1
|
Al-Tameemi HM, Al-Hraishawi H, Al-Hejjaj MY, Abdulah NS, Alrafas HR, Dawood YA. Whole genome sequence and comparative genomics analysis of multidrug-resistant Staphylococcus xylosus NM36 isolated from a cow with mastitis in Basrah city. J Genet Eng Biotechnol 2023; 21:163. [PMID: 38060084 DOI: 10.1186/s43141-023-00606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Staphylococcus xylosus is a coagulase-negative, gram-positive coccus that is found in the environment and as a commensal organism on the skin and mucosal surfaces of animals. Despite the fact that S. xylosus is considered a nonpathogenic bacterium, several studies have linked S. xylosus to opportunistic infections in both animals and humans. During an investigation of mastitis-causing agents in the governorate of Basrah, Iraq, we identified an antibiotic-resistant strain of S. xylosus NM36 from a milk sample from a cow with chronic mastitis. In addition to robust biofilm formation, multiple antibiotic resistance phenotypes were found. To further understand the genetic background for these phenotypes, the full genome of S. xylosus NM36 was analyzed. RESULTS The genome consisted of a single circular 2,668,086 base pairs chromosome containing 32.8% G + C. There were 2454 protein-coding sequences, 4 ribosomal RNA (rRNA) genes, and 50 transfer RNA (tRNA) genes in the genome. In addition, genetic variation was studied by searching sequence data against a representative reference genome. Consequently, single-nucleotide polymorphism analysis was conducted and showed that there were 46,610 single-nucleotide polymorphisms (SNPs), 523 insertions, and 551 deletions. In order to overcome antibiotics, S. xylosus NM36 had been armed with several antibiotic resistance genes from several groups and families. The genome annotation service in PathoSystems Resource Integration Center (PATRIC) and Rapid Annotation using Subsystem Technology (RAST) annotation servers showed that there are multiple antimicrobial resistance elements, including antibiotic inactivation enzymes (BlaZ family, FosB), antibiotic resistance gene clusters (TcaB, TcaB2, TcaR), proteins involved in methicillin resistance (LytH, FmtA, FemC, HmrB, HmrA), TetR family transcriptional regulators, and efflux pumps conferring antibiotic resistance (NorA). In addition, we investigated and categorized the biofilm and quorum-sensing elements of the NM36 strain and found that it has multiple subsets of biofilm regulators, confirming its pathogenic nature. CONCLUSIONS These findings necessitate a reevaluation of microbial and clinical interventions when dealing with coagulase-negative staphylococci, particularly in the context of studies pertaining to public health. This is the first time, to our knowledge, that the entire genome of S. xylosus has been sequenced in Iraq.
Collapse
Affiliation(s)
- Hassan M Al-Tameemi
- Microbiology Department, College of Veterinary Medicine, Basrah University, Basrah, 61004, Iraq.
| | - Husam Al-Hraishawi
- Physiology Department, College of Medicine, Misan University, Amarah, Misan, Iraq
| | - Murtakab Y Al-Hejjaj
- Microbiology Department, College of Veterinary Medicine, Basrah University, Basrah, 61004, Iraq
| | | | - Haider R Alrafas
- Microbiology Department, College of Veterinary Medicine, Basrah University, Basrah, 61004, Iraq
| | - Yessar A Dawood
- Pharmacognosy and Medicinal Plants Department, College of Pharmacy, Basrah University, Basrah, Iraq
| |
Collapse
|
2
|
Rathi R. Potential inhibitors of FemC to combat Staphylococcus aureus: virtual screening, molecular docking, dynamics simulation, and MM-PBSA analysis. J Biomol Struct Dyn 2023; 41:10495-10506. [PMID: 36524526 DOI: 10.1080/07391102.2022.2157328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
FemC is a methicillin resistance factor involved in the alterations of peptidoglycan and glutamine synthesis in Staphylococcus aureus. To identify the potent antibacterial agents, antibacterial molecules were screened against the predicted and validated FemC model. Based on docking scores, presence of essential interactions with active site residues of FemC, pharmacokinetic, and ADMET properties, six candidates were shortlisted and subjected to molecular dynamics to evaluate the stability of FemC-ligand complexes. Further, per residue decomposition analysis and Molecular Mechanics/Poisson-Boltzmann Surface Area (MMPBSA) analysis confirmed that S15, M16, S17, R31, R43, Q47, K48 and R49 of FemC played a vital role in the formation of lower energy stable FemC-inhibitor(s) complexes. Therefore, in the present study, the reported six molecules (Z317461228, Z92241701, Z30923155, Z30202349, Z2609517102 and Z92470167) may pave the path to design the scaffold of novel potent antimicrobials against S. aureus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi Rathi
- Amity School of Applied Sciences, Amity University Haryana, Gurgaon, Haryana, India
| |
Collapse
|
3
|
Rathi R, Kumari R, Pathak SR, Dalal V. Promising antibacterials for LLM of Staphylococcus aureus using virtual screening, molecular docking, dynamics, and MMPBSA. J Biomol Struct Dyn 2023; 41:7277-7289. [PMID: 36073371 DOI: 10.1080/07391102.2022.2119278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
In S. aureus, lipophilic membrane (LLM) protein is a methicillin resistance factor and is an essential role in peptidoglycan metabolism. The virtual screening of antibacterial molecules against the model of LLM was performed to identify the potent antibacterial molecules. Molecular docking results of pharmacokinetic filtered molecules illustrated that five molecules had higher binding affinities than tunicamycin (TUM) and were stabled via non-covalent interactions (hydrogen bond and hydrophobic interactions) at the active site of LLM. Further, molecular dynamics results revealed that binding of identified antibacterial molecules with LLM resulted in stable LLM-inhibitor(s) complexes. Molecular Mechanics/Position-Boltzmann Surface Area (MMPBSA) analysis showed that LLM-inhibitor(s) complexes had high binding affinities in the range of -213.49 ± 2.24 to -227.42 ± 3.05 kJ/mol. The amino acid residues decomposition analysis confirmed that identified antibacterial molecules bound at the active site (Asn148, Leu149, Asp151, Asp208, His269, His271, and His272) of LLM. Noticeably, the current study found five antibacterial molecules (BDE 27575101, BDE 33638168, BDE 33672484, LAS 51502073, and BDE 25098678) were highly potent than TUM and even than earlier reported molecules. Therefore, here reported antibacterial molecules may be used directly or developed to inhibit LLM of S. aureus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi Rathi
- Amity School of Applied Sciences, Amity University Haryana, Haryana, India
| | - Reena Kumari
- Department of Mathematics and Statistics, Swami Vivekanand Subharti University, Meerut, India
| | - Seema R Pathak
- Amity School of Applied Sciences, Amity University Haryana, Haryana, India
| | - Vikram Dalal
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
Lade H, Kim JS. Molecular Determinants of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review. Antibiotics (Basel) 2023; 12:1362. [PMID: 37760659 PMCID: PMC10525618 DOI: 10.3390/antibiotics12091362] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The development of antibiotic resistance in Staphylococcus aureus, particularly in methicillin-resistant S. aureus (MRSA), has become a significant health concern worldwide. The acquired mecA gene encodes penicillin-binding protein 2a (PBP2a), which takes over the activities of endogenous PBPs and, due to its low affinity for β-lactam antibiotics, is the main determinant of MRSA. In addition to PBP2a, other genetic factors that regulate cell wall synthesis, cell signaling pathways, and metabolism are required to develop high-level β-lactam resistance in MRSA. Although several genetic factors that modulate β-lactam resistance have been identified, it remains unclear how they alter PBP2a expression and affect antibiotic resistance. This review describes the molecular determinants of β-lactam resistance in MRSA, with a focus on recent developments in our understanding of the role of mecA-encoded PBP2a and on other genetic factors that modulate the level of β-lactam resistance. Understanding the molecular determinants of β-lactam resistance can aid in developing novel strategies to combat MRSA.
Collapse
Affiliation(s)
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea;
| |
Collapse
|
5
|
Fan SH, Proctor RA, Ersoy SC, Manna AC, Cheung AL, Götz F, Chambers HF, Bayer AS. Role of the NaHCO 3 Transporter MpsABC in the NaHCO 3-β-Lactam-Responsive Phenotype in Methicillin-Resistant Staphylococcus aureus. Microbiol Spectr 2023; 11:e0014123. [PMID: 37102972 PMCID: PMC10269494 DOI: 10.1128/spectrum.00141-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are an increasing concern due to their intrinsic resistance to most standard-of-care β-lactam antibiotics. Recent studies of clinical isolates have documented a novel phenotype, termed NaHCO3 responsiveness, in which a substantial proportion of MRSA strains exhibit enhanced susceptibility to β-lactams such as cefazolin and oxacillin in the presence of NaHCO3. A bicarbonate transporter, MpsAB (membrane potential-generating system), was recently found in S. aureus, where it plays a role in concentrating NaHCO3 for anaplerotic pathways. Here, we investigated the role of MpsAB in mediating the NaHCO3 responsiveness phenotype. Radiolabeled NaH14CO3 uptake profiling revealed significantly higher accumulation in NaHCO3-responsive vs nonresponsive MRSA strains when grown in ambient air. In contrast, under 5% CO2 conditions, NaHCO3-responsive (but not nonresponsive) strains exhibited repressed uptake. Oxacillin MICs were measured in four prototype strains and their mpsABC deletion mutants in the presence of NaHCO3 supplementation under 5% CO2 conditions. NaHCO3-mediated reductions in oxacillin MICs were observed in the responsive parental strains but not in mpsABC deletion mutants. No significant impact on oxacillin MICs was observed in the nonresponsive strains under the same conditions. Transcriptional and translational studies were carried out using both quantitative reverse transcription-PCR (qRT-PCR) and mpsA-green fluorescent protein (GFP) fusion constructs; these investigations showed that mpsA expression and translation were significantly upregulated during mid-exponential-phase growth in oxacillin-NaHCO3-supplemented medium in responsive versus nonresponsive strains. Taken together, these data show that the NaHCO3 transporter MpsABC is a key contributor to the NaHCO3-β-lactam responsiveness phenotype in MRSA. IMPORTANCE MRSA infections are increasingly difficult to treat, due in part to their resistance to most β-lactam antibiotics. A novel and relatively common phenotype, termed NaHCO3 responsiveness, has been identified in which MRSA strains show increased susceptibility in vitro and in vivo to β-lactams in the presence of NaHCO3. A recently described S. aureus NaHCO3 transporter, MpsAB, is involved in intracellular NaHCO3 concentration for anaplerotic pathways. We investigated the role of MpsAB in mediating the NaHCO3 responsiveness phenotype in four prototype MRSA strains (two responsive and two nonresponsive). We demonstrated that MpsABC is an important contributor to the NaHCO3-β-lactam responsiveness phenotype. Our study adds to the growing body of well-defined characteristics of this novel phenotype, which could potentially translate to alternative targets for MRSA treatment using β-lactams.
