1
|
Two Polyketides Intertwined in Complex Regulation: Posttranscriptional CsrA-Mediated Control of Colibactin and Yersiniabactin Synthesis in Escherichia coli. mBio 2021; 13:e0381421. [PMID: 35100864 PMCID: PMC8805033 DOI: 10.1128/mbio.03814-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bacteria have to process several levels of gene regulation and coordination of interconnected regulatory networks to ensure the most adequate cellular response to specific growth conditions. Especially, expression of complex and costly fitness and pathogenicity-associated traits is coordinated and tightly regulated at multiple levels. We studied the interconnected regulation of the expression of the colibactin and yersiniabactin polyketide biosynthesis machineries, which are encoded by two pathogenicity islands found in many phylogroup B2 Escherichia coli isolates. Comparative phenotypic and genotypic analyses identified the BarA-UvrY two-component system as an important regulatory element involved in colibactin and yersiniabactin expression. The carbon storage regulator (Csr) system controls the expression of a wide range of central metabolic and virulence-associated traits. The availability of CsrA, the key translational regulator of the Csr system, depends on BarA-UvrY activity. We employed reporter gene fusions to demonstrate UvrY- and CsrA-dependent expression of the colibactin and yersiniabactin determinants and confirmed a direct interaction of CsrA with the 5' untranslated leader transcripts of representative genes of the colibactin and yersiniabactin operons by RNA electrophoretic mobility shift assays. This posttranscriptional regulation adds an additional level of complexity to control mechanisms of polyketide expression, which is also orchestrated at the level of ferric uptake regulator (Fur)-dependent regulation of transcription and phosphopantetheinyl transferase-dependent activation of polyketide biosynthesis. Our results emphasize the interconnection of iron- and primary metabolism-responsive regulation of colibactin and yersiniabactin expression by the fine-tuned action of different regulatory mechanisms in response to variable environmental signals as a prerequisite for bacterial adaptability, fitness, and pathogenicity in different habitats. IMPORTANCE Secondary metabolite expression is a widespread strategy among bacteria to improve their fitness in habitats where they constantly compete for resources with other bacteria. The production of secondary metabolites is associated with a metabolic and energetic burden. Colibactin and yersiniabactin are two polyketides, which are expressed in concert and promote the virulence of different enterobacterial pathogens. To maximize fitness, they should be expressed only in microenvironments in which they are required. Accordingly, precise regulation of colibactin and yersiniabactin expression is crucial. We show that the expression of these two polyketides is also interconnected via primary metabolism-responsive regulation at the posttranscriptional level by the CsrA RNA-binding protein. Our findings may help to optimize (over-)expression and further functional characterization of the polyketide colibactin. Additionally, this new aspect of concerted colibactin and yersiniabactin expression extends our knowledge of conditions that favor the expression of these virulence- and fitness-associated factors in different Enterobacterales members.
Collapse
|
2
|
Ebanks RO, Goguen M, Knickle L, Dacanay A, Leslie A, Ross NW, Pinto DM. Analysis of a ferric uptake regulator (Fur) knockout mutant in Aeromonas salmonicida subsp. salmonicida. Vet Microbiol 2013; 162:831-841. [DOI: 10.1016/j.vetmic.2012.10.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
|
3
|
González A, Bes MT, Peleato ML, Fillat MF. Unravelling the regulatory function of FurA in Anabaena sp. PCC 7120 through 2-D DIGE proteomic analysis. J Proteomics 2011; 74:660-71. [DOI: 10.1016/j.jprot.2011.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 01/25/2011] [Accepted: 02/02/2011] [Indexed: 01/19/2023]
|
4
|
Kaman WE, Hawkey S, van der Kleij D, Broekhuijsen MP, Silman NJ, Bikker FJ. A comprehensive study on the role of the Yersinia pestis virulence markers in an animal model of pneumonic plague. Folia Microbiol (Praha) 2011; 56:95-102. [PMID: 21468758 PMCID: PMC3109262 DOI: 10.1007/s12223-011-0027-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/04/2011] [Indexed: 01/15/2023]
Abstract
We determined the role of Yersinia pestis virulence markers in an animal model of pneumonic plague. Eleven strains of Y. pestis were characterized using PCR assays to detect the presence of known virulence genes both encoded by the three plasmids as well as chromosomal markers. The virulence of all Y. pestis strains was compared in a mouse model for pneumonic plague. The presence of all known virulence genes correlated completely with virulence in the Balb/c mouse model. Strains which lacked HmsF initially exhibited visible signs of disease whereas all other strains (except wild-type strains) did not exhibit any disease signs. Forty-eight hours post-infection, mice which had received HmsF– strains regained body mass and were able to control infection; those infected with strains possessing a full complement of virulence genes suffered from fatal disease. The bacterial loads observed in the lung and other tissues reflected the observed clinical signs as did the cytokine changes measured in these animals. We can conclude that all known virulence genes are required for the establishment of pneumonic plague in mammalian animal models, the role of HmsF being of particular importance in disease progression.
Collapse
Affiliation(s)
- W E Kaman
- TNO Defence, Security and Safety, 2280 AA, Rijswijk, the Netherlands.
| | | | | | | | | | | |
Collapse
|
5
|
Vajrala N, Sayavedra-Soto LA, Bottomley PJ, Arp DJ. Role of a Fur homolog in iron metabolism in Nitrosomonas europaea. BMC Microbiol 2011; 11:37. [PMID: 21338516 PMCID: PMC3050691 DOI: 10.1186/1471-2180-11-37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 02/21/2011] [Indexed: 11/24/2022] Open
Abstract
Background In response to environmental iron concentrations, many bacteria coordinately regulate transcription of genes involved in iron acquisition via the ferric uptake regulation (Fur) system. The genome of Nitrosomonas europaea, an ammonia-oxidizing bacterium, carries three genes (NE0616, NE0730 and NE1722) encoding proteins belonging to Fur family. Results Of the three N. europaea fur homologs, only the Fur homolog encoded by gene NE0616 complemented the Escherichia coli H1780 fur mutant. A N. europaea fur:kanP mutant strain was created by insertion of kanamycin-resistance cassette in the promoter region of NE0616 fur homolog. The total cellular iron contents of the fur:kanP mutant strain increased by 1.5-fold compared to wild type when grown in Fe-replete media. Relative to the wild type, the fur:kanP mutant exhibited increased sensitivity to iron at or above 500 μM concentrations. Unlike the wild type, the fur:kanP mutant was capable of utilizing iron-bound ferrioxamine without any lag phase and showed over expression of several outer membrane TonB-dependent receptor proteins irrespective of Fe availability. Conclusions Our studies have clearly indicated a role in Fe regulation by the Fur protein encoded by N. europaea NE0616 gene. Additional studies are required to fully delineate role of this fur homolog.
Collapse
Affiliation(s)
- Neeraja Vajrala
- Department of Botany and Plant Pathology, 2082 Cordley, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
6
|
Miller MC, Fetherston JD, Pickett CL, Bobrov AG, Weaver RH, DeMoll E, Perry RD. Reduced synthesis of the Ybt siderophore or production of aberrant Ybt-like molecules activates transcription of yersiniabactin genes in Yersinia pestis. MICROBIOLOGY-SGM 2010; 156:2226-2238. [PMID: 20413552 PMCID: PMC3068685 DOI: 10.1099/mic.0.037945-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthesis of the siderophore yersiniabactin (Ybt) proceeds by a mixed nonribosomal peptide synthetase/polyketide synthase mechanism. Transcription of ybt genes encoding biosynthetic and transport functions is repressed under excess iron conditions by Fur, but is also activated by Ybt via the transcriptional regulator YbtA. While mutations in most biosynthetic genes and ybtA negate transcription activation from the regulated promoters, three biosynthetic mutations do not reduce this transcriptional activation. Here we show that two of these mutants, one lacking the putative type II thioesterase (TE) YbtT and the other with a mutation in the TE domain of HMWP1, produce reduced levels of authentic Ybt that are capable of signalling activity. Alanine substitutions in two residues of YbtT that are essential for catalytic activity in other type II TEs reduced the ability of Yersinia pestis to grow under iron-chelated conditions. The third mutant, which lacks the salicylate synthase YbtS, did not make authentic Ybt but did produce a signalling molecule. Finally, a Δpgm strain of Y. pestis, which lacks essential Ybt biosynthetic genes, also produced a signalling molecule that can activate transcription of ybt genes. The non-Ybt signal molecules from these two mutants are likely separate compounds. While these compounds are not biologically relevant to normal Ybt regulation, a comparison of the structures of Ybt and other signalling molecules will help in determining the chemical structures recognized as a Ybt signal.
Collapse
Affiliation(s)
- M Clarke Miller
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Jacqueline D Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose St. MS-415 Medical Center, Lexington, KY 40536-0298, USA
| | - Carol L Pickett
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose St. MS-415 Medical Center, Lexington, KY 40536-0298, USA
| | - Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose St. MS-415 Medical Center, Lexington, KY 40536-0298, USA
| | - Robert H Weaver
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose St. MS-415 Medical Center, Lexington, KY 40536-0298, USA
| | - Edward DeMoll
- Department of Biology, 101 T. H. Morgan Building, Lexington, KY 40506-0225, USA
| | - Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose St. MS-415 Medical Center, Lexington, KY 40536-0298, USA
| |
Collapse
|
7
|
Hinnebusch BJ, Erickson DL. Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr Top Microbiol Immunol 2008; 322:229-48. [PMID: 18453279 DOI: 10.1007/978-3-540-75418-3_11] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transmission by fleabite is a relatively recent evolutionary adaptation of Yersinia pestis, the bacterial agent of bubonic plague. To produce a transmissible infection, Y. pestis grows as an attached biofilm in the foregut of the flea vector. Biofilm formation both in the flea foregut and in vitro is dependent on an extracellular matrix (ECM) synthesized by the Yersinia hms gene products. The hms genes are similar to the pga and ica genes of Escherichia coli and Staphylococcus epidermidis, respectively, that act to synthesize a poly-beta-1,6-N-acetyl-d-glucosamine ECM required for biofilm formation. As with extracellular polysaccharide production in many other bacteria, synthesis of the Hms-dependent ECM is controlled by intracellular levels of cyclic-di-GMP. Yersinia pseudotuberculosis, the food- and water-borne enteric pathogen from which Y. pestis evolved recently, possesses identical hms genes and can form biofilm in vitro but not in the flea. The genetic changes in Y. pestis that resulted in adapting biofilm-forming capability to the flea gut environment, a critical step in the evolution of vector-borne transmission, have yet to be identified. During a flea bite, Y. pestis is regurgitated into the dermis in a unique biofilm phenotype, and this has implications for the initial interaction with the mammalian innate immune response.
