1
|
Atasoy M, Bartkova S, Çetecioğlu-Gürol Z, P Mira N, O'Byrne C, Pérez-Rodríguez F, Possas A, Scheler O, Sedláková-Kaduková J, Sinčák M, Steiger M, Ziv C, Lund PA. Methods for studying microbial acid stress responses: from molecules to populations. FEMS Microbiol Rev 2024; 48:fuae015. [PMID: 38760882 PMCID: PMC11418653 DOI: 10.1093/femsre/fuae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
The study of how micro-organisms detect and respond to different stresses has a long history of producing fundamental biological insights while being simultaneously of significance in many applied microbiological fields including infection, food and drink manufacture, and industrial and environmental biotechnology. This is well-illustrated by the large body of work on acid stress. Numerous different methods have been used to understand the impacts of low pH on growth and survival of micro-organisms, ranging from studies of single cells to large and heterogeneous populations, from the molecular or biophysical to the computational, and from well-understood model organisms to poorly defined and complex microbial consortia. Much is to be gained from an increased general awareness of these methods, and so the present review looks at examples of the different methods that have been used to study acid resistance, acid tolerance, and acid stress responses, and the insights they can lead to, as well as some of the problems involved in using them. We hope this will be of interest both within and well beyond the acid stress research community.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University and Research, PO Box 9101, 6700 HB, the Netherlands
| | - Simona Bartkova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Zeynep Çetecioğlu-Gürol
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21 106 91 Stockholm, Stockholm, Sweden
| | - Nuno P Mira
- iBB, Institute for Bioengineering and Biosciences, Department of Bioengineering, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Conor O'Byrne
- Microbiology, School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Aricia Possas
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Ott Scheler
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Jana Sedláková-Kaduková
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Mirka Sinčák
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Matthias Steiger
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, 7505101 Rishon LeZion, Israel
| | - Peter A Lund
- School of Biosciences and Institute of Microbiology of Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
2
|
Gavriil A, Giannenas I, Skandamis PN. A current insight into Salmonella's inducible acid resistance. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 39014992 DOI: 10.1080/10408398.2024.2373387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Salmonella is a diverse and ubiquitous group of bacteria and a major zoonotic pathogen implicated in several foodborne disease outbreaks worldwide. With more than 2500 distinct serotypes, this pathogen has evolved to survive in a wide spectrum of environments and across multiple hosts. The primary and most common source of transmission is through contaminated food or water. Although the main sources have been primarily linked to animal-related food products, outbreaks due to the consumption of contaminated plant-related food products have increased in the last few years. The perceived ability of Salmonella to trigger defensive mechanisms following pre-exposure to sublethal acid conditions, namely acid adaptation, has renewed a decade-long attention. The impact of acid adaptation on the subsequent resistance against lethal factors of the same or multiple stresses has been underscored by multiple studies. Α plethora of studies have been published, aiming to outline the factors that- alone or in combination- can impact this phenomenon and to unravel the complex networking mechanisms underlying its induction. This review aims to provide a current and updated insight into the factors and mechanisms that rule this phenomenon.
Collapse
Affiliation(s)
- Alkmini Gavriil
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Athens, Greece
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Ilias Giannenas
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis N Skandamis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
3
|
Rolfe CA, Anderson NM, Glenn Black D, Lee A. Barotolerance of acid-adapted and cold-adapted bacterial isolates of E. coli O157:H7, Salmonella spp., and L. monocytogenes in an acidic buffer model. J Food Prot 2023:100116. [PMID: 37321452 DOI: 10.1016/j.jfp.2023.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
The fruit and vegetable juice industry has shown a growing trend in minimally processed juices. A frequent technology used in the production of functional juices is cold pressure, which refers to the application of high pressure processing (HPP) at low temperatures to inactivate foodborne pathogens. HPP juice manufacturers are required to demonstrate a 5-log reduction of the pertinent microorganism to comply with FDA Juice HACCP. However, there is no consensus on validation study approaches for bacterial strain selection or their preparation. Individual bacterial strains were grown using three different growth conditions: neutral, cold-adapted, and acid-adapted. Approximately 6.0 - 7.0 log CFU/mL of the matrix-adapted bacterial strains were inoculated individually into buffered peptone water (BPW) at pH 3.50 ± 0.10 (HCl adjusted) and treated at sublethal pressures of 500 MPa for E. coli O157:H7 and 200 MPa for Salmonella spp. and L. monocytogenes (180 s, 4°C). Analyses were conducted at 0, 24 and 48 h (4°C storage) post-HPP on non-selective media. E. coli O157:H7 exhibited greater barotolerance than Salmonella spp. and L. monocytogenes. In neutral growth conditions, E. coli O157:H7 strain TW14359 demonstrated the greatest resistance (2.94 ± 0.64 log reduction) and E. coli O157:H7 strain SEA13B88 was significantly more sensitive (P <0.05). Salmonella isolates, neutral and acid-adapted, expressed similar barotolerance to one another. Cold-adapted S. Cubana and S. Montevideo showed greater resistance compared to other cold-adapted strains. Acid-adapted L. monocytogenes strain MAD328 had <1.00 ± 0.23 log reduction while acid-adapted L. monocytogenes strains CDC and Scott A were significantly more sensitive (P <0.05) with reductions of 2.13 ± 0.48 and 3.43 ± 0.50 log CFU/mL, respectively. These results suggested, under the conditions tested, bacterial strain and preparation methods influence HPP efficacy and should be considered when conducting validation studies.
Collapse
Affiliation(s)
- Catherine A Rolfe
- U. S. Food and Drug Administration, 6502 South Archer Road, Bedford Park, IL 60501; Institute for Food Safety and Health, Illinois Institute of Technology, 6502 South Archer Road, Bedford Park, IL 60501.
| | - Nathan M Anderson
- U. S. Food and Drug Administration, 6502 South Archer Road, Bedford Park, IL 60501
| | - Darryl Glenn Black
- U. S. Food and Drug Administration, 6502 South Archer Road, Bedford Park, IL 60501
| | - Alvin Lee
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 South Archer Road, Bedford Park, IL 60501
| |
Collapse
|
4
|
Liu Y, Zhang Y, Zhu L, Niu L, Luo X, Dong P. The acid tolerance responses of the Salmonella strains isolated from beef processing plants. Food Microbiol 2022; 104:103977. [DOI: 10.1016/j.fm.2022.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022]
|
5
|
Salmonella enterica Serovar Diversity, Distribution, and Prevalence in Public Access Waters from a Central California Coastal Leafy Green Growing Region during 2011 - 2016. Appl Environ Microbiol 2021; 88:e0183421. [PMID: 34910555 DOI: 10.1128/aem.01834-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prevalence and serovar diversity of Salmonella enterica was measured during a five-year survey of surface waters in a 500 mi^2 agricultural region of the Central California Coast. Rivers, streams, lakes, and ponds were sampled bimonthly resulting in 2,979 samples. Overall prevalence was 56.4% with higher levels detected in Spring than in Fall. Small, but significant, differences in prevalence were detected based on sample locations. Detection of Salmonella was correlated positively with both significant rain events and, in some environments, levels of generic Escherichia coli. Analysis of 1,936 isolates revealed significant serovar diversity, with 91 different serovars detected. The most common isolated serovars were S. enterica subsp. enterica serovars I 6,8:d:- (406 isolates, 21.0%, and potentially monophasic Salmonella Muenchen), Give (334 isolates, 17.3%), Muenchen (158 isolates, 8.2%), Typhimurium (227 isolates, 11.7%), Oranienburg (106 isolates, 5.5%), and Montevideo (78 isolates, 4%). Sixteen of the 24 most common serovars detected in the region are among the serovars reported to cause the most human salmonellosis in the United States. Some of the serovars were associated with location and seasonal bias. Analysis of XbaI Pulsed Field Gel Electrophoresis (PFGE) patterns of strains of serovars Typhimurium, Oranienburg, and Montevideo showed significant intra-serovar diversity. PFGE pulsotypes were identified in the region for multiple years of the survey, indicating persistence or regular re-introduction to the region. Importance Non-typhoidal Salmonella is the among the leading causes of bacterial foodborne illness and increasing numbers of outbreaks and recalls are due to contaminated produce. High prevalence and 91 different serovars were detected in this leafy green growing region. Seventeen serovars that cause most of the human salmonellosis in the United States were detected, with 16 of those serovars detected in multiple locations and multiple years of the 5-year survey. Understanding the widespread prevalence and diversity of Salmonella in the region will assist in promoting food safety practices and intervention methods for growers and regulators.
