1
|
Royzenblat SK, Freddolino L. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. EcoSal Plus 2024:eesp00012022. [PMID: 38864557 DOI: 10.1128/ecosalplus.esp-0001-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.
Collapse
Affiliation(s)
- Sonya K Royzenblat
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Kago G, Turnbough CL, Salazar JC, Payne SM. (p)ppGpp is required for virulence of Shigella flexneri. Infect Immun 2024; 92:e0033423. [PMID: 38099658 PMCID: PMC10790822 DOI: 10.1128/iai.00334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 01/17/2024] Open
Abstract
Infection by the enteric pathogen Shigella flexneri requires transit through the gastrointestinal tract and invasion of and replication within the cells of the host colonic epithelium. This process exposes the pathogen to a range of diverse microenvironments. Furthermore, the unique composition and physical environment of the eukaryotic cell cytosol represents a stressful environment for S. flexneri, and extensive physiological adaptations are needed for the bacterium to thrive. In this work, we show that disrupting synthesis of the stringent response alarmone (p)ppGpp in S. flexneri diminished expression of key virulence genes, including ipaA, ipaB, ipaC, and icsA, and it reduced bacterial invasion and intercellular spread. Deletion of the (p)ppGpp synthase gene relA alone had no effect on S. flexneri virulence, but disruption of both relA and the (p)ppGpp synthase/hydrolase gene spoT resulted in loss of (p)ppGpp synthesis and virulence. While the relA spoT deletion mutant was able to invade a cultured human epithelial cell monolayer, albeit at reduced levels, it was unable to maintain the infection and spread to adjacent cells, as indicated by loss of plaque formation. Complementation with spoT on a plasmid vector restored plaque formation. Thus, SpoT alone is sufficient to provide the necessary level of (p)ppGpp for virulence. These results indicate that (p)ppGpp is required for S. flexneri virulence and adaptation to the intracellular environment, adding to the repertoire of signaling pathways that affect Shigella pathogenesis.
Collapse
Affiliation(s)
- Grace Kago
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Charles L. Turnbough
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Juan Carlos Salazar
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Shelley M. Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Li B, Jeon MK, Li X, Yan T. Differential impacts of salinity on antibiotic resistance genes during cattle manure stockpiling are linked to mobility potentials revealed by metagenomic sequencing. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130590. [PMID: 37055994 DOI: 10.1016/j.jhazmat.2022.130590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/09/2022] [Accepted: 12/08/2022] [Indexed: 06/19/2023]
Abstract
Livestock manure is an important source of antibiotic resistance genes (ARGs), and its salinity level can change during stockpiling. To understand how the salinity changes affect the fate of ARGs, cattle manure was adjusted of salinity and stockpiled in laboratory microcosms at low (0.3% salt), moderate (3.0%) and high salinity levels (10.0%) for 44 days. Amongst the five ARGs (tetO, blaTEM, sul1, tetM, and ermB) and the first-class integrase (intI1) monitored by qPCR, the relative abundance of tetO and blaTEM exhibited no clear trend in response to salinity levels, while that of sul1, tetM, ermB and intI1 showed clear downward trends over time at the lower salinity levels (0.3% and 3%) but not at the high salinity level (10%). Metagenomic contig construction of cattle manure samples revealed that sul1, tetM and ermB genes were more likely to associate with mobile genetic elements (MGEs) than tetO and blaTEM, suggesting that their slower decay at higher salinity levels was either caused by horizontal gene transfer or co-selection of ARGs and osmotic stress resistant determinants. Further analysis of metagenomic contigs showed that osmotic stress resistance can also be located on MGEs or in conjunction with ARGs.
Collapse
Affiliation(s)
- Bo Li
- Department of Civil and Environmental Engineering, Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Min Ki Jeon
- Department of Civil and Environmental Engineering, Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Tao Yan
- Department of Civil and Environmental Engineering, Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States; Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States.
| |
Collapse
|
4
|
Naha A, Ramaiah S. Structural chemistry and molecular-level interactome reveals histidine kinase EvgS to subvert both antimicrobial resistance and virulence in Shigella flexneri 2a str. 301. 3 Biotech 2022; 12:258. [PMID: 36068841 PMCID: PMC9440972 DOI: 10.1007/s13205-022-03325-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Multi-drug resistant (MDR) Shigella flexneri 2a, one of the leading bacterial agents of diarrhoeal mortality, has posed challenges in treatment strategies. The present study was conducted to identify potential therapeutic biomarkers using gene interaction network (GIN) in order to understand the cellular and molecular level interactions of both antimicrobial resistance (AMR) and virulence genes through topological and clustering metrics. Statistically significant differential gene expression (DGE), structural chemistry and dynamics were incorporated to elucidate biomarker for sustainable therapeutic regimen against MDR S. flexneri. Functional enrichments and topological metrics revealed evgS, ybjZ, tolC, gyrA, parC and their direct interactors to be associated with diverse AMR mechanisms. Histidine kinase EvgS was considered as the hub protein due to its highest prevalence in the molecular interactome profiles of both the AMR (71.6%) and virulence (45.8%) clusters interconnecting several genes concerning two-component system (TCS). DGE profiles of ΔPhoPQ (deleted regulatory PhoP and sensor PhoQ) led to the upregulation of TCS comprising EvgSA thereby validating EvgS as a promising therapeutic biomarker. Druggability and structural stability of EvgS was assessed through thermal shifts, backbone stability and coarse dynamics refinement. Structure-function relationship was established revealing the C-terminal extracellular domain as the drug-binding site which was further validated through molecular dynamics simulation. Structure elucidation of identified biomarker followed by secondary and tertiary structural validation would prove pivotal for future therapeutic interventions against subverting both AMR and virulence posed by this strain. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03325-w.
Collapse
Affiliation(s)
- Aniket Naha
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014 Tamil Nadu India
- Department of Bio-Medical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014 Tamil Nadu India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014 Tamil Nadu India
- Department of Bio-Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014 Tamil Nadu India
| |
Collapse
|
5
|
Elucidation of Key Interactions between VirF and the virB Promoter in Shigella flexneri Using E. coli MarA- and GadX-Based Homology Models and In Vitro Analysis of the DNA-Binding Domains of VirF and MarA. J Bacteriol 2022; 204:e0014322. [PMID: 36040161 PMCID: PMC9487632 DOI: 10.1128/jb.00143-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with Shigella, the organism responsible for the diarrheal disease shigellosis, leads to approximately 200,000 deaths globally annually. Virulence of this pathogen is primarily controlled by the DNA-binding transcriptional activator VirF. This AraC family protein activates transcription of two major virulence genes, virB and icsA, which lead to the pathogen's ability to invade and spread within colonic epithelial cells. While several AraC proteins have been studied, few studies of VirF's binding to its DNA promoters have been reported, and VirF's three-dimensional structure remains unsolved. Here, we used structures of two E. coli VirF homologs, GadX and MarA-marRAB, to generate homology models of the VirF DNA-binding domain in free and DNA-bound conformations. We conducted alanine scanning mutagenesis on seven residues within MarA that make base-specific interactions with its promoter, marRAB, and the corresponding residues within VirF (identified by sequence and structural homologies). In vitro DNA-binding assays studying both wild-type and mutant MarA and VirF proteins identified residues important for binding to the marRAB and virB promoters, respectively. Comparison of the effects of these DNA-binding domain mutants validated our MarA-based homology model, allowing us to identify crucial interactions between VirF and the virB promoter. Proteins with mutations to helix 3 within both MarA(W42A, R46A) and MalE-VirF(R192A, K193A) exhibited significant reductions in DNA binding, while the effects of mutations in helix 6 varied. This suggests the shared importance of helix 3 in the binding to these promoters, while helix 6 is transcription factor specific. These results can inform further development of virulence-targeting inhibitors as an alternative to traditional antimicrobial drug design. IMPORTANCE Globally, infection with Shigella flexneri is a leading cause of bacterial dysentery, particularly affecting children under the age of 5 years. The virulence of this pathogen makes it highly infectious, allowing it to spread easily within areas lacking proper sanitation or access to clean drinking water. VirF is a DNA-binding transcription factor that activates S. flexneri virulence once the bacteria infect the human colon. Development of drugs that target VirF's DNA-binding activity can be an effective treatment to combat shigellosis as an alternative or addition to traditional antibiotics. Due to the lack of structural data, analysis of VirF's DNA-binding activity is critical to the development of potent VirF inhibitors.
Collapse
|
6
|
Yang G, Li B, Jia L, Qiu H, Yang M, Zhu B, Xie J, Qiu S, Li P, Ma H, Song H, Wang L. A Novel sRNA in Shigella flexneri That Regulates Tolerance and Virulence Under Hyperosmotic Pressure. Front Cell Infect Microbiol 2020; 10:483. [PMID: 33042862 PMCID: PMC7526569 DOI: 10.3389/fcimb.2020.00483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/04/2020] [Indexed: 01/09/2023] Open
Abstract
Regulation of the environmental stress response and virulence of Shigella flexneri may involve multiple signaling pathways; however, these mechanisms are not well-defined. In bacteria, small regulatory RNAs (sRNAs) regulate bacterial growth, metabolism, virulence, and environmental stress response. Therefore, identifying novel functional sRNAs in S. flexneri could help elucidate pathogenic adaptations to host micro-environmental stresses and associated virulence. The aim of this study was to confirm the presence of an sRNA, Ssr54, in S. flexneri and to determine its functions and possible mechanism of action. Ssr54 was found to regulate tolerance and virulence under hyperosmotic pressure. Its expression was verified by qRT-PCR and Northern blotting, and its genomic position was confirmed by 5'-rapid amplification of cDNA ends. Ssr54 expression was significantly decreased (~ 80%) under hyperosmotic conditions (680 mM NaCl), and the survival rate of the Ssr54 deletion strain increased by 20% under these conditions. This suggested that Ssr54 has been selected to promote host survival under hyperosmotic conditions. Additionally, virulence assessment, including guinea pig Sereny test and competitive invasion assays in mouse lungs, revealed that Ssr54 deletion significantly decreased S. flexneri virulence. Two-dimensional gel analyses suggest that Ssr54 may modulate the expression of tolC, ompA, and treF genes, which may affect the virulence and survival of S. flexneri under osmotic pressures. Furthermore, treF expression has been shown to improve the survival of S. flexneri under osmotic pressures. These results suggest that Ssr54 has a broad range of action in S. flexneri response to hyperosmotic environmental stresses and in controlling its virulence to adapt to environmental stresses encountered during host infection.
