1
|
Kim SK, Min YH, Jin HJ. Characteristics of the ErmK Protein of Bacillus halodurans C-125. Microbiol Spectr 2023; 11:e0259822. [PMID: 36511701 PMCID: PMC9927578 DOI: 10.1128/spectrum.02598-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
Bacillus halodurans C-125 is an alkaliphilic microorganism that grows best at pH 10 to 10.5. B. halodurans C-125 harbors the erm (erythromycin resistance methylase) gene as well as the mphB (macrolide phosphotransferase) and putative mef (macrolide efflux) genes, which confer resistance to macrolide, lincosamide, and streptogramin B (MLSB) antibiotics. The Erm protein expressed in B. halodurans C-125 could be classified as ErmK because it shares 66.2% and 61.2% amino acid sequence identity with the closest ErmD and Erm(34), respectively. ErmK can be regarded as a dimethylase, as evidenced by reverse transcriptase analysis and the antibiotic resistance profile exhibited by E. coli expressing ermK. Although ErmK showed one-third or less in vitro methylating activity compared to ErmC', E. coli cells expressing ErmK exhibited comparable resistance to erythromycin and tylosin, and a similar dimethylation proportion of 23S rRNA due to the higher expression rate in a T7 promoter-mediated expression system. The less efficient methylation activity of ErmK might reflect an adaption to mitigate the fitness cost caused by dimethylation through the Erm protein presumably because B. halodurans C-125 has less probability to encounter the antibiotics in its favorable growth conditions and grows retardedly in neutral environments. IMPORTANCE Erm proteins confer MLSB antibiotic resistance (minimal inhibitory concentration [MIC] value up to 4,096 μg/mL) on microorganisms ranging from antibiotic producers to pathogens, imposing one of the most pressing threats to clinics. Therefore, Erm proteins have long been speculated to be plausible targets for developing inhibitor(s). In our laboratory, it has been noticed that there are variations in enzymatic activity among the Erm proteins, Erm in antibiotic producers being better than that in pathogens. In this study, it has been observed that Erm protein in B. halodurans C-125 extremophile is a novel member of Erm protein and acts more laggardly, compared to that in pathogen. While this sluggishness of Erm protein in extremophile might be evolved to reduce the fitness cost incurred by Erm activity adapting to its environments, this feature could be exploited to develop the more potent and/or efficacious drug to combat formidably problematic antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Sung Keun Kim
- Department of Bioscience and Biotechnology, The University of Suwon, Hwaseong City, South Korea
| | - Yu Hong Min
- College of Health and Welfare, Daegu Haany University, Gyeongsangbuk-Do, South Korea
| | - Hyung Jong Jin
- Department of Bioscience and Biotechnology, The University of Suwon, Hwaseong City, South Korea
| |
Collapse
|
2
|
Sharkey RE, Herbert JB, McGaha DA, Nguyen V, Schoeffler AJ, Dunkle JA. Three critical regions of the erythromycin resistance methyltransferase, ErmE, are required for function supporting a model for the interaction of Erm family enzymes with substrate rRNA. RNA (NEW YORK, N.Y.) 2022; 28:210-226. [PMID: 34795028 PMCID: PMC8906542 DOI: 10.1261/rna.078946.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
6-Methyladenosine modification of DNA and RNA is widespread throughout the three domains of life and often accomplished by a Rossmann-fold methyltransferase domain which contains conserved sequence elements directing S-adenosylmethionine cofactor binding and placement of the target adenosine residue into the active site. Elaborations to the conserved Rossman-fold and appended domains direct methylation to diverse DNA and RNA sequences and structures. Recently, the first atomic-resolution structure of a ribosomal RNA adenine dimethylase (RRAD) family member bound to rRNA was solved, TFB1M bound to helix 45 of 12S rRNA. Since erythromycin resistance methyltransferases are also members of the RRAD family, and understanding how these enzymes recognize rRNA could be used to combat their role in antibiotic resistance, we constructed a model of ErmE bound to a 23S rRNA fragment based on the TFB1M-rRNA structure. We designed site-directed mutants of ErmE based on this model and assayed the mutants by in vivo phenotypic assays and in vitro assays with purified protein. Our results and additional bioinformatic analyses suggest our structural model captures key ErmE-rRNA interactions and indicate three regions of Erm proteins play a critical role in methylation: the target adenosine binding pocket, the basic ridge, and the α4-cleft.
Collapse
Affiliation(s)
- Rory E Sharkey
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Johnny B Herbert
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Danielle A McGaha
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Vy Nguyen
- Department of Chemistry and Biochemistry, Loyola University New Orleans, New Orleans, Louisiana 70118, USA
| | - Allyn J Schoeffler
- Department of Chemistry and Biochemistry, Loyola University New Orleans, New Orleans, Louisiana 70118, USA
| | - Jack A Dunkle
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| |
Collapse
|
3
|
Potential Target Site for Inhibitors in MLS B Antibiotic Resistance. Antibiotics (Basel) 2021; 10:antibiotics10030264. [PMID: 33807634 PMCID: PMC7998614 DOI: 10.3390/antibiotics10030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
Macrolide-lincosamide-streptogramin B antibiotic resistance occurs through the action of erythromycin ribosome methylation (Erm) family proteins, causing problems due to their prevalence and high minimal inhibitory concentration, and feasibilities have been sought to develop inhibitors. Erms exhibit high conservation next to the N-terminal end region (NTER) as in ErmS, 64SQNF67. Side chains of homologous S, Q and F in ErmC' are surface-exposed, located closely together and exhibit intrinsic flexibility; these residues form a motif X. In S64 mutations, S64G, S64A and S64C exhibited 71%, 21% and 20% activity compared to the wild-type, respectively, conferring cell resistance. However, mutants harboring larger side chains did not confer resistance and retain the methylation activity in vitro. All mutants of Q65, Q65N, Q65E, Q65R, and Q65H lost their methyl group transferring activity in vivo and in vitro. At position F67, a size reduction of side-chain (F67A) or a positive charge (F67H) greatly reduced the activity to about 4% whereas F67L with a small size reduction caused a moderate loss, more than half of the activity. The increased size by F67Y and F67W reduced the activity by about 75%. In addition to stabilization of the cofactor, these amino acids could interact with substrate RNA near the methylatable adenine presumably to be catalytically well oriented with the SAM (S-adenosyl-L-methionine). These amino acids together with the NTER beside them could serve as unique potential inhibitor development sites. This region constitutes a divergent element due to the NTER which has variable length and distinct amino acids context in each Erm. The NTER or part of it plays critical roles in selective recognition of substrate RNA by Erms and this presumed target site might assume distinct local structure by induced conformational change with binding to substrate RNA and SAM, and contribute to the specific recognition of substrate RNA.