Collapse
|
6
|
McWhorter AR, Khan S, Sexton M, Moyle TS, Chousalkar KK. Acidification and extended storage at room temperature of mayonnaise reduce Salmonella Typhimurium virulence and viability. Food Res Int 2021; 141:110117. [PMID: 33641984 DOI: 10.1016/j.foodres.2021.110117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
Despite food safety recommendations, raw egg-based foods, such as mayonnaise, are frequently identified as the source of Salmonella during outbreaks. Acidification and storage temperature have been linked with reduced bacterial culturability. Raw egg-based sauces stored at 25 °C have historically been linked with faster decline of Salmonella culturability than preparations stored at 5 °C. This study aimed to determine whether reduced culturability in acidified mayonnaise correlated with reduced in vitro bacterial motility, invasiveness and viability as well as disease-causing capacity in BALB/c mice. Acidification of mayonnaise and incubation at 25 °C for 4 h significantly reduced culturability of Salmonella Typhimurium DT9 but was dependent on initial bacterial load. Bacteria recovered from acidified mayonnaise exhibited reduced invasiveness into polarized cultured intestinal epithelial cells and 12 h post inoculation were no longer invasive suggesting a reduced capacity to cause disease. To confirm this, BALB/c mice were inoculated with Salmonella Typhimurium contaminated mayonnaise stored at 5 °C or 25 °C for 12, 24, 48, 72, and 96 h. Mice inoculated with mayonnaise incubated at 5 °C for 12 and 24 h exhibited mild to moderate disease symptoms; all other mayonnaise treatment groups did not exhibit disease symptoms. In acidified mayonnaise, Salmonella Typhimurium DT9 exhibited a global downregulation of metabolism, stress response, and virulence genes upon addition to mayonnaise. After 4 h of incubation at both 5 °C and 25 °C, however, the vast majority of genes were upregulated which was maintained over the 96-hour experiment suggesting that bacteria were severely stressed. Salmonella Typhimurium DT9 cells were isolated from mayonnaise samples and ATP production was quantified. At both 5 °C and 25 °C, ATP production decreased in acidified mayonnaise preparations. At 25 °C, ATP production decreased more rapidly than at 5 °C. After 24 h, ATP production of bacteria in mayonnaise stored at 25 °C was not significantly different from the dead control group. Thus, the current recommendation of only serving freshly prepared raw egg-sauces or refrigerating immediately after preparation, could be placing consumers at higher risk for contracting salmonellosis.
Collapse
Affiliation(s)
- Andrea R McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Australia.
| | - Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Australia.
| | - Margaret Sexton
- Biosecurity SA, Primary Industries and Regions South Australia, Australia.
| | - Talia S Moyle
- School of Animal and Veterinary Sciences, The University of Adelaide, Australia.
| | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Australia.
| |
Collapse
|
7
|
Han Z, Huang G, Liao J, Li J, Lyu G, Ma J. Disentangling survival of Escherichia coli O157:H7 in soils: From a subpopulation perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141649. [PMID: 32829282 DOI: 10.1016/j.scitotenv.2020.141649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/28/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Soil physicochemical properties and microbial community have been proved to be correlated to survival behaviors of Shiga toxin-producing Escherichia coli O157:H7, but the roles of biotic and abiotic factors in the different stages of inactivation process remain unclear. Here, fruit producing soils were collected, and soils physicochemical properties, bacterial and fungal community structure were characterized. Survival experiments were performed by inoculating E. coli O157:H7 in soils. Double Weibull survival model was found to better fit the experimental data, and two subpopulations with different capability on resistance to stress were identified. The sensitive subpopulation with smaller δ (time needed for first decimal reduction) (i.e., δ1) died off faster compared to the more resistant subpopulation with greater δ (i.e., δ2). Partial Mantel test revealed that ttd (time needed to reach detection limit) was jointly influenced by physical factors, chemical factors, and bacterial composition (P < 0.05); δ1 was shaped by physical factors (P < 0.01) and additional bacterial composition (P < 0.05); and δ2 was strongly steered by bacterial community (P < 0.001). Bacterial co-occurrence network analysis revealed that samples with lower δ2 were coupled with higher network complexity and closer taxa relationship (e.g. higher average (weighted) degree, higher network diameter, higher graph density, and lower modularity), and vice versa. Taken together, the sensitive subpopulation had difficulty in adapting to coarse particles conditions, while resistant subpopulation might eventually succumb to the robust biodiversity. This study provides novel insights into the E. coli O157:H7 survival mechanism through subpopulation perspective and sheds light on the reduction of edaphic colonization by pathogens via agricultural management strategy.
Collapse
Affiliation(s)
- Ziming Han
- Key Laboratory of Ground Water Resource and Environment, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guannan Huang
- Key Laboratory of Ground Water Resource and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Jiafen Liao
- Key Laboratory of Ground Water Resource and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Jiahang Li
- Key Laboratory of Ground Water Resource and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Guangze Lyu
- Key Laboratory of Ground Water Resource and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Jincai Ma
- Key Laboratory of Ground Water Resource and Environment, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
8
|
Gavriil A, Paramithiotis S, Skordaki A, Tsiripov E, Papaioannou A, Skandamis PN. Prior exposure to different combinations of pH and undissociated acetic acid can affect the induced resistance of Salmonella spp. strains in mayonnaise stored under refrigeration and the regulation of acid-resistance related genes. Food Microbiol 2020; 95:103680. [PMID: 33397612 DOI: 10.1016/j.fm.2020.103680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
The innate and inducible resistance of six Salmonella strains (4/74, FS8, FS115, P167807, ATCC 13076, WT) in mayonnaise at 5 °C following adaptation to different pH/undissociated acetic acid (UAA) combinations (15mM/pH5.0, 35mM/pH5.5, 45mM/pH6.0) was investigated. The inherent and acid-induced responses were strain-dependent. Two strains (ATCC 13076, WT), albeit not the most resistant innately, exhibited the most prominent adaptive potential. Limited/no adaptability was observed regarding the rest strains, though being more resistant inherently. The individual effect of pH and UAA adaptation in the phenotypic and transcriptomic profiles of ATCC 13076 and WT was further examined. The type (pH, UAA) and magnitude of stress intensity affected their responses. Variations in the type and magnitude of stress intensity also determined the relative gene expression of four genes (adiA, cadB, rpoS, ompR) implicated in Salmonella acid resistance mechanisms. adiA and cadB were overexpressed following adaptation to some treatments; rpoS and ompR were downregulated following adaptation to 15mM/pH5.0 and 35mM/pH5.5, respectively. Nonetheless, the transcriptomic profiles did not always correlate with the corresponding phenotypes. In conclusion, strain variations in Salmonella are extensive. The ability of the strains to adapt and induce resistant phenotypes and acid resistance-related genes is affected by the type and magnitude of the stress applied during adaptation.