Collapse
Affiliation(s)
- Guang Yang
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
- The 5th Medical Center of General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Boan Li
- The 5th Medical Center of General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Leili Jia
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Huaiyu Qiu
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Mingjuan Yang
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | | | - Jing Xie
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Shaofu Qiu
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Peng Li
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Hui Ma
- The 6th Medical Center of General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Hongbin Song
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Ligui Wang
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
7
|
Superstructure formation by RodZ hexamers of Shigella sonnei maintains the rod shape of bacilli. PLoS One 2020; 15:e0228052. [PMID: 32053625 PMCID: PMC7018016 DOI: 10.1371/journal.pone.0228052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/06/2020] [Indexed: 11/19/2022] Open
Abstract
The rod shape of bacilli is maintained by bacterial cytoskeletal protein MreB, an actin homolog that acts in concert with the inner membrane protein RodZ. We previously reported RodZ binds RNA to control the posttranscriptional regulation of invE (virB), which controls the type III secretion system essential for the virulence of Shigella. Here, we show that purified RodZ forms "superstructures" of high molecular mass that dissociate into a midsized "basal complex" in the presence of nonionic detergent, or to a monomer in the presence of dithiothreitol. We used mass spectrometry to show that the basal complex was a hexamer. Electrophoresis mobility shift assays combined with gel filtration detected the RNA-binding activity in fractions containing molecules larger than the basal hexamer. The superstructure was consistently detected with MreB in crude cell lysates of S. sonnei that were fractionated using gel filtration. Immunofluorescence microscopy using two different super-resolution settings showed that wild-type RodZ was distributed in cells as separate dots. Consistent with the superstructure comprising homohexamers, majority of the dots distributed among areas of discrete values. In addition, simultaneous immunodetection of MreB provided the first evidence of colocalization with RodZ as larger patch like signals. These findings indicate that native RodZ forms clusters of various sizes, which may correspond to a superstructure comprising multiple hexamers required for the RNA-binding activity.
Collapse
|
8
|
Hu L, Kong W, Yang D, Han Q, Guo L, Shi Y. Threonine Phosphorylation Fine-Tunes the Regulatory Activity of Histone-Like Nucleoid Structuring Protein in Salmonella Transcription. Front Microbiol 2019; 10:1515. [PMID: 31333620 PMCID: PMC6616471 DOI: 10.3389/fmicb.2019.01515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/18/2019] [Indexed: 12/30/2022] Open
Abstract
Histone-like nucleoid structuring protein (H-NS) in enterobacteria plays an important role in facilitating chromosome organization and functions as a crucial transcriptional regulator for global gene regulation. Here, we presented an observation that H-NS of Salmonella enterica serovar Typhimurium could undergo protein phosphorylation at threonine 13 residue (T13). Analysis of the H-NS wild-type protein and its T13E phosphomimetic substitute suggested that T13 phosphorylation lead to alterations of H-NS structure, thus reducing its dimerization to weaken its DNA binding affinity. Proteomic analysis revealed that H-NS phosphorylation exerts regulatory effects on a wide range of genetic loci including the PhoP/PhoQ-regulated genes. In this study, we investigated an effect of T13 phosphorylation of H-NS that rendered transcription upregulation of the PhoP/PhoQ-activated genes. A lower promoter binding of the T13 phosphorylated H-NS protein was correlated with a stronger interaction of the PhoP protein, i.e., a transcription activator and also a competitor of H-NS, to the PhoP/PhoQ-dependent promoters. Unlike depletion of H-NS which dramatically activated the PhoP/PhoQ-dependent transcription even in a PhoP/PhoQ-repressing condition, mimicking of H-NS phosphorylation caused a moderate upregulation. Wild-type H-NS protein produced heterogeneously could rescue the phenotype of T13E mutant and fully restored the PhoP/PhoQ-dependent transcription enhanced by T13 phosphorylation of H-NS to wild-type levels. Therefore, our findings uncover a strategy in S. typhimurium to fine-tune the regulatory activity of H-NS through specific protein phosphorylation and highlight a regulatory mechanism for the PhoP/PhoQ-dependent transcription via this post-translational modification.
Collapse
Affiliation(s)
- Lizhi Hu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Wei Kong
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Dezhi Yang
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Qiangqiang Han
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin Guo
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yixin Shi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
9
|
Dorman MJ, Dorman CJ. Regulatory Hierarchies Controlling Virulence Gene Expression in Shigella flexneri and Vibrio cholerae. Front Microbiol 2018; 9:2686. [PMID: 30473684 PMCID: PMC6237886 DOI: 10.3389/fmicb.2018.02686] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Gram-negative enteropathogenic bacteria use a variety of strategies to cause disease in the human host and gene regulation in some form is typically a part of the strategy. This article will compare the toxin-based infection strategy used by the non-invasive pathogen Vibrio cholerae, the etiological agent in human cholera, with the invasive approach used by Shigella flexneri, the cause of bacillary dysentery. Despite the differences in the mechanisms by which the two pathogens cause disease, they use environmentally-responsive regulatory hierarchies to control the expression of genes that have some features, and even some components, in common. The involvement of AraC-like transcription factors, the integration host factor, the Factor for inversion stimulation, small regulatory RNAs, the RNA chaperone Hfq, horizontal gene transfer, variable DNA topology and the need to overcome the pervasive silencing of transcription by H-NS of horizontally acquired genes are all shared features. A comparison of the regulatory hierarchies in these two pathogens illustrates some striking cross-species similarities and differences among mechanisms coordinating virulence gene expression. S. flexneri, with its low infectious dose, appears to use a strategy that is centered on the individual bacterial cell, whereas V. cholerae, with a community-based, quorum-dependent approach and an infectious dose that is several orders of magnitude higher, seems to rely more on the actions of a bacterial collective.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Pilla G, McVicker G, Tang CM. Genetic plasticity of the Shigella virulence plasmid is mediated by intra- and inter-molecular events between insertion sequences. PLoS Genet 2017; 13:e1007014. [PMID: 28945748 PMCID: PMC5629016 DOI: 10.1371/journal.pgen.1007014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/05/2017] [Accepted: 09/08/2017] [Indexed: 11/18/2022] Open
Abstract
Acquisition of a single copy, large virulence plasmid, pINV, led to the emergence of Shigella spp. from Escherichia coli. The plasmid encodes a Type III secretion system (T3SS) on a 30 kb pathogenicity island (PAI), and is maintained in a bacterial population through a series of toxin:antitoxin (TA) systems which mediate post-segregational killing (PSK). The T3SS imposes a significant cost on the bacterium, and strains which have lost the plasmid and/or genes encoding the T3SS grow faster than wild-type strains in the laboratory, and fail to bind the indicator dye Congo Red (CR). Our aim was to define the molecular events in Shigella flexneri that cause loss of Type III secretion (T3S), and to examine whether TA systems exert positional effects on pINV. During growth at 37°C, we found that deletions of regions of the plasmid including the PAI lead to the emergence of CR-negative colonies; deletions occur through intra-molecular recombination events between insertion sequences (ISs) flanking the PAI. Furthermore, by repositioning MvpAT (which belongs to the VapBC family of TA systems) near the PAI, we demonstrate that the location of this TA system alters the rearrangements that lead to loss of T3S, indicating that MvpAT acts both globally (by reducing loss of pINV through PSK) as well as locally (by preventing loss of adjacent sequences). During growth at environmental temperatures, we show for the first time that pINV spontaneously integrates into different sites in the chromosome, and this is mediated by inter-molecular events involving IS1294. Integration leads to reduced PAI gene expression and impaired secretion through the T3SS, while excision of pINV from the chromosome restores T3SS function. Therefore, pINV integration provides a reversible mechanism for Shigella to circumvent the metabolic burden imposed by pINV. Intra- and inter-molecular events between ISs, which are abundant in Shigella spp., mediate plasticity of S. flexneri pINV.
Collapse
Affiliation(s)
- Giulia Pilla
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gareth McVicker
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Wrobel A, Ottoni C, Leo JC, Gulla S, Linke D. The repeat structure of two paralogous genes, Yersinia ruckeri invasin (yrInv) and a "Y. ruckeri invasin-like molecule", (yrIlm) sheds light on the evolution of adhesive capacities of a fish pathogen. J Struct Biol 2017; 201:171-183. [PMID: 28888816 DOI: 10.1016/j.jsb.2017.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/18/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022]
Abstract
Inverse autotransporters comprise the recently identified type Ve secretion system and are exemplified by intimin from enterohaemorrhagic Escherichia coli and invasin from enteropathogenic Yersiniae. These proteins share a common domain architecture and promote bacterial adhesion to host cells. Here, we identified and characterized two putative inverse autotransporter genes in the fish pathogen Yersinia ruckeri NVH_3758, namely yrInv (for Y. ruckeri invasin) and yrIlm (for Y. ruckeri invasin-like molecule). When trying to clone the highly repetitive genes for structural and functional studies, we experienced problems in obtaining PCR products. PCR failures and the highly repetitive nature of inverse autotransporters prompted us to sequence the genome of Y. ruckeri NVH_3758 using PacBio sequencing, which produces some of the longest average read lengths available in the industry at this moment. According to our sequencing data, YrIlm is composed of 2603 amino acids (7812bp) and has a molecular mass of 256.4kDa. Based on the new genome information, we performed PCR analysis on four non-sequenced Y. ruckeri strains as well as the sequenced. Y. ruckeri type strain. We found that the genes are variably present in the strains, and that the length of yrIlm, when present, also varies. In addition, the length of the gene product for all strains, including the type strain, was much longer than expected based on deposited sequences. The internal repeats of the yrInv gene product are highly diverged, but represent the same bacterial immunoglobulin-like domains as in yrIlm. Using qRT-PCR, we found that yrIlm and yrInv are differentially expressed under conditions relevant for pathogenesis. In addition, we compared the genomic context of both genes in the newly sequenced Y. ruckeri strain to all available PacBio-sequenced Y. ruckeri genomes, and found indications of recent events of horizontal gene transfer. Taken together, this study demonstrates and highlights the power of Single Molecule Real-Time technology for sequencing highly repetitive proteins, and sheds light on the genetic events that gave rise to these highly repetitive genes in a commercially important fish pathogen.