Collapse
|
4
|
Rowe SJ, Mecaskey RJ, Nasef M, Talton RC, Sharkey RE, Halliday JC, Dunkle JA. Shared requirements for key residues in the antibiotic resistance enzymes ErmC and ErmE suggest a common mode of RNA recognition. J Biol Chem 2020; 295:17476-17485. [PMID: 33453992 DOI: 10.1074/jbc.ra120.014280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/30/2020] [Indexed: 11/06/2022] Open
Abstract
Erythromycin-resistance methyltransferases are SAM dependent Rossmann fold methyltransferases that convert A2058 of 23S rRNA to m62A2058. This modification sterically blocks binding of several classes of antibiotics to 23S rRNA, resulting in a multidrug-resistant phenotype in bacteria expressing the enzyme. ErmC is an erythromycin resistance methyltransferase found in many Gram-positive pathogens, whereas ErmE is found in the soil bacterium that biosynthesizes erythromycin. Whether ErmC and ErmE, which possess only 24% sequence identity, use similar structural elements for rRNA substrate recognition and positioning is not known. To investigate this question, we used structural data from related proteins to guide site-saturation mutagenesis of key residues and characterized selected variants by antibiotic susceptibility testing, single turnover kinetics, and RNA affinity-binding assays. We demonstrate that residues in α4, α5, and the α5-α6 linker are essential for methyltransferase function, including an aromatic residue on α4 that likely forms stacking interactions with the substrate adenosine and basic residues in α5 and the α5-α6 linker that likely mediate conformational rearrangements in the protein and cognate rRNA upon interaction. The functional studies led us to a new structural model for the ErmC or ErmE-rRNA complex.
Collapse
Affiliation(s)
- Sebastian J Rowe
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Ryan J Mecaskey
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Mohamed Nasef
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Rachel C Talton
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Rory E Sharkey
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Joshua C Halliday
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Jack A Dunkle
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA.
| |
Collapse
|
5
|
Lee HJ, Park YI, Jin HJ. Plausible Minimal Substrate for Erm Protein. Antimicrob Agents Chemother 2020; 64:e00023-20. [PMID: 32571809 PMCID: PMC7449152 DOI: 10.1128/aac.00023-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/13/2020] [Indexed: 11/20/2022] Open
Abstract
Erm proteins methylate a specific adenine residue (A2058, Escherichia coli coordinates) conferring macrolide-lincosamide-streptogramin B (MLSB) antibiotic resistance on a variety of microorganisms, ranging from antibiotic producers to pathogens. To identify the minimal motif required to be recognized and methylated by the Erm protein, various RNA substrates from 23S rRNA were constructed, and the substrate activity of these constructs was studied using three Erm proteins, namely, ErmB from Firmicutes and ErmE and ErmS from Actinobacteria The shortest motif of 15 nucleotides (nt) could be recognized and methylated by ErmS, consisting of A2051 to the methylatable adenine (A2058) and its base-pairing counterpart strand, presumably assuming a quite similar structure to that in 23S rRNA, an unpaired target adenine immediately followed by an irregular double-stranded RNA region. This observation confirms the ultimate end of each side in helix 73 for methylation, determined by the approaches described above, and could reveal the mechanism behind the binding, recognition, induced fit, methylation, and conformational change for product release in the minimal context of substrate, presumably with the help of structural determination of the protein-RNA complex. In the course of determining the minimal portion of substrate from domain V, protein-specific features could be observed among the Erm proteins in terms of the methylation of RNA substrate and cooperativity and/or allostery between the region in helix 73 furthest away from the target adenine and the large portion of domain V above the methylatable adenine.
Collapse
Affiliation(s)
- Hak Jin Lee
- Department of Life Science, Korea University Graduate School, Seoul, Republic of Korea
- Department of Bioscience and Biotechnology, The University of Suwon, Whasung City, Republic of Korea
| | - Young In Park
- Department of Life Science, Korea University Graduate School, Seoul, Republic of Korea
| | - Hyung Jong Jin
- Department of Bioscience and Biotechnology, The University of Suwon, Whasung City, Republic of Korea
| |
Collapse
|
6
|
O'Neill EC, Schorn M, Larson CB, Millán-Aguiñaga N. Targeted antibiotic discovery through biosynthesis-associated resistance determinants: target directed genome mining. Crit Rev Microbiol 2019; 45:255-277. [PMID: 30985219 DOI: 10.1080/1040841x.2019.1590307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intense competition between microbes in the environment has directed the evolution of antibiotic production in bacteria. Humans have harnessed these natural molecules for medicinal purposes, magnifying them from environmental concentrations to industrial scale. This increased exposure to antibiotics has amplified antibiotic resistance across bacteria, spurring a global antimicrobial crisis and a search for antibiotics with new modes of action. Genetic insights into these antibiotic-producing microbes reveal that they have evolved several resistance strategies to avoid self-toxicity, including product modification, substrate transport and binding, and target duplication or modification. Of these mechanisms, target duplication or modification will be highlighted in this review, as it uniquely links an antibiotic to its mode of action. We will further discuss and propose a strategy to mine microbial genomes for these genes and their associated biosynthetic gene clusters to discover novel antibiotics using target directed genome mining.
Collapse
Affiliation(s)
- Ellis C O'Neill
- a Department of Plant Sciences, University of Oxford , Oxford , Oxfordshire , UK
| | - Michelle Schorn
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego , CA , USA
| | - Charles B Larson
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego , CA , USA
| | - Natalie Millán-Aguiñaga
- c Universidad Autónoma de Baja California, Facultad de Ciencias Marinas , Ensenada , Baja California , México
| |
Collapse
|
7
|
Li M, Kang ET, Chua KL, Neoh KG. Sugar-powered nanoantimicrobials for combating bacterial biofilms. Biomater Sci 2019; 7:2961-2974. [DOI: 10.1039/c9bm00471h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sugar-modified cyclodextrin complexed with quorum sensing inhibitor and antibiotics showed enhanced efficacy in preventing and eradicating bacterial biofilms.
Collapse
Affiliation(s)
- Min Li
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
| | - Kim Lee Chua
- Department of Biochemistry
- National University of Singapore
- Singapore 117543
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
| |
Collapse
|
8
|
Yoshioka K, Kurita R. N6-Methylation Assessment in Escherichia coli 23S rRNA Utilizing a Bulge Loop in an RNA-DNA Hybrid. Anal Chem 2018; 90:7578-7582. [PMID: 29846061 DOI: 10.1021/acs.analchem.8b01223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We propose a sequence-selective assay of N6-methyl-adenosine (m6A) in RNA without PCR or reverse transcription, by employing a hybridization assay with a DNA probe designed to form a bulge loop at the position of a target modified nucleotide. The m6A in the bulge in the RNA-DNA hybrid was assumed to be sufficiently mobile to be selectively recognized by an anti-m6A antibody with a high affinity. By employing a surface-plasmon-resonance measurement or using a microtiter-plate immunoassay method, a specific m6A in the Escherichia coli 23S rRNA sequence could be detected at the nanomolar level when synthesized and purified oligo-RNA fragments were used for measurement. We have successfully achieved the first selective detection of m6A2030 specifically in 23S rRNA from real samples of E. coli total RNA by using our immunochemical approach.