Collapse
Affiliation(s)
- Sook-Ha Fan
- The Lundquist Institute, Torrance, California, USA
| | - Richard A. Proctor
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology/Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | - Adhar C. Manna
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Ambrose L. Cheung
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Germany
| | | | - Arnold S. Bayer
- The Lundquist Institute, Torrance, California, USA
- Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
6
|
Kwan JMC, Qiao Y. Mechanistic Insights into the Activities of Major Families of Enzymes in Bacterial Peptidoglycan Assembly and Breakdown. Chembiochem 2023; 24:e202200693. [PMID: 36715567 DOI: 10.1002/cbic.202200693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Serving as an exoskeletal scaffold, peptidoglycan is a polymeric macromolecule that is essential and conserved across all bacteria, yet is absent in mammalian cells; this has made bacterial peptidoglycan a well-established excellent antibiotic target. In addition, soluble peptidoglycan fragments derived from bacteria are increasingly recognised as key signalling molecules in mediating diverse intra- and inter-species communication in nature, including in gut microbiota-host crosstalk. Each bacterial species encodes multiple redundant enzymes for key enzymatic activities involved in peptidoglycan assembly and breakdown. In this review, we discuss recent findings on the biochemical activities of major peptidoglycan enzymes, including peptidoglycan glycosyltransferases (PGT) and transpeptidases (TPs) in the final stage of peptidoglycan assembly, as well as peptidoglycan glycosidases, lytic transglycosylase (LTs), amidases, endopeptidases (EPs) and carboxypeptidases (CPs) in peptidoglycan turnover and metabolism. Biochemical characterisation of these enzymes provides valuable insights into their substrate specificity, regulation mechanisms and potential modes of inhibition.
Collapse
Affiliation(s)
- Jeric Mun Chung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), 21 Nanyang Link, Singapore, 637371, Singapore.,LKC School of Medicine, Nanyang Technological University (NTU) Singapore, 11 Mandalay Road, Singapore, Singapore, 208232, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), Singapore, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
7
|
Characterization of the Role of Two-Component Systems in Antibiotic Resistance Formation in Salmonella enterica Serovar Enteritidis. mSphere 2022; 7:e0038322. [PMID: 36286534 PMCID: PMC9769886 DOI: 10.1128/msphere.00383-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The two-component system (TCS) is one of the primary pathways by which bacteria adapt to environmental stresses such as antibiotics. This study aimed to systematically explore the role of TCSs in the development of multidrug resistance (MDR) in Salmonella enterica serovar Enteritidis. Twenty-six in-frame deletion mutants of TCSs were generated from S. Enteritidis SJTUF12367 (the wild type [WT]). Antimicrobial susceptibility tests with these mutants revealed that 10 TCSs were involved in the development of antibiotic resistance in S. Enteritidis. In these 10 pairs of TCSs, functional defects in CpxAR, PhoPQ, and GlnGL in various S. Enteritidis isolates led to a frequent decrease in MIC values against at least three classes of clinically important antibiotics, including cephalosporins and quinolones, which indicated the importance of these TCSs to the formation of MDR. Interaction network analysis via STRING revealed that the genes cpxA, cpxR, phoP, and phoQ played important roles in the direct interaction with global regulatory genes and the relevant genes of efflux pumps and outer membrane porins. Quantitative reverse transcription-PCR analysis further demonstrated that the increased susceptibility to cephalosporins and quinolones in ΔphoP and ΔcpxR mutant cells was accompanied by increased expression of membrane porin genes (ompC, ompD, and ompF) and reduced expression of efflux pump genes (acrA, macB, and mdtK), as well as an adverse transcription of the global regulatory genes (ramA and crp). These results indicated that CpxAR and PhoPQ played an important role in the development of MDR in S. Enteritidis through regulation of cell membrane permeability and efflux pump activity. IMPORTANCE S. Enteritidis is a predominant Salmonella serotype that causes human salmonellosis and frequently exhibits high-level resistance to commonly used antibiotics, including cephalosporins and quinolones. Although TCSs are known as regulators for bacterial adaptation to stressful conditions, which modulates β-lactam resistance in Vibrio parahaemolyticus and colistin resistance in Salmonella enterica serovar Typhimurium, there is little knowledge of their functional mechanisms underlying the development of antibiotic resistance in S. Enteritidis. Here, we systematically identified the TCS elements in S. Enteritidis SJTUF12367, revealed that the three TCSs CpxAR, PhoPQ, and GlnGL were crucial for the MDR formation in S. Enteritidis, and preliminarily illustrated the regulatory functions of CpxAR and PhoPQ for antimicrobial resistance genes. Our work provides the basis to understand the important TCSs that regulate formation of antibiotic resistance in S. Enteritidis.
Collapse
|
8
|
Kumari R, Dalal V. Identification of potential inhibitors for LLM of Staphylococcus aureus: structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. J Biomol Struct Dyn 2022; 40:9833-9847. [PMID: 34096457 DOI: 10.1080/07391102.2021.1936179] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Staphylococcus aureus causes various life-threatening diseases in humans and developed resistance to several antibiotics. Lipophilic membrane (LLM) protein regulates bacterial lysis rate and methicillin resistance level in S. aureus. To identify potential lead molecules, we performed a structure-based pharmacophore modeling by consideration of pharmacophore properties from LLM-tunicamycin complex. Further, virtual screening of ZINC database against the LLM was conducted and compounds were assessed for Lipinski and ADMET properties. Based on pharmacokinetic, and molecular docking, five potential inhibitors (ZINC000072380005, ZINC000257219974, ZINC000176045471, ZINC000035296288, and ZINC000008789934) were identified. Molecular dynamics simulation (MDS) of these five molecules was performed to evaluate the dynamics and stability of protein after binding of the ligands. Several MDS analysis like RMSD, RMSF, Rg, SASA, and PCA confirm that identified compounds exhibit higher binding affinity as compared to tunicamycin for LLM. The binding free energy analysis reveals that five compounds exhibit higher binding energy in the range of -218.76 to -159.52 kJ/mol, which is higher as compared to tunicamycin (-116.13 kJ/mol). Individual residue decomposition analysis concludes that Asn148, Asp151, Asp208, His271, and His272 of LLM play a significant role in the formation of lower energy LLM-inhibitor(s) complexes. These predicted molecules displayed pharmacological and structural properties and may be further used to develop novel antimicrobial compounds against S. aureus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reena Kumari
- Department of Mathematics and Statistics, Swami Vivekanand Subharti University, Meerut, India
| | - Vikram Dalal
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
9
|
Dalal V, Kumari R. Screening and Identification of Natural Product‐Like Compounds as Potential Antibacterial Agents Targeting FemC of
Staphylococcus aureus
: An in‐Silico Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202201728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vikram Dalal
- Department of Anesthesiology Washington University in St. Louis Missouri 63110 USA
| | - Reena Kumari
- Department of Mathematics and Statistics Swami Vivekanand Subharti University Meerut 250005 India
| |
Collapse
|
10
|
Travis BA, Peck JV, Salinas R, Dopkins B, Lent N, Nguyen VD, Borgnia MJ, Brennan RG, Schumacher MA. Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria. Nat Commun 2022; 13:3793. [PMID: 35778410 PMCID: PMC9249791 DOI: 10.1038/s41467-022-31573-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
How bacteria sense and respond to nitrogen levels are central questions in microbial physiology. In Gram-positive bacteria, nitrogen homeostasis is controlled by an operon encoding glutamine synthetase (GS), a dodecameric machine that assimilates ammonium into glutamine, and the GlnR repressor. GlnR detects nitrogen excess indirectly by binding glutamine-feedback-inhibited-GS (FBI-GS), which activates its transcription-repression function. The molecular mechanisms behind this regulatory circuitry, however, are unknown. Here we describe biochemical and structural analyses of GS and FBI-GS-GlnR complexes from pathogenic and non-pathogenic Gram-positive bacteria. The structures show FBI-GS binds the GlnR C-terminal domain within its active-site cavity, juxtaposing two GlnR monomers to form a DNA-binding-competent GlnR dimer. The FBI-GS-GlnR interaction stabilizes the inactive GS conformation. Strikingly, this interaction also favors a remarkable dodecamer to tetradecamer transition in some GS, breaking the paradigm that all bacterial GS are dodecamers. These data thus unveil unique structural mechanisms of transcription and enzymatic regulation.