Collapse
Affiliation(s)
- Agnieszka Wrobel
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Claudio Ottoni
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway; Centre for Ecological and Evolutionary Synthesis, University of Oslo, 0316, Norway
| | - Jack C Leo
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Snorre Gulla
- Norwegian Veterinary Institute, 0454 Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
12
|
Dorman CJ, Dorman MJ. Control of virulence gene transcription by indirect readout in Vibrio cholerae and Salmonella enterica serovar Typhimurium. Environ Microbiol 2017. [PMID: 28631437 PMCID: PMC5655915 DOI: 10.1111/1462-2920.13838] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Indirect readout mechanisms of transcription control rely on the recognition of DNA shape by transcription factors (TFs). TFs may also employ a direct readout mechanism that involves the reading of the base sequence in the DNA major groove at the binding site. TFs with winged helix-turn-helix (wHTH) motifs use an alpha helix to read the base sequence in the major groove while inserting a beta sheet 'wing' into the adjacent minor groove. Such wHTH proteins are important regulators of virulence gene transcription in many pathogens; they also control housekeeping genes. This article considers the cases of the non-invasive Gram-negative pathogen Vibrio cholerae and the invasive pathogen Salmonella enterica serovar Typhimurium. Both possess clusters of A + T-rich horizontally acquired virulence genes that are silenced by the nucleoid-associated protein H-NS and regulated positively or negatively by wHTH TFs: for example, ToxR and LeuO in V. cholerae; HilA, LeuO, SlyA and OmpR in S. Typhimurium. Because of their relatively relaxed base sequence requirements for target recognition, indirect readout mechanisms have the potential to engage regulatory proteins with many more targets than might be the case using direct readout, making indirect readout an important, yet often ignored, contributor to the expression of pathogenic phenotypes.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Matthew J Dorman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
13
|
Japaridze A, Renevey S, Sobetzko P, Stoliar L, Nasser W, Dietler G, Muskhelishvili G. Spatial organization of DNA sequences directs the assembly of bacterial chromatin by a nucleoid-associated protein. J Biol Chem 2017; 292:7607-7618. [PMID: 28316324 PMCID: PMC5418058 DOI: 10.1074/jbc.m117.780239] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/11/2017] [Indexed: 11/28/2022] Open
Abstract
Structural differentiation of bacterial chromatin depends on cooperative binding of abundant nucleoid-associated proteins at numerous genomic DNA sites and stabilization of distinct long-range nucleoprotein structures. Histone-like nucleoid-structuring protein (H-NS) is an abundant DNA-bridging, nucleoid-associated protein that binds to an AT-rich conserved DNA sequence motif and regulates both the shape and the genetic expression of the bacterial chromosome. Although there is ample evidence that the mode of H-NS binding depends on environmental conditions, the role of the spatial organization of H-NS-binding sequences in the assembly of long-range nucleoprotein structures remains unknown. In this study, by using high-resolution atomic force microscopy combined with biochemical assays, we explored the formation of H-NS nucleoprotein complexes on circular DNA molecules having different arrangements of identical sequences containing high-affinity H-NS-binding sites. We provide the first experimental evidence that variable sequence arrangements result in various three-dimensional nucleoprotein structures that differ in their shape and the capacity to constrain supercoils and compact the DNA. We believe that the DNA sequence-directed versatile assembly of periodic higher-order structures reveals a general organizational principle that can be exploited for knowledge-based design of long-range nucleoprotein complexes and purposeful manipulation of the bacterial chromatin architecture.
Collapse
Affiliation(s)
- Aleksandre Japaridze
- From the Laboratory of Physics of Living Matter, EPFL (École Polytechnique Fédérale de Lausanne), CE 3 316 Lausanne, Switzerland
| | - Sylvain Renevey
- From the Laboratory of Physics of Living Matter, EPFL (École Polytechnique Fédérale de Lausanne), CE 3 316 Lausanne, Switzerland
| | | | | | - William Nasser
- UMR5240 CNRS/INSA/UCB, Université de Lyon, F-69003 INSA Lyon, Villeurbanne F-69621, France, and
| | - Giovanni Dietler
- From the Laboratory of Physics of Living Matter, EPFL (École Polytechnique Fédérale de Lausanne), CE 3 316 Lausanne, Switzerland,
| | - Georgi Muskhelishvili
- Jacobs University, D-28759 Bremen, Germany, .,Agricultural University of Georgia, 240 David Aghmashenebeli Alley, 0159 Tbilisi, Republik of Georgia
| |
Collapse
|
14
|
H-NS, Its Family Members and Their Regulation of Virulence Genes in Shigella Species. Genes (Basel) 2016; 7:genes7120112. [PMID: 27916940 PMCID: PMC5192488 DOI: 10.3390/genes7120112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/04/2022] Open
Abstract
The histone-like nucleoid structuring protein (H-NS) has played a key role in shaping the evolution of Shigella spp., and provides the backdrop to the regulatory cascade that controls virulence by silencing many genes found on the large virulence plasmid. H-NS and its paralogue StpA are present in all four Shigella spp., but a second H-NS paralogue, Sfh, is found in the Shigella flexneri type strain 2457T, which is routinely used in studies of Shigella pathogenesis. While StpA and Sfh have been proposed to serve as “molecular backups” for H-NS, the apparent redundancy of these proteins is questioned by in vitro studies and work done in Escherichia coli. In this review, we describe the current understanding of the regulatory activities of the H-NS family members, the challenges associated with studying these proteins and their role in the regulation of virulence genes in Shigella.
Collapse
|
15
|
Characterization of SlyA in Shigella flexneri Identifies a Novel Role in Virulence. Infect Immun 2016; 84:1073-1082. [PMID: 26831468 DOI: 10.1128/iai.00806-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/23/2016] [Indexed: 12/18/2022] Open
Abstract
The SlyA transcriptional regulator has important roles in the virulence and pathogenesis of several members of the Enterobacteriaceae family, including Salmonella enterica serovar Typhimurium and Escherichia coli. Despite the identification of the slyA gene in Shigella flexneri nearly 2 decades ago, as well as the significant conservation of SlyA among enteric bacteria, the role of SlyA in Shigella remains unknown. The genes regulated by SlyA in closely related organisms often are absent from or mutated inS. flexneri, and consequently many described SlyA-dependent phenotypes are not present. By characterizing the expression of slyA and determining its ultimate effect in this highly virulent organism, we postulated that novel SlyA-regulated virulence phenotypes would be identified. In this study, we report the first analysis of SlyA in Shigella and show that (i) the slyA gene is transcribed and ultimately translated into protein, (ii) slyA promoter activity is maximal during stationary phase and is negatively autoregulated and positively regulated by the PhoP response regulator, (iii) the exogenous expression of slyA rescues transcription and virulence-associated deficiencies during virulence-repressed conditions, and (iv) the absence of slyA significantly decreases acid resistance, demonstrating a novel and important role in Shigella virulence. Cumulatively, our study illustrates unexpected parallels between the less conserved S. flexneri and S Typhimurium slyA promoters as well as a unique role for SlyA in Shigella virulence that has not been described previously in any closely related organism.
Collapse
|
16
|
Fris ME, Murphy ER. Riboregulators: Fine-Tuning Virulence in Shigella. Front Cell Infect Microbiol 2016; 6:2. [PMID: 26858941 PMCID: PMC4728522 DOI: 10.3389/fcimb.2016.00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/08/2016] [Indexed: 11/13/2022] Open
Abstract
Within the past several years, RNA-mediated regulation (ribo-regulation) has become increasingly recognized for its importance in controlling critical bacterial processes. Regulatory RNA molecules, or riboregulators, are perpetually responsive to changes within the micro-environment of a bacterium. Notably, several characterized riboregulators control virulence in pathogenic bacteria, as is the case for each riboregulator characterized to date in Shigella. The timing of virulence gene expression and the ability of the pathogen to adapt to rapidly changing environmental conditions is critical to the establishment and progression of infection by Shigella species; ribo-regulators mediate each of these important processes. This mini review will present the current state of knowledge regarding RNA-mediated regulation in Shigella by detailing the characterization and function of each identified riboregulator in these pathogens.
Collapse
Affiliation(s)
- Megan E Fris
- Department of Biological Science, Ohio University Athens, OH, USA
| | - Erin R Murphy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University Athens, OH, USA
| |
Collapse
|
17
|
Abstract
Shigella species are the causative agents of bacillary dysentery in humans, an invasive disease in which the bacteria enter the cells of the epithelial layer of the large intestine, causing extensive tissue damage and inflammation. They rely on a plasmid-encoded type III secretion system (TTSS) to cause disease; this system and its regulation have been investigated intensively at the molecular level for decades. The lessons learned have not only deepened our knowledge of Shigella biology but also informed in important ways our understanding of the mechanisms used by other pathogenic bacteria to cause disease and to control virulence gene expression. In addition, the Shigella story has played a central role in the development of our appreciation of the contribution of horizontal DNA transfer to pathogen evolution.A 30-kilobase-pair "Entry Region" of the 230-kb virulence plasmid lies at the heart of the Shigella pathogenesis system. Here are located the virB and mxiE regulatory genes and most of the structural genes involved in the expression of the TTSS and its effector proteins. Expression of the virulence genes occurs in response to an array of environmental signals, including temperature, osmolarity, and pH.At the top of the regulatory hierarchy and lying on the plasmid outside the Entry Region isvirF, encoding an AraC-like transcription factor.Virulence gene expression is also controlled by chromosomal genes,such as those encoding the nucleoid-associated proteins H-NS, IHF, and Fis, the two-component regulators OmpR/EnvZ and CpxR/CpxA, the anaerobic regulator Fnr, the iron-responsive regulator Fur, and the topoisomerases of the cell that modulate DNA supercoiling. Small regulatory RNAs,the RNA chaperone Hfq,and translational modulation also affect the expression of the virulence phenotypetranscriptionally and/orposttranscriptionally.