Collapse
Affiliation(s)
- Alkmini Gavriil
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Asimina Skordaki
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Eleni Tsiripov
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Adamantia Papaioannou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Panagiotis N Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece.
| |
Collapse
|
9
|
Gavriil A, Thanasoulia A, Skandamis PN. Sublethal concentrations of undissociated acetic acid may not always stimulate acid resistance in Salmonella enterica sub. enterica serovar Enteritidis Phage Type 4: Implications of challenge substrate associated factors. PLoS One 2020; 15:e0234999. [PMID: 32702039 PMCID: PMC7377465 DOI: 10.1371/journal.pone.0234999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/06/2020] [Indexed: 11/26/2022] Open
Abstract
Acid adaptation enhances survival of foodborne pathogens under lethal acid conditions that prevail in several food-related ecosystems. In the present study, the role of undissociated acetic acid in inducing acid resistance of Salmonella Enteritidis Phage Type 4 both in laboratory media and in an acid food matrix was investigated. Several combinations of acetic acid (0, 15, 25, 35 and 45 mM) and pH values (4.0, 4.5, 5.0, 5.5, 6.0) were screened for their ability to activate acid resistance mechanisms of pathogen exposed to pH 2.5 (screening assay). Increased survival was observed when increasing undissociated acetic acid within a range of sublethal concentrations (1.9–5.4 mM), but only at pH 5.5 and 6.0. No effect was observed at lower pH values, regardless of the undissociated acetic acid levels. Three combinations (15mM/pH5.0, 35mM/pH5.5, 45mM/pH6.0) were selected and further used for adaptation prior to inoculation in commercial tarama (fish roe) salad, i.e., an acid spread (pH 4.35 ± 0.02), stored at 5°C. Surprisingly and contrary to the results of the screening assay, none of the acid adaptation treatments enhanced survival of Salmonella Enteritidis in the food matrix, as compared to non-adapted cells (control). Further examination of the food pH value, acidulant and storage (challenge) temperature on the responses of the pathogen adapted to 15mM/pH5.0, 35mM/pH5.5 and 45mM/pH6.0 was performed in culture media. Cells adapted to 35mM/pH5.5 were unable to induce acid resistance when exposed to pH 4.35 (tarama salad pH value) at 37°C and 5°C, whereas incubation under refrigeration (5°C) at pH 4.35 sensitized 45mM/pH6.0 adapted cells against the subsequent acid and cold stress. In conclusion, pre-exposure to undissociated acetic acid affected the adaptive responses of Salmonella Enteritidis Phage Type 4 in a concentration- and pH-dependent manner, with regard to conditions prevailing during acid challenge.
Collapse
Affiliation(s)
- Alkmini Gavriil
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Athina Thanasoulia
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
10
|
Mutz YS, Rosario DKA, Castro VS, Bernardes PC, Paschoalin VMF, Conte-Junior CA. Prior Exposure to Dry-Cured Meat Promotes Resistance to Simulated Gastric Fluid in Salmonella Typhimurium. Foods 2019; 8:E603. [PMID: 31766476 PMCID: PMC6963427 DOI: 10.3390/foods8120603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 11/23/2022] Open
Abstract
This study assessed if exposure of foodborne Salmonella enterica in Brazilian dry-cured loin (BDL) affects pathogen inactivation in simulated gastric fluid (SGF). The acid tolerance responses of three Salmonella enterica serovars, Typhimurium, Derby and Panama, were assessed by an acid challenge trial at pH 3.0 for 4 h following pre-adaptation to three conditions: neutral pH, acidic pH (4.5) or BDL matrix. The influence of Salmonella exposure temperature and time in the BDL on pathogen gastric fluid resistance was evaluated by the response surface methodology. The Salmonella serovars acquired acid tolerance when exposed to the BDL matrix and their response to acid stress was strain-dependent, with S. Typhimurium being the most tolerant strain. S. Typhimuirum exposed to temperatures >25 °C in the BDL matrix displayed increased resistance to SGF. By using the response surface methodology, it was determined that S. Typhimurium becomes less resistant against SGF if maintained in the BDL matrix at temperatures <7 °C, reinforcing the recommendation to store dry-cured meat under refrigeration in order to minimize consumer risks. The results presented herein point to a novel aspect of hurdle technology that should be taken into account to further understand the risks associated with hurdle-stable meat product, such as dry-cured meats, concerning foodborne pathogen contamination.
Collapse
Affiliation(s)
- Yhan S. Mutz
- Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitaria, Rio de Janeiro 21941-909, RJ, Brazil; (V.S.C.); (V.M.F.P.)
- Analytical and Molecular Laboratory Center, Faculty of Veterinary Medicine, Fluminense Federal University, Vital Brazil Filho, 64, Niteroi 24230-340, RJ, Brazil
- Center for Food Analysis, Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, 1281, Polo de Quimica, bloco C, Ilha do Fundão 21941-598, Brazil
| | - Denes K. A. Rosario
- Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitaria, Rio de Janeiro 21941-909, RJ, Brazil; (V.S.C.); (V.M.F.P.)
- Analytical and Molecular Laboratory Center, Faculty of Veterinary Medicine, Fluminense Federal University, Vital Brazil Filho, 64, Niteroi 24230-340, RJ, Brazil
- Center for Food Analysis, Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, 1281, Polo de Quimica, bloco C, Ilha do Fundão 21941-598, Brazil
| | - Vinicius S. Castro
- Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitaria, Rio de Janeiro 21941-909, RJ, Brazil; (V.S.C.); (V.M.F.P.)
- Analytical and Molecular Laboratory Center, Faculty of Veterinary Medicine, Fluminense Federal University, Vital Brazil Filho, 64, Niteroi 24230-340, RJ, Brazil
- Center for Food Analysis, Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, 1281, Polo de Quimica, bloco C, Ilha do Fundão 21941-598, Brazil
| | - Patricia C. Bernardes
- Department of Food Engineer, Federal University of Espirito Santo, Alto Universitário, s/n, Alegre 29500-000, ES, Brazil;
| | - Vania M. F. Paschoalin
- Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitaria, Rio de Janeiro 21941-909, RJ, Brazil; (V.S.C.); (V.M.F.P.)
| | - Carlos A. Conte-Junior
- Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitaria, Rio de Janeiro 21941-909, RJ, Brazil; (V.S.C.); (V.M.F.P.)
- Analytical and Molecular Laboratory Center, Faculty of Veterinary Medicine, Fluminense Federal University, Vital Brazil Filho, 64, Niteroi 24230-340, RJ, Brazil
- Center for Food Analysis, Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, 1281, Polo de Quimica, bloco C, Ilha do Fundão 21941-598, Brazil
- National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
11
|
Pan L, Chen X, Wang K, Mao Z. A temporal transcriptomic dynamics study reveals the reason of enhanced ε-poly-L-lysine production in Streptomyces albulus M-Z18 by pH shock. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Yu H, Li N, Zeng X, Liu L, Wang Y, Wang G, Cai S, Huang S, Ding X, Song Q, Qiao S. A Comprehensive Antimicrobial Activity Evaluation of the Recombinant Microcin J25 Against the Foodborne Pathogens Salmonella and E. coli O157:H7 by Using a Matrix of Conditions. Front Microbiol 2019; 10:1954. [PMID: 31507565 PMCID: PMC6718478 DOI: 10.3389/fmicb.2019.01954] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 08/08/2019] [Indexed: 12/31/2022] Open
Abstract
Natural microcin J25 (MccJ25) represent promising alternatives to traditional antibiotics for the treatment of drug-resistant infections. However, little is known about the antibacterial activity of recombinant MccJ25 against foodborne pathogens. Here, the activity of recombinant MccJ25 was examined using a matrix of conditions in order to assess the efficacy of recombinant MccJ25 as a mitigation against foodborne pathogens, such as Salmonella species and Escherichia coli (E. coli) O157:H7. Results showed that recombinant MccJ25 displayed excellent antimicrobial activity against these foodborne pathogens, including clinical isolates of Salmonella and E. coli, as well as clinical antibiotic-resistant Salmonella and E. coli isolates with different minimal inhibitory concentrations. In addition, antimicrobial activity curves and Live/Dead assay evidenced that recombinant MccJ25 harbors strong bactericidal activity against Salmonella and E. coli O157:H7. Notably, recombinant MccJ25 also had great potency and induced fast mortality against different growth phase of Salmonella and E. coli. The stability analysis results showed that the activity of recombinant MccJ25 was not influenced by temperatures as high as 121°C. Varying the pH from 2.0 to 9.0 did not appear to affect the activity of recombinant MccJ25. Under the challenge of several proteases, simulated gastrointestinal fluids and serum, recombinant MccJ25 still maintained exceptionally strong antimicrobial activity. Significant reductions in Salmonella Pullorum levels were also achieved in food biological environments, such as milk, egg and meat. Moreover, we demonstrated that recombinant MccJ25 appeared to act by inducing membrane breaks, thinning, and disintegration in the Salmonella Pullorum cytoplasmic membrane. Taken together, these results indicated that recombinant MccJ25 could be an effective alternative for mitigating and prevention of Salmonella and E. coli infection in food, animal and agriculture applications.