Collapse
Affiliation(s)
- Brady A Travis
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jared V Peck
- Cryo-EM core, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Raul Salinas
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Brandon Dopkins
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nicholas Lent
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Viet D Nguyen
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Richard G Brennan
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
An Interplay of Multiple Positive and Negative Factors Governs Methicillin Resistance in Staphylococcus aureus. Microbiol Mol Biol Rev 2022; 86:e0015921. [PMID: 35420454 PMCID: PMC9199415 DOI: 10.1128/mmbr.00159-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of resistance to β-lactam antibiotics has made Staphylococcus aureus a clinical burden on a global scale. MRSA (methicillin-resistant S. aureus) is commonly known as a superbug. The ability of MRSA to proliferate in the presence of β-lactams is attributed to the acquisition of mecA, which encodes the alternative penicillin binding protein, PBP2A, which is insensitive to the antibiotics. Most MRSA isolates exhibit low-level β-lactam resistance, whereby additional genetic adjustments are required to develop high-level resistance. Although several genetic factors that potentiate or are required for high-level resistance have been identified, how these interact at the mechanistic level has remained elusive. Here, we discuss the development of resistance and assess the role of the associated components in tailoring physiology to accommodate incoming mecA.
Collapse
|
12
|
Vudhya Gowrisankar Y, Manne Mudhu S, Pasupuleti SK, Suthi S, Chaudhury A, Sarma PVGK. Staphylococcus aureus grown in anaerobic conditions exhibits elevated glutamine biosynthesis and biofilm units. Can J Microbiol 2020; 67:323-331. [PMID: 33136443 DOI: 10.1139/cjm-2020-0434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enormous spread of Staphylococcus aureus infections through biofilms is a major concern in hospital-acquired infections. Biofilm formation by S. aureus on any surface is facilitated by adjusting its redox status. This organism is a facultative anaerobe shift more towards reductive conditions by enhancing nitrogen metabolism where glutamine synthesis plays a key role. Glutamine is synthesized by glutamine synthetase (GS) encoded by the glnA gene. The gene was amplified by PCR from the chromosomal DNA of S. aureus, sequenced (HQ329146.1), and cloned. The pure recombinant GS exhibited Km of 11.06 ± 0.05 mmol·L-1 for glutamate and 2.4 ± 0.03 mmol·L-1 for ATP. The glnA gene sequence showed a high degree of variability with its human counterpart, while it was highly conserved in bacteria. Structural analysis revealed that the GS structure of S. aureus showed close homology with other Gram-positive bacteria and exhibited a high degree of variation with Escherichia coli GS. In the present study, we observed the increased presence of GS activity in multidrug-resistant strains of S. aureus with elevated biofilm units, grown in brain heart infusion broth; among them methicillin-resistant strains S. aureus LMV 3, 4, and 5 showed higher biofilm units. All these results explain the important role of glutamine biosynthesis with elevated biofilm units in the pathogenesis of S. aureus.
Collapse
Affiliation(s)
- Yugandhar Vudhya Gowrisankar
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, Andhra Pradesh, India.,Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan (Republic of China)
| | - Sunitha Manne Mudhu
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, Andhra Pradesh, India
| | - Santhosh Kumar Pasupuleti
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, Andhra Pradesh, India.,Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202, USA
| | - Subbarayudu Suthi
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, Andhra Pradesh, India
| | - Abhijit Chaudhury
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, Andhra Pradesh, India
| | | |
Collapse
|
13
|
Gingras H, Patron K, Leprohon P, Ouellette M. Azithromycin resistance mutations in Streptococcus pneumoniae as revealed by a chemogenomic screen. Microb Genom 2020; 6. [PMID: 33074087 PMCID: PMC7725334 DOI: 10.1099/mgen.0.000454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We report on the combination of chemical mutagenesis, azithromycin selection and next-generation sequencing (Mut-Seq) for the identification of small nucleotide variants that decrease the susceptibility of Streptococcus pneumoniae to the macrolide antibiotic azithromycin. Mutations in the 23S ribosomal RNA or in ribosomal proteins can confer resistance to macrolides and these were detected by Mut-Seq. By concentrating on recurrent variants, we could associate mutations in genes implicated in the metabolism of glutamine with decreased azithromycin susceptibility among S. pneumoniae mutants. Glutamine synthetase catalyses the transformation of glutamate and ammonium into glutamine and its chemical inhibition is shown to sensitize S. pneumoniae to antibiotics. A mutation affecting the ribosomal-binding site of a putative ribonuclease J2 is also shown to confer low-level resistance. Mut-Seq has the potential to reveal chromosomal changes enabling high resistance as well as novel events conferring more subtle phenotypes.
Collapse
Affiliation(s)
- Hélène Gingras
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Kévin Patron
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Philippe Leprohon
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marc Ouellette
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| |
Collapse
|
14
|
Millanao AR, Mora AY, Saavedra CP, Villagra NA, Mora GC, Hidalgo AA. Inactivation of Glutamine Synthetase-Coding Gene glnA Increases Susceptibility to Quinolones Through Increasing Outer Membrane Protein F in Salmonella enterica Serovar Typhi. Front Microbiol 2020; 11:428. [PMID: 32265871 PMCID: PMC7103639 DOI: 10.3389/fmicb.2020.00428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/27/2020] [Indexed: 11/29/2022] Open
Abstract
Ciprofloxacin is the choice treatment for infections caused by Salmonella Typhi, however, reduced susceptibility to ciprofloxacin has been reported for this pathogen. Considering the decreased approbation of new antimicrobials and the crisis of resistance, one strategy to combat this problem is to find new targets that enhances the antimicrobial activity for approved antimicrobials. In search of mutants with increased susceptibility to ciprofloxacin; 3,216 EZ-Tn5 transposon mutants of S. Typhi were screened. S. Typhi zxx::EZ-Tn5 mutants susceptible to ciprofloxacin were confirmed by agar diffusion and MIC assays. The genes carrying EZ-Tn5 transposon insertions were sequenced. Null mutants of interrupted genes, as well as inducible genetic constructs, were produced using site-directed mutagenesis, to corroborate phenotypes. SDS-PAGE and Real-time PCR were used to evaluate the expression of proteins and genes, respectively. Five mutants with increased ciprofloxacin susceptibility were found in the screening. The first confirmed mutant was the glutamine synthetase-coding gene glnA. Analysis of outer membrane proteins revealed increased OmpF, a channel for the influx of ciprofloxacin and nalidixic acid, in the glnA mutant. Expression of ompF increased four times in the glnA null mutant compared to WT strain. To understand the relationship between the expression of glnA and ompF, a strain with the glnA gene under control of the tetracycline-inducible Ptet promoter was created, to modulate glnA expression. Induction of glnA decreased expression of ompF, at the same time that reduced susceptibility to ciprofloxacin. Expression of sRNA MicF, a negative regulator of OmpF was reduced to one-fourth in the glnA mutant, compared to WT strain. In addition, expression of glnL and glnG genes (encoding the two-component system NtrC/B that may positively regulate OmpF) were increased in the glnA mutant. Further studies indicate that deletion of glnG decreases susceptibility to CIP, while deletion of micF gene increases susceptibility CIP. Our findings indicate that glnA inactivation promotes ompF expression, that translates into increased OmpF protein, facilitating the entry of ciprofloxacin, thus increasing susceptibility to ciprofloxacin through 2 possible mechanisms.
Collapse
Affiliation(s)
- Ana R Millanao
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.,Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Aracely Y Mora
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Nicolás A Villagra
- Escuela de Tecnología Médica, Universidad Andres Bello, Santiago, Chile.,Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guido C Mora
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas SEK, Facultad de Ciencias de la Salud, Santiago, Universidad SEK, Santiago, Chile
| | - Alejandro A Hidalgo
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
15
|
Nöldeke ER, Muckenfuss LM, Niemann V, Müller A, Störk E, Zocher G, Schneider T, Stehle T. Structural basis of cell wall peptidoglycan amidation by the GatD/MurT complex of Staphylococcus aureus. Sci Rep 2018; 8:12953. [PMID: 30154570 PMCID: PMC6113224 DOI: 10.1038/s41598-018-31098-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/06/2018] [Indexed: 01/09/2023] Open
Abstract
The peptidoglycan of Staphylococcus aureus is highly amidated. Amidation of α-D-isoglutamic acid in position 2 of the stem peptide plays a decisive role in the polymerization of cell wall building blocks. S. aureus mutants with a reduced degree of amidation are less viable and show increased susceptibility to methicillin, indicating that targeting the amidation reaction could be a useful strategy to combat this pathogen. The enzyme complex that catalyzes the formation of α-D-isoglutamine in the Lipid II stem peptide was identified recently and shown to consist of two subunits, the glutamine amidotransferase-like protein GatD and the Mur ligase homolog MurT. We have solved the crystal structure of the GatD/MurT complex at high resolution, revealing an open, boomerang-shaped conformation in which GatD is docked onto one end of MurT. Putative active site residues cluster at the interface between GatD and MurT and are contributed by both proteins, thus explaining the requirement for the assembled complex to carry out the reaction. Site-directed mutagenesis experiments confirm the validity of the observed interactions. Small-angle X-ray scattering data show that the complex has a similar conformation in solution, although some movement at domain interfaces can occur, allowing the two proteins to approach each other during catalysis. Several other Gram-positive pathogens, including Streptococcus pneumoniae, Clostridium perfringens and Mycobacterium tuberculosis have homologous enzyme complexes. Combined with established biochemical assays, the structure of the GatD/MurT complex provides a solid basis for inhibitor screening in S. aureus and other pathogens.