Collapse
Affiliation(s)
- B J Hinnebusch
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIH, NIAID, Hamilton, MT 59840, USA.
| | | |
Collapse
|
8
|
Forman S, Nagiec MJ, Abney J, Perry RD, Fetherston JD. Analysis of the aerobactin and ferric hydroxamate uptake systems of Yersinia pestis. MICROBIOLOGY-SGM 2007; 153:2332-2341. [PMID: 17600077 DOI: 10.1099/mic.0.2006/004275-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Yersinia pestis genomes contain genes homologous to the aerobactin receptor (iutA) and biosynthetic genes (iucABCD) as well as the ferric hydroxamate uptake system (fhuCDB) of Escherichia coli. However, iucA is disrupted by a frameshift mutation. An E. coli strain carrying the cloned Y. pestis aerobactin region was unable to produce aerobactin, but could use the siderophore as an iron source. Repair of the frameshift mutation in iucA did not allow aerobactin production in E. coli or Y. pestis. In contrast, a Y. pestis strain with a plasmid encoding the iucABCD-iutA genes from Shigella flexneri or pColV-K30 did produce and secrete the siderophore. In addition, Yersinia pseudotuberculosis PB1, which encodes the iucABCD-iutA locus without the Y. pestis-specific frameshift mutation, also failed to produce aerobactin. The Y. pestis fhuCDB operon, encoding an ABC transporter for a range of hydroxamate siderophores, was able to complement a strain of E. coli with a transposon insertion in fhuC, allowing utilization of aerobactin and ferrichrome. Y. pestis KIM6, a strain deficient in the production of the siderophore yersiniabactin, was able to use both the ferrichrome and the aerobactin siderophores as a source of iron. Mutations in iutA or the fhu operon abolished the ability of KIM6 to use aerobactin. Mutations in the fhu operon, but not in iutA, affected the ability of KIM6 to use ferrichrome. This demonstrates that Y. pestis uses both ferrichrome and aerobactin, but has lost the ability to synthesize aerobactin.
Collapse
Affiliation(s)
- Stanislav Forman
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Michal J Nagiec
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Jennifer Abney
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Robert D Perry
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Jacqueline D Fetherston
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| |
Collapse
|
9
|
Kirillina O, Bobrov AG, Fetherston JD, Perry RD. Hierarchy of iron uptake systems: Yfu and Yiu are functional in Yersinia pestis. Infect Immun 2006; 74:6171-8. [PMID: 16954402 PMCID: PMC1695485 DOI: 10.1128/iai.00874-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 06/28/2006] [Accepted: 08/16/2006] [Indexed: 11/20/2022] Open
Abstract
In addition to the yersiniabactin (Ybt) siderophore-dependent system, two inorganic iron ABC transport systems of Yersinia pestis, Yfe and Yfu, have been characterized. Here we show that the Yfu system functions in Y. pestis: a Ybt- Yfe- Yfu- mutant exhibited a greater growth defect under iron-deficient conditions than its Ybt- Yfe- parental strain. We also demonstrate that another putative Y. pestis iron uptake system, Yiu, which potentially encodes an outer membrane receptor, YiuR, and an ABC iron transport cassette, YiuABC, is functional. The cloned yiuABC operon restored growth of an enterobactin-deficient mutant Escherichia coli strain, 1017, under iron-chelated conditions. Iron uptake by the Yiu system in Y. pestis was demonstrated only when the Ybt, Yfe, and Yfu systems were mutated. Using a yiuA::lacZ fusion, we show that the yiuABC promoter is repressed by iron through Fur. A mouse model of bubonic plague failed to show a significant role for the Yiu system in the disease process. These results demonstrate that two additional iron transporters are functional in Y. pestis and indicate that there is a hierarchy of iron transporters, with Ybt being most effective and Yiu being the least effective of those systems which have been characterized.
Collapse
Affiliation(s)
- Olga Kirillina
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40656-0298, USA
| | | | | | | |
Collapse
|
10
|
Zhou D, Qin L, Han Y, Qiu J, Chen Z, Li B, Song Y, Wang J, Guo Z, Zhai J, Du Z, Wang X, Yang R. Global analysis of iron assimilation and fur regulation in Yersinia pestis. FEMS Microbiol Lett 2006; 258:9-17. [PMID: 16630248 DOI: 10.1111/j.1574-6968.2006.00208.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Using DNA microarray analysis, mRNA levels from wild-type Yersinia pestis cells treated with the iron chelator 2,2'-dipyridyl were compared with those supplemented with excessive iron, and subsequent to this, gene expression in the fur mutant was compared with that in the wild-type strain under iron rich conditions. The microarray analysis revealed many iron transport or storage systems that had been induced in response to the iron starvation, which is mediated by the Fur protein, using the iron as a co-repressor. The iron-Fur complex also affected some genes involved in various non-iron functions (ribonucleoside-diphosphate reductase, membrane proteins, electron transport and oxidative defense, etc.). The Fur protein still participated in the regulation of genes involved in broad cellular processes (virulence factors, pesticin activity, haemin storage and many proteins with unknown functions) that were not affected by iron depletion conditions. In addition to its classical negative regulatory activities, the Fur protein activates gene transcription. Using bioinformatics tools, we were able to predict the Y. pestis Fur box sequence that was clearly the over-presented motif in the promoter regions of members of the iron-Fur modulon.
Collapse
Affiliation(s)
- Dongsheng Zhou
- State Key laboratory of Pathogen and Biosecurity, Army Center for Microbial Detection and Research, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chao TC, Buhrmester J, Hansmeier N, Pühler A, Weidner S. Role of the regulatory gene rirA in the transcriptional response of Sinorhizobium meliloti to iron limitation. Appl Environ Microbiol 2005; 71:5969-82. [PMID: 16204511 PMCID: PMC1265945 DOI: 10.1128/aem.71.10.5969-5982.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A regulatory network of Sinorhizobium meliloti genes involved in adaptation to iron-limiting conditions and the involvement of the rhizobial iron regulator gene (rirA) were analyzed by mutation and microarray analyses. A constructed S. meliloti rirA mutant exhibited growth defects and enhanced H2O2 sensitivity in the presence of iron, but symbiotic nitrogen fixation was not affected. To identify iron-responsive and RirA-regulated S. meliloti genes, a transcriptome approach using whole-genome microarrays was used. Altogether, 45 genes were found to be jointly derepressed by mutation of rirA and under different iron-limited conditions. As expected, a number of genes involved in iron transport (e.g., hmuPSTU, shmR, rhbABCDEF, rhtX, and rhtA) and also genes with predicted functions in energy metabolism (e.g., fixN3, fixP3, and qxtAB) and exopolysaccharide production (e.g., exoY and exoN) were found in this group of genes. In addition, the iron deficiency response of S. meliloti also involved rirA-independent expression changes, including repression of the S. meliloti flagellar regulon. Finally, the RirA modulon also includes genes that are not iron responsive, including a gene cluster putatively involved in Fe-S cluster formation (sufA, sufS, sufD, sufC, and sufB).
Collapse
Affiliation(s)
- Tzu-Chiao Chao
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
12
|
Anisimov R, Brem D, Heesemann J, Rakin A. Molecular mechanism of YbtA-mediated transcriptional regulation of divergent overlapping promotersybtAandirp6ofYersinia enterocolitica. FEMS Microbiol Lett 2005; 250:27-32. [PMID: 16019159 DOI: 10.1016/j.femsle.2005.06.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 06/17/2005] [Accepted: 06/20/2005] [Indexed: 11/21/2022] Open
Abstract
Genes of Yersiniae spp. involved in production of the siderophore yersiniabactin are located on the high-pathogenicity island (HPI). Their transcription is controlled by the AraC/XilS-like transcriptional regulator YbtA encoded within the HPI. YbtA-regulated divergent and overlapping ybtA and irp6 promoters contain three YbtA binding sites, RS1, RS2 and RS3. Deleting RSs systematically and using ybtA and irp6 transcriptional fusions, we determined that different modes of YbtA binding are responsible for activation of irp6 and repression of ybtA. Based on these data, we propose a model of irp6 and ybtA promoter regulation.
Collapse
Affiliation(s)
- Roman Anisimov
- Max von Pettenkofer-Institute of Hygiene and Medical Microbiology Pettenkofer Strasse 9a, 80336 Munich, Germany.
| | | | | | | |
Collapse
|
13
|
Jacobsen I, Gerstenberger J, Gruber AD, Bossé JT, Langford PR, Hennig-Pauka I, Meens J, Gerlach GF. Deletion of the ferric uptake regulator Fur impairs the in vitro growth and virulence of Actinobacillus pleuropneumoniae. Infect Immun 2005; 73:3740-4. [PMID: 15908404 PMCID: PMC1111875 DOI: 10.1128/iai.73.6.3740-3744.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 01/24/2005] [Accepted: 02/14/2005] [Indexed: 11/20/2022] Open
Abstract
In order to investigate the role of the ferric uptake regulator Fur in the porcine lung pathogen Actinobacillus pleuropneumoniae, we constructed an isogenic in-frame deletion mutant, A. pleuropneumoniae Deltafur. This mutant showed constitutive expression of transferrin-binding proteins, growth deficiencies in vitro, and reduced virulence in an aerosol infection model.