Collapse
Affiliation(s)
- Kyoko Yoshioka
- National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB , Tsukuba Central 6, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8566 , Japan
| | - Ryoji Kurita
- National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB , Tsukuba Central 6, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8566 , Japan
| |
Collapse
|
9
|
Hansen LH, Lobedanz S, Douthwaite S, Arar K, Wengel J, Kirpekar F, Vester B. Minimal substrate features for Erm methyltransferases defined by using a combinatorial oligonucleotide library. Chembiochem 2011; 12:610-4. [PMID: 21264994 DOI: 10.1002/cbic.201000606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Indexed: 11/08/2022]
Abstract
Erm methyltransferases are prevalent in pathogenic bacteria and confer resistance to macrolide, lincosamide, and streptogramin B antibiotics by specifically methylating the 23S ribosomal RNA at nucleotide A2058. We have identified motifs within the rRNA substrate that are required for methylation by Erm. Substrate molecules were constructed in a combinatorial manner from two separate sets (top and bottom strands) of short RNA sequences. Modifications, including LNA monomers with locked sugar residues, were incorporated into the substrates to stabilize their structures. In functional substrates, the A2058 methylation target (on the 13- to 19-nucleotide top strand) was displayed in an unpaired sequence immediately following a conserved irregular helix, and these are the specific structural features recognized by Erm. Erm methylation was enhanced by stabilizing the top-strand conformation with an LNA residue at G2056. The bottom strand (nine to 19 nucleotides in length) was required for methylation and was still functional after extensive modification, including substitution with a DNA sequence. Although it remains possible that Erm makes some unspecific contact with the bottom strand, the main role played by the bottom strand appears to be in maintaining the conformation of the top strand. The addition of multiple LNA residues to the top strand impeded methylation; this indicates that the RNA substrate requires a certain amount of flexibility for accommodation into the active site of Erm. The combinatorial approach for identifying small but functional RNA substrates is a step towards making RNA-Erm complexes suitable for cocrystal determination, and for designing molecules that might block the substrate-recognition site of the enzyme.
Collapse
Affiliation(s)
- Lykke H Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | | | | | | | | | |
Collapse
|
10
|
Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Antimicrob Agents Chemother 2010; 54:4961-70. [PMID: 20855725 DOI: 10.1128/aac.00860-10] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We characterized the mechanism of action and the drug-binding site of a novel ketolide, CEM-101, which belongs to the latest class of macrolide antibiotics. CEM-101 shows high affinity for the ribosomes of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The ketolide shows high selectivity in its inhibitory action and readily interferes with synthesis of a reporter protein in the bacterial but not eukaryotic cell-free translation system. Binding of CEM-101 to its ribosomal target site was characterized biochemically and by X-ray crystallography. The X-ray structure of CEM-101 in complex with the E. coli ribosome shows that the drug binds in the major macrolide site in the upper part of the ribosomal exit tunnel. The lactone ring of the drug forms hydrophobic interactions with the walls of the tunnel, the desosamine sugar projects toward the peptidyl transferase center and interacts with the A2058/A2509 cleft, and the extended alkyl-aryl arm of the drug is oriented down the tunnel and makes contact with a base pair formed by A752 and U2609 of the 23S rRNA. The position of the CEM-101 alkyl-aryl extended arm differs from that reported for the side chain of the ketolide telithromycin complexed with either bacterial (Deinococcus radiodurans) or archaeal (Haloarcula marismortui) large ribosomal subunits but closely matches the position of the side chain of telithromycin complexed to the E. coli ribosome. A difference in the chemical structure of the side chain of CEM-101 in comparison with the side chain of telithromycin and the presence of the fluorine atom at position 2 of the lactone ring likely account for the superior activity of CEM-101. The results of chemical probing suggest that the orientation of the CEM-101 extended side chain observed in the E. coli ribosome closely resembles its placement in Staphylococcus aureus ribosomes and thus likely accurately reflects interaction of CEM-101 with the ribosomes of the pathogenic bacterial targets of the drug. Chemical probing further demonstrated weak binding of CEM-101, but not of erythromycin, to the ribosome dimethylated at A2058 by the action of Erm methyltransferase.
Collapse
|
11
|
Yang H, Wang Z, Shen Y, Wang P, Jia X, Zhao L, Zhou P, Gong R, Li Z, Yang Y, Chen D, Murchie AIH, Xu Y. Crystal Structure of the Nosiheptide-Resistance Methyltransferase of Streptomyces actuosus. Biochemistry 2010; 49:6440-50. [DOI: 10.1021/bi1005915] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huirong Yang
- Cancer Institute, Shanghai Cancer Center, Fudan University, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | - Zhe Wang
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Shen
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ping Wang
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | - Xu Jia
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Liang Zhao
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Chemistry, Fudan University, Han-Dan Road, Shanghai 200433, China
| | - Pei Zhou
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Rui Gong
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | - Ze Li
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | - Ying Yang
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | - Dongrong Chen
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Alastair I. H. Murchie
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yanhui Xu
- Cancer Institute, Shanghai Cancer Center, Fudan University, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| |
Collapse
|
12
|
Purta E, O'Connor M, Bujnicki JM, Douthwaite S. YgdE is the 2'-O-ribose methyltransferase RlmM specific for nucleotide C2498 in bacterial 23S rRNA. Mol Microbiol 2009; 72:1147-58. [PMID: 19400805 DOI: 10.1111/j.1365-2958.2009.06709.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rRNAs of Escherichia coli contain four 2'-O-methylated nucleotides. Similar to other bacterial species and in contrast with Archaea and Eukaryota, the E. coli rRNA modifications are catalysed by specific methyltransferases that find their nucleotide targets without being guided by small complementary RNAs. We show here that the ygdE gene encodes the methyltransferase that catalyses 2'-O-methylation at nucleotide C2498 in the peptidyl transferase loop of E. coli 23S rRNA. Analyses of rRNAs using MALDI mass spectrometry showed that inactivation of the ygdE gene leads to loss of methylation at nucleotide C2498. The loss of ygdE function causes a slight reduction in bacterial fitness. Methylation at C2498 was restored by complementing the knock-out strain with a recombinant copy of ygdE. The recombinant YgdE methyltransferase modifies C2498 in naked 23S rRNA, but not in assembled 50S subunits or ribosomes. Nucleotide C2498 is situated within a highly conserved and heavily modified rRNA sequence, and YgdE's activity is influenced by other modification enzymes that target this region. Phylogenetically, YgdE is placed in the cluster of orthologous groups COG2933 together with S-adenosylmethionine-dependent, Rossmann-fold methyltransferases such as the archaeal and eukaryotic RNA-guided fibrillarins. The ygdE gene has been redesignated rlmM for rRNA large subunit methyltransferase M.
Collapse
Affiliation(s)
- Elzbieta Purta
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
13
|
Abstract
Resistance to antibiotics that target the bacterial ribosome is often conferred by methylation at specific nucleotides in the rRNA. The nucleotides that become methylated are invariably key sites of antibiotic interaction. The addition of methyl groups to each of these nucleotides is catalyzed by a specific methyltransferase enzyme. The Erm methyltransferases are a clinically prevalent group of enzymes that confer resistance to the therapeutically important macrolide, lincosamide, and streptogramin B (MLS B) antibiotics. The target for Erm methyltransferases is at nucleotide A2058 in 23S rRNA, and methylation occurs before the rRNA has been assembled into 50S ribosomal particles. Erm methyltransferases occur in a phylogenetically wide range of bacteria and differ in whether they add one or two methyl groups to the A2058 target. The dimethylated rRNA confers a more extensive MLS B resistance phenotype. We describe here a method using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to determine the location and number of methyl groups added at any site in the rRNA. The method is particularly suited to studying in vitro methylation of RNA transcripts by resistance methyltransferases such as Erm.