Collapse
Affiliation(s)
- Erik R Nöldeke
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany
| | - Lena M Muckenfuss
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany.,Department of Biochemistry, University of Zurich, CH-8057, Zurich, Switzerland
| | - Volker Niemann
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany.,Hain Lifescience GmbH, D-72147, Nehren, Germany
| | - Anna Müller
- Institute for Pharmaceutical Microbiology, University of Bonn, D-53115, Bonn, Germany
| | - Elena Störk
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany
| | - Georg Zocher
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, D-53115, Bonn, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany. .,Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA.
| |
Collapse
|
16
|
Leisico F, V Vieira D, Figueiredo TA, Silva M, Cabrita EJ, Sobral RG, Ludovice AM, Trincão J, Romão MJ, de Lencastre H, Santos-Silva T. First insights of peptidoglycan amidation in Gram-positive bacteria - the high-resolution crystal structure of Staphylococcus aureus glutamine amidotransferase GatD. Sci Rep 2018; 8:5313. [PMID: 29593310 PMCID: PMC5871853 DOI: 10.1038/s41598-018-22986-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/27/2018] [Indexed: 12/05/2022] Open
Abstract
Gram-positive bacteria homeostasis and antibiotic resistance mechanisms are dependent on the intricate architecture of the cell wall, where amidated peptidoglycan plays an important role. The amidation reaction is carried out by the bi-enzymatic complex MurT-GatD, for which biochemical and structural information is very scarce. In this work, we report the first crystal structure of the glutamine amidotransferase member of this complex, GatD from Staphylococcus aureus, at 1.85 Å resolution. A glutamine molecule is found close to the active site funnel, hydrogen-bonded to the conserved R128. In vitro functional studies using 1H-NMR spectroscopy showed that S. aureus MurT-GatD complex has glutaminase activity even in the absence of lipid II, the MurT substrate. In addition, we produced R128A, C94A and H189A mutants, which were totally inactive for glutamine deamidation, revealing their essential role in substrate sequestration and catalytic reaction. GatD from S. aureus and other pathogenic bacteria share high identity to enzymes involved in cobalamin biosynthesis, which can be grouped in a new sub-family of glutamine amidotransferases. Given the ubiquitous presence of GatD, these results provide significant insights into the molecular basis of the so far undisclosed amidation mechanism, contributing to the development of alternative therapeutics to fight infections.
Collapse
Affiliation(s)
- Francisco Leisico
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Diana V Vieira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Oxford Protein Production Facility, Research Complex at Harwell, Didcot, United Kingdom
| | - Teresa A Figueiredo
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Laboratory of Molecular Genetics, Microbiology of Human Pathogens Unit, Instituto de Tecnologia Química e Biológica António Xavier da Universidade Nova de Lisboa, Oeiras, Portugal
| | - Micael Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Eurico J Cabrita
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Rita G Sobral
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Ana Madalena Ludovice
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | - Maria João Romão
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Microbiology of Human Pathogens Unit, Instituto de Tecnologia Química e Biológica António Xavier da Universidade Nova de Lisboa, Oeiras, Portugal.
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, USA.
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
| |
Collapse
|
17
|
Münch D, Sahl HG. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria - Impact on binding and efficacy of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3062-71. [PMID: 25934055 DOI: 10.1016/j.bbamem.2015.04.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 11/25/2022]
Abstract
Antimicrobial peptides (AMPs) are natural antibiotics produced by virtually all living organisms. Typically, AMPs are cationic and amphiphilic and first contacts with target microbes involve interactions with negatively charged components of the cell envelope such as lipopolysaccharide (LPS), and wall- or lipoteichoic acids (WTA, LTA). The importance of charge-mediated interactions of AMPs with the cell envelope is reflected by effective microbial resistance mechanisms which are based on reduction of the overall charge of these polymers. The anionic polymers are linked in various ways to the stress-bearing polymer of the cell envelope, the peptidoglycan, which is made of a highly conserved building block, a disaccharide-pentapeptide moiety that also contains charged residues. This structural element, in spite of its conservation throughout the bacterial world, can undergo genus- and species-specific modifications that also impact significantly on the overall charge of the cell envelope and on the binding affinity of AMPs. The modification reactions involved largely occur on the membrane-bound peptidoglycan building block, the so-called lipid II, which is a most prominent target for AMPs. In this review, we focus on modifications of lipid II and peptidoglycan and discuss their consequences for the interactions with various classes of AMPs, such as defensins, lantibiotics and glyco-(lipo)-peptide antibiotics. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Daniela Münch
- AiCuris GmbH & Co. KG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Hans-Georg Sahl
- Institute of Medical Microbiology, Immunology and Parasitology, Pharmaceutical Microbiology Section, University of Bonn, Bonn, Germany.
| |
Collapse
|
18
|
The giant protein Ebh is a determinant of Staphylococcus aureus cell size and complement resistance. J Bacteriol 2013; 196:971-81. [PMID: 24363342 DOI: 10.1128/jb.01366-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus USA300, the clonal type associated with epidemic community-acquired methicillin-resistant S. aureus (MRSA) infections, displays the giant protein Ebh on its surface. Mutations that disrupt the ebh reading frame increase the volume of staphylococcal cells and alter the cross wall, a membrane-enclosed peptidoglycan synthesis and assembly compartment. S. aureus ebh variants display increased sensitivity to oxacillin (methicillin) as well as susceptibility to complement-mediated killing. Mutations in ebh are associated with reduced survival of mutant staphylococci in blood and diminished virulence in mice. We propose that Ebh, following its secretion into the cross wall, contributes to the characteristic cell growth and envelope assembly pathways of S. aureus, thereby enabling complement resistance and the pathogenesis of staphylococcal infections.
Collapse
|
19
|
Roemer T, Schneider T, Pinho MG. Auxiliary factors: a chink in the armor of MRSA resistance to β-lactam antibiotics. Curr Opin Microbiol 2013; 16:538-48. [PMID: 23895826 DOI: 10.1016/j.mib.2013.06.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 12/20/2022]
Abstract
Combination agents provide an important orthogonal approach to treat infectious diseases, particularly those caused by drug resistant pathogens. Indeed, applying a biologically 'rational' and systems-level paradigm to discover potent, selective, and synergistic agents would augment current (and arguably overly relied upon) empirical and serendipitous approaches to such discovery efforts. Here, we review the cellular mechanisms of β-lactam drug resistance and tolerance achieved amongst methicillin-resistant Staphylococcus aureus (MRSA) as well as their molecular targets and strategies to identify cognate inhibitors as potential combination agents to restore β-lactam efficacy against MRSA.
Collapse
Affiliation(s)
- Terry Roemer
- Infectious Disease Research, Merck Research Laboratories, Kenilworth, NJ 07033, USA.
| | | | | |
Collapse
|
20
|
Hiramatsu K, Ito T, Tsubakishita S, Sasaki T, Takeuchi F, Morimoto Y, Katayama Y, Matsuo M, Kuwahara-Arai K, Hishinuma T, Baba T. Genomic Basis for Methicillin Resistance in Staphylococcus aureus. Infect Chemother 2013; 45:117-36. [PMID: 24265961 PMCID: PMC3780952 DOI: 10.3947/ic.2013.45.2.117] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Indexed: 12/31/2022] Open
Abstract
Since the discovery of the first strain in 1961 in England, MRSA, the most notorious multidrug-resistant hospital pathogen, has spread all over the world. MRSA repeatedly turned down the challenges by number of chemotherapeutics, the fruits of modern organic chemistry. Now, we are in short of effective therapeutic agents against MRSA prevailing among immuno-compromised patients in the hospital. On top of this, we recently became aware of the rise of diverse clones of MRSA, some of which have increased pathogenic potential compared to the classical hospital-associated MRSA, and the others from veterinary sources. They increased rapidly in the community, and started menacing otherwise healthy individuals by causing unexpected acute infection. This review is intended to provide a whole picture of MRSA based on its genetic makeup as a versatile pathogen and our tenacious colonizer.
Collapse
Affiliation(s)
- Keiichi Hiramatsu
- Department of Bacteriology, Juntendo University, Tokyo, Japan
- Research Center for Infection Control Science, Juntendo University, Tokyo, Japan
| | - Teruyo Ito
- Department of Bacteriology, Juntendo University, Tokyo, Japan
| | - Sae Tsubakishita
- Department of Veterinary Science, Rakuno Gakuen University, Hokkaido, Japan
| | | | | | - Yuh Morimoto
- Department of Bacteriology, Juntendo University, Tokyo, Japan
- Research Center for Infection Control Science, Juntendo University, Tokyo, Japan
| | - Yuki Katayama
- Department of Bacteriology, Juntendo University, Tokyo, Japan
| | - Miki Matsuo
- Department of Bacteriology, Juntendo University, Tokyo, Japan
| | | | - Tomomi Hishinuma
- Department of Bacteriology, Juntendo University, Tokyo, Japan
- Research Center for Infection Control Science, Juntendo University, Tokyo, Japan
| | - Tadashi Baba
- Department of Bacteriology, Juntendo University, Tokyo, Japan
- Research Center for Infection Control Science, Juntendo University, Tokyo, Japan
| |
Collapse
|
21
|
Identification of genetic determinants and enzymes involved with the amidation of glutamic acid residues in the peptidoglycan of Staphylococcus aureus. PLoS Pathog 2012; 8:e1002508. [PMID: 22303291 PMCID: PMC3267633 DOI: 10.1371/journal.ppat.1002508] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 12/14/2011] [Indexed: 11/19/2022] Open
Abstract
The glutamic acid residues of the peptidoglycan of Staphylococcus aureus and many other bacteria become amidated by an as yet unknown mechanism. In this communication we describe the identification, in the genome of S. aureus strain COL, of two co-transcribed genes, murT and gatD, which are responsible for peptidoglycan amidation. MurT and GatD have sequence similarity to substrate-binding domains in Mur ligases (MurT) and to the catalytic domain in CobB/CobQ-like glutamine amidotransferases (GatD). The amidation of glutamate residues in the stem peptide of S. aureus peptidoglycan takes place in a later step than the cytoplasmic phase--presumably the lipid phase--of the biosynthesis of the S. aureus cell wall precursor. Inhibition of amidation caused reduced growth rate, reduced resistance to beta-lactam antibiotics and increased sensitivity to lysozyme which inhibited culture growth and caused degradation of the peptidoglycan.