Collapse
Affiliation(s)
- Haitao Yu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Ning Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Lu Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Shuo Huang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Xiuliang Ding
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Qinglong Song
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| |
Collapse
|
13
|
Song AX, Mao YH, Siu KC, Tai WCS, Wu JY. Protective effects of exopolysaccharide of a medicinal fungus on probiotic bacteria during cold storage and simulated gastrointestinal conditions. Int J Biol Macromol 2019; 133:957-963. [DOI: 10.1016/j.ijbiomac.2019.04.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
|
14
|
Gulliver D, Lipus D, Ross D, Bibby K. Insights into microbial community structure and function from a shallow, simulated CO 2 -leakage aquifer demonstrate microbial selection and adaptation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:338-351. [PMID: 29984552 DOI: 10.1111/1758-2229.12675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Geological carbon storage is likely to be a part of a comprehensive strategy to minimize the atmospheric release of carbon dioxide (CO2 ), raising concerns that injected CO2 will leak into overlying freshwater aquifers. CO2(aq) leakage may impact the dominant microbial community responsible for important ecosystem functions such as nutrient cycling, metal cycling and carbon conversion. Here, we examined the impact of an experimental in situ CO2 -leakage on a freshwater aquifer microbial community. High-throughput 16S rRNA gene sequencing demonstrated lower microbial diversity in freshwater wells with CO2 concentrations above 1.15 g l-1 . Metagenomic sequencing and population genome binning were used to evaluate the metabolic potential of microbial populations across four CO2 exposed samples and one control sample. Population genome binning resulted in the recovery and annotation of three metagenome assembled genomes (MAGs). Two of the MAGs, most closely related to Curvibacter and Sulfuricurvum, had the functional capacity for CO2 utilization via carbon fixation coupled to sulfur and iron oxidation. The third draft genome was an Archaea, most closely related to Methanoregula, characterized by the metabolic potential for methanogenesis. Together, these findings show that CO2 leakage in a freshwater aquifer poses a strong selection, driving both microbial community structure and metabolic function.
Collapse
Affiliation(s)
- Djuna Gulliver
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, USA
| | - Daniel Lipus
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Daniel Ross
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, USA
- AECOM, Pittsburgh, PA, USA
| | - Kyle Bibby
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, South Bend, IN, USA
| |
Collapse
|
15
|
|
16
|
Mutz YDS, Rosario DKA, Paschoalin VMF, Conte-Junior CA. Salmonella enterica: A hidden risk for dry-cured meat consumption? Crit Rev Food Sci Nutr 2019; 60:976-990. [DOI: 10.1080/10408398.2018.1555132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yhan da Silva Mutz
- Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Technology, Federal Fluminense University, Vital Brazil Filho, Niterói, RJ, Brazil
| | - Denes Kaic Alves Rosario
- Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Technology, Federal Fluminense University, Vital Brazil Filho, Niterói, RJ, Brazil
| | | | - Carlos Adam Conte-Junior
- Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Technology, Federal Fluminense University, Vital Brazil Filho, Niterói, RJ, Brazil
- National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Abstract
Seaweeds are a sustainable source of novel functional ingredients with applicability in pharmaceutics, biotechnology, and food science. The bioactivity of most of these marine compounds has scarcely been studied. The present study overviews the bioactivity of the polysaccharide fucoidan derived from Fucus vesiculosus brown algae as an antimicrobial agent against Listeria monocytogenes and Salmonella enterica serovar Typhimurium. The results obtained in vitro in reference medium reveal a bacteriostatic and bactericidal effect of fucoidan against both pathogens, this bioactivity being significantly dependent (p-value ≤ 0.05) on the concentration, 5–1000 μg/mL, temperature, 8–37 °C, and exposure time, 0–12 days. The results were validated in the formulation of a new functional pasteurized apple beverage to be commercialized under refrigeration. Fucoidan added at 25–100 μg/mL was highly effective against both pathogens. These results increase knowledge for the future formulation of new functional beverages that include marine compounds (high content in fibre, high content in protein; prebiotic and antioxidant properties), additionally revealing antimicrobial potential.
Collapse
|
18
|
Fan Y, Ginn A, Ma Z, Kang M, Jeong KC, Wright AC. Application of chitosan microparticles for mitigation of Salmonella in agricultural water. J Appl Microbiol 2017; 123:1346-1358. [PMID: 28815882 DOI: 10.1111/jam.13566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 01/23/2023]
Abstract
AIM The activity of chitosan microparticles (CM) was examined using a matrix of conditions in order to assess the efficacy of CM as a mitigation against various strains of Salmonella enterica in agricultural water. METHODS AND RESULTS Different concentrations of CM (0, 0·01, 0·1, 0·2, 0·3% w/v) were examined for antimicrobial activity against log vs stationary phase cells of Salmonella and at different conditions of temperature, salinity and pH. Results showed greatest activity with 0·3% CM at pH 7, 25-37°C without additional of salt. Significant reductions in Salmonella levels were also achieved in natural pond water, although decreases were reduced compared to sterile water. All serotypes were sensitive to CM, with minimal inhibitory concentrations ranging from 0·0031 to 0·0250% w/v. Phylogenic analysis of Javiana strains showed increased resistance appeared in multiple genetic lineages. CONCLUSION Conditions demonstrating greatest CM activity were compatible with agricultural practices. Although sensitivity to CM varied among Salmonella strains, all strains were sensitive under conditions examined in this study. SIGNIFICANCE AND IMPACT OF THE STUDY This research indicated that CM, a natural compound with minimal environmental impact, could be an effective alternative for mitigating Salmonella in agricultural water applications.
Collapse
Affiliation(s)
- Y Fan
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - A Ginn
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Z Ma
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - M Kang
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - K C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - A C Wright
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Ren J, Sang Y, Qin R, Cui Z, Yao YF. 6S RNA is involved in acid resistance and invasion of epithelial cells in Salmonella enterica serovar Typhimurium. Future Microbiol 2017; 12:1045-1057. [PMID: 28796533 DOI: 10.2217/fmb-2017-0055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Acid is an important environmental condition encountered frequently by Salmonella enterica serovar Typhimurium during its pathogenesis, but the role of small-noncoding RNAs (sRNAs) in response to acid stress is poorly understood. METHODS We used RNA sequencing to explore acid-responsive sRNAs in S. Typhimurium. RESULTS It identified that 6S RNA encoded by the ssrS was significantly upregulated at pH 3.0. The 6S RNA knockout strain showed a reduced ability to survive at pH 3.0. Additionally, genes in Salmonella pathogenicity island-1 were downregulated in the 6S RNA knockout strain. The loss of 6S RNA significantly reduced S. Typhimurium invasion ability in HeLa cells and virulence in a mouse model. CONCLUSION These findings demonstrate that 6S RNA plays an important role in S. Typhimurium survival under extremely acid conditions and for invasion of epithelial cells.