Collapse
|
14
|
Angenent LT, Mau M, George U, Zahn JA, Raskin L. Effect of the presence of the antimicrobial tylosin in swine waste on anaerobic treatment. WATER RESEARCH 2008; 42:2377-84. [PMID: 18258277 DOI: 10.1016/j.watres.2008.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 12/20/2007] [Accepted: 01/01/2008] [Indexed: 05/23/2023]
Abstract
An anaerobic sequencing batch reactor (ASBR), seeded with a biomass inoculum that previously had not been exposed to the macrolide antimicrobial tylosin (mixture of Tylosin A, B, C, and D), was operated for 3 months with swine waste without Tylosin A and for 9 months with swine waste containing Tylosin A at an average concentration of 1.6 mg/L. When swine waste with tylosin was fed to the ASBR, methane production and volatile solids removal did not appear to be inhibited and a methane yield of 0.47 L methane per gram volatile solids fed to the ASBR was observed. Throughout the operating period, Tylosin A levels in ASBR biomass and effluent were below the detection limit of 0.01 mg/L. However, during the first 3 months of operation, the levels of macrolide-lincosamide-streptogramin B (MLSB)-resistant bacteria in the ASBR biomass increased substantially as determined by hybridizations with oligonucleotide probes designed to target MLSB-resistant bacteria. Since no Tylosin A was present in the swine waste during the initial 3 months, the presence of MLSB-resistant bacteria in the swine waste was likely the reason for the increase in resistance. Subsequently, the levels of MLSB-resistant bacteria in ASBR biomass stabilized with an average of 44.9% for the 9 months of operation with swine waste containing Tylosin A. The level of MLSB-resistant bacteria in the swine waste fed to the ASBR during this period averaged 18.0%. The results indicate that anaerobic treatment of a waste stream containing tylosin was effective (based on reactor performance) and that the level of resistant bacteria in the ASBR was substantially higher than in the waste stream fed to this system.
Collapse
Affiliation(s)
- Largus T Angenent
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
15
|
Transcriptional and translational control of the mlr operon, which confers resistance to seven classes of protein synthesis inhibitors. Antimicrob Agents Chemother 2008; 52:1703-12. [PMID: 18299405 DOI: 10.1128/aac.01583-07] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methyltransferase genes erm(B) and cfr are adjacent to each other in the chromosome of methicillin-resistant Staphylococcus aureus strain CM05. Analyses of the transcriptional organization of the erm(B) and cfr genes in the chromosome of strain CM05 showed that the two genes are organized into an operon, designated mlr (for modification of the large ribosomal subunit), which is controlled by the erm(B) promoter. Analysis of the translation control and the inducibility of the erm(B) and cfr genes in the mlr operon showed that despite the presence of putative regulatory short open reading frames, both genes are expressed constitutively. The combined action of the two methyltransferases encoded in the mlr operon results in modification of two specific residues in 23S rRNA, A2058 and A2503, and renders cells resistant to all clinically useful antibiotics that target the large ribosomal subunit. Furthermore, simultaneous modification of both rRNA sites synergistically enhances resistance to 16-member-ring macrolides.
Collapse
|
16
|
Abstract
Ketolides, which represent the newest macrolide antibiotics, are generally perceived to be noninducers of inducible erm genes. In the study described in this paper we investigated the effects of several macrolide and ketolide compounds on the expression of the inducible erm(C) gene by Escherichia coli cells. Exposure to 14-member-ring macrolide drugs and to azithromycin led to a rapid and pronounced increase in the extent of dimethylation of Erm(C) target residue A2058 in 23S rRNA. When cells were incubated with subinhibitory concentrations of ketolides, the extent of A2058 dimethylation was also increased, albeit to a lower level and with kinetics slower than those observed with macrolides. The induction of erm(C) expression by ketolides was further confirmed by using a reporter construct which allows the colorimetric detection of induction in a disc diffusion assay. Most of the ketolides tested, including the clinically relevant compounds telithromycin and cethromycin, were able to induce the reporter expression, even though the induction occurred within a more narrow range of concentrations compared to the concentration range at which induction was achieved with the inducing macrolide antibiotics. No induction of the reporter expression was observed with 16-member-ring macrolide antibiotics or with a control drug, chloramphenicol. The deletion of three codons of the erm(C) leader peptide eliminated macrolide-dependent induction but left ketolide-dependent induction unchanged. We conclude that ketolides are generally capable of inducing erm genes. The narrow range of ketolide inducing concentrations, coupled with the slow rate of induction and the lower steady-state level of ribosome methylation, may mask this effect in MIC assays.
Collapse
|
17
|
Abstract
The macrolides have evolved through four chemical generations since erythromycin became available for clinical use in 1952. The first generation, the 14-membered ring macrolide erythromycin, induced resistance and was replaced by the second generation 16-membered ring macrolides which did not. The inability to induce came at the price of mutation, in the pathogenic target strain, to constitutive expression of resistance. A third generation of macrolides improved the acid-stability, and therefore the pharmacokinetics of erythromycin, extending the clinical use of macrolides to Helicobacter pylori and Mycobacterium tuberculosis. Improved pharmacokinetics resulted in the selection of intrinsically resistant mutant strains with rRNA structural alterations. Expression of resistance in these strains was unexpected, explainable by low rRNA gene copy number which made resistance dominant. A fourth generation of macrolides, the 14-membered ring ketolides are the most recent development. Members of this generation are reported to be effective against inducibly resistant strains, and ketolide resistant strains have not yet been reported. In this review we discuss details of the ways in which bacteria have become resistant to the first three generations of macrolides, both with respect to their biochemistry, and the genetic mechanisms by which their expression is regulated.
Collapse
Affiliation(s)
- B Weisblum
- Department of Pharmacology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA.
| |
Collapse
|
18
|
Lee HY, Khosla C. Bioassay-guided evolution of glycosylated macrolide antibiotics in Escherichia coli. PLoS Biol 2007; 5:e45. [PMID: 17298179 PMCID: PMC1790958 DOI: 10.1371/journal.pbio.0050045] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 12/13/2006] [Indexed: 11/19/2022] Open
Abstract
Macrolide antibiotics such as erythromycin are clinically important polyketide natural products. We have engineered a recombinant strain of Escherichia coli that produces small but measurable quantities of the bioactive macrolide 6-deoxyerythromycin D. Bioassay-guided evolution of this strain led to the identification of an antibiotic-overproducing mutation in the mycarose biosynthesis and transfer pathway that was detectable via a colony-based screening assay. This high-throughput assay was then used to evolve second-generation mutants capable of enhanced precursor-directed biosynthesis of macrolide antibiotics. The availability of a screen for macrolide biosynthesis in E. coli offers a fundamentally new approach in dissecting modular megasynthase mechanisms as well as engineering antibiotics with novel pharmacological properties.