Collapse
|
18
|
Emanuele AA, Garcia GA. Mechanism of Action and Initial, In Vitro SAR of an Inhibitor of the Shigella flexneri Virulence Regulator VirF. PLoS One 2015; 10:e0137410. [PMID: 26352269 PMCID: PMC4564171 DOI: 10.1371/journal.pone.0137410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022] Open
Abstract
Shigella spp. are among the main causative agents of acute diarrheal illness and claim more than 1 million lives per year worldwide. There are multiple bacterial genes that control the pathogenesis of Shigella, but the virF gene may be the most important. This gene, located on the primary pathogenicity island of Shigella, encodes VirF, an AraC-family transcriptional activator that is responsible for initiating the pathogenesis cycle in Shigella. We have previously shown that it is possible to attenuate the virulence of Shigella flexneri via small molecule inhibition of VirF. In this study, we probed the mechanism of action of our small molecule inhibitors of VirF. To enable these studies, we have developed a homologous and efficient expression and purification system for VirF and have optimized two different in vitro VirF-DNA binding assays. We have determined that one of our HTS hit compounds inhibits VirF binding to DNA with a calculated Ki similar to the effective doses seen in our transcriptional activation and virulence screens. This is consistent with inhibition of DNA binding as the mechanism of action of this hit compound. We have also screened 15 commercially sourced analogs of this compound and deduced an initial SAR from the approximately 100-fold range in activities. Our four other HTS hit compounds do not inhibit DNA binding and yet they do block VirF activity. This suggests that multiple agents with different molecular mechanisms of inhibition of VirF could be developed. Pursuing hits with different mechanisms of action could be a powerful approach to enhance activity and to circumvent resistance that could develop to any one of these agents.
Collapse
Affiliation(s)
- Anthony A. Emanuele
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States of America
| | - George A. Garcia
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
19
|
The roles of the virulence factor IpaB in Shigella spp. in the escape from immune cells and invasion of epithelial cells. Microbiol Res 2015; 181:43-51. [PMID: 26640051 DOI: 10.1016/j.micres.2015.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/24/2015] [Accepted: 08/29/2015] [Indexed: 02/08/2023]
Abstract
Shigellosis is an acute invasive enteric infection by the Gram negative pathogen Shigella, which causes human diarrhea. Shigella, which are highly epidemic and pathogenic, have become a serious public health problem. The virulence plasmid is a large plasmid essential to the infected host cells. Many virulence factors are encoded in the ipa-mxi-spa region by the virulence plasmid. IpaB is a multifunctional and essential virulence factor in the infection process. In this review article, we introduce the recent studies of the effect of IpaB in Shigella-infected host cells. IpaB is involved in a type III secretion system (T3SS) structure. It also controls the secretion of virulence factors and Shigella adhesion to host cells. In addition, it forms the ion pore, destroys phagosomes, and induces the immune cell's apoptosis or necrosis. Moreover, IpaB can become a potential antigen for Shigella vaccine development.
Collapse
|
20
|
Sengupta C, Ray S, Chowdhury R. Fine tuning of virulence regulatory pathways in enteric bacteria in response to varying bile and oxygen concentrations in the gastrointestinal tract. Gut Pathog 2014; 6:38. [PMID: 25349633 PMCID: PMC4209513 DOI: 10.1186/s13099-014-0038-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/01/2014] [Indexed: 11/10/2022] Open
Abstract
After entering the gastrointestinal (GI) tract on the way to their physiological site of infection, enteric bacteria encounter a remarkable diversity in environmental conditions. There are gross differences in the physico-chemical parameters in different sections of the GI tract e.g. between the stomach, small intestine and large intestine. Furthermore, even within a certain anatomical site, there are subtle differences in the microenvironment e.g. between the lumen, mucous layer and epithelial surface. Enteric pathogens must not only survive passage through the rapidly changing environments encountered at different niches of the GI tract but must also appropriately coordinate expression of virulence determinants in response to environmental cues at different stages of infection. There are some common themes in the responses of enteric pathogens to environmental cues, there are also distinct differences that may reflect differences in basic pathogenesis mechanisms. The role of bile and oxygen concentration in spatiotemporal regulation of virulence genes in selected enteric pathogens has been reviewed.
Collapse
Affiliation(s)
- Chirantana Sengupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sreejana Ray
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Rukhsana Chowdhury
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India ; Academy for Scientific and Innovative Research, CSIR-IICB Campus, Kolkata 700032, India
| |
Collapse
|
21
|
Dorman CJ. H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria. Plasmid 2014; 75:1-11. [DOI: 10.1016/j.plasmid.2014.06.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
|
22
|
Salomon D, Klimko JA, Orth K. H-NS regulates the Vibrio parahaemolyticus type VI secretion system 1. MICROBIOLOGY-SGM 2014; 160:1867-1873. [PMID: 24987102 DOI: 10.1099/mic.0.080028-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The marine bacterium Vibrio parahaemolyticus, a major cause of food-borne gastroenteritis, employs a type VI secretion system 1 (T6SS1), a recently discovered protein secretion system, to combat competing bacteria. Environmental signals such as temperature, salinity, cell density and surface sensing, as well as the quorum-sensing master regulator OpaR, were previously reported to regulate T6SS1 activity and expression. In this work, we set out to identify additional transcription regulators that control the tightly regulated T6SS1 activity. To this end, we determined the effect of deletions in several known virulence regulators and in two regulators encoded within the T6SS1 gene cluster on expression and secretion of the core T6SS component Hcp1 and on T6SS1-mediated anti-bacterial activity. We report that VP1391 and VP1407, transcriptional regulators encoded within the T6SS1 gene cluster, are essential for T6SS1 activity. Moreover, we found that H-NS, a bacterial histone-like nucleoid structuring protein, which mediates transcription silencing of horizontally acquired genes, serves as a repressor of T6SS1. We also show that activation of surface sensing and high salt conditions alleviate the H-NS-mediated repression. Our results shed light on the complex network of environmental signals and transcription regulators that govern the tight regulation over T6SS1 activity.
Collapse
Affiliation(s)
- Dor Salomon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - John A Klimko
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| |
Collapse
|
23
|
Elongation factor P and modifying enzyme PoxA are necessary for virulence of Shigella flexneri. Infect Immun 2014; 82:3612-21. [PMID: 24935977 DOI: 10.1128/iai.01532-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Elongation factor P (EF-P) is a universally conserved bacterial translation factor. In many bacteria, EF-P is posttranslationally modified by PoxA, which covalently attaches a β-lysine to a conserved lysine residue of EF-P. Here we show that both EF-P and PoxA are necessary for virulence of the human diarrheal pathogen Shigella flexneri. Loss of either EF-P or PoxA leads to an impaired ability of S. flexneri to invade epithelial cells and form plaques in an epithelial cell monolayer. Proteomic analysis of efp and poxA deletion mutants revealed decreased levels of several virulence effector proteins, including IpaA, -B, and -C and IcsA. Additionally, mRNA levels of virB and virF, which encode master virulence regulators, were decreased in the efp mutant. The reduction in virF transcription was at least partially due to decreased levels of CpxA, which activates virF through the response regulator CpxR. The role of CpxAR in reduced synthesis of VirF and its downstream effectors was indicated by restoration of invasion when a mutation resulting in constitutively activated CpxR was introduced into the efp mutant. Thus, modified EF-P is required for appropriate synthesis of proteins involved in the virulence of this bacterial pathogen.
Collapse
|
24
|
Hatzios SK, Baer CE, Rustad TR, Siegrist MS, Pang JM, Ortega C, Alber T, Grundner C, Sherman DR, Bertozzi CR. Osmosensory signaling in Mycobacterium tuberculosis mediated by a eukaryotic-like Ser/Thr protein kinase. Proc Natl Acad Sci U S A 2013; 110:E5069-77. [PMID: 24309377 PMCID: PMC3876250 DOI: 10.1073/pnas.1321205110] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Bacteria are able to adapt to dramatically different microenvironments, but in many organisms, the signaling pathways, transcriptional programs, and downstream physiological changes involved in adaptation are not well-understood. Here, we discovered that osmotic stress stimulates a signaling network in Mycobacterium tuberculosis regulated by the eukaryotic-like receptor Ser/Thr protein kinase PknD. Expression of the PknD substrate Rv0516c was highly induced by osmotic stress. Furthermore, Rv0516c disruption modified peptidoglycan thickness, enhanced antibiotic resistance, and activated genes in the regulon of the alternative σ-factor SigF. Phosphorylation of Rv0516c regulated the abundance of EspA, a virulence-associated substrate of the type VII ESX-1 secretion system. These findings identify an osmosensory pathway orchestrated by PknD, Rv0516c, and SigF that enables adaptation to osmotic stress through cell wall remodeling and virulence factor production. Given the widespread occurrence of eukaryotic-like Ser/Thr protein kinases in bacteria, these proteins may play a broad role in bacterial osmosensing.