Collapse
|
22
|
Münch D, Roemer T, Lee SH, Engeser M, Sahl HG, Schneider T. Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus. PLoS Pathog 2012; 8:e1002509. [PMID: 22291598 PMCID: PMC3266927 DOI: 10.1371/journal.ppat.1002509] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/14/2011] [Indexed: 12/04/2022] Open
Abstract
The peptidoglycan of Staphylococcus aureus is characterized by a high degree of crosslinking and almost completely lacks free carboxyl groups, due to amidation of the D-glutamic acid in the stem peptide. Amidation of peptidoglycan has been proposed to play a decisive role in polymerization of cell wall building blocks, correlating with the crosslinking of neighboring peptidoglycan stem peptides. Mutants with a reduced degree of amidation are less viable and show increased susceptibility to methicillin. We identified the enzymes catalyzing the formation of D-glutamine in position 2 of the stem peptide. We provide biochemical evidence that the reaction is catalyzed by a glutamine amidotransferase-like protein and a Mur ligase homologue, encoded by SA1707 and SA1708, respectively. Both proteins, for which we propose the designation GatD and MurT, are required for amidation and appear to form a physically stable bi-enzyme complex. To investigate the reaction in vitro we purified recombinant GatD and MurT His-tag fusion proteins and their potential substrates, i.e. UDP-MurNAc-pentapeptide, as well as the membrane-bound cell wall precursors lipid I, lipid II and lipid II-Gly₅. In vitro amidation occurred with all bactoprenol-bound intermediates, suggesting that in vivo lipid II and/or lipid II-Gly₅ may be substrates for GatD/MurT. Inactivation of the GatD active site abolished lipid II amidation. Both, murT and gatD are organized in an operon and are essential genes of S. aureus. BLAST analysis revealed the presence of homologous transcriptional units in a number of gram-positive pathogens, e.g. Mycobacterium tuberculosis, Streptococcus pneumonia and Clostridium perfringens, all known to have a D-iso-glutamine containing PG. A less negatively charged PG reduces susceptibility towards defensins and may play a general role in innate immune signaling.
Collapse
Affiliation(s)
- Daniela Münch
- Institute of Medical Microbiology, Immunology and Parasitology – Pharmaceutical Microbiology Section, University of Bonn, Bonn, Germany
| | - Terry Roemer
- Department of Infectious Diseases, Merck Research Laboratories, Merck & Co., Kenilworth, New Jersey, United States of America
| | - Sang Ho Lee
- Department of Infectious Diseases, Merck Research Laboratories, Merck & Co., Kenilworth, New Jersey, United States of America
| | - Marianne Engeser
- Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Hans Georg Sahl
- Institute of Medical Microbiology, Immunology and Parasitology – Pharmaceutical Microbiology Section, University of Bonn, Bonn, Germany
| | - Tanja Schneider
- Institute of Medical Microbiology, Immunology and Parasitology – Pharmaceutical Microbiology Section, University of Bonn, Bonn, Germany
| |
Collapse
|
23
|
Castellen P, Rego F, Portugal M, Benelli E. The Streptococcus mutans GlnR protein exhibits an increased affinity for the glnRA operon promoter when bound to GlnK. Braz J Med Biol Res 2011; 44:1202-8. [DOI: 10.1590/s0100-879x2011007500138] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/05/2011] [Indexed: 11/22/2022] Open
|
24
|
Amon J, Titgemeyer F, Burkovski A. Common patterns - unique features: nitrogen metabolism and regulation in Gram-positive bacteria. FEMS Microbiol Rev 2010; 34:588-605. [PMID: 20337720 DOI: 10.1111/j.1574-6976.2010.00216.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gram-positive bacteria have developed elaborate mechanisms to control ammonium assimilation, at the levels of both transcription and enzyme activity. In this review, the common and specific mechanisms of nitrogen assimilation and regulation in Gram-positive bacteria are summarized and compared for the genera Bacillus, Clostridium, Streptomyces, Mycobacterium and Corynebacterium, with emphasis on the high G+C genera. Furthermore, the importance of nitrogen metabolism and control for the pathogenic lifestyle and virulence is discussed. In summary, the regulation of nitrogen metabolism in prokaryotes shows an impressive diversity. Virtually every phylum of bacteria evolved its own strategy to react to the changing conditions of nitrogen supply. Not only do the transcription factors differ between the phyla and sometimes even between families, but the genetic targets of a given regulon can also differ between closely related species.
Collapse
Affiliation(s)
- Johannes Amon
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
25
|
At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev 2009; 73:233-48. [PMID: 19487727 DOI: 10.1128/mmbr.00005-09] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteria live in environments that are subject to rapid changes in the availability of the nutrients that are necessary to provide energy and biosynthetic intermediates for the synthesis of macromolecules. Consequently, bacterial survival depends on the ability of bacteria to regulate the expression of genes coding for enzymes required for growth in the altered environment. In pathogenic bacteria, adaptation to an altered environment often includes activating the transcription of virulence genes; hence, many virulence genes are regulated by environmental and nutritional signals. Consistent with this observation, the regulation of most, if not all, virulence determinants in staphylococci is mediated by environmental and nutritional signals. Some of these external signals can be directly transduced into a regulatory response by two-component regulators such as SrrAB; however, other external signals require transduction into intracellular signals. Many of the external environmental and nutritional signals that regulate virulence determinant expression can also alter bacterial metabolic status (e.g., iron limitation). Altering the metabolic status results in the transduction of external signals into intracellular metabolic signals that can be "sensed" by regulatory proteins (e.g., CodY, Rex, and GlnR). This review uses information derived primarily using Bacillus subtilis and Escherichia coli to articulate how gram-positive pathogens, with emphasis on Staphylococcus aureus and Staphylococcus epidermidis, regulate virulence determinant expression in response to a changing environment.
Collapse
|
26
|
Shimazu K, Takahashi Y, Uchikawa Y, Shimazu Y, Yajima A, Takashima E, Aoba T, Konishi K. Identification of the Streptococcus gordonii glmM gene encoding phosphoglucosamine mutase and its role in bacterial cell morphology, biofilm formation, and sensitivity to antibiotics. ACTA ACUST UNITED AC 2008; 53:166-77. [PMID: 18462386 DOI: 10.1111/j.1574-695x.2008.00410.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phosphoglucosamine mutase (EC 5.4.2.10) catalyzes the interconversion of glucosamine-6-phosphate into glucosamine-1-phosphate, an essential step in the biosynthetic pathway leading to the formation of peptidoglycan precursor uridine 5'-diphospho-N-acetylglucosamine. The gene (glmM) of Escherichia coli encoding the enzyme has been identified previously. We have now identified a glmM homolog in Streptococcus gordonii, an early colonizer on the human tooth and an important cause of infective endocarditis, and have confirmed that the gene encodes phosphoglucosamine mutase by assaying the enzymatic activity of the recombinant GlmM protein. Insertional glmM mutant of S. gordonii did not produce GlmM, and had a growth rate that was approximately half that of the wild type. Morphological analyses clearly indicated that the glmM mutation causes marked elongation of the streptococcal chains, enlargement of bacterial cells, and increased roughness of the bacterial cell surface. Furthermore, the glmM mutation reduces biofilm formation and increases sensitivity to penicillins relative to wild type. All of these phenotypic changes were also observed in a glmM deletion mutant, and were restored by the complementation with plasmid-borne glmM. These results suggest that, in S. gordonii, mutations in glmM appear to influence bacterial cell growth and morphology, biofilm formation, and sensitivity to penicillins.
Collapse
Affiliation(s)
- Kisaki Shimazu
- Department of Pediatric Dentistry, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Birmingham P, Helm JM, Manner PA, Tuan RS. Simulated joint infection assessment by rapid detection of live bacteria with real-time reverse transcription polymerase chain reaction. J Bone Joint Surg Am 2008; 90:602-8. [PMID: 18310711 DOI: 10.2106/jbjs.g.00348] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Although microbiological bacterial culture is currently considered the gold standard for diagnosis of septic arthritis, many studies have documented substantial false-negative and false-positive rates. The objective of this study was to determine whether real-time quantitative reverse transcription polymerase chain reaction can be used to detect bacterial messenger RNA (mRNA) in synovial fluid as a way to distinguish live and dead bacteria as an indicator of active infection. METHODS Synovial fluid samples were obtained from twelve consecutive patients who presented with knee pain and effusion but no evidence of infection. Following assurance of sterility with plate cultures, each sample was inoculated with clinically relevant bacteria and incubated for twenty-four hours to simulate septic arthritis. Bacterial viability and load were assessed with cultures. Selected samples were also treated with a single dose of a combination of two antibiotics, vancomycin and gentamicin, and sampled at several time points. Total RNA isolated from each sample was analyzed in triplicate with one-step real-time quantitative reverse transcription polymerase chain reaction to detect mRNA encoding for the genes groEL or femC. Controls included sterile, uninoculated samples and inoculated samples analyzed with quantitative polymerase chain reaction without reverse transcription. mRNA content was estimated on the basis of detection limits as a function of serial dilutions and was expressed as a function of colony number in bacterial cultures and RNA content as determined spectrophotometrically. RESULTS All synovial fluid samples that had been inoculated with one of the four bacterial species, and analyzed in triplicate, were identified (distinguished from aseptic synovial fluid) with real-time quantitative reverse transcription polymerase chain reaction; there were no false-negative results. All inoculated samples produced bacterial colonies on culture plates, while cultures of the aseptic samples were negative for growth. The detection limit of the one-step bacterial mRNA-based real-time quantitative reverse transcription polymerase chain reaction varied depending on the bacterial species. A time-dependent decrease in the concentration of detectable bacterial mRNA was seen after incubation of bacteria with antibiotics. CONCLUSIONS The direct quantification of the concentration of viable bacterial mRNA with real-time quantitative reverse transcription polymerase chain reaction allows identification of both culture-positive bacterial infection and so-called unculturable bacterial infection in a simulated septic arthritis model. In contrast to conventional polymerase chain reaction, real-time quantitative reverse transcription polymerase chain reaction minimizes false-positive detection of nonviable bacteria and thus provides relevant information on the success or failure of antibiotic therapy.