Collapse
Affiliation(s)
- Ilse Jacobsen
- Institut für Mikrobiologie, Zentrum für Infektionsmedizin, Stiftung Tierärztliche Hochschule Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Anisimov R, Brem D, Heesemann J, Rakin A. Transcriptional regulation of high pathogenicity island iron uptake genes by YbtA. Int J Med Microbiol 2005; 295:19-28. [PMID: 15861813 DOI: 10.1016/j.ijmm.2004.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A large group of Enterobacteriaceae, including members of the genus Yersinia, produce the extracellular siderophore yersiniabactin enabling them to multiply under iron-depleted conditions. Genes, involved in yersiniabactin synthesis, transport and regulation are clustered in the high pathogenicity island (HPI). YbtA, an AraC-like transcriptional regulator, is presumed to be the central regulator of yersiniabactin production together with the ferric uptake regulator Fur. In this work, we identified the transcriptional start points of YbtA-regulated promoters of the HPI by primer extension, purified homogeneous YbtA and defined the YbtA-binding sites by DNaseI footprint analysis in ybtA, fyuA, irp6, and irp2 promoters. Besides of the anticipated pair repeats RS1 and RS2 in each promoter, we identified an additional YbtA-binding site designated RS3 in the divergently transcribed ybtA/irp6 promoter. Also, comparing ybtA/irp6 promoters of Y. enterocolitica and Y. pestis, we found that a 125-bp ERIC element insertion in the RS2 sequence of the Y. enterocolitica ybtA/irp6 promoter might increase YbtA expression, but did not affect expression of Irp6.
Collapse
Affiliation(s)
- Roman Anisimov
- Max von Pettenkofer-Institute of Hygiene and Medical Microbiology, Pettenkofer Str. 9a, D-80336 Munich, Germany
| | | | | | | |
Collapse
|
15
|
Parker D, Kennan RM, Myers GS, Paulsen IT, Rood JI. Identification of a Dichelobacter nodosus ferric uptake regulator and determination of its regulatory targets. J Bacteriol 2005; 187:366-75. [PMID: 15601721 PMCID: PMC538842 DOI: 10.1128/jb.187.1.366-375.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of iron regulated genes in bacteria is typically controlled by the ferric uptake regulator (Fur) protein, a global transcriptional repressor that regulates functions as diverse as iron acquisition, oxidative stress, and virulence. We have identified a fur homologue in Dichelobacter nodosus, the causative agent of ovine footrot, and shown that it complements an Escherichia coli fur mutant. Homology modeling of the D. nodosus Fur protein with the recently solved crystal structure of Fur from Pseudomonas aeruginosa indicated extensive structural conservation. As Southern hybridization analysis of different clinical isolates of D. nodosus indicated that the fur gene was present in all of these strains, the fur gene was insertionally inactivated to determine its functional role. Analysis of these mutants by various techniques did not indicate any significant differences in the expression of known virulence genes or in iron-dependent growth. However, we determined several Fur regulatory targets by two-dimensional gel electrophoresis coupled with mass spectrometry. Analysis of proteins from cytoplasmic, membrane, and extracellular fractions revealed numerous differentially expressed proteins. The transcriptional basis of these differences was analyzed by using quantitative reverse transcriptase PCR. Proteins with increased expression in the fur mutant were homologues of the periplasmic iron binding protein YfeA and a cobalt chelatase, CbiK. Down-regulated proteins included a putative manganese superoxide dismutase and ornithine decarboxylase. Based on these data, it is suggested that in D. nodosus the Fur protein functions as a regulator of iron and oxidative metabolism.
Collapse
Affiliation(s)
- Dane Parker
- ARC Centre for Structural and Functional Microbial Genomics and Victorian Bioinformatics Consortium, Department of Microbiology, Monash University, Victoria, Australia
| | | | | | | | | |
Collapse
|
16
|
Kirillina O, Fetherston JD, Bobrov AG, Abney J, Perry RD. HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 2004; 54:75-88. [PMID: 15458406 DOI: 10.1111/j.1365-2958.2004.04253.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Hms(+) phenotype of Yersinia pestis promotes the binding of haemin or Congo red (CR) to the cell surface at temperatures below 34 degrees C. We previously demonstrated that temperature regulation of the Hms(+) phenotype is not controlled at the level of transcription. Instead, HmsH, HmsR and HmsT are degraded upon a temperature shift from 26 degrees C to 37 degrees C. We used random transposon mutagenesis to identify new genes involved in the temperature-regulated expression of the Hms phenotype. One of these genes, which we designated hmsP, encodes a putative phosphodiesterase with a conserved EAL motif. Mutations in hmsP caused formation of red colonies on CR plates at 26 degrees C and 37 degrees C. Strains complemented with hmsP(+) on a plasmid form white colonies at both temperatures. We used a crystal violet assay and confocal laser scanning microscopy to demonstrate Hms-dependent biofilm formation by Y. pestis cells. Y. pestis Hms(+) strains grown at 26 degrees C but not at 37 degrees C form a biofilm on borosilicate glass surfaces. Strains that either overexpress HmsT (a GGDEF domain protein) or have a mutation in hmsP produced an extremely thick biofilm. Alanine substitutions for each of the GGEE residues (amino acids 296-299) of HmsT as well as the E506 and L508 residues of HmsP caused a loss of function. We propose that HmsT and HmsP together control the amount of biofilm produced in Y. pestis. Degradation of HmsT at 37 degrees C may be a critical factor in controlling the temperature-dependent expression of the Hms biofilm.
Collapse
Affiliation(s)
- Olga Kirillina
- Department of Microbiology, Immunology, and Molecular Genetics, MS415 Medical Center, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | | | | | |
Collapse
|
17
|
Chao TC, Becker A, Buhrmester J, Pühler A, Weidner S. The Sinorhizobium meliloti fur gene regulates, with dependence on Mn(II), transcription of the sitABCD operon, encoding a metal-type transporter. J Bacteriol 2004; 186:3609-20. [PMID: 15150249 PMCID: PMC415740 DOI: 10.1128/jb.186.11.3609-3620.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti is an alpha-proteobacterium able to induce nitrogen-fixing nodules on roots of specific legumes. In order to propagate in the soil and for successful symbiotic interaction the bacterium needs to sequester metals like iron and manganese from its environment. The metal uptake has to be in turn tightly regulated to avoid toxic effects. In this report we describe the characterization of a chromosomal region of S. meliloti encoding the sitABCD operon and the putative regulatory fur gene. It is generally assumed that the sitABCD operon encodes a metal-type transporter and that the fur gene is involved in iron ion uptake regulation. A constructed S. meliloti sitA deletion mutant was found to be growth dependent on Mn(II) and to a lesser degree on Fe(II). The sitA promoter was strongly repressed by Mn(II), with dependence on Fur, and moderately by Fe(II). Applying a genome-wide S. meliloti microarray it was shown that in the fur deletion mutant 23 genes were up-regulated and 10 genes were down-regulated when compared to the wild-type strain. Among the up-regulated genes only the sitABCD operon could be associated with metal uptake. On the other hand, the complete rhbABCDEF operon, which is involved in siderophore synthesis, was identified among the down-regulated genes. Thus, in S. meliloti Fur is not a global repressor of iron uptake. Under symbiotic conditions the sitA promoter was strongly expressed and the S. meliloti sitA mutant exhibited an attenuated nitrogen fixation activity resulting in a decreased fresh weight of the host plant Medicago sativa.
Collapse
Affiliation(s)
- Tzu-Chiao Chao
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, D-33501 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
18
|
Perry RD, Bobrov AG, Kirillina O, Jones HA, Pedersen L, Abney J, Fetherston JD. Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J Bacteriol 2004; 186:1638-47. [PMID: 14996794 PMCID: PMC355957 DOI: 10.1128/jb.186.6.1638-1647.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Yersinia pestis, the Congo red (and hemin) binding that is characteristic of the Hms+ phenotype occurs at temperatures up to 34 degrees C but not at higher temperatures. Manifestation of the Hms+ phenotype requires at least five proteins (HmsH, -F, -R, -S, and -T) that are organized into two separate operons: hmsHFRS and hmsT. HmsH and HmsF are outer membrane proteins, while HmsR, HmsS, and HmsT are predicted to be inner membrane proteins. We have used transcriptional reporter constructs, RNA dot blots, and Western blots to examine the expression of hms operons and proteins. Our studies indicate that transcription from the hmsHFRS and hmsT promoters is not regulated by the iron status of the cells, growth temperature, or any of the Hms proteins. In addition, the level of mRNA for both operons is not significantly affected by growth temperature. However, protein levels of HmsH, HmsR, and HmsT in cells grown at 37 degrees C are very low compared to those in cells grown at 26 degrees C, while the amounts of HmsF and HmsS show only a moderate reduction at the higher growth temperature. Neither the Pla protease nor a putative endopeptidase (Y2360) encoded upstream of hmsH is essential for temperature regulation of the Hms+ phenotype. However, HmsT at 37 degrees C is sensitive to degradation by Lon and/or ClpPX. Thus, the stability of HmsH, HmsR, and HmsT proteins likely plays a role in temperature regulation of the Hms+ phenotype of Y. pestis.