Collapse
Affiliation(s)
- Jie Ren
- Department of Microbiology & Immunology, Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Sang
- Department of Microbiology & Immunology, Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Qin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Feng Yao
- Department of Microbiology & Immunology, Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
20
|
Variability in the adaptive acid tolerance response phenotype of Salmonella enterica strains. Food Microbiol 2017; 62:99-105. [DOI: 10.1016/j.fm.2016.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/18/2016] [Accepted: 10/03/2016] [Indexed: 12/18/2022]
|
21
|
Kim SS, Sung HJ, Kwak HS, Joo IS, Lee JS, Ko G, Kang DH. Effect of Power Levels on Inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in Tomato Paste Using 915-Megahertz Microwave and Ohmic Heating. J Food Prot 2016; 79:1616-1622. [PMID: 28221946 DOI: 10.4315/0362-028x.jfp-16-044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of power levels on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in tomato paste was investigated using 915-MHz microwave heating (MW) and ohmic heating (OH). Heating uniformity, pathogen inactivation, and quality aspects were determined with 1.8-, 2.1-, 2.4-, and 3.0-kW MW and corresponding OH. GInaFit was used to analyze pathogen inactivation. The heating uniformity of MW-treated samples was inferior to that of OH-treated samples at low power levels of 1.8 to 2.4 kW but improved as the power level increased. Pathogen inactivation of MW-treated samples was significantly higher than that of OH-treated samples at low power levels of 1.8 to 2.4 kW (P < 0.05) but was not significantly different at the highest power level of 3.0 kW (P > 0.05). Quality aspects (color, pH, and lycopene content), except for L*, of MW-treated samples were not significantly degraded (P > 0.05) by increased power levels. Our results indicate that increasing power levels of MW ensures heating uniformity and microbiological safety and preserves quality aspects of tomato paste.
Collapse
Affiliation(s)
- Sang-Soon Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.,Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon do 232-916, Republic of Korea
| | - Hye-Jung Sung
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.,Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon do 232-916, Republic of Korea
| | - Hyo-Sun Kwak
- Division of Food Microbiology, Department of Food Safety Evaluation, National Institute of Food and Drug Safety Evaluation, Osong, Republic of Korea
| | - In-Sun Joo
- Division of Food Microbiology, Department of Food Safety Evaluation, National Institute of Food and Drug Safety Evaluation, Osong, Republic of Korea
| | - Jeong-Su Lee
- Division of Food Microbiology, Department of Food Safety Evaluation, National Institute of Food and Drug Safety Evaluation, Osong, Republic of Korea
| | - Gwangpyo Ko
- Department of Environmental Health, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong-Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.,Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon do 232-916, Republic of Korea
| |
Collapse
|
22
|
Lee JJ, Wu YC, Kuo CJ, Hsuan SL, Chen TH. TolC is important for bacterial survival and oxidative stress response in Salmonella enterica serovar Choleraesuis in an acidic environment. Vet Microbiol 2016; 193:42-8. [PMID: 27599929 DOI: 10.1016/j.vetmic.2016.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 11/25/2022]
Abstract
The outer membrane protein TolC, which is one of the key components of several multidrug efflux pumps, is thought to be involved in various independent systems in Enterobacteriaceae. Since the acidic environment of the stomach is an important protection barrier against foodborne pathogen infections in hosts, we evaluated whether TolC played a role in the acid tolerance of Salmonella enterica serovar Choleraesuis. Comparison of the acid tolerance of the tolC mutant and the parental wild-type strain showed that the absence of TolC limits the ability of Salmonella to sustain life under extreme acidic conditions. Additionally, the mutant exhibited morphological changes during growth in an acidic medium, leading to the conflicting results of cell viability measured by spectrophotometry and colony-forming unit counting. Reverse-transcriptional-PCR analysis indicated that acid-related molecules, apparatus, or enzymes and oxidation-induced factors were significantly affected by the acidic environment in the null-tolC mutant. The elongated cellular morphology was restored by adding antioxidants to the culture medium. Furthermore, we found that increased cellular antioxidative activity provides an overlapping protection against acid killing, demonstrating the complexity of the bacterial acid stress response. Our findings reinforce the multifunctional characteristics of TolC in acid tolerance or oxidative stress resistance and support the correlative protection mechanism between oxygen- and acid-mediated stress responses in Salmonella enterica serovar Choleraesuis.
Collapse
Affiliation(s)
- Jen-Jie Lee
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan
| | - Ying-Chen Wu
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan
| | - Chih-Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing University, Taiwan
| | - Shih-Ling Hsuan
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan.
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan; Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taiwan.
| |
Collapse
|
23
|
Salmonella typhimurium resistance on pulsed electric fields associated with membrane fluidity and gene regulation. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Metabolic parameters linked by phenotype microarray to acid resistance profiles of poultry-associated Salmonella enterica. Res Microbiol 2016; 167:745-756. [PMID: 27418207 DOI: 10.1016/j.resmic.2016.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/13/2016] [Accepted: 06/22/2016] [Indexed: 11/22/2022]
Abstract
Phenotype microarrays were analyzed for 51 datasets derived from Salmonella enterica. The top 4 serotypes associated with poultry products and one associated with turkey, respectively Typhimurium, Enteritidis, Heidelberg, Infantis and Senftenberg, were represented. Datasets were partitioned initially into two clusters based on ranking by values at pH 4.5 (PM10 A03). Negative control wells were used to establish 90 respiratory units as the point differentiating acid resistance from sensitive strains. Thus, 24 isolates that appeared most acid-resistant were compared initially to 27 that appeared most acid-sensitive (24 × 27 format). Paired cluster analysis was also done and it included the 7 most acid-resistant and -sensitive datasets (7 × 7 format). Statistical analyses of ranked data were then calculated in order of standard deviation, probability value by the Student's t-test and a measure of the magnitude of difference called effect size. Data were reported as significant if, by order of filtering, the following parameters were calculated: i) a standard deviation of 24 respiratory units or greater from all datasets for each chemical, ii) a probability value of less than or equal to 0.03 between clusters and iii) an effect size of at least 0.50 or greater between clusters. Results suggest that between 7.89% and 23.16% of 950 chemicals differentiated acid-resistant isolates from sensitive ones, depending on the format applied. Differences were more evident at the extremes of phenotype using the subset of data in the paired 7 × 7 format. Results thus provide a strategy for selecting compounds for additional research, which may impede the emergence of acid-resistant Salmonella enterica in food.
Collapse
|
25
|
Faour-Klingbeil D, Kuri V, Todd EC. The influence of pre-wash chopping and storage conditions of parsley on the efficacy of disinfection against S. Typhimurium. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2022]
|
26
|
Survival characteristics of monophasic Salmonella Typhimurium 4,[5],12:i:- strains derived from pig feed ingredients and compound feed. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Kim SS, Kang DH. Comparison of pH effects on ohmic heating and conventional heating for inactivation of Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium and Listeria monocytogenes in orange juice. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.06.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Birk T, Henriksen S, Müller K, Hansen TB, Aabo S. Growth potential of exponential- and stationary-phase Salmonella Typhimurium during sausage fermentation. Meat Sci 2015; 121:342-349. [PMID: 27423056 DOI: 10.1016/j.meatsci.2015.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/10/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022]
Abstract
Raw meat for sausage production can be contaminated with Salmonella. For technical reasons, meat is often frozen prior to mincing but it is unknown how growth of Salmonella in meat prior to freezing affects its growth potential during sausage fermentation. We investigated survival of exponential- and stationary-phase Salmonella Typhimurium (DT12 and DTU292) during freezing at -18°C and their subsequent growth potential during 72h sausage fermentation at 25°C. After 0, 7 and >35d of frozen storage, sausage batters were prepared with NaCl (3%) and NaNO2 (0, 100ppm) and fermented with and without starter culture. With no starter culture, both strains grew in both growth phases. In general, a functional starter culture abolished S. Typhimurium growth independent of growth phase and we concluded that ensuring correct fermentation is important for sausage safety. However, despite efficient fermentation, sporadic growth of exponential-phase cells of S. Typhimurium was observed drawing attention to the handling and storage of sausage meat.