Collapse
Affiliation(s)
- Patrick Birmingham
- Department of Orthopaedic Surgery, George Washington University Medical Center, Washington, DC 20037, USA [corrected]
| | | | | | | |
Collapse
|
28
|
Hübscher J, Jansen A, Kotte O, Schäfer J, Majcherczyk PA, Harris LG, Bierbaum G, Heinemann M, Berger-Bächi B. Living with an imperfect cell wall: compensation of femAB inactivation in Staphylococcus aureus. BMC Genomics 2007; 8:307. [PMID: 17784943 PMCID: PMC2045680 DOI: 10.1186/1471-2164-8-307] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 09/04/2007] [Indexed: 12/17/2022] Open
Abstract
Background Synthesis of the Staphylococcus aureus peptidoglycan pentaglycine interpeptide bridge is catalyzed by the nonribosomal peptidyl transferases FemX, FemA and FemB. Inactivation of the femAB operon reduces the interpeptide to a monoglycine, leading to a poorly crosslinked peptidoglycan. femAB mutants show a reduced growth rate and are hypersusceptible to virtually all antibiotics, including methicillin, making FemAB a potential target to restore β-lactam susceptibility in methicillin-resistant S. aureus (MRSA). Cis-complementation with wild type femAB only restores synthesis of the pentaglycine interpeptide and methicillin resistance, but the growth rate remains low. This study characterizes the adaptations that ensured survival of the cells after femAB inactivation. Results In addition to slow growth, the cis-complemented femAB mutant showed temperature sensitivity and a higher methicillin resistance than the wild type. Transcriptional profiling paired with reporter metabolite analysis revealed multiple changes in the global transcriptome. A number of transporters for sugars, glycerol, and glycine betaine, some of which could serve as osmoprotectants, were upregulated. Striking differences were found in the transcription of several genes involved in nitrogen metabolism and the arginine-deiminase pathway, an alternative for ATP production. In addition, microarray data indicated enhanced expression of virulence factors that correlated with premature expression of the global regulators sae, sarA, and agr. Conclusion Survival under conditions preventing normal cell wall formation triggered complex adaptations that incurred a fitness cost, showing the remarkable flexibility of S. aureus to circumvent cell wall damage. Potential FemAB inhibitors would have to be used in combination with other antibiotics to prevent selection of resistant survivors.
Collapse
Affiliation(s)
- Judith Hübscher
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Andrea Jansen
- Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Oliver Kotte
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | | | - Paul A Majcherczyk
- Division of Infectious Diseases, Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Llinos G Harris
- AO Research Institute, Davos, Switzerland
- School of Medicine, University of Wales Swansea, Swansea, UK
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
29
|
LI L, QIAO B, YUAN Y. Nitrogen Sources Affect Streptolydigin Production and Related Secondary Metabolites Distribution of Streptomyces lydicus AS 4.2501. Chin J Chem Eng 2007. [DOI: 10.1016/s1004-9541(07)60099-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Kraus D, Kalbacher H, Buschmann J, Berger-Bächi B, Götz F, Peschel A. Muropeptide modification-amidation of peptidoglycan D-glutamate does not affect the proinflammatory activity of Staphylococcus aureus. Infect Immun 2007; 75:2084-7. [PMID: 17261607 PMCID: PMC1865678 DOI: 10.1128/iai.01576-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peptidoglycan muropeptides, potent proinflammatory components, are amidated in Staphylococcus aureus for unknown reasons. To study whether this modification may modulate proinflammatory capacity, cytokine induction by isogenic S. aureus strains with different amidation levels and by synthetic amidated/nonamidated muramyldipeptides was evaluated. However, amidation did not significantly affect cytokine induction. This finding contributes to defining peptidoglycan receptor specificities and indicates that further rationales for muropeptide amidation have to be considered.
Collapse
Affiliation(s)
- Dirk Kraus
- Medical Microbiology and Hygiene Institute, University of Tübingen, Elfriede-Aulhorn-Strasse 6, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Kraus D, Peschel A. Molecular mechanisms of bacterial resistance to antimicrobial peptides. Curr Top Microbiol Immunol 2006; 306:231-50. [PMID: 16909924 DOI: 10.1007/3-540-29916-5_9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cationic antimicrobial peptides (CAMPs) are integral compounds of the antimicrobial arsenals in virtually all kinds of organisms, with important roles in microbial ecology and higher organisms' host defense. Many bacteria have developed countermeasures to limit the efficacy of CAMPs such as defensins, cathelicidins, kinocidins, or bacteriocins. The best-studied bacterial CAMP resistance mechanisms involve electrostatic repulsion of CAMPs by modification of cell envelope molecules, proteolytic cleavage of CAMPs, production of CAMP-trapping proteins, or extrusion of CAMPs by energy-dependent efflux pumps. The repertoire of CAMPs produced by a given host organism and the efficiency of microbial CAMP resistance mechanisms appear to be crucial in host-pathogen interactions, governing the composition of commensal microbial communities and the virulence of bacterial pathogens. However, all CAMP resistance mechanisms have limitations and bacteria have never succeeded in becoming fully insensitive to a broad range of CAMPs. CAMPs or conserved CAMP resistance factors are discussed as new mediators and targets, respectively, of novel and sustainable anti-infective strategies.
Collapse
Affiliation(s)
- D Kraus
- Cellular and Molecular Microbiology Division, Medical Microbiology and Hygiene Institute, University of Tübingen, Germany
| | | |
Collapse
|
32
|
Doroshchuk NA, Gelfand MS, Rodionov DA. Regulation of nitrogen metabolism in gram-positive bacteria. Mol Biol 2006. [DOI: 10.1134/s0026893306050190] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Chang W, Toghrol F, Bentley WE. Toxicogenomic response of Staphylococcus aureus to peracetic acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:5124-31. [PMID: 16955917 DOI: 10.1021/es060354b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Staphylococcus aureus is responsible for many incidents of hospital-acquired infection, which causes 90,000 deaths and dollars 4.5 billion loss a year in the United States. Despite a wide use of disinfectants such as peracetic acid in health care environments, we certainly need better understanding of the effects of antimicrobial application on target pathogens to avert infection outbreaks. Consequently, herein, we explored for the first time the toxicogenomic response of S. aureus to a sublethal concentration of peracetic acid (1 mM) by using microarray-based transcriptome analysis. In particular, we investigated the dynamics of global gene expression profiles during its cellular response, which involved initial growth inhibition (10 min) and subsequent partial recovery (20 min). Further, we compared transcriptome responses to peracetic acid between S. aureus and Pseudomonas aeruginosa. Our findings show that (i) the regulation of membrane transport genes was significantly altered, (ii) DNA repair and replication genes were selectively induced, and (iii) primary metabolism-related genes were differently repressed between the two growth states. Most intriguingly, we revealed that many virulence factor genes were induced upon the exposure, which proposes a possibilitythatthe pathogenesis of S. aureus may be stimulated in response to peracetic acid.
Collapse
Affiliation(s)
- Wook Chang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park 20742, USA
| | | | | |
Collapse
|
34
|
Sobral RG, Ludovice AM, de Lencastre H, Tomasz A. Role of murF in cell wall biosynthesis: isolation and characterization of a murF conditional mutant of Staphylococcus aureus. J Bacteriol 2006; 188:2543-53. [PMID: 16547042 PMCID: PMC1428427 DOI: 10.1128/jb.188.7.2543-2553.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Staphylococcus aureus murF gene was placed under the control of a promoter inducible by IPTG (isopropyl-beta-d-thiogalactopyranoside). It was demonstrated that murF is an essential gene; it is cotranscribed with ddlA and growth rate, level of beta-lactam antibiotic resistance, and rates of transcription of the mecA and pbpB genes paralleled the rates of transcription of murF. At suboptimal concentrations of the inducer, a UDP-linked muramyl tripeptide accumulated in the cytoplasm in parallel with the decline in the amounts of the normal pentapeptide cell wall precursor. The abnormal tripeptide component incorporated into the cell wall as a monomeric muropeptide, accompanied by a decrease in the oligomerization degree of the peptidoglycan. However, incorporation of the tripeptide into the cell wall was limited to a relatively low threshold value. Further reduction of the amounts of pentapeptide cell wall precursor caused a gradual decrease in the cellular amounts of peptidoglycan, the production of a thinner peripheral cell wall, aberrant septae, and an overall increase in the diameter of the cells. The observations suggest that the role of murF exceeds its primary function in peptidoglycan biosynthesis and may also be involved in the control of cell division.
Collapse
Affiliation(s)
- R G Sobral
- Molecular Genetics Laboratory, Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, 2780 Oeiras, Portugal
| | | | | | | |
Collapse
|
35
|
Cui L, Iwamoto A, Lian JQ, Neoh HM, Maruyama T, Horikawa Y, Hiramatsu K. Novel mechanism of antibiotic resistance originating in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50:428-38. [PMID: 16436693 PMCID: PMC1366884 DOI: 10.1128/aac.50.2.428-438.2006] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As an aggressive pathogen, Staphylococcus aureus poses a significant public health threat and is becoming increasingly resistant to currently available antibiotics, including vancomycin, the drug of last resort for gram-positive bacterial infections. S. aureus with intermediate levels of resistance to vancomycin (vancomycin-intermediate S. aureus [VISA]) was first identified in 1996. The resistance mechanism of VISA, however, has not yet been clarified. We have previously shown that cell wall thickening is a common feature of VISA, and we have proposed that a thickened cell wall is a phenotypic determinant for vancomycin resistance in VISA (L. Cui, X. Ma, K. Sato, et al., J. Clin. Microbiol. 41:5-14, 2003). Here we show the occurrence of an anomalous diffusion of vancomycin through the VISA cell wall, which is caused by clogging of the cell wall with vancomycin itself. A series of experiments demonstrates that the thickened cell wall of VISA could protect ongoing peptidoglycan biosynthesis in the cytoplasmic membrane from vancomycin inhibition, allowing the cells to continue producing nascent cell wall peptidoglycan and thus making the cells resistant to vancomycin. We conclude that the cooperative effect of the clogging and cell wall thickening enables VISA to prevent vancomycin from reaching its true target in the cytoplasmic membrane, exhibiting a new class of antibiotic resistance in gram-positive pathogens.