Collapse
Affiliation(s)
| | - Christina E. Baer
- Molecular and Cell Biology, California Institute for Quantitative Biosciences (QB3), and
| | - Tige R. Rustad
- Seattle Biomedical Research Institute, Seattle, WA 98109; and
- Department of Global Health, University of Washington, Seattle, WA 98195
| | | | - Jennifer M. Pang
- Seattle Biomedical Research Institute, Seattle, WA 98109; and
- Department of Global Health, University of Washington, Seattle, WA 98195
| | - Corrie Ortega
- Seattle Biomedical Research Institute, Seattle, WA 98109; and
- Department of Global Health, University of Washington, Seattle, WA 98195
| | - Tom Alber
- Molecular and Cell Biology, California Institute for Quantitative Biosciences (QB3), and
| | - Christoph Grundner
- Seattle Biomedical Research Institute, Seattle, WA 98109; and
- Department of Global Health, University of Washington, Seattle, WA 98195
| | - David R. Sherman
- Seattle Biomedical Research Institute, Seattle, WA 98109; and
- Department of Global Health, University of Washington, Seattle, WA 98195
| | - Carolyn R. Bertozzi
- Departments of Chemistry and
- Molecular and Cell Biology, California Institute for Quantitative Biosciences (QB3), and
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
25
|
Small-molecule inhibitor of the Shigella flexneri master virulence regulator VirF. Infect Immun 2013; 81:4220-31. [PMID: 24002059 DOI: 10.1128/iai.00919-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VirF is an AraC family transcriptional activator that is required for the expression of virulence genes associated with invasion and cell-to-cell spread by Shigella flexneri, including multiple components of the type three secretion system (T3SS) machinery and effectors. We tested a small-molecule compound, SE-1 (formerly designated OSSL_051168), which we had identified as an effective inhibitor of the AraC family proteins RhaS and RhaR, for its ability to inhibit VirF. Cell-based reporter gene assays with Escherichia coli and Shigella, as well as in vitro DNA binding assays with purified VirF, demonstrated that SE-1 inhibited DNA binding and transcription activation (likely by blocking DNA binding) by VirF. Analysis of mRNA levels using real-time quantitative reverse transcription-PCR (qRT-PCR) further demonstrated that SE-1 reduced the expression of the VirF-dependent virulence genes icsA, virB, icsB, and ipaB in Shigella. We also performed eukaryotic cell invasion assays and found that SE-1 reduced invasion by Shigella. The effect of SE-1 on invasion required preincubation of Shigella with SE-1, in agreement with the hypothesis that SE-1 inhibited the expression of VirF-activated genes required for the formation of the T3SS apparatus and invasion. We found that the same concentrations of SE-1 had no detectable effects on the growth or metabolism of the bacterial cells or the eukaryotic host cells, respectively, indicating that the inhibition of invasion was not due to general toxicity. Overall, SE-1 appears to inhibit transcription activation by VirF, exhibits selectivity toward AraC family proteins, and has the potential to be developed into a novel antibacterial agent.
Collapse
|
26
|
Gao X, Zou T, Mu Z, Qin B, Yang J, Waltersperger S, Wang M, Cui S, Jin Q. Structural insights into VirB-DNA complexes reveal mechanism of transcriptional activation of virulence genes. Nucleic Acids Res 2013; 41:10529-41. [PMID: 23985969 PMCID: PMC3905869 DOI: 10.1093/nar/gkt748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
VirB activates transcription of virulence genes in Shigella flexneri by alleviating heat-stable nucleoid-structuring protein-mediated promoter repression. VirB is unrelated to the conventional transcriptional regulators, but homologous to the plasmid partitioning proteins. We determined the crystal structures of VirB HTH domain bound by the cis-acting site containing the inverted repeat, revealing that the VirB-DNA complex is related to ParB-ParS-like complexes, presenting an example that a ParB-like protein acts exclusively in transcriptional regulation. The HTH domain of VirB docks DNA major groove and provides multiple contacts to backbone and bases, in which the only specific base readout is mediated by R167. VirB only recognizes one half site of the inverted repeats containing the most matches to the consensus for VirB binding. The binding of VirB induces DNA conformational changes and introduces a bend at an invariant A-tract segment in the cis-acting site, suggesting a role of DNA remodeling. VirB exhibits positive cooperativity in DNA binding that is contributed by the C-terminal domain facilitating VirB oligomerization. The isolated HTH domain only confers partial DNA specificity. Additional determinants for sequence specificity may reside in N- or C-terminal domains. Collectively, our findings support and extend a previously proposed model for relieving heat-stable nucleoid-structuring protein-mediated repression by VirB.
Collapse
Affiliation(s)
- Xiaopan Gao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.9 Dong Dan San Tiao, Beijing 100730, P.R. China and PX Beamlines Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Characterization of the ospZ promoter in Shigella flexneri and its regulation by VirB and H-NS. J Bacteriol 2013; 195:2562-72. [PMID: 23543709 DOI: 10.1128/jb.00212-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OspZ is an effector protein of the type III secretion system in Shigella spp. that downregulates the human inflammatory response during bacterial infection. The ospZ gene is located on the large virulence plasmid of Shigella. Many genes on this plasmid are transcriptionally repressed by the nucleoid structuring protein H-NS and derepressed by VirB, a DNA-binding protein that displays homology to the plasmid partitioning proteins ParB and SopB. In this study, we characterized the ospZ promoter and investigated its regulation by H-NS and VirB in Shigella flexneri. We show that H-NS represses and VirB partially derepresses the ospZ promoter. H-NS-mediated repression requires sequences located between -731 and -412 relative to the beginning of the ospZ gene. Notably, the VirB-dependent derepression of ospZ requires the same VirB binding sites as are required for the VirB-dependent derepression of the divergent icsP gene. These sites are centered 425 bp upstream of the ospZ gene but over 1 kb upstream of the icsP transcription start site. Although these VirB binding sites lie closer to ospZ than icsP, the VirB-dependent increase in ospZ promoter activity is lower than that observed at the icsP promoter. This indicates that the proximity of VirB binding sites to Shigella promoters does not necessarily correlate with the level of VirB-dependent derepression. These findings have implications for virulence gene regulation in Shigella and other pathogens that control gene expression using mechanisms of transcriptional repression and derepression.
Collapse
|
28
|
Predicting the effect of ions on the conformation of the H-NS dimerization domain. Biophys J 2012; 103:89-98. [PMID: 22828335 DOI: 10.1016/j.bpj.2012.05.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/11/2012] [Accepted: 05/15/2012] [Indexed: 11/23/2022] Open
Abstract
The histone-like nucleoid structuring protein (H-NS) is a DNA-organizing protein in bacteria. It contains a DNA-binding domain and a dimerization domain, connected by a flexible linker region. Dimerization occurs through the formation of a helical bundle, including a coiled-coil interaction motif. Two conformations have been resolved, for different sequences of Escherichia coli H-NS, resulting in an antiparallel coiled-coil for the shorter wild-type sequence, and a parallel coiled-coil for the longer C21S mutant. Because H-NS functions as a thermo- and osmosensor, these conformations may both be functionally relevant. Molecular simulation can complement experiments by modeling the dynamical time evolution of biomolecular systems in atomistic detail. We performed a molecular-dynamics study of the H-NS dimerization domain, showing that the parallel complex is sensitive to changes in salt conditions: it is unstable in absence of NaCl, but stable at physiological salt concentrations. In contrast, the stability of the antiparallel complex is not salt-dependent. The stability of the parallel complex also appears to be affected by mutation of the critical but nonconserved cysteine residue at position 21, whereas the antiparallel complex is not. Together, our simulations suggest that osmoregulation could be mediated by changes in the ratio of parallel- and antiparallel-oriented H-NS dimers.
Collapse
|
29
|
VirB-mediated positive feedback control of the virulence gene regulatory cascade of Shigella flexneri. J Bacteriol 2012; 194:5264-73. [PMID: 22821978 DOI: 10.1128/jb.00800-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri is a facultative intracellular pathogen that relies on a type III secretion system and its associated effector proteins to cause bacillary dysentery in humans. The genes that encode this virulence system are located on a 230-kbp plasmid and are transcribed in response to thermal, osmotic, and pH signals that are characteristic of the human lower gut. The virulence genes are organized within a regulatory cascade, and the nucleoid-associated protein H-NS represses each of the key promoters. Transcription derepression depends first on the VirF AraC-like transcription factor, a protein that antagonizes H-NS-mediated repression at the intermediate regulatory gene virB. The VirB protein in turn remodels the H-NS-DNA nucleoprotein complexes at the promoters of the genes encoding the type III secretion system and effector proteins, causing these genes to become derepressed. In this study, we show that the VirB protein also positively regulates the expression of its own gene (virB) via a cis-acting regulatory sequence. In addition, VirB positively regulates the gene coding for the VirF protein. This study reveals two hitherto uncharacterized feedback regulatory loops in the S. flexneri virulence cascade that provide a mechanism for the enhanced expression of the principal virulence regulatory genes.
Collapse
|
30
|
Kang SO, Wright JO, Tesorero RA, Lee H, Beall B, Cho KH. Thermoregulation of capsule production by Streptococcus pyogenes. PLoS One 2012; 7:e37367. [PMID: 22615992 PMCID: PMC3355187 DOI: 10.1371/journal.pone.0037367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/20/2012] [Indexed: 11/18/2022] Open
Abstract
The capsule of Streptococcus pyogenes serves as an adhesin as well as an anti-phagocytic factor by binding to CD44 on keratinocytes of the pharyngeal mucosa and the skin, the main entry sites of the pathogen. We discovered that S. pyogenes HSC5 and MGAS315 strains are further thermoregulated for capsule production at a post-transcriptional level in addition to the transcriptional regulation by the CovRS two-component regulatory system. When the transcription of the hasABC capsular biosynthetic locus was de-repressed through mutation of the covRS system, the two strains, which have been used for pathogenesis studies in the laboratory, exhibited markedly increased capsule production at sub-body temperature. Employing transposon mutagenesis, we found that CvfA, a previously identified membrane-associated endoribonuclease, is required for the thermoregulation of capsule synthesis. The mutation of the cvfA gene conferred increased capsule production regardless of temperature. However, the amount of the capsule transcript was not changed by the mutation, indicating that a post-transcriptional regulator mediates between CvfA and thermoregulated capsule production. When we tested naturally occurring invasive mucoid strains, a high percentage (11/53, 21%) of the strains exhibited thermoregulated capsule production. As expected, the mucoid phenotype of these strains at sub-body temperature was due to mutations within the chromosomal covRS genes. Capsule thermoregulation that exhibits high capsule production at lower temperatures that occur on the skin or mucosal surface potentially confers better capability of adhesion and invasion when S. pyogenes penetrates the epithelial surface.