Collapse
Affiliation(s)
- Ho Young Lee
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, California, United States of America
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Kirpekar F, Hansen LH, Rasmussen A, Poehlsgaard J, Vester B. The archaeon Haloarcula marismortui has few modifications in the central parts of its 23S ribosomal RNA. J Mol Biol 2005; 348:563-73. [PMID: 15826654 DOI: 10.1016/j.jmb.2005.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 03/01/2005] [Accepted: 03/01/2005] [Indexed: 11/30/2022]
Abstract
Post-transcriptional modifications were mapped in domains II, IV and V of 23S RNA from the archaeon Haloarcula marismortui. The RNA was investigated by two primer extension techniques using reverse transcriptase and three mass spectrometry techniques. One primer extension technique utilized decreasing concentrations of deoxynucleotide triphosphates to detect 2'-O-ribose methylations and other polymerase blocking modifications. In the other, the rRNA was chemically modified, followed by mild alkaline hydrolysis to map pseudo-uridine groups (Psis). RNA fragments for mass spectrometry were isolated from 23S rRNA by site-directed RNase H or mung bean nuclease digestion followed by gel purification. Modified RNase digestion fragments were identified with matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) and the modifications were further studied by tandem MS. Psis suggested by the primer extension technique were verified by specific cyanoethylation and mass spectrometric detection. A total of only five post-transcriptionally methylated nucleotides and three Psis were detected in the three 23S rRNA domains. One of the methylated nucleotides has not been reported while a dispute about the number of Psis is solved. The limited number of modified nucleotides suggests that H. marismortui does not have special needs for extensive rRNA modifications. We have performed detailed investigations on the three-dimensional location and molecular interactions of the modified nucleotides by computer analysis. Our results show that all the modified positions are at regions with RNA-RNA contacts and all except one are at the surface of the subunit and in functionally important regions.
Collapse
Affiliation(s)
- Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
20
|
Peirú S, Menzella HG, Rodríguez E, Carney J, Gramajo H. Production of the potent antibacterial polyketide erythromycin C in Escherichia coli. Appl Environ Microbiol 2005; 71:2539-47. [PMID: 15870344 PMCID: PMC1087553 DOI: 10.1128/aem.71.5.2539-2547.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An Escherichia coli strain capable of producing the potent antibiotic erythromycin C (Ery C) was developed by expressing 17 new heterologous genes in a 6-deoxyerythronolide B (6dEB) producer strain. The megalomicin gene cluster was used as the source for the construction of two artificial operons that contained the genes encoding the deoxysugar biosynthetic and tailoring enzymes necessary to convert 6dEB to Ery C. The reconstructed mycarose operon contained the seven genes coding for the enzymes that convert glucose-1-phosphate (G-1-P) to TDP-L-mycarose, a 6dEB mycarosyl transferase, and a 6dEB 6-hydroxylase. The activity of the pathway was confirmed by demonstrating conversion of exogenous 6dEB to 3-O-alpha-mycarosylerythronolide B (MEB). The reconstructed desosamine operon contained the six genes necessary to convert TDP-4-keto-6-deoxyglucose, an intermediate formed in the mycarose pathway, to TDP-D-desosamine, a desosamine transferase, a 6dEB 12-hydroxylase, and the rRNA methyltransferase ErmE; the last was required to confer resistance to the host cell upon production of mature macrolide antibiotics. The activity of this pathway was demonstrated by conversion of MEB to Ery C. When the mycarose and desosamine operons were expressed in an E. coli strain engineered to synthesize 6dEB, Ery C and Ery D were produced. The successful production of Ery C in E. coli shows the potentiality of this model microorganism to synthesize novel 6-deoxysugars and to produce bioactive glycosylated compounds and also establishes the basis for the future use of E. coli both in the production of new glycosylated polyketides and for the generation of novel bioactive compounds through combinatorial biosynthesis.
Collapse
Affiliation(s)
- Salvador Peirú
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas ye Técnicas, Universidad Nacional de Rosario, Suipacha 531, Argentina
| | | | | | | | | |
Collapse
|
21
|
Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol 2004; 2:4. [PMID: 15059283 PMCID: PMC400760 DOI: 10.1186/1741-7007-2-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Accepted: 04/01/2004] [Indexed: 11/10/2022] Open
Abstract
Background The bacterial ribosome is a primary target of several classes of antibiotics. Investigation of the structure of the ribosomal subunits in complex with different antibiotics can reveal the mode of inhibition of ribosomal protein synthesis. Analysis of the interactions between antibiotics and the ribosome permits investigation of the specific effect of modifications leading to antimicrobial resistances. Streptogramins are unique among the ribosome-targeting antibiotics because they consist of two components, streptogramins A and B, which act synergistically. Each compound alone exhibits a weak bacteriostatic activity, whereas the combination can act bactericidal. The streptogramins A display a prolonged activity that even persists after removal of the drug. However, the mode of activity of the streptogramins has not yet been fully elucidated, despite a plethora of biochemical and structural data. Results The investigation of the crystal structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with the clinically relevant streptogramins quinupristin and dalfopristin reveals their unique inhibitory mechanism. Quinupristin, a streptogramin B compound, binds in the ribosomal exit tunnel in a similar manner and position as the macrolides, suggesting a similar inhibitory mechanism, namely blockage of the ribosomal tunnel. Dalfopristin, the corresponding streptogramin A compound, binds close to quinupristin directly within the peptidyl transferase centre affecting both A- and P-site occupation by tRNA molecules. Conclusions The crystal structure indicates that the synergistic effect derives from direct interaction between both compounds and shared contacts with a single nucleotide, A2062. Upon binding of the streptogramins, the peptidyl transferase centre undergoes a significant conformational transition, which leads to a stable, non-productive orientation of the universally conserved U2585. Mutations of this rRNA base are known to yield dominant lethal phenotypes. It seems, therefore, plausible to conclude that the conformational change within the peptidyl transferase centre is mainly responsible for the bactericidal activity of the streptogramins and the post-antibiotic inhibition of protein synthesis.
Collapse
|
22
|
Farrell DJ, Douthwaite S, Morrissey I, Bakker S, Poehlsgaard J, Jakobsen L, Felmingham D. Macrolide resistance by ribosomal mutation in clinical isolates of Streptococcus pneumoniae from the PROTEKT 1999-2000 study. Antimicrob Agents Chemother 2003; 47:1777-83. [PMID: 12760848 PMCID: PMC155854 DOI: 10.1128/aac.47.6.1777-1783.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sixteen (1.5%) of the 1,043 clinical macrolide-resistant Streptococcus pneumoniae isolates collected and analyzed in the 1999-2000 PROTEKT (Prospective Resistant Organism Tracking and Epidemiology for the Ketolide Telithromycin) study have resistance mechanisms other than rRNA methylation or efflux. We have determined the macrolide resistance mechanisms in all 16 isolates by sequencing the L4 and L22 riboprotein genes, plus relevant segments of the four genes for 23S rRNA, and the expression of mutant rRNAs was analyzed by primer extension. Isolates from Canada (n = 4), Japan (n = 3), and Australia (n = 1) were found to have an A2059G mutation in all four 23S rRNA alleles. The Japanese isolates additionally had a G95D mutation in riboprotein L22; all of these originated from the same collection center and were clonal. Three of the Canadian isolates were also clonal; the rest were not genetically related. Four German isolates had A2059G in one, two, and three 23S rRNA alleles and A2058G in two 23S rRNA alleles, respectively. An isolate from the United States had C2611G in three 23S rRNA alleles, one isolate from Poland had A2058G in three 23S rRNA alleles, one isolate from Turkey had A2058G in four 23S rRNA alleles, and one isolate from Canada had A2059G in two 23S rRNA alleles. Erythromycin and clindamycin resistance gradually increased with the number of A2059G alleles, whereas going from one to two mutant alleles caused sharp rises in the azithromycin, roxithromycin, and rokitamycin MICs. Comparisons of mutation dosage with rRNA expression indicates that not all alleles are equally expressed. Despite their high levels of macrolide resistance, all 16 isolates remained susceptible to the ketolide telithromycin (MICs, 0.015 to 0.25 microg/ml).