Collapse
Affiliation(s)
- Longzhu Cui
- Department of Bacteriology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Komatsuzawa H, Fujiwara T, Nishi H, Yamada S, Ohara M, McCallum N, Berger-Bächi B, Sugai M. The gate controlling cell wall synthesis in Staphylococcus aureus. Mol Microbiol 2004; 53:1221-31. [PMID: 15306023 DOI: 10.1111/j.1365-2958.2004.04200.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucosamine-6-P occupies a central position between cell wall synthesis and glycolysis. In the initial steps leading to peptidoglycan precursor formation glucosamine-6-P is processed sequentially to UDP-N-acetylglucosamine, while to enter the glycolysis pathway, glucosamine-6-P is isomerized by NagB to fructose-6-P. Although we could not demonstrate NagB activity, nagB inactivation significantly reduced growth. Mutational analysis showed that NagA was involved in glucosamine-6-P formation from N-acetylglucosamine-6-P, and GlmS in that from fructose-6-P. Inactivation of glmS prevented growth on glucose as sole carbon source, which resumed after complementation with N-acetylglucosamine. Transcription of glmS as well as the amount of GlmS was reduced in the presence of N-acetylglucosamine. This and the preferential incorporation of N-acetylglucosamine over glucose into cell wall material showed that N-acetylglucosamine was used exclusively for cell wall synthesis, while glucose served both cell wall synthesis and glycolysis. These observations suggest furthermore GlmS to be the key and only enzyme leading from glucose to cell wall synthesis in Staphylococcus aureus, and show that there exists a tight regulation and hierarchy in sugar utilization. Inactivation of nagA, nagB or glmS affected the susceptibility of S. aureus to cell wall synthesis inhibitors, suggesting an interdependence between efficiency of cell wall precursor formation and resistance levels.
Collapse
Affiliation(s)
- Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima city, Hiroshima 734-8553, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang L, Trawick JD, Yamamoto R, Zamudio C. Genome-wide operon prediction in Staphylococcus aureus. Nucleic Acids Res 2004; 32:3689-702. [PMID: 15252153 PMCID: PMC484181 DOI: 10.1093/nar/gkh694] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 06/07/2004] [Accepted: 06/21/2004] [Indexed: 01/10/2023] Open
Abstract
Identification of operon structure is critical to understanding gene regulation and function, and pathogenesis, and for identifying targets towards the development of new antibiotics in bacteria. Recently, the complete genome sequences of a large number of important human bacterial pathogens have become available for computational analysis, including the major human Gram-positive pathogen Staphylococcus aureus. By annotating the predicted operon structure of the S.aureus genome, we hope to facilitate the exploration of the unique biology of this organism as well as the comparative genomics across a broad range of bacteria. We have integrated several operon prediction methods and developed a consensus approach to score the likelihood of each adjacent gene pair to be co-transcribed. Gene pairs were separated into distinct operons when scores were equal to or below an empirical threshold. Using this approach, we have generated a S.aureus genome map with scores annotated at the intersections of every adjacent gene pair. This approach predicted about 864 monocistronic transcripts and 533 polycistronic operons from the protein-encoding genes in the S.aureus strain Mu50 genome. When compared with a set of experimentally determined S.aureus operons from literature sources, this method successfully predicted at least 91% of gene pairs. At the transcription unit level, this approach correctly identified at least 92% of complete operons in this dataset. This consensus approach has enabled us to predict operons with high accuracy from a genome where limited experimental evidence for operon structure is available.
Collapse
Affiliation(s)
- Liangsu Wang
- Elitra Pharmaceuticals Inc., 10410 Science Center Drive, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
38
|
Sobral RG, Ludovice AM, Gardete S, Tabei K, De Lencastre H, Tomasz A. Normally functioning murF is essential for the optimal expression of methicillin resistance in Staphylococcus aureus. Microb Drug Resist 2003; 9:231-41. [PMID: 12959401 DOI: 10.1089/107662903322286436] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A carboxy-terminal fragment of murF was used to construct and insert a suicide plasmid into the chromosomal copy of the gene in the highly and homogeneously methicillin-resistant Staphylococcus aureus (MRSA) strain COL by Campbell type integration. The plasmid insertion generated a mutant in which the MIC value for oxacillin was reduced from 400 microg/ml of the parental strain to 0.75 microg/ml in 90% of the cells of the mutant cultures that were heterogeneous: they contained subpopulations of bacteria with a frequency of 10(-3) that were capable of expressing resistance at nearly the parental level. The impact of the murF mutation on antibiotic resistance was selective for beta-lactam antibiotics: there was no change in the susceptibility of the mutant to D-cycloserine, fosfomycin, beta-D-chloro-alanine, moenomycin, bacitracin, or vancomycin. Analysis of the mutant peptidoglycan showed decrease in the percentage of oligomeric components in rough proportion to the accumulation of several abnormal muropeptide components, which were identified as structural variants of the disaccharide tripeptide monomer. An abnormal cell wall precursor identified as UDP MurNac tripeptide was also detected in the cytoplasmic pool of the mutant strain. A normal proportion of oligomers and a greatly reduced representation of the disaccharide tripeptide were demonstrated in the cell wall of the murF mutant's subpopulation that has retained the parental level of resistance. Northern analysis demonstrated a drastic reduction in the transcription rate of mecA in mutant F9 whereas mecA transcription increased in the subpopulation of bacteria that retained high-level resistance.
Collapse
Affiliation(s)
- R G Sobral
- Molecular Genetics Laboratory, Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, 2780 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
39
|
Haraga I, Nomura S, Fukamachi S, Ohjimi H, Hanaki H, Hiramatsu K, Nagayama A. Emergence of vancomycin resistance during therapy against methicillin-resistant Staphylococcus aureus in a burn patient--importance of low-level resistance to vancomycin. Int J Infect Dis 2002; 6:302-8. [PMID: 12718825 DOI: 10.1016/s1201-9712(02)90165-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Staphylococcus aureus with low-level resistance to vancomycin (VLSA) which could develop into vancomycin-resistant S. aureus (VRSA) is most important. However, VLSA is difficult to detect by standard laboratory methods. We describe here improved methods to detect VLSA. METHODS Three methicillin-resistant S. aureus (MRSA) strains, designated Fu6, Fu10, and Fu18, were sequentially isolated from the burn wound site of a patient, during vancomycin therapy. The properties of these strains were compared with those of reference strains Mu3 and Mu50 (previous resistant isolates from other patients). RESULTS The isolated strains, Fu10 and Fu18, had identical phenotypes and genotypes. The vancomycin resistance of Fu10 was equivalent to that of strain Mu3, whereas Fu18 had much higher vancomycin resistance than Fu10 and Mu3, although reaching the level of Mu50. Fu18 showed similar growth to Mu50 on gradient gels and on Mu3 medium. CONCLUSIONS Our data indicate that the VLSA developed vancomycin resistance during exposure to vancomycin in vivo. The population analysis of tested VLSA and vancomycin intermediately resistant S. aureus (VISA) indicates that a penem at relatively low concentrations induced a significant increase in the number of vancomycin-resistant subpopulations. Furthermore, we confirmed that gradient gel analysis and Mu3 medium are simple and useful methods for the detection of VLSA judged as VSSA by its conventional MIC alone.
Collapse
Affiliation(s)
- Isao Haraga
- Department of Microbiology, School of Medicine, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Goffin C, Ghuysen JM. Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol Mol Biol Rev 2002; 66:702-38, table of contents. [PMID: 12456788 PMCID: PMC134655 DOI: 10.1128/mmbr.66.4.702-738.2002] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial acyltransferases of the SxxK superfamily vary enormously in sequence and function, with conservation of particular amino acid groups and all-alpha and alpha/beta folds. They occur as independent entities (free-standing polypeptides) and as modules linked to other polypeptides (protein fusions). They can be classified into three groups. The group I SxxK D,D-acyltransferases are ubiquitous in the bacterial world. They invariably bear the motifs SxxK, SxN(D), and KT(S)G. Anchored in the plasma membrane with the bulk of the polypeptide chain exposed on the outer face of it, they are implicated in the synthesis of wall peptidoglycans of the most frequently encountered (4-->3) type. They are inactivated by penicillin and other beta-lactam antibiotics acting as suicide carbonyl donors in the form of penicillin-binding proteins (PBPs). They are components of a morphogenetic apparatus which, as a whole, controls multiple parameters such as shape and size and allows the bacterial cells to enlarge and duplicate their particular pattern. Class A PBP fusions comprise a glycosyltransferase module fused to an SxxK acyltransferase of class A. Class B PBP fusions comprise a linker, i.e., protein recognition, module fused to an SxxK acyltransferase of class B. They ensure the remodeling of the (4-->3) peptidoglycans in a cell cycle-dependent manner. The free-standing PBPs hydrolyze D,D peptide bonds. The group II SxxK acyltransferases frequently have a partially modified bar code, but the SxxK motif is invariant. They react with penicillin in various ways and illustrate the great plasticity of the catalytic centers. The secreted free-standing PBPs, the serine beta-lactamases, and the penicillin sensors of several penicillin sensory transducers help the D,D-acyltransferases of group I escape penicillin action. The group III SxxK acyltransferases are indistinguishable from the PBP fusion proteins of group I in motifs and membrane topology, but they resist penicillin. They are referred to as Pen(r) protein fusions. Plausible hypotheses are put forward on the roles that the Pen(r) protein fusions, acting as L,D-acyltransferases, may play in the (3-->3) peptidoglycan-synthesizing molecular machines. Shifting the wall peptidoglycan from the (4-->3) type to the (3-->3) type could help Mycobacterium tuberculosis and Mycobacterium leprae survive by making them penicillin resistant.