Collapse
Affiliation(s)
- Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Perry RD, Abney J, Mier I, Lee Y, Bearden SW, Fetherston JD. Regulation of the Yersinia pestis Yfe and Ybt iron transport systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 529:275-83. [PMID: 12756771 DOI: 10.1007/0-306-48416-1_53] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | |
Collapse
|
20
|
Garrido ME, Bosch M, Medina R, Bigas A, Llagostera M, Pérez de Rozas AM, Badiola I, Barbé J. fur-independent regulation of the Pasteurella multocida hbpA gene encoding a haemin-binding protein. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2273-2281. [PMID: 12904567 DOI: 10.1099/mic.0.26370-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Treatment of bacterial cultures with chelating agents such as 2,2'-dipyridyl (DPD) induces expression of iron-regulated genes. It is known that in the gamma-Proteobacteria, the Fur protein is the major regulator of genes encoding haem- or haemoglobin-binding proteins. Electrophoretic analysis of outer-membrane proteins of the gamma-proteobacterium Pasteurella multocida has revealed the induction of two proteins of 60 and 40 kDa in DPD-treated cultures in both wild-type and fur-defective strains. These two proteins have the same N-terminal amino acid sequence, which identifies this protein as the product of the PM0592 ORF. Analysis of the sequence of this ORF, which encodes a protein of 60 kDa, revealed the presence of a hexanucleotide (AAAAAA) at which a programmed translational frameshift can occur giving rise to a 40 kDa protein. Analyses conducted in Escherichia coli, using the complete PM0592 ORF and a derivative truncated at the hexanucleotide position, have shown that both polypeptides bind haemin. For this reason, the PM0592 ORF product has been designated HbpA (for haemin-binding protein). Expression studies using both RT-PCR and lacZ fusions, as well as electrophoretic profiles of outer-membrane protein composition, have demonstrated that the hbpA gene is negatively regulated by iron, manganese and haemin through a fur-independent pathway. Despite the fact that serum of mice infected with P. multocida contained antibodies that reacted with both the 60 and 40 kDa products of the hbpA gene, these proteins did not offer protection when used in immunization assays against this micro-organism.
Collapse
Affiliation(s)
- M Elena Garrido
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 - Barcelona, Spain
| | - Montserrat Bosch
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 - Barcelona, Spain
| | - Ricardo Medina
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 - Barcelona, Spain
| | - Anna Bigas
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 - Barcelona, Spain
| | - Montserrat Llagostera
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA), Bellaterra, 08193 - Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 - Barcelona, Spain
| | - Ana M Pérez de Rozas
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA), Bellaterra, 08193 - Barcelona, Spain
| | - Ignacio Badiola
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA), Bellaterra, 08193 - Barcelona, Spain
| | - Jordi Barbé
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA), Bellaterra, 08193 - Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 - Barcelona, Spain
| |
Collapse
|
21
|
Furano K, Campagnari AA. Inactivation of the Moraxella catarrhalis 7169 ferric uptake regulator increases susceptibility to the bactericidal activity of normal human sera. Infect Immun 2003; 71:1843-8. [PMID: 12654799 PMCID: PMC152102 DOI: 10.1128/iai.71.4.1843-1848.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a strict human pathogen and a significant cause of respiratory disease and otitis media. In direct response to these infections, research efforts have focused primarily on the identification of potential vaccine targets. The general biology of M. catarrhalis, however, including the mechanisms utilized to survive in the human host, remains poorly understood. Previous work has demonstrated that M. catarrhalis expresses iron-repressible proteins, suggesting the presence of iron acquisition systems under the control of a ferric uptake regulator (Fur). In this study M. catarrhalis fur has been cloned and sequenced from strain 7169. A deletion-insertion mutation of 7169 fur resulted in upregulation of iron-repressible outer membrane proteins in the absence and presence of iron. This mutant strain, 7169fur1, was significantly more sensitive to the bactericidal activity of normal human serum than the resistant wild-type strain. These data suggest that constitutive expression of iron-regulated proteins may provide multiple targets for human antibodies. In addition, the 7169 fur mutant provides an important tool for further investigation of the iron acquisition mechanisms utilized by M. catarrhalis.
Collapse
Affiliation(s)
- Kristin Furano
- Department of Microbiology, Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA
| | | |
Collapse
|
22
|
Oram DM, Avdalovic A, Holmes RK. Construction and characterization of transposon insertion mutations in Corynebacterium diphtheriae that affect expression of the diphtheria toxin repressor (DtxR). J Bacteriol 2002; 184:5723-32. [PMID: 12270831 PMCID: PMC139604 DOI: 10.1128/jb.184.20.5723-5732.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the bacteriophage-borne diphtheria toxin gene tox is negatively regulated, in response to intracellular Fe(2+) concentration, by the chromosomally encoded diphtheria toxin repressor (DtxR). Due to a scarcity of tools, genetic analysis of Corynebacterium diphtheriae has primarily relied on analysis of chemically induced and spontaneously occurring mutants and on the results of experiments with C. diphtheriae genes cloned in Escherichia coli or analyzed in vitro. We modified a Tn5-based mutagenesis technique for use with C. diphtheriae, and we used it to construct the first transposon insertion libraries in the chromosome of this gram-positive pathogen. We isolated two insertions that affected expression of DtxR, one 121 bp upstream of dtxR and the other within an essential region of the dtxR coding sequence, indicating for the first time that dtxR is a dispensable gene in C. diphtheriae. Both mutant strains secrete diphtheria toxin when grown in medium containing sufficient iron to repress secretion of diphtheria toxin by wild-type C. diphtheriae. The upstream insertion mutant still produces DtxR in decreased amounts and regulates siderophore secretion in response to iron in a manner similar to its wild-type parent. The mutant containing the transposon insertion within dtxR does not produce DtxR and overproduces siderophore in the presence of iron. Differences in the ability of the two mutant strains to survive oxidative stress also indicated that the upstream insertion retained slight DtxR activity, whereas the insertion within dtxR abolished DtxR activity. This is the first evidence that DtxR plays a role in protecting the cell from oxidative stress.
Collapse
Affiliation(s)
- Diana Marra Oram
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
23
|
Colquhoun DJ, Sørum H. Cloning, characterisation and phylogenetic analysis of the fur gene in Vibrio salmonicida and Vibrio logei. Gene 2002; 296:213-20. [PMID: 12383519 DOI: 10.1016/s0378-1119(02)00863-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The gene encoding the ferric uptake regulator protein (fur gene) of Vibrio salmonicida 87/09/1193 was located following hybridisation of an EcoRI digest of chromosomal V. salmonicida DNA with a 316 base pairs (bp) probe internal to the fur gene of Vibrio anguillarum. A 2088 bp fragment including an open reading frame of 441 bp, encoding a protein of 147 amino acids, and homologous with fur, was identified, cloned and sequenced. A plasmid bound V. salmonicida fur gene was found capable of complementing the fur mutation of Escherichia coli H1681. Although no 'iron-box' was identified upstream of the start-codon, beta-galactosidase activity in E. coli H1681 was regulated by iron availability in the media, indicating that in V. salmonicida fur, as in other fur genes, iron functions as a co-repressor. Southern blot hybridizations demonstrated that fur is conserved amongst V. salmonicida strains and several other closely related Vibrio strains in which fur remains as yet, uncharacterized. The fur gene of Vibrio logei NCIMB 2252 was subsequently amplified using polymerase chain reaction primers external to the V. salmonicida fur gene. Comparison of phylogenetic analyses using fur and 16S DNA coding for rRNA sequences, confirmed the usefulness of fur as an evolutionary marker within the genus Vibrio.
Collapse
Affiliation(s)
- D J Colquhoun
- National Veterinary Institute, Section for Fish Health, Postbox 8156 Dep., Oslo 0033, Norway.
| | | |
Collapse
|
24
|
Bobrov AG, Geoffroy VA, Perry RD. Yersiniabactin production requires the thioesterase domain of HMWP2 and YbtD, a putative phosphopantetheinylate transferase. Infect Immun 2002; 70:4204-14. [PMID: 12117929 PMCID: PMC128149 DOI: 10.1128/iai.70.8.4204-4214.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2002] [Revised: 03/15/2002] [Accepted: 05/02/2002] [Indexed: 12/30/2022] Open
Abstract
One requirement for the pathogenesis of Yersinia pestis, the causative agent of bubonic plague, is the yersiniabactin (Ybt) siderophore-dependent iron transport system that is encoded within a high-pathogenicity island (HPI) within the pgm locus of the Y. pestis chromosome. Nine gene products within the HPI have demonstrated functions in the nonribosomal peptide synthesis (NRPS)/polyketide (PK) synthesis or transport of Ybt. NRPS/PK synthetase or synthase enzymes are generally activated by phosphopantetheinylation. However, no products with similarities to known phosphopantetheinyl (P-pant) transferases were found within the pgm locus. We have identified a gene, ybtD, encoded outside the HPI and pgm locus, that is necessary for function of the Ybt system and has similarities to other P-pant transferases such as EntD of Escherichia coli. A deletion within ybtD yielded a strain (KIM6-2085+) defective in siderophore production. This strain was unable to grow on iron-deficient media at 37 degrees C but could be cross-fed by culture supernatants from Ybt-producing strains of Y. pestis. The promoter region of ybtD was fused to lacZ; beta-galactosidase expression from this reporter was not regulated by the iron status of the bacterial cells or by YbtA, a positive regulator of other genes of the ybt system. The ybtD mutant failed to express indicator Ybt proteins (high-molecular-weight protein 1 [HMWP1], HMWP2, and Psn), a pattern similar to those seen with several other ybt biosynthetic mutants. In contrast, cells containing a single amino acid substitution (S2908A) in the terminal thioesterase domain of HMWP2 failed to exhibit any ybt regulatory defects but did not elaborate extracellular Ybt under iron-deficient conditions.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington 40536-0084, USA
| | | | | |
Collapse
|
25
|
Sebastian S, Agarwal S, Murphy JR, Genco CA. The gonococcal fur regulon: identification of additional genes involved in major catabolic, recombination, and secretory pathways. J Bacteriol 2002; 184:3965-74. [PMID: 12081969 PMCID: PMC135177 DOI: 10.1128/jb.184.14.3965-3974.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we have characterized the in vitro binding of Neisseria gonorrhoeae Fur to several well-defined iron transport genes, as well as to additional genes involved in major catabolic, secretory, and recombination pathways of gonococci. The gonococcal Fur protein was recombinantly expressed in Escherichia coli HBMV119. Fur was isolated from inclusion bodies and partially purified by ion-exchange chromatography. Gonococcal Fur was found to bind to the promoter/operator region of a gene encoding the previously identified Fur-regulated periplasmic binding protein (FbpA) in a metal ion-dependent fashion, demonstrating that purified Fur is functional. In silico analysis of the partially completed gonococcal genome (FA1090) identified Fur boxes in the promoters of several genes, including tonB, fur, recN, secY, sodB, hemO, hmbR, fumC, a hypothetical gene (Fe-S homolog), and the opa family of genes. By using purified gonococcal Fur, we demonstrate binding to the operator regions of tonB, fur, recN, secY, sodB, hemO, hmbR, fumC, the Fe-S homolog gene, and the opa gene family as determined by an electrophoretic mobility shift assay. While gonococcal Fur was demonstrated to bind to the promoter regions of all 11 opa genes (opaA through -K), we did not detect binding of purified E. coli Fur with 8 of the 11 opa members, indicating that target DNA sequence specificities between these two closely related proteins exist. Furthermore, we observed differences in the relative strengths of binding of gonococcal Fur for these different genes, which most likely reflect a difference in affinity between gonococcal Fur and its DNA targets. This is the first report that definitively demonstrates the binding of gonococcal Fur to its own promoter/operator region, as well as to the opa family of genes that encode surface proteins. Our results demonstrate that the gonococcal Fur protein binds to the regulatory regions of a broad array of genes and indicates that the gonococcal Fur regulon is larger than originally proposed.
