcriptional activator CadC ofEscherichia colisenses lysine indirectly via the interaction with the lysine permease LysP. Mol Microbiol 2008; 67:570-83. [DOI: 10.1111/j.1365-2958.2007.06070.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Chalova VI, Woodward CL, Ricke SC. A cad-gfpmut3 plasmid construct in Escherichia coli for gene induction-based quantification of lysine in acid hydrolysates of feedstuffs. Lett Appl Microbiol 2007; 46:107-12. [PMID: 17971099 DOI: 10.1111/j.1472-765x.2007.02273.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To generate an inducible plasmid-borne cad-gfpmut3 transcriptional fusion and develop a method for quantification of total lysine. METHODS AND RESULTS The cad-gfpmut3 transcriptional fusion was constructed by cloning the cad promoter (Pcad) upstream of a promotorless gfpmut3 located on a high-copy plasmid. The construct was electroporated into Escherichia coli ZK126 and the transformed strain was subsequently used to quantify lysine in feed ingredients. Lysine standard curves based on gene induction of the bacterial cells were used for estimating acid hydrolysate lysine concentrations in four feed ingredients. Except for sorghum, no substantial differences were observed when the data for lysine in soybean (2 x 49 +/- 0 x 37%), cottonseed (1 x 82 +/- 0 x 15%), and meat and bone meal (2 x 31 +/- 0 x 24%) generated by the newly developed construct were compared with previously published data. CONCLUSIONS Using the cad-gfpmut3 fusion, feed derived lysine induction was measured easily and accurately, and could be a useful tool for the estimation of lysine in acid hydrolysates of feed ingredients. SIGNIFICANCE AND IMPACT OF THE STUDY The described approach for lysine quantification in feed ingredients represents a cost- and time-efficient method offering rapid and accurate lysine quantification of multiple samples.
Collapse
Affiliation(s)
- V I Chalova
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | | | | |
Collapse
|