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Drug Resistance, Bacterial
- Electrophoresis, Gel, Pulsed-Field
- Humans
- Macrolides
- Pneumococcal Infections/microbiology
- Point Mutation/genetics
- Polymerase Chain Reaction
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Sequence Analysis, DNA
- Streptococcus pneumoniae/drug effects
- Streptococcus pneumoniae/genetics
- Streptococcus pneumoniae/metabolism
Collapse
|
23
|
Liu M, Douthwaite S. Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy. Proc Natl Acad Sci U S A 2002; 99:14658-63. [PMID: 12417742 PMCID: PMC137475 DOI: 10.1073/pnas.232580599] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2002] [Accepted: 09/25/2002] [Indexed: 11/18/2022] Open
Abstract
The macrolide antibiotic tylosin has been used extensively in veterinary medicine and exerts potent antimicrobial activity against Gram-positive bacteria. Tylosin-synthesizing strains of the Gram-positive bacterium Streptomyces fradiae protect themselves from their own product by differential expression of four resistance determinants, tlrA, tlrB, tlrC, and tlrD. The tlrB and tlrD genes encode methyltransferases that add single methyl groups at 23S rRNA nucleotides G748 and A2058, respectively. Here we show that methylation by neither TlrB nor TlrD is sufficient on its own to give tylosin resistance, and resistance is conferred by the G748 and A2058 methylations acting together in synergy. This synergistic mechanism of resistance is specific for the macrolides tylosin and mycinamycin that possess sugars extending from the 5- and 14-positions of the macrolactone ring and is not observed for macrolides, such as carbomycin, spiramycin, and erythromycin, that have different constellations of sugars. The manner in which the G748 and A2058 methylations coincide with the glycosylation patterns of tylosin and mycinamycin reflects unambiguously how these macrolides fit into their binding site within the bacterial 50S ribosomal subunit.
Collapse
Affiliation(s)
- Mingfu Liu
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
24
|
Jin HJ, Yang YD. Purification and biochemical characterization of the ErmSF macrolide-lincosamide-streptogramin B resistance factor protein expressed as a hexahistidine-tagged protein in Escherichia coli. Protein Expr Purif 2002; 25:149-59. [PMID: 12071710 DOI: 10.1006/prep.2002.1621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The erm proteins confer resistance to the MLS (macrolide-lincosamide-streptogramin B) antibiotics in various microorganisms, including pathogens, through dimethylation of a single adenine residue (A2085: Bacillus subtilis coordinate) of the 23S rRNA to reduce the affinity of antibiotics, thereby enabling the cells to escape from the antibiotics' action, and this mechanism is predominantly adopted by microorganisms resistant to MLS antibiotics. ErmSF methyltransferase is one of the four gene products synthesized by Streptomyces fradiae NRRL 2338 to be resistant to its autogenous antibiotic, tylosin. In order to have a convenient source for the purification of milligram amounts, we expressed ErmSF in Escherichia coli using a T7 promoter-driven expression vector system, pET 23b, and the protein was expressed with a carboxy-terminal addition of six histidine residues in order to facilitate purification. Expression at 22 degrees C reduced the formation of insoluble aggregate, inclusion body, and resulted in accumulation of soluble hexahistidine-ErmSF up to 30% of total cell protein after 18 h. Metal-chelation chromatography yielded 126 mg of hexahistidine-ErmSF per liter of culture with a purity slightly greater than 95%. To examine the function of ErmSF in vivo and in vitro, its activity in E. coli (antibiotic susceptibility assay) andin vitro methyltransferase activity using in vitro-produced B. subtilis domain V, 434-, 257-, and 243-nt RNAs were investigated. The ErmSF in E. coli conferred resistance to erythromycin, whereas E. coli harboring an empty vector, pET23b, was susceptible. The purified recombinant protein successfully methylated domain V of 23S rRNA, which is known to contain all of the substrate elements recognized and to be methylated by erm proteins. However, the truncated substrates were methylated with decreased efficiencies. Almost all of domain V was monomethylated with less than 0.2 pM S-[methyl-(3)H]adenosylmethionine concentration. The roles of three structurally divided regions of domain V in recognition and methylation by ErmSF are proposed through kinetic studies using RNA substrates, in which each region is deleted, under the monomethylation condition.
Collapse
Affiliation(s)
- Hyung Jong Jin
- Department of Genetic Engineering, College of Natural Science, Kyunggi-Do, 445-743, Republic of Korea.
| | | |
Collapse
|
25
|
Liu M, Douthwaite S. Activity of the ketolide telithromycin is refractory to Erm monomethylation of bacterial rRNA. Antimicrob Agents Chemother 2002; 46:1629-33. [PMID: 12019067 PMCID: PMC127225 DOI: 10.1128/aac.46.6.1629-1633.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylation of specific nucleotides in rRNA is one of the means by which bacteria achieve resistance to macrolides-lincosamides-streptogramin B (MLS(B)) and ketolide antibiotics. The degree of resistance is determined by how effectively the rRNA is methylated. We have implemented a bacterial system in which the rRNA methylations are defined, and in this study we investigate what effect Erm mono- and dimethylation of the rRNA has on the activity of representative MLS(B) and ketolide antibiotics. In the test system, >80% of the rRNA molecules are monomethylated by ErmN (TlrD) or dimethylated by ErmE. ErmE dimethylation confers high resistance to all the MLS(B) and ketolide drugs. ErmN monomethylation predictably confers high resistance to the lincosamides clindamycin and lincomycin, intermediate resistance to the macrolides clarithromycin and erythromycin, and low resistance to the streptogramin B pristinamycin IA. In contrast to the macrolides, monomethylation only mildly affects the antimicrobial activities of the ketolides HMR 3647 (telithromycin) and HMR 3004, and these drugs remain 16 to 250 times as potent as clarithromycin and erythromycin. These differences in the macrolide and ketolide activities could explain the recent reports of variation in the MICs of telithromycin for streptococcal strains that have constitutive erm MLS(B) resistance and are highly resistant to erythromycin.