Collapse
Affiliation(s)
- T Birk
- National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - S Henriksen
- National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - K Müller
- National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - T B Hansen
- National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - S Aabo
- National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark.
| |
Collapse
|
29
|
Acetylation Regulates Survival of Salmonella enterica Serovar Typhimurium under Acid Stress. Appl Environ Microbiol 2015; 81:5675-82. [PMID: 26070677 DOI: 10.1128/aem.01009-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/02/2015] [Indexed: 01/01/2023] Open
Abstract
The ability to acetylate lysine residues is conserved across organisms, and acetylation of lysine residues plays important roles in various cellular functions. Maintaining intracellular pH homeostasis is crucial for the survival of enteric bacteria in the acidic gastric tract. It has been shown that eukaryotes can stabilize the intracellular pH by histone deacetylation. However, it remains unknown whether bacteria can utilize a reversible protein acetylation system to adapt to an acidic environment. Here we demonstrate that protein acetylation/deacetylation is critical for Salmonella enterica serovar Typhimurium to survive in an acidic environment. We used RNA sequencing to analyze the transcriptome patterns under acid stress and found that the transcriptional levels of genes involved in NAD(+)/NADH metabolism were significantly changed, leading to an increase in the intracellular NAD(+)/NADH ratio. Moreover, acid stress downregulated the transcriptional level of pat, encoding acetyltransferase, and genes cyaA and crp, encoding adenylate cyclase and cyclic AMP receptor protein, respectively, which are positive regulators of pat. It was found that the acid signal alerts the tricarboxylic acid cycle to promote the consumption of acetyl coenzyme A (Ac-CoA), an acetyl group donor for the acetylation reaction. A lowered acetylation level not only was the bacterial response to acid stress but also increased the survival rate of S. Typhimurium under acid stress. The pat deletion mutant had a more stable intracellular pH, which paralleled the higher survival rate after acid treatment compared with that of both the wild-type strain and the cobB (encoding deacetylase) deletion mutant. Our data indicate that bacteria can downregulate the protein acetylation level to prevent the intracellular pH from further falling under acid stress, and this work may provide a new perspective to understand the bacterial acid resistance mechanism.
Collapse
|
30
|
Ahirwar SK, Pratap CB, Patel SK, Shukla VK, Singh IG, Mishra OP, Kumar K, Singh TB, Nath G. Acid exposure induces multiplication of Salmonella enterica serovar Typhi. J Clin Microbiol 2014; 52:4330-3. [PMID: 25320227 PMCID: PMC4313307 DOI: 10.1128/jcm.02275-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/09/2014] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhi faces several environmental stresses while going through the stomach (acidic pH) to the small intestine (basic pH) and intracellularly in macrophages (acidic pH) in humans. The acidic pH followed by alkaline pH in the small intestine might be responsible for expression of certain stress-induced genes, resulting in not only better survival but also induction of multiplication and invasion of the bacterium in the small intestine. Based on this hypothesis, we developed a process wherein we exposed the blood, urine, and stool specimens from 90 acute typhoid fever patients and 36 chronic typhoid carriers to acidic pH to see the effect on isolation rate of S. Typhi. About 5 g of freshly passed unpreserved stool, a centrifuged deposit of 15 ml of urine, and 5 ml of blood clot were subjected to 5 ml of Luria-Bertani (LB) broth (pH 3.5) for 20 min, followed by enrichment in bile broth-selenite F broth. When the combined isolation from all 3 specimens, i.e., blood, urine, and stool, after acid exposure was considered, a total of 77.7% of the acute typhoid patients were observed to be positive for the isolation of the S. Typhi serotype, compared to 8.8% by the conventional method. Similarly, 42% (15/36) of chronic carriers yielded positive for S. Typhi growth after acid exposure, compared to 5.5% (2/36) by the conventional method. It therefore can be concluded that acid shock triggers the multiplication of the bacteria, resulting in better isolation rates from blood clot, stool, and urine specimens.
Collapse
Affiliation(s)
- Suneel Kumar Ahirwar
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Chandra Bhan Pratap
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Saurabh Kumar Patel
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vijay K Shukla
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Indarjeet Gambhir Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Om Prakash Mishra
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Kailash Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Tej Bali Singh
- Department of Community Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
31
|
Yang Y, Kadim MI, Khoo WJ, Zheng Q, Setyawati MI, Shin YJ, Lee SC, Yuk HG. Membrane lipid composition and stress/virulence related gene expression of Salmonella Enteritidis cells adapted to lactic acid and trisodium phosphate and their resistance to lethal heat and acid stress. Int J Food Microbiol 2014; 191:24-31. [DOI: 10.1016/j.ijfoodmicro.2014.08.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/23/2014] [Accepted: 08/26/2014] [Indexed: 01/20/2023]
|
32
|
|
33
|
Growth temperature alters Salmonella Enteritidis heat/acid resistance, membrane lipid composition and stress/virulence related gene expression. Int J Food Microbiol 2014; 172:102-9. [DOI: 10.1016/j.ijfoodmicro.2013.12.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/20/2013] [Accepted: 12/04/2013] [Indexed: 11/22/2022]
|
34
|
Yoneda S, Kawarai T, Narisawa N, Tuna E, Sato N, Tsugane T, Saeki Y, Ochiai K, Senpuku H. Effects of short-chain fatty acids onActinomyces naeslundiibiofilm formation. Mol Oral Microbiol 2013; 28:354-65. [DOI: 10.1111/omi.12029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Affiliation(s)
- S. Yoneda
- Department of Bacteriology; National Institute of Infectious Diseases; Tokyo; Japan
| | - T. Kawarai
- Department of Bacteriology; National Institute of Infectious Diseases; Tokyo; Japan
| | - N. Narisawa
- Department of Bacteriology; National Institute of Infectious Diseases; Tokyo; Japan
| | | | - N. Sato
- Department of Bacteriology; National Institute of Infectious Diseases; Tokyo; Japan
| | - T. Tsugane
- Oral Science Section Basic Research Department; Lotte Co., Ltd.; Saitama; Japan
| | - Y. Saeki
- Oral Science Section Basic Research Department; Lotte Co., Ltd.; Saitama; Japan
| | - K. Ochiai
- Department of Microbiology; Nihon University of Dentistry; Tokyo; Japan
| | - H. Senpuku
- Department of Bacteriology; National Institute of Infectious Diseases; Tokyo; Japan
| |
Collapse
|
35
|
Lianou A, Koutsoumanis KP. Evaluation of the strain variability of Salmonella enterica acid and heat resistance. Food Microbiol 2013; 34:259-67. [DOI: 10.1016/j.fm.2012.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 11/29/2022]
|
36
|
Williams ZT, Blake JP, Macklin KS. The effect of sodium bisulfate on Salmonella viability in broiler litter. Poult Sci 2012; 91:2083-8. [PMID: 22912440 DOI: 10.3382/ps.2011-01976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Controlling Salmonella populations on commercial broiler grow out farms is a crucial step in reducing Salmonella contamination in processing plants. Broiler litter harbors many species of pathogenic bacteria including Salmonella. Sodium bisulfate has been shown to reduce concentration of bacteria in broiler litter. In experiments 1 and 2, sodium bisulfate was applied to broiler litter at rates that are comparable to what is commonly used by the poultry industry: 22.7, 45.4, and 68.0 kg/92.9 m(2). After application, sodium bisulfate was mixed into the litter. In experiments 3 and 4, sodium bisulfate was applied at 45.4 kg/92.9 m(2) to the surface of the litter. For all experiments, a cocktail of 5 Salmonella serovars was applied to the litter. Ammonia, pH, moisture, and water activity measurements were taken; additionally, total aerobic, anaerobic, enteric, and Salmonella concentrations were determined at 0, 24, and 96 h. In experiments 1 and 2, Salmonella concentrations were higher for treated litter than the control at 24 and 96 h (P < 0.001). In experiments 1 and 2, litter pH was lower for treated litter at 24 and 96 h; lowest pH was observed with the 68.0 kg/92.9 m(2), with a pH of 5.95 (P < 0.001). In experiments 3 and 4, litter pH was lowered for treated litter to 2.1 (P < 0.001). Even this lower pH did not reduce Salmonella concentrations compared with the control (P = 0.05). The decreased litter pH appeared to be responsible for increased viability of Salmonella. This research shows that the lowering of litter pH, which decreases litter ammonia production, could actually lead to an increased survivability of certain bacteria, such as Salmonella.