Collapse
Affiliation(s)
- Shite Sebastian
- Evans Biomedical Research Center, Department of Medicine, Section of Infectious Diseases, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
26
|
Thompson DK, Beliaev AS, Giometti CS, Tollaksen SL, Khare T, Lies DP, Nealson KH, Lim H, Yates J, Brandt CC, Tiedje JM, Zhou J. Transcriptional and proteomic analysis of a ferric uptake regulator (fur) mutant of Shewanella oneidensis: possible involvement of fur in energy metabolism, transcriptional regulation, and oxidative stress. Appl Environ Microbiol 2002; 68:881-92. [PMID: 11823232 PMCID: PMC126683 DOI: 10.1128/aem.68.2.881-892.2002] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The iron-directed, coordinate regulation of genes depends on the fur (ferric uptake regulator) gene product, which acts as an iron-responsive, transcriptional repressor protein. To investigate the biological function of a fur homolog in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1, a fur knockout strain (FUR1) was generated by suicide plasmid integration into this gene and characterized using phenotype assays, DNA microarrays containing 691 arrayed genes, and two-dimensional polyacrylamide gel electrophoresis. Physiological studies indicated that FUR1 was similar to the wild-type strain when they were compared for anaerobic growth and reduction of various electron acceptors. Transcription profiling, however, revealed that genes with predicted functions in electron transport, energy metabolism, transcriptional regulation, and oxidative stress protection were either repressed (ccoNQ, etrA, cytochrome b and c maturation-encoding genes, qor, yiaY, sodB, rpoH, phoB, and chvI) or induced (yggW, pdhC, prpC, aceE, fdhD, and ppc) in the fur mutant. Disruption of fur also resulted in derepression of genes (hxuC, alcC, fhuA, hemR, irgA, and ompW) putatively involved in iron uptake. This agreed with the finding that the fur mutant produced threefold-higher levels of siderophore than the wild-type strain under conditions of sufficient iron. Analysis of a subset of the FUR1 proteome (i.e., primarily soluble cytoplasmic and periplasmic proteins) indicated that 11 major protein species reproducibly showed significant (P < 0.05) differences in abundance relative to the wild type. Protein identification using mass spectrometry indicated that the expression of two of these proteins (SodB and AlcC) correlated with the microarray data. These results suggest a possible regulatory role of S. oneidensis MR-1 Fur in energy metabolism that extends the traditional model of Fur as a negative regulator of iron acquisition systems.
Collapse
Affiliation(s)
- Dorothea K Thompson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rossi MS, Fetherston JD, Létoffé S, Carniel E, Perry RD, Ghigo JM. Identification and characterization of the hemophore-dependent heme acquisition system of Yersinia pestis. Infect Immun 2001; 69:6707-17. [PMID: 11598042 PMCID: PMC100047 DOI: 10.1128/iai.69.11.6707-6717.2001] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis possesses a heme-protein acquisition system (Hmu) that allows it to utilize heme and heme-protein complexes as the sole sources of iron. Analysis of the Y. pestis CO92 genomic sequence revealed a second heme-protein acquisition gene cluster that shares homology with the hemophore-dependent heme acquisition system (Has system) of Serratia marcescens. This locus consisted of the hasR(yp) receptor gene, the hasA(yp) hemophore gene, and genes encoding components of the HasA(yp) dedicated ABC transporter factor (hasDE(yp)), as well as a tonB homologue (hasB(yp)). By using a reconstituted secretion system in Escherichia coli, we showed that HasA(yp) is a secreted heme-binding protein and that expression of HasA(yp) is iron regulated in E. coli. The use of a transcriptional reporter fusion showed that the hasRADEB promoter is Fur regulated and has increased activity at 37 degrees C. Hemoglobin utilization via the Has(yp) system was studied with both E. coli and Y. pestis, for which has and has hmu mutant strains were used. No contribution of the Has system to heme utilization was observed in either E. coli or Y. pestis under the conditions we tested. Previously it was shown that a deletion of the Hmu system had no effect on the virulence of Y. pestis in a mouse model of bubonic plague. An Hmu(-) Has(-) double mutant also retained full virulence in this model of infection. This report constitutes the first attempt to investigate the contribution of the hemophore-dependent heme acquisition system in bacterial pathogenicity.
Collapse
Affiliation(s)
- M S Rossi
- Unité des Membranes Bactériennes Institut Pasteur (CNRS URA 2172), 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
28
|
Sha J, Lu M, Chopra AK. Regulation of the cytotoxic enterotoxin gene in Aeromonas hydrophila: characterization of an iron uptake regulator. Infect Immun 2001; 69:6370-81. [PMID: 11553581 PMCID: PMC98772 DOI: 10.1128/iai.69.10.6370-6381.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytotoxic enterotoxin Act from a diarrheal isolate, SSU, of Aeromonas hydrophila is aerolysin related and crucial to the pathogenesis of Aeromonas infections. To elucidate the role of environmental signals which influence the expression of the cytotoxic enterotoxin gene (act), a portion of the act gene, including the putative promoter region, was fused in frame to a truncated alkaline phosphatase gene (phoA) of Escherichia coli. The act::phoA reporter gene was then introduced into the chromosome of A. hydrophila by using the suicide vector pJQ200SK, allowing the fusion protein to be secreted out into the culture medium. Western blot analysis demonstrated the presence of a correctly size 110-kDa fusion protein in the culture supernatant, which reacted with both anti-Act and anti-alkaline phosphatase antibodies. Based on alkaline phosphatase (PhoA) activity in the culture supernatant, we demonstrated that calcium significantly increased the activity of the act promoter but that glucose and iron repressed its activity in a dose-dependent fashion. The act promoter exhibited optimal activity at pH 7.0 and at 37 degrees C, and maximal PhoA activity was noted when the culture was aerated. Using a Vibrio cholerae iron uptake regulator gene (fur) as a probe, a 2.6-kb SalI/HindIII DNA fragment from an A. hydrophila chromosome was cloned and sequenced. The DNA sequence revealed a 429-bp open reading frame that exhibited 69% homology at the DNA level with the fur gene and 79% homology at the amino acid level with the iron uptake regulator (Fur) protein of V. cholerae. Complementation experiments demonstrated that the A. hydrophila fur gene could restore iron regulation in an E. coli fur-minus mutant. Using the suicide vector pDMS197, we generated a fur isogenic mutant of wild-type A. hydrophila SSU. Northern blot analysis data indicated that the repression in the transcription of the act gene by iron was relieved in the fur isogenic mutant. Further, iron regulation in the fur isogenic mutant of A. hydrophila could be restored by complementation. These results are important in understanding the regulation of the act gene under in vivo conditions.
Collapse
Affiliation(s)
- J Sha
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | | | |
Collapse
|
29
|
Brem D, Pelludat C, Rakin A, Jacobi CA, Heesemann J. Functional analysis of yersiniabactin transport genes of Yersinia enterocolitica. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1115-1127. [PMID: 11320115 DOI: 10.1099/00221287-147-5-1115] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Yersinia enterocolitica O:8, biogroup (BG) IB, strain WA-C carries a high-pathogenicity island (HPI) including iron-repressible genes (irp1-9, fyuA) for biosynthesis and uptake of the siderophore yersiniabactin (Ybt). The authors report the functional analysis of irp6,7,8, which show 98-99% similarity to the corresponding genes ybtP,Q,X on the HPI of Yersinia pestis. It was demonstrated that irp6,7 are involved in ferric (Fe)-Ybt utilization and mouse virulence of Y. enterocolitica, thus confirming corresponding results for Y. pestis. Additionally it was shown that inactivation of the ampG-like gene irp8 did not affect either Fe-Ybt utilization or mouse virulence. To determine whether irp6, irp7 and fyuA (encoding the outer-membrane Fe-Ybt/pesticin receptor FyuA) are sufficient to mediate Fe-Ybt transport/utilization, these genes were transferred into Escherichia coli entD,F and into non-pathogenic Y. enterocolitica, BG IA, strain NF-O. Surprisingly, E. coli entD,F but not Y. enterocolitica NF-O gained the capability to utilize exogenous Fe-Ybt as a result of this gene transfer, although both strains expressed functional FyuA (pesticin sensitivity). These results suggest that besides irp6, irp7 and fyuA, additional genes are required for sufficient Fe-Ybt transport/utilization. Finally, it was shown that irp6, irp7 and fyuA but not irp8 are involved in controlling Ybt biosynthesis and fyuA gene expression: irp6 and/or irp7 mutation leads to upregulation whereas fyuA mutation leads to downregulation. However, fyuA-dependent control of Ybt biosynthesis could be bypassed in a fyuA mutant by ingredients of chrome azurol S (CAS) siderophore indicator agar.