Collapse
Affiliation(s)
- Song Ok Kang
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, Illinois, United States of America
| | - Jordan O. Wright
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, Illinois, United States of America
| | - Rafael A. Tesorero
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, Illinois, United States of America
| | - Hyunwoo Lee
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois, United States of America
| | - Bernard Beall
- Streptococcus Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kyu Hong Cho
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, Illinois, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
Much is known about the molecular effectors of pathogenicity of gram-negative enteric pathogens, among which Shigella can be considered a model. This is due to its capacity to recapitulate the multiple steps required for a pathogenic microbe to survive close to its mucosal target, colonize and then invade its epithelial surface, cause its inflammatory destruction and simultaneously regulate the extent of the elicited innate response to likely survive the encounter and achieve successful subsequent transmission. These various steps of the infectious process represent an array of successive environmental conditions to which the bacteria need to successfully adapt. These conditions represent the selective pressure that triggered the "arms race" in which Shigella acquired the genetic and molecular effectors of its pathogenic armory, including the regulatory hierarchies that regulate the expression and function of these effectors. They also represent cues through which Shigella achieves the temporo-spatial expression and regulation of its virulence effectors. The role of such environmental cues has recently become obvious in the case of the major virulence effector of Shigella, the type three secretion system (T3SS) and its dedicated secreted virulence effectors. It needs to be better defined for other major virulence components such as the LPS and peptidoglycan which are used as examples here, in addition to the T3SS as models of regulation as it relates to the assembly and functional regulation of complex macromolecular systems of the bacterial surface. This review also stresses the need to better define what the true and relevant environmental conditions can be at the various steps of the progression of infection. The "identity" of the pathogen differs depending whether it is cultivated under in vitro or in vivo conditions. Moreover, this "identity" may quickly change during its progression into the infected tissue. Novel concepts and relevant tools are needed to address this challenge in microbial pathogenesis.
Collapse
Affiliation(s)
- Benoit Marteyn
- Unité de Pathogénie Microbienne Moléculaire; Institut Pasteur; Paris, France,Unité INSERM 786; Institut Pasteur; Paris, France
| | - Anastasia Gazi
- Unité de Pathogénie Microbienne Moléculaire; Institut Pasteur; Paris, France,Unité INSERM 786; Institut Pasteur; Paris, France
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire; Institut Pasteur; Paris, France,Unité INSERM 786; Institut Pasteur; Paris, France,Chaire de Microbiologie et Maladies Infectieuses; Collège de France; Paris, France,Correspondence to: Philippe Sansonetti,
| |
Collapse
|
32
|
RodZ regulates the post-transcriptional processing of the Shigella sonnei type III secretion system. EMBO Rep 2011; 12:911-6. [PMID: 21779005 DOI: 10.1038/embor.2011.132] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/23/2022] Open
Abstract
The expression of the type III secretion system-a main determinant of virulence in Shigella-is controlled by regulator cascades VirF-InvE (VirB) and CpxAR two-component system. A screen for mutants that restore virulence in the cpxA background led to the isolation of a mutant of rodZ, a cytoskeletal protein that maintains the rod-shaped morphology of bacilli. InvE is normally repressed at 30 °C because of decreased messenger RNA (mRNA) stability, but rodZ mutants markedly increase invE-mRNA stability. Importantly, the inhibition of InvE production by RodZ can be genetically separated from its role in cell-shape maintenance, indicating that these functions are distinguishable. Thus, we propose that RodZ is a new membrane-bound RNA-binding protein that provides a scaffold for post-transcriptional regulation.
Collapse
|
33
|
Rational design of an artificial genetic switch: Co-option of the H-NS-repressed proU operon by the VirB virulence master regulator. J Bacteriol 2011; 193:5950-60. [PMID: 21873493 DOI: 10.1128/jb.05557-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H-NS protein represses the transcription of hundreds of genes in Gram-negative bacteria. Derepression is achieved by a multitude of mechanisms, many of which involve the binding of a protein to DNA at the repressed promoter in a manner that compromises the maintenance of the H-NS-DNA nucleoprotein repression complex. The principal virulence gene promoters in Shigella flexneri, the cause of bacillary dysentery, are repressed by H-NS. VirB, a protein that closely resembles members of the ParB family of plasmid-partitioning proteins, derepresses the operons that encode the main structural components and the effector proteins of the S. flexneri type III secretion system. Bioinformatic analysis suggests that VirB has been co-opted into its current role as an H-NS antagonist in S. flexneri. To test this hypothesis, the potential for VirB to act as a positive regulator of proU, an operon that is repressed by H-NS, was assessed. Although VirB has no known relationship with the osmoregulated proU operon, it could relieve H-NS-mediated repression when the parS-like VirB binding site was placed appropriately upstream of the RpoD-dependent proU promoter. These results reveal the remarkable facility with which novel regulatory circuits can evolve, at least among those promoters that are repressed by H-NS.
Collapse
|
34
|
Raczkowska A, Brzóstkowska M, Kwiatek A, Bielecki J, Brzostek K. Modulation of inv gene expression by the OmpR two-component response regulator protein of Yersinia enterocolitica. Folia Microbiol (Praha) 2011; 56:313-9. [PMID: 21818612 DOI: 10.1007/s12223-011-0054-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/12/2011] [Indexed: 12/22/2022]
Abstract
To elucidate the physiological meaning of OmpR-dependent expression of invasin gene (inv) inhibition in Yersinia enterocolitica, the function of the EnvZ/OmpR regulatory pathway in osmoregulation of inv expression was analyzed in detail. The osmoregulation of inv expression was found to be a multifaceted process involving both OmpR-dependent and -independent mechanisms. Analysis of inv transcription in strains lacking OmpR or EnvZ proteins indicated that kinase EnvZ is not the only regulator of OmpR phosphorylation. Using the transcriptional inv::lacZ fusion in a heterologous system (Escherichia coli) we tried to clarify the role of OmpR in the inv regulatory circuit composed of negative (H-NS) and positive (RovA) regulators of inv gene transcription. We were able to show a significant increase in inv expression in E. coli ompR background under H-NS( Ecoli )-repressed condition. Moreover, H-NS-mediated inv repression was relieved when RovA of Y. enterocolitica was expressed from a plasmid. Furthermore, we showed that RovA may activate inv expression irrespective on the presence of H-NS protein. Using this strategy we showed that OmpR of Y. enterocolitica decrease RovA-mediated inv activation.
Collapse
Affiliation(s)
- A Raczkowska
- Department of Applied Microbiology, University of Warsaw, Faculty of Biology, Institute of Microbiology, Miecznikowa 1, Warsaw, Poland
| | | | | | | | | |
Collapse
|
35
|
Hensley CT, Kamneva OK, Levy KM, Labahn SK, Africa LA, Wing HJ. Two promoters and two translation start sites control the expression of the Shigella flexneri outer membrane protease IcsP. Arch Microbiol 2011; 193:263-74. [PMID: 21225241 DOI: 10.1007/s00203-010-0669-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/10/2010] [Accepted: 12/15/2010] [Indexed: 11/26/2022]
Abstract
The Shigella flexneri outer membrane protease IcsP proteolytically cleaves the actin-based motility protein IcsA from the bacterial surface. The icsP gene is monocistronic and lies downstream of an unusually large intergenic region on the Shigella virulence plasmid. In silico analysis of this region predicts a second transcription start site 84 bp upstream of the first. Primer extension analyses and beta-galactosidase assays demonstrate that both transcription start sites are used. Both promoters are regulated by the Shigella virulence gene regulator VirB and both respond similarly to conditions known to influence Shigella virulence gene expression (iron concentration, pH, osmotic pressure, and phase of growth). The newly identified promoter lies upstream of a Shine-Dalgarno sequence and second 5'-ATG-3', which is in frame with the annotated icsP gene. The use of either translation start site leads to the production of IcsP capable of proteolytically cleaving IcsA. A bioinformatic scan of the Shigella genome reveals multiple occurrences of in-frame translation start sites associated with putative Shine-Dalgarno sequences, immediately upstream and downstream of annotated open reading frames. Taken together, our observations support the possibility that the use of in-frame translation start sites may generate different protein isoforms, thereby expanding the proteome encoded by bacterial genomes.
Collapse
Affiliation(s)
- Christopher T Hensley
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, NV, 89154-4004, USA
| | | | | | | | | | | |
Collapse
|
36
|
Durand JMB, Björk GR. Metabolic control through ornithine and uracil of epithelial cell invasion by Shigella flexneri. Microbiology (Reading) 2009; 155:2498-2508. [DOI: 10.1099/mic.0.028191-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This paper shows that compounds in defined growth media strongly influence the expression of the effectors of virulence in the human invasive pathogen Shigella flexneri. Ornithine in conjunction with uracil reduces the haemolytic ability of wild-type cultures more than 20-fold and the expression of the type III secretion system more than 8-fold, as monitored by an mxiC : : lacZ transcriptional reporter. mxiC gene expression is further decreased by the presence of methionine or branched-chain amino acids (15-fold or 25-fold at least, respectively). Lysine and a few other aminated metabolites (cadaverine, homoserine and diaminopimelate) counteract the ornithine-mediated inhibition of haemolytic activity and of the expression of a transcriptional activator virF reporter. The complete abolition of invasion of HeLa cells by wild-type bacteria by ornithine, uracil, methionine or branched-chain amino acids establishes that these metabolites are powerful effectors of virulence. These findings provide a direct connection between metabolism and virulence in S. flexneri. The inhibitory potential exhibited by the nutritional environment is stronger than temperature, the classical environmental effector of virulence. The implications and practical application of this finding in prophylaxis and treatment of shigellosis are discussed.