Collapse
Affiliation(s)
- Z T Williams
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | | | | |
Collapse
|
37
|
Álvarez-Ordóñez A, Prieto M, Bernardo A, Hill C, López M. The Acid Tolerance Response of Salmonella spp.: An adaptive strategy to survive in stressful environments prevailing in foods and the host. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
38
|
Mani-López E, García H, López-Malo A. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.04.043] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
|
40
|
He X, Ahn J. Differential gene expression in planktonic and biofilm cells of multiple antibiotic-resistant Salmonella Typhimurium and Staphylococcus aureus. FEMS Microbiol Lett 2011; 325:180-8. [PMID: 22092573 DOI: 10.1111/j.1574-6968.2011.02429.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 11/29/2022] Open
Abstract
This study was designed to evaluate gene expression patterns of the planktonic and biofilm cells of Staphylococcus aureus and Salmonella Typhimurium in trypticase soy broth adjusted to pH 5.5 and pH 7.3. The planktonic and biofilm cells of multiple antibiotic-resistant S. aureus (S. aureus(R) ) and S. Typhimurium (S. Typhimurium(R) ) were more resistant to β-lactams than those of antibiotic-susceptible S. aureus (S. aureus(S) ) and S. Typhimurium (S. Typhimurium(S) ) at pH 5.5 and pH 7.3. The relative gene expression levels of norB, norC, and mdeA genes were increased by 7.0-, 4.7-, and 4.6-fold, respectively, in the biofilm cells of S. aureus(S) grown at pH 7.3, while norB, norC, mdeA, sec, seg, sei, sel, sem, sen, and seo genes were stable in the biofilm cells of S. aureus(R) . This study provides useful information for understanding gene expression patterns in the planktonic and biofilm cells of antibiotic-resistance pathogens exposed to acidic stress.
Collapse
Affiliation(s)
- Xinlong He
- Department of Biomaterials Engineering, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, South Korea
| | | |
Collapse
|
41
|
Enache E, Mathusa EC, Elliott PH, Black DG, Chen Y, Scott VN, Schaffner DW. Thermal resistance parameters for Shiga toxin-producing Escherichia coli in apple juice. J Food Prot 2011; 74:1231-7. [PMID: 21819648 DOI: 10.4315/0362-028x.jfp-10-488] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of the present study was to determine the heat resistance of six non-O157 Shiga toxin-producing Escherichia coli (STEC) serotypes in comparison to E. coli O157:H7 in single-strength apple juice without pulp. The thermal parameters for stationary-phase and acid-adapted cells of E. coli strains from serogroups O26, O45, O103, O111, O121, O145, and O157:H7 were determined by using an immersed coil apparatus. The most heat-sensitive serotype in the present study was O26. Stationary-phase cells for serotypes O145, O121, and O45 had the highest D(56°C)-value among the six non-O157 serotypes studied, although all were significantly lower (P < 0.05) than that of E. coli O157:H7. At 60°C E. coli O157:H7 and O103 demonstrated the highest D-values (1.37 ± 0.23 and 1.07 ± 0.03 min, respectively). The D(62°C) for the most heat-resistant strain belonging to the serotype O145 was similar (P > 0.05) to that for the most resistant O157:H7 strain (0.61 ± 0.17 and 0.60 ± 0.09 min, respectively). The heat resistance for stationary-phase cells was generally equal to or higher than that of acid-adapted counterparts. Although E. coli O157:H7 revealed D-values similar to or higher than the individual six non-O157 STEC serotypes in apple juice, the z-values for most non-O157 STEC tested strains were greater than those of E. coli O157:H7. When data were used to calculate heat resistance parameters at a temperature recommended in U.S. Food and Drug Administration guidance to industry, the D(71.1°C) for E. coli O157:H7 and non-O157 STEC serotypes were not significantly different (P > 0.05).
Collapse
Affiliation(s)
- Elena Enache
- Grocery Manufacturers Association, Washington, D.C. 20005, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Hu Y, Lu P, Zhang Y, Li Y, Li L, Huang L, Chen S. Cra negatively regulates acid survival in Yersinia pseudotuberculosis. FEMS Microbiol Lett 2011; 317:190-5. [PMID: 21276044 DOI: 10.1111/j.1574-6968.2011.02227.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Survival in acidic environments is important for successful infection of gastrointestinal pathogens. Many bacteria have evolved elaborate mechanisms by inducing or repressing gene expression, which subsequently provide pH homeostasis and enable acid survival. In this study, we employed comparative proteomic analysis to identify the acid-responsive proteins of a food-borne enteric bacterium, Yersinia pseudotuberculosis. The expression level of eight proteins involved in carbohydrate metabolism was up- or downregulated over twofold at pH 4.5 compared with pH 7.0. The role of a global transcriptional regulator catabolite repressor/activator Cra was further studied in this acid survival process. lacZ-fusion analysis showed that expression of cra was repressed under acidic pH. Deletion of the cra gene increased acid survival by 10-fold, whereas complementation restored the wild-type phenotype. These results lead us to propose that, in response to acidic pH, the expression of cra gene is downregulated to increase acid survival. This is the first study to demonstrate the regulatory role of Cra in acid survival in an enteric bacterium.
Collapse
Affiliation(s)
- Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, The Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Ongeng D, Muyanja C, Geeraerd AH, Springael D, Ryckeboer J. Survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in manure and manure-amended soil under tropical climatic conditions in Sub-Saharan Africa. J Appl Microbiol 2011; 110:1007-22. [PMID: 21276146 DOI: 10.1111/j.1365-2672.2011.04956.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To establish the fate of Escherichia coli O157:H7 and Salmonella Typhimurium in manure and manure-amended agricultural soils under tropical conditions in Sub-Saharan Africa. METHODS AND RESULTS Survival of nonvirulent E. coli O157:H7 and Salm. Typhimurium at 4 and 7 log CFU g(-1) in manure and manure-amended soil maintained at ≥80% r.h. or exposed to exclusive field or screen house conditions was determined in the Central Agro-Ecological Zone of Uganda. Maintaining the matrices at high moisture level promoted the persistence of high-density inocula and enhanced the decline of low-density inocula in the screen house, but moisture condition did not affect survival in the field. The large majority of the survival kinetics displayed complex patterns corresponding to the Double Weibull model. The two enteric bacteria survived longer in manure-amended soil than in manure. The 7 log CFU g(-1) E. coli O157:H7 and Salm. Typhimurium survived for 49-84 and 63-98 days, while at 4 log CFU g(-1) , persistence was 21-28 and 35-42 days, respectively. CONCLUSIONS Under tropical conditions, E. coli O157:H7 and Salm. Typhimurium persisted for 4 and 6 weeks at low inoculum density and for 12 and 14 weeks at high inoculum density, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY Persistence in the tropics was (i) mostly shorter than previously observed in temperate regions thus suggesting that biophysical conditions in the tropics might be more detrimental to enteric bacteria than in temperate environments; (ii) inconsistent with published data isothermally determined previously hence indicating the irrelevance of single point isothermal data to estimate survival under dynamic temperature conditions.