Collapse
Affiliation(s)
- D Brem
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Pettenkoferstr. 9a, 80336 München, Germany1
| | - C Pelludat
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Pettenkoferstr. 9a, 80336 München, Germany1
| | - A Rakin
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Pettenkoferstr. 9a, 80336 München, Germany1
| | - C A Jacobi
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Pettenkoferstr. 9a, 80336 München, Germany1
| | - J Heesemann
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Pettenkoferstr. 9a, 80336 München, Germany1
| |
Collapse
|
30
|
Gong S, Bearden SW, Geoffroy VA, Fetherston JD, Perry RD. Characterization of the Yersinia pestis Yfu ABC inorganic iron transport system. Infect Immun 2001; 69:2829-37. [PMID: 11292695 PMCID: PMC98231 DOI: 10.1128/iai.67.5.2829-2837.2001] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Yersinia pestis, the causative agent of plague, two inorganic iron transport systems have been partially characterized. The yersiniabactin (Ybt) system is a siderophore-dependent transport system required for full virulence. Yfe is an ABC transport system that accumulates both iron and manganese. We have identified and cloned a Y. pestis yfuABC operon. The YfuABC system is a member of the cluster of bacterial ABC iron transporters that include Sfu of Serratia, Hit of Haemophilus, and Yfu of Yersinia enterocolitica. The Y. pestis KIM6+ system is most homologous to that in Y. enterocolitica, showing identities of 84% for YfuA (periplasmic binding protein), 87% for YfuB (inner membrane permease), and 75% for YfuC (ATP hydrolase). We constructed a yfuABC promoter-lacZ fusion to examine regulation of transcription. This promoter contains a potential Fur binding sequence and is iron and Fur regulated. Significant expression from the yfuABC promoter occurred during iron-deficient growth conditions. In vitro transcription and translation of a recombinant plasmid encoding yfuABC indicates that YfuABC proteins are expressed. Escherichia coli 1017 (an enterobactin-deficient mutant) carrying this plasmid was able to grow in an iron-restrictive complex medium. We constructed a deletion encompassing the yfuABC promoter and most of yfuA. This mutation was introduced into strains with mutations in Ybt, Yfe, or both systems to examine the role of Yfu in iron acquisition in Y. pestis. Growth of the yfu mutants in a deferrated, defined medium (PMH2) at 26 and 37 degrees C failed to identify a growth or iron transport defect due to the yfu mutation. Fifty percent lethal dose studies in mice did not demonstrate a role for the Yfu system in mammalian virulence.
Collapse
Affiliation(s)
- S Gong
- Department of Microbiology and Immunology, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | |
Collapse
|
31
|
Geoffroy VA, Fetherston JD, Perry RD. Yersinia pestis YbtU and YbtT are involved in synthesis of the siderophore yersiniabactin but have different effects on regulation. Infect Immun 2000; 68:4452-61. [PMID: 10899842 PMCID: PMC98347 DOI: 10.1128/iai.68.8.4452-4461.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One prerequisite for the virulence of Yersinia pestis, causative agent of bubonic plague, is the yersiniabactin (Ybt) siderophore-dependent iron transport system that is encoded within a high-pathogenicity island (HPI) within the pgm locus of the Y. pestis chromosome. Several gene products within the HPI have demonstrated functions in the synthesis or transport of Ybt. Here we examine the roles of ybtU and ybtT. In-frame mutations in ybtT or ybtU yielded strains defective in siderophore production. Mutant strains were unable to grow on iron-deficient media at 37 degrees C but could be cross-fed by culture supernatants from a Ybt-producing strain of Y. pestis. The ybtU mutant failed to express four indicator Ybt proteins (HMWP1, HMWP2, YbtE, and Psn), a pattern similar to those for other ybt biosynthetic mutants. In contrast, strains carrying mutations in ybtT or ybtS (a previously identified gene required for Ybt biosynthesis) produced all four proteins at wild-type levels under iron-deprived conditions. To assess the effects of ybtT, -U, and -S mutations on transcription of ybt genes, reporter plasmids with ybtP or psn promoters controlling lacZ expression were introduced into these mutants. Normal iron-regulated beta-galactosidase activity was observed in the ybtT and ybtS mutants, whereas a significant loss of expression occurred in the DeltaybtU strain. These results show that ybtT and ybtU genes are involved in the biosynthesis of the Ybt siderophore and that a ybtU mutation but not ybtT or ybtS mutations affects transcription from the ybtP and psn promoters.
Collapse
Affiliation(s)
- V A Geoffroy
- Department of Microbiology and Immunology, University of Kentucky, Lexington, Kentucky, USA
| | | | | |
Collapse
|
32
|
Funahashi T, Fujiwara C, Okada M, Miyoshi S, Shinoda S, Narimatsu S, Yamamoto S. Characterization of Vibrio parahaemolyticus manganese-resistant mutants in reference to the function of the ferric uptake regulatory protein. Microbiol Immunol 2000; 44:963-70. [PMID: 11220684 DOI: 10.1111/j.1348-0421.2000.tb02591.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In many bacteria, the ferric uptake regulatory protein (Fur) has a central role in the negative regulation of genes affected by iron limitation. In this study, Vibrio parahaemolyticus strains carrying mutations in the fur gene encoding Fur were isolated by the manganese selection method to assess the function of Fur in connection with alternations in the coordinate expression of the siderophore vibrioferrin (VF) and iron-repressible outer membrane proteins (IROMPs). Ten out of 25 manganese-resistant mutants constitutively produced VF and expressed at least two IROMPs irrespective of the iron concentration in the medium. PCR-direct DNA sequencing of the fur genes in these mutants identified four different point mutations causing amino acid changes. Moreover, a fur overexpressing plasmid was constructed to prepare antiserum against V. parahaemolyticus Fur. Western blotting with this antiserum revealed that the intracellular abundance of the wild-type Fur was not significantly affected by the iron concentrations in the growth medium, and that the Fur proteins of the mutant strains occurred at substantially smaller amounts and/or migrated more rapidly in sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the wild-type Fur. These data afford an additional insight into the structure-function relationship of Fur and imply its involvement in the iron acquisition systems of V. parahaemolyticus, although it is yet unknown whether its action on the target genes is direct or indirect.
Collapse
Affiliation(s)
- T Funahashi
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
During the past decade significant progress has been made towards identifying some of the schemes that Pseudomonas aeruginosa uses to obtain iron and towards cataloguing and characterizing many of the genes and gene products that are likely to play a role in these processes. This review will largely recount what we have learned in the past few years about how P. aeruginosa regulates its acquisition, intake and, to some extent, trafficking of iron, and the role of iron acquisition systems in the virulence of this remarkable opportunistic pathogen. More specifically, the genetics, biochemistry and biology of an essential regulator (Ferric uptake regulator - Fur) and a Fur-regulated alternative sigma factor (PvdS), which are central to these processes, will be discussed. These regulatory proteins directly or indirectly regulate a substantial number of other genes encoding proteins with remarkably diverse functions. These genes include: (i) other regulatory genes, (ii) genes involved in basic metabolic processes (e.g. Krebs cycle), (iii) genes required to survive oxidative stress (e.g. superoxide dismutase), (iv) genes necessary for scavenging iron (e.g. siderophores and their cognate receptors) or genes that contribute to the virulence (e.g. exotoxin A) of this opportunistic pathogen. Despite this recent expansion of knowledge about the response of P. aeruginosa to iron, many significant biological issues surrounding iron acquisition still need to be addressed. Virtually nothing is known about which of the distinct iron acquisition mechanisms P. aeruginosa brings to bear on these questions outside the laboratory, whether it be in soil, in a pipeline, on plants or in the lungs of cystic fibrosis patients.
Collapse
Affiliation(s)
- M L Vasil
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | |
Collapse
|
34
|
Escolar L, Pérez-Martín J, de Lorenzo V. Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 1999; 181:6223-9. [PMID: 10515908 PMCID: PMC103753 DOI: 10.1128/jb.181.20.6223-6229.1999] [Citation(s) in RCA: 596] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- L Escolar
- Centro Nacional de Biotecnología CSIC, 28049 Madrid, Spain
| | | | | |
Collapse
|
35
|
Hare JM, McDonough KA. High-frequency RecA-dependent and -independent mechanisms of Congo red binding mutations in Yersinia pestis. J Bacteriol 1999; 181:4896-904. [PMID: 10438760 PMCID: PMC93977 DOI: 10.1128/jb.181.16.4896-4904.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis, which causes bubonic and pneumonic plague, forms pigmented red colonies on Congo red (CR) dye agar. The hmsHFRS genes required for CR binding (Crb(+)) are genetically linked to virulence-associated genes encoding a siderophore uptake system. These genes are contained in a 102-kb chromosomal pgm locus that is lost in a high-frequency deletion event, resulting in loss of the Crb(+) phenotype. We constructed a recA mutant strain of Y. pestis KIM10+ (YPRA) to test whether the high frequency Crb mutants result from a RecA-mediated deletion of the IS100-flanked pgm locus. Two Pgm-associated phenotypes (Crb(+) and pesticin sensitivity [Pst(s)]) were used as markers for the presence of the pgm locus in the RecA(+) KIM10+ and RecA(-) YPRA strains. In KIM10+, both phenotypes were lost at a very high (2 x 10(-3)) frequency, due to the deletion of the entire pgm locus. In YPRA, the Crb(+) phenotype was still lost at a high frequency (4.5 x 10(-5)), although the loss of the Pst(s) phenotype occurred at spontaneous antibiotic resistance mutation frequencies (2 x 10(-7)). These RecA-independent Crb(-) mutants were caused by mutations in both the hmsHFRS locus and in a newly identified gene, hmsT. Nonpigmented Yersinia pseudotuberculosis and Escherichia coli strains transformed with both hmsT and hmsHFRS became Crb(+). This study demonstrates that in a laboratory culture, the Crb(+) phenotype is unstable, independent of the pgm locus deletion. We propose that a lack of selection for the CR-binding ability of Y. pestis in vitro may contribute to the mutation frequencies observed at the hmsHFRS and hmsT loci.