Collapse
Affiliation(s)
| | - Glenn R. Björk
- Department of Molecular Biology, Umeå University, S-90 187 Umeå, Sweden
| |
Collapse
|
37
|
Involvement of RNA-binding protein Hfq in the osmotic-response regulation of invE gene expression in Shigella sonnei. BMC Microbiol 2009; 9:110. [PMID: 19476612 PMCID: PMC2694808 DOI: 10.1186/1471-2180-9-110] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 05/28/2009] [Indexed: 12/31/2022] Open
Abstract
Background The expression of Type III secretion system (TTSS) in Shigella is regulated in response to changes in environmental osmolarity and temperature. Temperature-dependent regulation of virF, the master regulator of TTSS synthesis, is believed to occur at the transcriptional level. We recently demonstrated, however, that TTSS synthesis also involves post-transcriptional regulation of the synthesis of InvE, a target of virF and key regulator of TTSS synthesis. The mRNA levels of invE (virB) are stable at 37°C, but mRNA stability markedly decreases at low temperatures where the TTSS synthesis is tightly repressed. Deletion of hfq, which encodes an RNA chaperone in Gram-negative bacteria, results in the restoration of expression of invE and other TTSS genes at low temperature due to an increase in the stability of invE mRNA. To date, the molecular details of the regulation of TTSS expression in response to osmotic pressure are not known. In the current study, we investigated the mechanism of regulation of TTSS by osmotic pressure. Results Transcription of virF, which encodes the master regulator of TTSS expression, was partially repressed under low osmotic conditions. Several lines of evidence indicated that osmolarity-dependent changes in TTSS synthesis are controlled at the post-transcriptional level, through the regulation of InvE synthesis. First, the expression InvE protein was tightly repressed under low osmotic growth conditions, even though invE mRNA transcripts were readily detectable. Second, under low osmotic conditions, invE mRNA was rapidly degraded, whereas deletion of hfq, which encodes an RNA chaperone, resulted in increased invE mRNA stability and the production of InvE protein. Third, the binding of purified Hfq in vitro to invE RNA was stronger in low-salt buffer, as assessed by gel-shift analysis and surface plasmon resonance (Biacore analysis). Conclusion Osmolarity-dependent changes in TTSS synthesis in Shigella involve the post-transcriptional regulation of InvE expression, in addition to partial transcriptional activation by virF. The stability of invE mRNA is reduced under low osmotic conditions, similar to the effect of temperature. Deletion of an RNA chaperone gene (hfq) abolished the repression of TTSS synthesis at low osmolarity through a mechanism that involved increased stability of invE mRNA. We propose that the expression of Shigella virulence genes in response to both osmolarity and temperature involves the post-transcriptional regulation of expression of InvE, a critical regulator of TTSS synthesis.
Collapse
|
38
|
VirB alleviates H-NS repression of the icsP promoter in Shigella flexneri from sites more than one kilobase upstream of the transcription start site. J Bacteriol 2009; 191:4047-50. [PMID: 19363111 DOI: 10.1128/jb.00313-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The icsP promoter of Shigella spp. is repressed by H-NS and derepressed by VirB. Here, we show that an inverted repeat located between positions -1144 and -1130 relative to the icsP transcription start site is necessary for VirB-dependent derepression. The atypical location of this cis-acting site is discussed.
Collapse
|
39
|
Abstract
Lsr2 is a small, basic protein present in Mycobacterium and related actinomycetes. Our previous in vitro biochemical studies showed that Lsr2 is a DNA-bridging protein, a property shared by H-NS-like proteins in gram-negative bacteria. Here we present in vivo evidence based on genetic complementation experiments that Lsr2 is a functional analog of H-NS, the first such protein identified in gram-positive bacteria. We show that lsr2 can complement the phenotypes related to hns mutations in Escherichia coli, including beta-glucoside utilization, mucoidy, motility, and hemolytic activity. We also show that Lsr2 binds specifically to H-NS-regulated genes and the repression of hlyE by Lsr2 can be partially eliminated by overexpression of slyA, suggesting that the molecular mechanisms of Lsr2 repression and depression are similar to those of H-NS. The functional equivalence of these two proteins is further supported by the ability of hns to complement the lsr2 phenotype in Mycobacterium smegmatis. Taken together, our results demonstrate unequivocally that Lsr2 is an H-NS-like protein.
Collapse
|
40
|
Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 2008; 21:134-56. [PMID: 18202440 DOI: 10.1128/cmr.00032-07] [Citation(s) in RCA: 400] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are gram-negative pathogenic bacteria that evolved from harmless enterobacterial relatives and may cause devastating diarrhea upon ingestion. Research performed over the last 25 years revealed that a type III secretion system (T3SS) encoded on a large plasmid is a key virulence factor of Shigella flexneri. The T3SS determines the interactions of S. flexneri with intestinal cells by consecutively translocating two sets of effector proteins into the target cells. Thus, S. flexneri controls invasion into EC, intra- and intercellular spread, macrophage cell death, as well as host inflammatory responses. Some of the translocated effector proteins show novel biochemical activities by which they intercept host cell signal transduction pathways. An understanding of the molecular mechanisms underlying Shigella pathogenesis will foster the development of a safe and efficient vaccine, which, in parallel with improved hygiene, should curb infections by this widespread pathogen.
Collapse
|
41
|
Culture of Campylobacter jejuni with sodium deoxycholate induces virulence gene expression. J Bacteriol 2008; 190:2286-97. [PMID: 18223090 DOI: 10.1128/jb.01736-07] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni, a spiral-shaped gram-negative bacterium, is a leading bacterial cause of human food-borne illness. Acute disease is associated with C. jejuni invasion of the intestinal epithelium. Further, maximal host cell invasion requires the secretion of proteins termed Campylobacter invasion antigens (Cia). As bile acids are known to alter the pathogenic behavior of other gastrointestinal pathogens, we hypothesized that the virulence potential of Campylobacter may be triggered by the bile acid deoxycholate (DOC). In support of this hypothesis, culturing C. jejuni with a physiologically relevant concentration of DOC significantly altered the kinetics of cell invasion, as shown by gentamicin protection assays. In contrast to C. jejuni harvested from Mueller-Hinton (MH) agar plates, C. jejuni harvested from MH agar plates supplemented with DOC secreted the Cia proteins, as judged by metabolic labeling experiments. DOC was also found to induce the expression of the ciaB gene, as determined by beta-galactosidase reporter, real-time reverse transcription-PCR, and microarray analyses. Microarray analysis further revealed that DOC induced the expression of virulence genes (ciaB, cmeABC, dccR, and tlyA). In summary, we demonstrated that it is possible to enhance the pathogenic behavior of C. jejuni by modifying the culture conditions. These results provide a foundation for identifying genes expressed by C. jejuni in response to in vivo-like culture conditions.
Collapse
|
42
|
Navarre WW, McClelland M, Libby SJ, Fang FC. Silencing of xenogeneic DNA by H-NS--facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 2007; 21:1456-71. [PMID: 17575047 DOI: 10.1101/gad.1543107] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lateral gene transfer has played a prominent role in bacterial evolution, but the mechanisms allowing bacteria to tolerate the acquisition of foreign DNA have been incompletely defined. Recent studies show that H-NS, an abundant nucleoid-associated protein in enteric bacteria and related species, can recognize and selectively silence the expression of foreign DNA with higher adenine and thymine content relative to the resident genome, a property that has made this molecule an almost universal regulator of virulence determinants in enteric bacteria. These and other recent findings challenge the ideas that curvature is the primary determinant recognized by H-NS and that activation of H-NS-silenced genes in response to environmental conditions occurs through a change in the structure of H-NS itself. Derepression of H-NS-silenced genes can occur at specific promoters by several mechanisms including competition with sequence-specific DNA-binding proteins, thereby enabling the regulated expression of foreign genes. The possibility that microorganisms maintain and exploit their characteristic genomic GC ratios for the purpose of self/non-self-discrimination is discussed.
Collapse
Affiliation(s)
- William Wiley Navarre
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
43
|
Turner EC, Dorman CJ. H-NS antagonism in Shigella flexneri by VirB, a virulence gene transcription regulator that is closely related to plasmid partition factors. J Bacteriol 2007; 189:3403-13. [PMID: 17307842 PMCID: PMC1855880 DOI: 10.1128/jb.01813-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The VirB protein of Shigella flexneri is a positive regulator of the major virulence operons of this enteroinvasive intracellular pathogen. VirB resembles no other transcription factor but is strongly homologous to plasmid partition proteins. We found that the binding of the VirB protein to the promoter region of the icsB virulence gene induced hypersensitivity to cleavage by DNase I over a region to which the H-NS repressor protein binds and completely abolished the protection of this sequence from DNase I by H-NS. In the absence of H-NS, the VirB protein had no additive effect on the ability of the icsB promoter to form an open transcription complex, indicating that VirB is not involved in the recruitment of RNA polymerase to the promoter or in open complex formation. Similarly, VirB did not stimulate promoter function in an in vitro transcription assay but acted as an antagonist of H-NS-mediated repression. A sequence located upstream of the icsB promoter and related to cis-acting elements involved in plasmid partitioning was required for promoter derepression by VirB. Alterations to one heptameric motif within this DNA sequence attenuated VirB binding and derepression of icsB transcription.