Collapse
Affiliation(s)
- Mingfu Liu
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
26
|
Abstract
Efflux is one of the major resistance mechanisms for macrolide antibiotics observed in both laboratory and clinical settings. This review summarizes the recent research on two major macrolide efflux pumps: Mef in Gram-positive organisms and Acr-AB-TolC in Haemophilus influenzae and Escherichia coli. The roles of pumps in macrolide resistance and the new advances / strategies to overcome efflux are discussed. Copyright 2000 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Ping Zhong
- Infectious Disease Research, Abbott Laboratories, Abbott Park, IL, USA
| | | |
Collapse
|
27
|
Liu M, Kirpekar F, Van Wezel GP, Douthwaite S. The tylosin resistance gene tlrB of Streptomyces fradiae encodes a methyltransferase that targets G748 in 23S rRNA. Mol Microbiol 2000; 37:811-20. [PMID: 10972803 DOI: 10.1046/j.1365-2958.2000.02046.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
tlrB is one of four resistance genes encoded in the operon for biosynthesis of the macrolide tylosin in antibiotic-producing strains of Streptomyces fradiae. Introduction of tlrB into Streptomyces lividans similarly confers tylosin resistance. Biochemical analysis of the rRNA from the two Streptomyces species indicates that in vivo TlrB modifies nucleotide G748 within helix 35 of 23S rRNA. Purified recombinant TlrB retains its activity and specificity in vitro and modifies G748 in 23S rRNA as well as in a 74 nucleotide RNA containing helix 35 and surrounding structures. Modification is dependent on the presence of the methyl group donor, S-adenosyl methionine. Analysis of the 74-mer RNA substrate by biochemical and mass spectrometric methods shows that TlrB adds a single methyl group to the base of G748. Homologues of TlrB in other bacteria have been revealed through database searches, indicating that TlrB is the first member to be described in a new subclass of rRNA methyltransferases that are implicated in macrolide drug resistance.
Collapse
Affiliation(s)
- M Liu
- Department of Biochemistry and Molecular Biology, Odense University, Denmark
| | | | | | | |
Collapse
|
28
|
Nielsen AK, Douthwaite S, Vester B. Negative in vitro selection identifies the rRNA recognition motif for ErmE methyltransferase. RNA (NEW YORK, N.Y.) 1999; 5:1034-1041. [PMID: 10445878 PMCID: PMC1369827 DOI: 10.1017/s1355838299990349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Erm methyltransferases modify bacterial 23S ribosomal RNA at adenosine 2058 (A2058, Escherichia coli numbering) conferring resistance to macrolide, lincosamide, and streptogramin B (MLS) antibiotics. The motif that is recognized by Erm methyltransferases is contained within helix 73 of 23S rRNA and the adjacent single-stranded region around A2058. An RNA transcript of 72 nt that displays this motif functions as an efficient substrate for the ErmE methyltransferase. Pools of degenerate RNAs were formed by doping 34-nt positions that extend over and beyond the putative Erm recognition motif within the 72-mer RNA. The RNAs were passed through a series of rounds of methylation with ErmE. After each round, RNAs were selected that had partially or completely lost their ability to be methylated. After several rounds of methylation/selection, 187 subclones were analyzed. Forty-three of the subclones contained substitutions at single sites, and these are confined to 12 nucleotide positions. These nucleotides, corresponding to A2051-A2060, C2611, and A2614 in 23S rRNA, presumably comprise the RNA recognition motif for ErmE methyltransferase. The structure formed by these nucleotides is highly conserved throughout bacterial rRNAs, and is proposed to constitute the motif that is recognized by all the Erm methyltransferases.
Collapse
Affiliation(s)
- A K Nielsen
- Department of Molecular Biology, University of Odense, Denmark
| | | | | |
Collapse
|
29
|
Villsen ID, Vester B, Douthwaite S. ErmE methyltransferase recognizes features of the primary and secondary structure in a motif within domain V of 23 S rRNA. J Mol Biol 1999; 286:365-74. [PMID: 9973557 DOI: 10.1006/jmbi.1998.2504] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Erm methyltransferases confer resistance to macrolide, lincosamide and streptogramin B (MLS) antibiotics by methylation of a single adenosine base within bacterial 23 S ribosomal RNA. The ErmE methyltransferase, from the macrolide-producing bacterium Saccharopolyspora erythraea, recognizes a motif within domain V of the rRNA that specifically targets adenosine 2058 (A2058) for methylation. Here, we define the structure of the RNA motif by a combination of molecular genetics and biochemical probing. The core of the motif has the primary sequence 2056-GGAHA-2060, where H is any nucleotide except guanosine, and ErmE methylates at the adenosine in bold. For efficient recognition by ErmE, this sequence must be displayed within a particular secondary structure. An irregular stem (helix 73) is required immediately 5' to A2058, with an unpaired nucleotide, preferably a cytidine residue, at position 2055. Nucleotides 2611 to 2616 are collectively required to form part of the 3'-side of helix 73, but there is little or no restriction on the identities of individual nucleotides here. There are minor preferences in the identities of nucleotides 2051 to 2055 that are adjacent to the motif core, although their main role is in maintaining the irregular secondary structure. The essential elements of the ErmE motif are conserved in bacterial 23 S rRNAs, and thus presumably also form the recognition motif for other Erm methyltransferases.
Collapse
MESH Headings
- Adenosine/chemistry
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/metabolism
- Drug Resistance, Microbial
- Escherichia coli/chemistry
- Macrolides
- Methylation
- Methyltransferases/metabolism
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational/drug effects
- Point Mutation
- RNA, Bacterial/chemistry
- RNA, Bacterial/drug effects
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/drug effects
- RNA, Ribosomal, 23S/metabolism
- Ribosomes/drug effects
- Substrate Specificity
Collapse
Affiliation(s)
- I D Villsen
- Department of Molecular Biology, Odense University, Campusvej 55, Odense M, DK-5230, Denmark
| | | | | |
Collapse
|
30
|
Hansen LH, Vester B, Douthwaite S. Core sequence in the RNA motif recognized by the ErmE methyltransferase revealed by relaxing the fidelity of the enzyme for its target. RNA (NEW YORK, N.Y.) 1999; 5:93-101. [PMID: 9917069 PMCID: PMC1369742 DOI: 10.1017/s1355838299981451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Under physiological conditions, the ErmE methyltransferase specifically modifies a single adenosine within ribosomal RNA (rRNA), and thereby confers resistance to multiple antibiotics. The adenosine (A2058 in Escherichia coli 23S rRNA) lies within a highly conserved structure, and is methylated efficiently, and with equally high fidelity, in rRNAs from phylogenetically diverse bacteria. However, the fidelity of ErmE is reduced when magnesium is removed, and over twenty new sites of ErmE methylation appear in E. coli 16S and 23S rRNAs. These sites show widely different degrees of reactivity to ErmE. The canonical A2058 site is largely unaffected by magnesium depletion and remains the most reactive site in the rRNA. This suggests that methylation at the new sites results from changes in the RNA substrate rather than the methyltransferase. Chemical probing confirms that the rRNA structure opens upon magnesium depletion, exposing potential new interaction sites to the enzyme. The new ErmE sites show homology with the canonical A2058 site, and have the consensus sequence aNNNcgGAHAg (ErmE methylation occurs exclusively at adenosines (underlined); these are preceded by a guanosine, equivalent to G2057; there is a high preference for the adenosine equivalent to A2060; H is any nucleotide except G; N is any nucleotide; and there are slight preferences for the nucleotides shown in lower case). This consensus is believed to represent the core of the motif that Erm methyltransferases recognize at their canonical A2058 site. The data also reveal constraints on the higher order structure of the motif that affect methyltransferase recognition.