Collapse
Affiliation(s)
- J M Hare
- Department of Biomedical Sciences, University at Albany, State University of New York, USA
| | | |
Collapse
|
36
|
Fetherston JD, Bertolino VJ, Perry RD. YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis. Mol Microbiol 1999; 32:289-99. [PMID: 10231486 DOI: 10.1046/j.1365-2958.1999.01348.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Yersinia pestis, the causative agent of plague, makes a siderophore termed yersiniabactin (Ybt), which it uses to obtain iron during growth at 37 degrees C. The genes required for the synthesis and utilization of Ybt are located within a large, unstable region of the Y. pestis chromosome called the pgm locus. Within the pgm locus, just upstream of a gene (ybtA) that regulates expression of the Ybt receptor and biosynthetic genes, is an operon consisting of 4 genes - ybtP, ybtQ, ybtX and ybtS. Transcription of the ybtPQXS operon is repressed by Fur and activated by YbtA. The product of ybtX is predicted to be an exceedingly hydrophobic cytoplasmic membrane protein that does not appear to contribute any vital function to Ybt biosynthesis or utilization in vitro. ybtP and ybtQ encode putative members of the traffic ATPase/ABC transporter family. YbtP and YbtQ are structurally unique among the subfamily of ABC transporters associated with iron transport, in that they both contain an amino-terminal membrane-spanning domain and a carboxy-terminal ATPase. Cells with mutations in ybtP or ybtQ still produced Ybt but were impaired in their ability to grow at 37 degrees C under iron-deficient conditions, indicating that YbtP and YbtQ are needed for iron uptake. In addition, a ybtP mutant showed reduced iron accumulation and was avirulent in mice by a subcutaneous route of infection that mimics flea transmission of bubonic plague.
Collapse
Affiliation(s)
- J D Fetherston
- Department of Microbiology and Immunology, University of Kentucky, Lexington, KY 40536-0084, USA
| | | | | |
Collapse
|
37
|
Gehring AM, DeMoll E, Fetherston JD, Mori I, Mayhew GF, Blattner FR, Walsh CT, Perry RD. Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis. CHEMISTRY & BIOLOGY 1998; 5:573-86. [PMID: 9818149 DOI: 10.1016/s1074-5521(98)90115-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Virulence in the pathogenic bacterium Yersinia pestis, causative agent of bubonic plague, has been correlated with the biosynthesis and transport of an iron-chelating siderophore, yersiniabactin, which is induced under iron-starvation conditions. Initial DNA sequencing suggested that this system is highly conserved among the pathogenic Yersinia. Yersiniabactin contains a phenolic group and three five-membered thiazole heterocycles that serve as iron ligands. RESULTS The entire Y. pestis yersiniabactin region has been sequenced. Sequence analysis of yersiniabactin biosynthetic regions (irp2-ybtE and ybtS) reveals a strategy for siderophore production using a mixed polyketide synthase/nonribosomal peptide synthetase complex formed between HMWP1 and HMWP2 (encoded by irp1 and irp2). The complex contains 16 domains, five of them variants of phosphopantetheine-modified peptidyl carrier protein or acyl carrier protein domains. HMWP1 and HMWP2 also contain methyltransferase and heterocyclization domains. Mutating ybtS revealed that this gene encodes a protein essential for yersiniabactin synthesis. CONCLUSIONS The HMWP1 and HMWP2 domain organization suggests that the yersiniabactin siderophore is assembled in a modular fashion, in which a series of covalent intermediates are passed from the amino terminus of HMWP2 to the carboxyl terminus of HMWP1. Biosynthetic labeling studies indicate that the three yersiniabactin methyl moieties are donated by S-adenosylmethionine and that the linker between the thiazoline and thiazolidine rings is derived from malonyl-CoA. The salicylate moiety is probably synthesized using the aromatic amino-acid biosynthetic pathway, the final step of which converts chorismate to salicylate. YbtS might be necessary for converting chorismate to salicylate.
Collapse
Affiliation(s)
- A M Gehring
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
van Vliet AH, Wooldridge KG, Ketley JM. Iron-responsive gene regulation in a campylobacter jejuni fur mutant. J Bacteriol 1998; 180:5291-8. [PMID: 9765558 PMCID: PMC107575 DOI: 10.1128/jb.180.20.5291-5298.1998] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/1998] [Accepted: 08/05/1998] [Indexed: 11/20/2022] Open
Abstract
The expression of iron-regulated systems in gram-negative bacteria is generally controlled by the Fur protein, which represses the transcription of iron-regulated promoters by using Fe2+ as a cofactor. Mutational analysis of the Campylobacter jejuni fur gene was carried out by generation of a set of mutant copies of fur which had a kanamycin or chloramphenicol resistance gene introduced into the regions encoding the N and C termini of the Fur protein. The mutated genes were recombined into the C. jejuni NCTC 11168 chromosome, and putative mutants were confirmed by Southern hybridization. C. jejuni mutants were obtained only when the resistance genes were transcribed in the same orientation as the fur gene. The C. jejuni fur mutant grew slower than the parental strain. Comparison of protein profiles of fractionated C. jejuni cells grown in low- or high-iron medium indicated derepressed expression of three iron-regulated outer membrane proteins with molecular masses of 70, 75, and 80 kDa. Characterization by N-terminal amino acid sequencing showed the 75-kDa protein to be identical to CfrA, a Campylobacter coli siderophore receptor homologue, whereas the 70-kDa protein was identified as a new siderophore receptor homologue. Periplasmic fractions contained four derepressed proteins with molecular masses of 19, 29, 32, and 36 kDa. The 19-kDa protein has been previously identified, but its function is unknown. The cytoplasmic fraction contained two iron-repressed and two iron-induced proteins with molecular masses of 26, 55, 31, and 40 kDa, respectively. The two iron-repressed proteins have been previously identified as the oxidative stress defense proteins catalase (KatA) and alkyl hydroperoxide reductase (AhpC). AhpC and KatA were still iron regulated in the fur mutant, suggesting the presence of Fur-independent iron regulation. Further analysis of the C. jejuni iron and Fur regulons by using two-dimensional gel electrophoresis demonstrated the total number of iron- and Fur-regulated proteins to be lower than for other bacterial pathogens.
Collapse
Affiliation(s)
- A H van Vliet
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | |
Collapse
|
39
|
Bearden SW, Staggs TM, Perry RD. An ABC transporter system of Yersinia pestis allows utilization of chelated iron by Escherichia coli SAB11. J Bacteriol 1998; 180:1135-47. [PMID: 9495751 PMCID: PMC107000 DOI: 10.1128/jb.180.5.1135-1147.1998] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1997] [Accepted: 12/19/1997] [Indexed: 02/06/2023] Open
Abstract
The acquisition of iron is an essential component in the pathogenesis of Yersinia pestis, the agent of bubonic and pneumonic plague. A cosmid library derived from the genomic DNA of Y. pestis KIM6+ was used for transduction of an Escherichia coli mutant (SAB11) defective in the biosynthesis of the siderophore enterobactin. Recombinant plasmids which had a common 13-kb BamHI fragment were isolated from SAB11 transductants in which growth but not enterobactin synthesis was restored on media containing the iron chelator EDDA [ethylenediamine-di(o-hydroxyphenyl acetic acid)]. Subcloning and transposon mutagenesis revealed a 5.6-kb region, designated yfe, essential for SAB11 growth stimulation. In vitro transcription-translation analysis identified polypeptides of 18, 29.5, 32, and 33 kDa encoded by the yfe locus. Sequence analysis shows this locus to be comprised of five genes in two separate operons which have potential Fur-binding sequences in both promoters. A putative polycistronic operon, yfeABCD, is Fur regulated and responds to iron and manganese. A functional Fur protein is required for the observed manganese repression of this operon. This operon encodes polypeptides which have strong similarity to the ATP-binding cassette (ABC) family of transporters and include a periplasmic binding protein (YfeA), an ATP-binding protein (YfeB), and two integral membrane proteins (YfeC and -D), which likely function in the acquisition of inorganic iron and possibly other ions. The approximately 21-kDa protein encoded by the separately transcribed yfeE gene may be located in the cell envelope, since a yfeE::TnphoA fusion is PhoA+. Mutations in this gene abrogate growth of SAB11 on iron-chelated media.
Collapse
Affiliation(s)
- S W Bearden
- Department of Microbiology and Immunology, University of Kentucky, Lexington 40536-0084, USA
| | | | | |
Collapse
|
40
|
Westenberg DJ, Guerinot ML. Regulation of bacterial gene expression by metals. ADVANCES IN GENETICS 1998; 36:187-238. [PMID: 9348656 DOI: 10.1016/s0065-2660(08)60310-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- D J Westenberg
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
41
|
Lillard JW, Fetherston JD, Pedersen L, Pendrak ML, Perry RD. Sequence and genetic analysis of the hemin storage (hms) system of Yersinia pestis. Gene 1997; 193:13-21. [PMID: 9249062 DOI: 10.1016/s0378-1119(97)00071-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have sequenced a region from the pigmentation (pgm) locus of Yersinia pestis KIM6+ that is identified with the exogenous hemin storage (Hms+) phenotype in cells grown at 26 but not at 37 degrees C. The hmsHFRS locus encodes a putative polycistronic operon, with hmsH encoding an outer membrane protein with a deduced molecular mass of 93.4/89.5 (unprocessed/processed) kDa. The mature HmsH 788 aa polypeptide has a pI of 4.99. The hmsF gene has an open reading frame of 654 aa, encoding a 74.6/72.2 kDa OM protein with a pI of 5.16 when processed. A deduced 423 aa, 52 kDa protein with a pI of 10.83 is encoded by hmsR. HmsR has a basic, hydrophilic, and alpha-helical carboxyl terminus; 13 aa at the amino-terminal end and a 'KRKRAR' sequence at the carboxy-terminal end are essential for an Hms+ phenotype. The hmsS gene encodes a hypothetical 155 aa, 17.5 kDa protein with a pI of 6.68. Hms- Y. pestis strain M23-2 transformed with the cloned hmsHFRS locus developed an Hms(c) phenotype (Hms+ at 26-37 degrees C) due to mutations in genes outside the pgm locus.