Collapse
|
44
|
Doyle M, Dorman CJ. Reciprocal transcriptional and posttranscriptional growth-phase-dependent expression of sfh, a gene that encodes a paralogue of the nucleoid-associated protein H-NS. J Bacteriol 2006; 188:7581-91. [PMID: 16936022 PMCID: PMC1636274 DOI: 10.1128/jb.00685-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IncHI1 self-transmissible plasmid pSf-R27 from Shigella flexneri 2a strain 2457T harbors sfh, a gene that codes for a protein with strong amino acid sequence homology to the global transcription regulator and nucleoid-associated protein H-NS and to its paralogue, StpA. Previously, we discovered that the expression of sfh mRNA is growth phase dependent such that in cultures growing in Lennox broth at 37 degrees C, the transcript is readily detectable in the early stages of exponential growth but is not detectable at the onset of stationary phase. In contrast, the Sfh protein is poorly expressed in early-exponential growth when sfh mRNA is abundant whereas it is expressed to a high level in early stationary phase, when sfh transcript expression is low (P. Deighan, C. Beloin, and C. J. Dorman, Mol. Microbiol. 48:1401-1416, 2003). This unusual pattern of reciprocal mRNA and protein expression is not due to growth phase-dependent effects on either mRNA or protein stability, nor is it due to the known abilities of the Sfh, StpA, and H-NS proteins to influence sfh gene expression. Instead, our data point to a blockade of sfh mRNA translation in early-exponential growth that is relieved as the culture enters the stationary phase of growth. Replacing the 5' end and translation initiation signals of the sfh mRNA with heterologous sequences did not alter the growth phase-dependent expression of the Sfh protein, suggesting that growth phase control of translation is intrinsic to another component of the message.
Collapse
Affiliation(s)
- Marie Doyle
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin, Trinity College, Dublin 2, Ireland
| | | |
Collapse
|
45
|
Kouokam JC, Wai SN, Fällman M, Dobrindt U, Hacker J, Uhlin BE. Active cytotoxic necrotizing factor 1 associated with outer membrane vesicles from uropathogenic Escherichia coli. Infect Immun 2006; 74:2022-30. [PMID: 16552031 PMCID: PMC1418910 DOI: 10.1128/iai.74.4.2022-2030.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic necrotizing factor type 1 (CNF1) is one of the virulence factors produced by uropathogenic Escherichia coli (UPEC). How this toxin is translocated from the bacterial cytoplasm to the surrounding environment is not well understood. Our data suggest that CNF1 may be regarded as a secreted protein, since it could be detected in culture supernatants. Furthermore, we found that CNF1 was tightly associated to outer membrane vesicles, suggesting that such vesicles play a role in the secretion of this protein. Interestingly, vesicle samples containing CNF1 could exert the effects known for this protein on HeLa cell cultures, showing that CNF1 is transported by vesicles in its active form. Taken together, our results strongly suggest that outer membrane vesicles could be a means for the bacteria to deliver CNF1 to the environment and to the infected tissue. In addition, our results indicate that the histone-like nucleoid structuring protein H-NS has a role in the downregulation of CNF1 production and that it affects the outer membrane vesicle release in UPEC strain J96.
Collapse
Affiliation(s)
- J Clavin Kouokam
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Porter ME, Mitchell P, Roe AJ, Free A, Smith DGE, Gally DL. Direct and indirect transcriptional activation of virulence genes by an AraC-like protein, PerA from enteropathogenic Escherichia coli. Mol Microbiol 2005; 54:1117-33. [PMID: 15522091 DOI: 10.1111/j.1365-2958.2004.04333.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The plasmid-encoded Per regulatory locus of enteropathogenic Escherichia coli (EPEC) is generally considered to consist of three genes, perA, perB and perC. PerA, a member of the AraC-like family of transcriptional regulators, is known to be an activator of its own promoter (autoactivation) as well as of the plasmid-located bfp operon encoding bundle-forming pili, but its role in activation of the chromosomal locus of enterocyte effacement (LEE) pathogenicity island, which confers the property of intimate adherence on EPEC, requires clarification. Here, we show that PerA is also required for activation of the master regulatory LEE operon, LEE1, but that this activation is indirect, being achieved via autoactivation of the per promoter which ensures sufficient production of the PerC protein to activate LEE1. In contrast, PerA-dependent activation of the per and bfp promoters is direct and does not require the other Per proteins, but is modulated by the nucleoid-associated protein H-NS. The closely related VirF regulator from Shigella flexneri cannot substitute for PerA to activate these promoters, despite being able to bind their upstream regions in vitro. PerA can bind the per and bfp promoter fragments to form multiple complexes, while VirF forms only a single complex. Site-directed mutagenesis of the PerA protein suggests that, like VirF, it may use both of its carboxy-terminal helix-turn-helix motifs for DNA interaction, and may also make direct contacts with RNA polymerase. In addition, we have isolated mutations in the poorly characterized amino-terminal domain of PerA which affect its ability to activate gene expression.
Collapse
Affiliation(s)
- Megan E Porter
- Zoonotic and Animal Pathogens Research Laboratory, Medical Microbiology, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK.
| | | | | | | | | | | |
Collapse
|
47
|
Yang J, Tauschek M, Strugnell R, Robins-Browne RM. The H-NS protein represses transcription of the eltAB operon, which encodes heat-labile enterotoxin in enterotoxigenic Escherichia coli, by binding to regions downstream of the promoter. MICROBIOLOGY-SGM 2005; 151:1199-1208. [PMID: 15817787 DOI: 10.1099/mic.0.27734-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heat-labile enterotoxin, a major virulence determinant of enterotoxigenic Escherichia coli, is encoded by the eltAB operon. To elucidate the molecular mechanism by which the heat-stable nucleoid-structural (H-NS) protein controls transcription of eltAB, the authors constructed an eltAB-lacZ transcriptional fusion and performed beta-galactosidase analysis. The results showed that H-NS protein exerts fivefold repression on transcription from the eltAB promoter at 37 degrees C and 10-fold repression at 22 degrees C. Two silencer regions that were required for H-NS-mediated repression of eltAB expression were identified, both of which were located downstream of the start site of transcription. One silencer was located between +31 and +110, the other between +460 and +556, relative to the start site of transcription, and they worked cooperatively in repression. DNA sequences containing the silencers were predicted to be curved by in silico analysis and bound H-NS protein directly in vitro. Repression of eltAB transcription by H-NS was independent of promoter strength, and the presence of H-NS protein did not affect promoter opening in vitro, indicating that repression was achieved by inhibiting promoter clearance or blocking transcription elongation, probably via DNA looping between the two silencers.
Collapse
Affiliation(s)
- Ji Yang
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, and Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Marija Tauschek
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, and Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Richard Strugnell
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, and Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Roy M Robins-Browne
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, and Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
48
|
Mitobe J, Arakawa E, Watanabe H. A sensor of the two-component system CpxA affects expression of the type III secretion system through posttranscriptional processing of InvE. J Bacteriol 2005; 187:107-13. [PMID: 15601694 PMCID: PMC538841 DOI: 10.1128/jb.187.1.107-113.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chief function of the Cpx two-component system is perceiving various cell envelope stresses, but CpxR is also known to regulate the expression of the type III secretion system (TTSS) of Shigella sonnei through transcription of the primary regulator virF. Here, we have isolated novel cpxA mutants that exhibited decreased TTSS expression from Escherichia coli HW1273, which carries the virulence plasmid of S. sonnei. The cpxA deletion strain of HW1273 expressed beta-galactosidase activity levels from the virF-lacZ fusion similar to those of HW1273. However, the second regulator InvE (VirB) and the TTSS component IpaB proteins were apparently expressed at a low level. In the cpxA strain, beta-galactosidase activity levels from the invE-lacZ transcriptional fusion remained similar to those of HW1273, whereas the beta-galactosidase activity level from the translational fusion of invE-lacZ was reduced to 21% of that of HW1273. Therefore, the deletion of the cpxA gene influenced TTSS expression chiefly at the posttranscriptional processing of InvE. In addition, the cpxA deletion strain of S. sonnei showed the same phenotype. These results indicate that the Cpx two-component system is involved in virulence expression through posttranscriptional processing of the regulatory protein InvE, a novel feature of the Cpx two-component system in posttranscriptional processing and virulence expression of Shigella.
Collapse
Affiliation(s)
- Jiro Mitobe
- Department of Bacteriology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | | | | |
Collapse
|
49
|
Will WR, Lu J, Frost LS. The role of H-NS in silencing F transfer gene expression during entry into stationary phase. Mol Microbiol 2004; 54:769-82. [PMID: 15491366 DOI: 10.1111/j.1365-2958.2004.04303.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conjugative ability of the F plasmid of Escherichia coli is highly growth phase dependent, with plasmid transfer efficiency dropping rapidly as donor cells progress through the growth cycle towards stationary phase. Transfer is dependent on the expression of the plasmid transfer (tra) genes, which are controlled by three plasmid-encoded regulatory proteins: TraJ, TraY and TraM. Here, we show that the nucleoid-associated host protein, H-NS, acts to repress the expression of traM and traJ as cells enter stationary phase, thereby decreasing mating ability to barely detectable levels. Sequence analysis identified regions of predicted intrinsic curvature, to which H-NS preferentially binds, at the promoters of both traM and traJ. H-NS binding at these regions was then confirmed by electrophoretic mobility shift and DNase I protection footprinting assays. Immunoblot assays displayed a significant increase in TraJ and TraM levels in an hns mutant strain. These findings were further supported by Northern and primer extension analyses which showed that whereas both genes were only expressed in early exponential phase in wild-type cells, hns mutant cells exhibited drastic derepression throughout the growth cycle. Transcriptional fusion studies of the individual promoters demonstrated that H-NS-mediated repression was observed when the promoters of both traM and traJ were present in cis to each other. This suggests that H-NS may bind to an extended region of the F plasmid, acting as a regional silencer of promoters for traJ and traM.
Collapse
Affiliation(s)
- William R Will
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G2E9, Canada
| | | | | |
Collapse
|
50
|
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, University of Dublin, Dublin 2, Ireland.
| |
Collapse
|