Collapse
Affiliation(s)
- D Ongeng
- Department of Food Science and Post Harvest Technology, Faculty of Agriculture and Environment, Gulu University, Gulu, Uganda Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Leuven, Belgium Department of Food Science and Technology, Makerere University, Kampala, Uganda Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
44
|
Calhoun LN, Liyanage R, Lay JO, Kwon YM. Proteomic analysis of Salmonella enterica serovar Enteritidis following propionate adaptation. BMC Microbiol 2010; 10:249. [PMID: 20920181 PMCID: PMC2957393 DOI: 10.1186/1471-2180-10-249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 09/28/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella Enteritidis is a highly prevalent and persistent foodborne pathogen and is therefore a leading cause of nontyphoidal gastrointestinal disease worldwide. A variety of stresses are endured throughout its infection cycle, including high concentrations of propionate (PA) within food processing systems and within the gut of infected hosts. Prolonged PA exposure experienced in such milieus may have a drastic effect on the proteome of Salmonella Enteritidis subjected to this stress. RESULTS In this study, we used 2 D gel electrophoresis to examine the proteomes of PA adapted and unadapted S. Enteritidis and have identified five proteins that are upregulated in PA adapted cultures using standard peptide mass fingerprinting by MALDI-TOF-MS and sequencing by MALDI LIFT-TOF/TOF tandem mass spectrometry. Of these five, two significant stress-related proteins (Dps and CpxR) were shown (via qRT-PCR analysis) to be upregulated at the transcriptional level as well. Unlike the wild type when adapted to PA (which demonstrates significant acid resistance), PA adapted S. Enteritidis ∆dps and S. Enteritidis ∆cpxR were at a clear disadvantage when challenged to a highly acidic environment. However, we found the acid resistance to be fully restorable after genetic complementation. CONCLUSIONS This work reveals a significant difference in the proteomes of PA adapted and unadapted S. Enteritidis and affirms the contribution of Dps and CpxR in PA induced acid resistance.
Collapse
Affiliation(s)
- Leona N Calhoun
- Cell and Molecular Biology Program, Department of Poultry Science, University of Arkansas, 1260 W, Maple Avenue, Fayetteville, AR 72701, USA
| | | | | | | |
Collapse
|
45
|
Changes in ffh, uvrA, groES and dnaK mRNA Abundance as a Function of Acid-Adaptation and Growth Phase in Bifidobacterium longum BBMN68 Isolated from Healthy Centenarians. Curr Microbiol 2010; 62:612-7. [DOI: 10.1007/s00284-010-9751-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
|
46
|
Calhoun L, Kwon Y. The effect of long-term propionate adaptation on the stress resistance of Salmonella Enteritidis. J Appl Microbiol 2010; 109:1294-300. [DOI: 10.1111/j.1365-2672.2010.04750.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Hughes MK, Yanamala S, San Francisco M, Loneragan GH, Miller MF, Brashears MM. Reduction of multidrug-resistant and drug-susceptible Salmonella in ground beef and freshly harvested beef briskets after exposure to commonly used industry antimicrobial interventions. J Food Prot 2010; 73:1231-7. [PMID: 20615335 DOI: 10.4315/0362-028x-73.7.1231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two separate studies were conducted to examine the differences in survivability of multidrug-resistant (MDR) and drug-susceptible Salmonella in fresh meats in a simulated industry environment. Beef trim from a commercial facility was inoculated with either MDR (AmpC phenotype) or drug-susceptible Salmonella (SUS) cocktails (10(6) CFU/ml). Antimicrobial interventions included 3% lactic acid (LA), 1,000 ppm of acidified sodium chloride (ASC), ambient water (AW), and an inoculated control with no intervention (CTRL). Each aliquot was ground and formed into patties and packaged using high-O(2) modified atmosphere packaging. Samples for microbiological evaluation were collected on days 0, 7, 10, and 14. In the second study, beef briskets were collected immediately after harvest. Inoculation and antimicrobial application were the same, except treatments were heated and there was an additional hot water treatment. All beef briskets were refrigerated, and samples were collected at 0, 6, and 24 h. For the first study, the overall effectiveness of the treatments (from most effective to least effective) was LA, ASC, CTRL, and AW. Significant differences were observed only between MDR and SUS Salmonella when AW was applied (P = 0.02), and bacterial loads with AW were significantly greater (P < 0.01) for MDR Salmonella. In the second study, the intervention effectiveness ranked LA, ASC, hot water, AW, and CTRL. Significant differences between MDR and SUS Salmonella levels were not detected for any intervention or sampling time point. These data indicate that MDR and SUS variants of Salmonella behave similarly in response to the antagonistic action of antimicrobials commonly used in beef facilities.
Collapse
Affiliation(s)
- M K Hughes
- Department of Animal and Food Sciences, International Center for Food Industry Excellence, Texas Tech University, Lubbock, Texas 79409, USA
| | | | | | | | | | | |
Collapse
|
48
|
Hu Y, Lu P, Zhang Y, Li L, Chen S. Characterization of an aspartate-dependent acid survival system in Yersinia pseudotuberculosis. FEBS Lett 2010; 584:2311-4. [PMID: 20371246 DOI: 10.1016/j.febslet.2010.03.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/29/2010] [Accepted: 03/29/2010] [Indexed: 01/08/2023]
Abstract
Enteric bacteria have developed various survival systems that protect against acid stress. In this study, an aspartate-dependent acid survival system is characterized in Yersinia pseudotuberculosis. The expression of aspartase (AspA) was confirmed to be increased at acidic pH by proteomic and lacZ fusion analyses. Addition of aspartate increased acid survival of the wild type but not the aspA knockout mutant. AspA increases acid survival by producing ammonia as demonstrated by mutation and in vitro enzyme activity analyses. This is the first demonstration that an enzyme involved in aspartate metabolism plays a role in acid survival in an enteric bacterium.
Collapse
Affiliation(s)
- Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, The Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | |
Collapse
|
49
|
Zhao B, Houry WA. Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survivalThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases” and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:301-14. [DOI: 10.1139/o09-182] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Enteric bacteria such as Escherichia coli have acquired a wide array of acid stress response systems to counteract the extreme acidity encountered when invading the host’s digestive or urinary tracts. These acid stress response systems are both enzyme and chaperone based. The 3 main enzyme-based acid resistance pathways are glutamate-, arginine-, and lysine-decarboxylase pathways. They are under a complex regulatory network allowing the bacteria to fine tune its response to the external environment. HdeA and HdeB are the main chaperones involved in acid stress response. The decarboxylase systems are also found in Vibrio cholera, Vibrio vulnifus, Shigella flexneri, and Salmonella typhimurium, although some differences exist in their functional mechanism and regulation.
Collapse
Affiliation(s)
- Boyu Zhao
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
50
|
Waddington L, Cyr T, Hefford M, Hansen LT, Kalmokoff M. Understanding the acid tolerance response of bifidobacteria. J Appl Microbiol 2010; 108:1408-20. [DOI: 10.1111/j.1365-2672.2009.04540.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|