Collapse
Affiliation(s)
- J W Lillard
- Department of Microbiology and Immunology, University of Kentucky, Lexington 40536-0084, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Plague is a widespread zoonotic disease that is caused by Yersinia pestis and has had devastating effects on the human population throughout history. Disappearance of the disease is unlikely due to the wide range of mammalian hosts and their attendant fleas. The flea/rodent life cycle of Y. pestis, a gram-negative obligate pathogen, exposes it to very different environmental conditions and has resulted in some novel traits facilitating transmission and infection. Studies characterizing virulence determinants of Y. pestis have identified novel mechanisms for overcoming host defenses. Regulatory systems controlling the expression of some of these virulence factors have proven quite complex. These areas of research have provide new insights into the host-parasite relationship. This review will update our present understanding of the history, etiology, epidemiology, clinical aspects, and public health issues of plague.
Collapse
Affiliation(s)
- R D Perry
- Department of Microbiology and Immunology, University of Kentucky, Lexington 40536, USA.
| | | |
Collapse
|
43
|
Hall HK, Foster JW. The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J Bacteriol 1996; 178:5683-91. [PMID: 8824613 PMCID: PMC178407 DOI: 10.1128/jb.178.19.5683-5691.1996] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The response of Salmonella typhimurium to low pH includes a low-pH protection system called the acid tolerance response (ATR). The iron-regulatory protein Fur has been implicated in the ATR since fur mutants are acid sensitive and cause altered expression of several acid shock proteins (J. W. Foster, J. Bacteriol. 173:6896-6902, 1991). We have determined that the acid-sensitive phenotype of fur mutations is indeed due to a defect in Fur that can be complemented by a fur(+)-containing plasmid. However, changes in cellular iron status alone did not trigger the ATR. Cells clearly required exposure to low pH in order to induce acid tolerance. The role of Fur in acid tolerance was found to extend beyond regulating iron acquisition. A mutation in fur converting histidine 90 to an arginine (H90R) eliminated Fur-mediated iron regulation of enterochelin production and deregulated an iroA-lacZ fusion but had no effect on acid tolerance. The H90R iron-blind Fur protein also mediated acid shock induction of several Fur-dependent acid shock proteins and acid control of the hyd locus. In addition, a Fur superrepressor that constitutively repressed iron-regulated genes mediated normal Fur-dependent acid tolerance and pH-controlled gene expression. The results indicate the acid-sensing and iron-sensing mechanisms of Fur are separable by mutation and reinforce the concept of Fur as a major global regulator in the cell.
Collapse
Affiliation(s)
- H K Hall
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile 36688, USA
| | | |
Collapse
|
44
|
Lucier TS, Fetherston JD, Brubaker RR, Perry RD. Iron uptake and iron-repressible polypeptides in Yersinia pestis. Infect Immun 1996; 64:3023-31. [PMID: 8757829 PMCID: PMC174183 DOI: 10.1128/iai.64.8.3023-3031.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pigmented (Pgm+) cells of Yersinia pestis are virulent, are sensitive to pesticin, adsorb exogenous hemin at 26 degrees C (Hms+), produce iron-repressible outer membrane proteins, and grow at 37 degrees C in iron-deficient media. These traits are lost upon spontaneous deletion of a chromosomal 102-kb pgm locus (Pgm-). Here we demonstrate that an Hms+ but pesticin-resistant (Pst(r)) mutant acquired a 5-bp deletion in the pesticin receptor gene (psn) encoding IrpB to IrpD. Growth and assimilation of iron by Pgm- and Hms+ Pst(r) mutants were markedly inhibited by ferrous chelators at 37 degrees C; inhibition by ferric and ferrous chelators was less effective at 26 degrees C. Iron-deficient growth at 26 degrees C induced iron-regulated outer membrane proteins of 34, 28.5, and 22.5 kDa and periplasmic polypeptides of 33.5 and 30 kDa. These findings provide a basis for understanding the psn-driven system of iron uptake, indicate the existence of at least one additional 26 degrees C-dependent iron assimilation system, and define over 30 iron-repressible proteins in Y. pestis.
Collapse
Affiliation(s)
- T S Lucier
- Department of Microbiology, Michigan State University, East Lansing 48824-1101, USA
| | | | | | | |
Collapse
|
45
|
Abstract
The pathogenic Neisseria spp. produce a number of iron-regulated gene products that are thought to be important in virulence. Iron-responsive regulation of these gene products has been attributed to the presence in Neisseria spp. of the Fur (ferric uptake regulation) protein. Evidence for the role of Fur in neisserial iron regulation has been indirect because of the inability to make fur null mutations. To circumvent this problem, we used manganese selection to isolate missense mutations of Neisseria gonorrhoeae fur. We show that a mutation in gonococcal fur resulted in reduced modulation of expression of four well-studied iron-repressed genes and affected the iron regulation of a broad range of other genes as judged by two-dimensional polyacrylamide gel electrophoresis (PAGE). All 15 of the iron-repressed spots observed by two-dimensional PAGE were at least partially derepressed in the fur mutant, and 17 of the 45 iron-induced spots were affected by the fur mutation. Thus, Fur plays a central role in regulation of iron-repressed gonococcal genes and appears to be involved in regulation of many iron-induced genes. The size and complexity of the iron regulons in N. gonorrhoeae are much greater than previously recognized.
Collapse
Affiliation(s)
- C E Thomas
- Department of Microbiology, School of Medicine, University of North Carolina at Chapel Hill, 27599, USA
| | | |
Collapse
|
46
|
Ochsner UA, Vasil AI, Vasil ML. Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters. J Bacteriol 1995; 177:7194-201. [PMID: 8522528 PMCID: PMC177600 DOI: 10.1128/jb.177.24.7194-7201.1995] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The cloned Pseudomonas aeruginosa fur (ferric uptake regulator) gene was overexpressed in P. aeruginosa by using a T7 expression system, and the Fur protein (PA-Fur) was purified by using a combination of ion-exchange chromatography and metal affinity chromatography. The DNA binding activity of the PA-Fur protein was confirmed by gel mobility shift assays and DNase I footprints of the synthetic DNA fragment GATAAT GATAATCATTATC, representing a perfect "Fur box". In addition, it was shown that PA-Fur is capable of binding to promoter and operator determinants of the tightly iron-regulated Escherichia coli fepA-fes enterobactin gene system. The activity of PA-Fur on the promoters of iron-regulated genes involved in the production of two siderophores, pyochelin and pyoverdin, and in the expression of exotoxin A was investigated. Data indicating that the promoters of the pchR gene, encoding a transcriptional activator for pyochelin synthesis, and of the pvdS gene, encoding a positive regulator for pyoverdin production, are specifically recognized by Fur-Fe(II) are presented, suggesting that PA-Fur represses expression of pchR and pvdS during growth in an iron-replete environment. However, neither the promoter region of the gene encoding exotoxin A (toxA) nor the promoters of the regAB operon, required for toxA expression, interacted with high concentrations of purified PA-Fur. These data indicate that iron regulation of exotoxin A production involves additional factors which may ultimately be under the control of PA-Fur.
Collapse
Affiliation(s)
- U A Ochsner
- Department of Microbiology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
47
|
Abstract
The yersiniae are a useful model for understanding how environmental modulation of gene expression allows pathogens to inhabit a wide range of niches. This review follows the enteropathogenic yersiniae, Yersinia enterocolitica and Yersinia pseudotuberculosis, and the agent of plague, Yersinia pestis, through their life cycles, describing how adaptive gene expression may promote successful pathogenesis.
Collapse
Affiliation(s)
- S C Straley
- Dept of Microbiology and Immunology, University of Kentucky, Lexington 40536-0084, USA
| | | |
Collapse
|
48
|
Fetherston JD, Lillard JW, Perry RD. Analysis of the pesticin receptor from Yersinia pestis: role in iron-deficient growth and possible regulation by its siderophore. J Bacteriol 1995; 177:1824-33. [PMID: 7896707 PMCID: PMC176812 DOI: 10.1128/jb.177.7.1824-1833.1995] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have sequenced a region from the pgm locus of Yersinia pestis KIM6+ that confers sensitivity to the bacteriocin pesticin to certain strains of Escherichia coli and Y. pestis. The Y. pestis sequence is 98% identical to the pesticin receptor from Yersinia enterocolitica and is homologous to other TonB-dependent outer membrane proteins. Y. pestis strains with an in-frame deletion in the pesticin receptor gene (psn) were pesticin resistant and no longer expressed a group of iron-regulated outer membrane proteins, IrpB to IrpD. In addition, this strain as well as a Y. pestis strain with a mutation constructed in the gene (irp2) encoding the 190-kDa iron-regulated protein HMWP2 could not grow at 37 degrees C in a defined, iron-deficient medium. However, the irp2 mutant but not the psn mutant could be cross-fed by supernatants from various Yersinia cultures grown under iron-deficient conditions. An analysis of the proteins synthesized by the irp2 mutant suggests that HMWP2 may be indirectly required for maximal expression of the pesticin receptor. HMWP2 likely participates in synthesis of a siderophore which may induce expression of the receptor for pesticin and the siderophore.
Collapse
Affiliation(s)
- J D Fetherston
- Department of Microbiology and Immunology, University of Kentucky, Lexington 40536-0084
| | | | | |
Collapse
|