Collapse
Affiliation(s)
- L H Hansen
- Department of Molecular Biology, Odense University, Denmark
| | | | | |
Collapse
|
31
|
Vester B, Nielsen AK, Hansen LH, Douthwaite S. ErmE methyltransferase recognition elements in RNA substrates. J Mol Biol 1998; 282:255-64. [PMID: 9735285 DOI: 10.1006/jmbi.1998.2024] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dimethylation by Erm methyltransferases at the N-6 position of adenine 2058 (A2058, Escherichia coli numbering) in domain V of bacterial 23 S rRNA confers resistance to the macrolide-lincosamide-streptogramin B (MLS) group of antibiotics. The ErmE methyltransferase from Saccharopolyspora erythraea methylates a 625 nucleotide transcript of domain V as efficiently as it methylates intact 23 S rRNA. By progressively truncating domain V, the motif required for specific recognition by the enzyme has been localized to a helix and single-stranded region adjacent to A2058. The smallest RNA transcript that shows methyl-accepting activity is a 27-nucleotide stem-loop, corresponding to the 23 S rRNA sequences 2048 to 2063 and 2610 to 2620 (helix 73), with A2058 situated within the hairpin loop. Methylation of A2058 in the truncated RNAs is optimal in the absence of magnesium, and the efficiency of methylation is halved by the presence of 2 to 3 mM magnesium. Magnesium serves to stabilize a conformation in the truncated RNA that prevents efficient methylation. This contrasts to the intact domain V RNA, where 2 mM magnesium ions support a conformation at A2058 that is most readily recognized by ErmE. Methylation of domain V RNA is generally far less susceptible to ionic conditions than the truncated RNAs. The effects of monovalent cations on the methylation of truncated transcripts suggest that RNA structures outside helix 73 support the ErmE interaction. However, interaction with these structures is not essential for specific ErmE recognition of A2058.
Collapse
Affiliation(s)
- B Vester
- RNA Regulation Centre Department of Molecular Biology, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
32
|
Douthwalte S, Voldborg B, Hansen LH, Rosendahl G, Vester B. Recognition determinants for proteins and antibiotics within 23S rRNA. Biochem Cell Biol 1995; 73:1179-85. [PMID: 8722035 DOI: 10.1139/o95-127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ribosomal RNAs fold into phylogenetically conserved secondary and tertiary structures that determine their function in protein synthesis. We have investigated Escherichia coli 23S rRNA to identify structural elements that interact with antibiotic and protein ligands. Using a combination of molecular genetic and biochemical probing techniques, we have concentrated on regions of the rRNA that are connected with specific functions. These are located in different domains within the 23S rRNA and include the ribosomal GTPase-associated center in domain II, which contains the binding sites for r-proteins L10.(L12)4 and L11 and is inhibited by interaction with the antibiotic thiostrepton. The peptidyltransferase center within domain V is inhibited by macrolide, lincosamide, and streptogramin B antibiotics, which interact with the rRNA around nucleotide A2058. Drug resistance is conferred by mutations here and by modification of A2058 by ErmE methyltransferase. ErmE recognizes a conserved motif displayed in the primary and secondary structure of the peptidyl transferase loop. Within domain VI of rRNA, the alpha-sarcin stem-loop is associated with elongation factor binding and is the target site for ribotoxins including the N-glycosidase ribosome-inactivating proteins ricin and pokeweed antiviral protein (PAP). The orientations of the 23S rRNA domains are constrained by tetiary interactions, including a pseudoknot in domain II and long-range base pairings in the center of the molecule that bring domains II and V closer together. The phenotypic effects of mutations in these regions have been investigated by expressing 23S rRNA from plasmids. Allele-specific priming sites have been introduced close to these structures in the rRNA to enable us to study the molecular events there.
Collapse
Affiliation(s)
- S Douthwalte
- Department of Molecular Biology, Odense University, Denmark
| | | | | | | | | |
Collapse
|
33
|
Zhong P, Pratt SD, Edalji RP, Walter KA, Holzman TF, Shivakumar AG, Katz L. Substrate requirements for ErmC' methyltransferase activity. J Bacteriol 1995; 177:4327-32. [PMID: 7543473 PMCID: PMC177180 DOI: 10.1128/jb.177.15.4327-4332.1995] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
ErmC' is a methyltransferase that confers resistance to the macrolide-lincosamide-streptogramin B group of antibiotics by catalyzing the methylation of 23S rRNA at a specific adenine residue (A-2085 in Bacillus subtilis; A-2058 in Escherichia coli). The gene for ErmC' was cloned and expressed to a high level in E. coli, and the protein was purified to virtual homogeneity. Studies of substrate requirements of ErmC' have shown that a 262-nucleotide RNA fragment within domain V of B. subtilis 23S rRNA can be utilized efficiently as a substrate for methylation at A-2085. Kinetic studies of the monomethylation reaction showed that the apparent Km of this 262-nucleotide RNA oligonucleotide was 26-fold greater than the value determined for full-size and domain V 23S rRNA. In addition, the Vmax for this fragment also rose sevenfold. A model of RNA-ErmC' interaction involving multiple binding sites is proposed from the kinetic data presented.
Collapse
Affiliation(s)
- P Zhong
- Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Vester B, Hansen LH, Douthwaite S. The conformation of 23S rRNA nucleotide A2058 determines its recognition by the ErmE methyltransferase. RNA (NEW YORK, N.Y.) 1995; 1:501-509. [PMID: 7489511 PMCID: PMC1482423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ErmE methyltransferase confers resistance to MLS antibiotics by specifically dimethylating adenine 2058 (A2058, Escherichia coli numbering) in bacterial 23S rRNA. To define nucleotides in the rRNA that are part of the motif recognized by ErmE, we investigated both in vivo and in vitro the effects of mutations around position A2058 on methylation. Mutagenizing A2058 (to G or U) completely abolishes methylation of 23S rRNA by ErmE. No methylation occurred at other sites in the rRNA, demonstrating the fidelity of ErmE for A2058. Breaking the neighboring G2057-C2611 Watson-Crick base pair by introducing either an A2057 or a U2611 mutation, greatly reduces the rate of methylation at A2058. Methylation remains impaired after these mutations have been combined to create a new A2057-U2611 Watson-Crick base interaction. The conformation of this region in 23S rRNA was probed with chemical reagents and it was shown that the A2057 and U2611 mutations alone and in combination alter the reactivity of A2058 and adjacent bases. However, mutagenizing position G-->A2032 in an adjacent loop, which has been implicated to interact with A2058, alters neither the ErmE methylation at A2058 nor the accessibility of this region to the chemical reagents. The data indicate that a less-exposed conformation at A2058 leads to reduction in methylation by ErmE. Nucleotide G2057 and its interaction with C2611 maintain the conformation at A2058, and are thus important in forming the structural motif that is recognized by the ErmE methyltransferase.
Collapse
Affiliation(s)
- B Vester
- Department of Molecular Biology, Odense University, Denmark
| | | | | |
Collapse
|