Collapse
Affiliation(s)
- Colette Goffin
- Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| | | |
Collapse
|
41
|
|
42
|
Komatsuzawa H, Ohta K, Fujiwara T, Choi GH, Labischinski H, Sugai M. Cloning and sequencing of the gene, fmtC, which affects oxacillin resistance in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 2001; 203:49-54. [PMID: 11557139 DOI: 10.1111/j.1574-6968.2001.tb10819.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Two Tn551 insertional mutants with reduced methicillin resistance were isolated from methicillin-resistant Staphylococcus aureus KSA8. These two mutants showed increased susceptibility to beta-lactam antibiotics and bacitracin, but not to fosfomycin and vancomycin. Tn551 in these mutants was inserted into the same gene, termed fmtC. The fmtC gene has an open reading frame of 840 amino acid residues with an estimated molecular mass of 96.9 kDa. The N-terminal half of the deduced FmtC protein is very hydrophobic, implying that this protein is a membrane-associated protein.
Collapse
Affiliation(s)
- H Komatsuzawa
- Department of Microbiology, Hiroshima University School of Dentistry, Kasumi 1-2-3, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Cui L, Murakami H, Kuwahara-Arai K, Hanaki H, Hiramatsu K. Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrob Agents Chemother 2000; 44:2276-85. [PMID: 10952568 PMCID: PMC90058 DOI: 10.1128/aac.44.9.2276-2285.2000] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/1999] [Accepted: 05/22/2000] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus Mu50, which has reduced susceptibility to vancomycin, has a remarkably thickened cell wall with an increased proportion of glutamine nonamidated muropeptides. In addition, Mu50 had enhanced glutamine synthetase and L-glutamine D-fructose-6-phosphate aminotransferase activities, which are involved in the cell-wall peptidoglycan synthesis pathway. Furthermore, significantly increased levels of incorporation of (14)C-labeled D-glucose into the cell wall was observed in Mu50. Unlike a femC mutant S. aureus strain, increased levels of production of nonamidated muropeptides in Mu50 was not caused by lower levels of glutamine synthetase activity but was considered to be due to the glutamine depletion caused by increased glucose utilization by the cell to biosynthesize increased amounts of peptidoglycan. After the cells were allowed to synthesize cell wall in the absence or presence of glucose and glutamine, cells with different cell-wall thicknesses and with cell walls with different levels of cross-linking were prepared, and susceptibility testing of these cells demonstrated a strong correlation between the cell-wall thickness and the degree of vancomycin resistance. Affinity trapping of vancomycin molecules by the cell wall and clogging of the outer layers of peptidoglycan by bound vancomycin molecules were considered to be the mechanism of vancomycin resistance of Mu50. The reduced cross-linking and the increased affinity of binding to vancomycin of the Mu50 cell wall presumably caused by the increased proportion of nonamidated muropeptides may also contribute to the resistance to some extent.
Collapse
Affiliation(s)
- L Cui
- Department of Bacteriology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
44
|
Komatsuzawa H, Choi GH, Fujiwara T, Huang Y, Ohta K, Sugai M, Suginaka H. Identification of a fmtA-like gene that has similarity to other PBPs and beta-lactamases in Staphylococcus aureus. FEMS Microbiol Lett 2000; 188:35-9. [PMID: 10867231 DOI: 10.1111/j.1574-6968.2000.tb09165.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We identified a gene from Staphylococcus aureus, flp (fmtA-like protein), encoding a protein of 489 amino acid residues with a molecular mass of 56.4 kDa. The deduced amino acid sequence shows similarity to previously characterized penicillin binding proteins (PBPs) and FmtA of S. aureus (one of the factors which affect methicillin resistance). FLP protein has three motifs, which are conserved in PBPs and beta-lactamases, suggesting that it might be associated with cell wall synthesis. Recombinant FLP protein, however, lacks penicillin binding activity, and the inactivation of flp in two methicillin-resistant S. aureus strains did not cause a reduction in the methicillin resistance.
Collapse
Affiliation(s)
- H Komatsuzawa
- Department of Microbiology, Hiroshima University School of Dentistry, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Komatsuzawa H, Ohta K, Sugai M, Fujiwara T, Glanzmann P, Suginaka H. Tn551-mediated insertional inactivation of the fmtB gene encoding a cell wall-associated protein abolishes methicillin resistance in Staphylococcus aureus. J Antimicrob Chemother 2000; 45:421-31. [PMID: 10896508 DOI: 10.1093/jac/45.4.421] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A Tn551 insert in a gene termed fmtB was shown to reduce oxacillin as well as Triton X-100 resistance in highly methicillin-resistant Staphylococcus aureus (MRSA) COL. Backcrosses of fmtB::Tn551 into S. aureus COL and into two genetically distinct MRSA strains, KSA8 and NCTC10443, confirmed the linkage of fmtB::Tn551 with loss of oxacillin resistance. The fmtB gene codes for a protein of a deduced molecular mass of 263 kDa that contains 17 tandem repeats of 75 amino acids and a C-terminal LPXTG cell wall-sorting motif. Immunoblots with anti-FmtB antibodies confirmed its localization in the cell wall fraction. The fmtB gene was mapped downstream of the phosphoglucosamine mutase operon glmM which catalyses formation of glucosamine-1-phosphate. Oxacillin resistance was not restored in fmtB mutants by trans-complementation with fmtB. However, although GlmM production was not affected by fmtB inactivation, oxacillin resistance was increased in fmtB mutants by introducing a plasmid-borne glmM gene, presumably by GlmM overexpression. Interestingly, a similar phenotypic complementation was obtained in fmtB mutants by including substrate level concentrations of N-acetylglucosamine or glucosamine in the growth medium. Inactivation of the fmtB gene seems therefore to have an indirect effect on methicillin resistance which can be relieved by increasing the production of the cell wall precursor glucosamine-1-phosphate.
Collapse
Affiliation(s)
- H Komatsuzawa
- Department of Microbiology, Hiroshima University School of Dentistry, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Ludovice AM, Wu SW, de Lencastre H. Molecular cloning and DNA sequencing of the Staphylococcus aureus UDP-N-acetylmuramyl tripeptide synthetase (murE) gene, essential for the optimal expression of methicillin resistance. Microb Drug Resist 2000; 4:85-90. [PMID: 9650993 DOI: 10.1089/mdr.1998.4.85] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Tn551 insertion in mutant RUSA235 of a highly methicillin resistant Staphylococcus aureus strain results in drastic reduction in the level of methicillin resistance and abnormalities, both in the composition of the peptidoglycan and of the cell wall precursor pool. Cloning and sequencing of the inactivated gene indicates that it is the murE gene of Staphylococcus aureus.
Collapse
Affiliation(s)
- A M Ludovice
- Molecular Genetics Unit, Instituto de Technologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | |
Collapse
|
47
|
Strandén AM, Roos M, Berger-Bächi B. Glutamine synthetase and heteroresistance in methicillin-resistant Staphylococcus aureus. Microb Drug Resist 2000; 2:201-7. [PMID: 9158760 DOI: 10.1089/mdr.1996.2.201] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Inactivation of femC in methicillin-resistant Staphylococcus aureus (MRSA) results in lowered methicillin resistance and a reduction in the amidation of the iso-D-glutamate of the peptidoglycan stem peptide. The femC phenotype is due to insertional inactivation of the glutamine synthetase repressor gene glnR by Tn551, which has a polar effect on glutamine synthetase (glnA) transcription. The complete glutamine synthetase operon (glnRA) of S. aureus was cloned and sequenced, and its transcriptional start was determined. The deduced amino acid sequence of the staphylococcal glutamine synthetase showed 76% identity and 87% similarity to the Bacillus subtilis glutamine synthetase. The staphylococcal glnRA operon was shown to complement an Escherichia coli glutamine synthetase-negative mutant and to restore methicillin resistance in femC mutants. femC mutants revert to resistance in the presence of high concentrations of methicillin. These revertants, which still carried the femC lesion, were shown to retain the lowered amidation of the iso-D-glutamate peptidoglycan stem peptide. A new chromosomal locus hmrC was postulated to have mutated to allow expression of high methicillin resistance in these femC revertants. Although the highly resistant hmrC revertant resembled phenotypically the highly methicillin-resistant subclones occurring in heterogeneously resistant MRSA, we could show by transduction that the locus hmrC was distinct from chr*, a chromosomal site postulated to confer high methicillin resistance in heterogeneous MRSA. This suggests that S. aureus can adopt multiple ways to achieve high methicillin resistance.
Collapse
Affiliation(s)
- A M Strandén
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | | | | |
Collapse
|
48
|
Kopp U, Roos M, Wecke J, Labischinski H. Staphylococcal peptidoglycan interpeptide bridge biosynthesis: a novel antistaphylococcal target? Microb Drug Resist 2000; 2:29-41. [PMID: 9158720 DOI: 10.1089/mdr.1996.2.29] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In staphylococci, crosslinking of the peptide moiety of peptidoglycan is mediated via an additional spacer, the interpeptide bridge, consisting of five glycine residues. The femAB operon, coding for two approximately 50-kDa proteins is known to be involved in pentaglycine bridge formation. Using chemical mutagenesis of the beta-lactam-resistant strain BB270 and genetic, biochemical, and biophysical characterization of mutants selected for loss of beta-lactam resistance and reduced lysostaphin sensitivity it is shown that peptide bridge formation proceeds via three intermediate bridge lengths (cell wall peptides with no, one, three, and five glycine units). To proceed from one intermediate to the next, three genes appear necessary: femX, femA, and femB. The drastic loss of beta-lactam resistance after inactivation of FemA or partial impairment of FemX even beyond the level of the sensitive wild-type strains renders these proteins attractive antistaphylococcal targets.
Collapse
Affiliation(s)
- U Kopp
- Bayer AG, Pharma Research Antiinfectives I, Wuppertal, Germany
| | | | | | | |
Collapse
|
49
|
De Lencastre H, Wu SW, Pinho MG, Ludovice AM, Filipe S, Gardete S, Sobral R, Gill S, Chung M, Tomasz A. Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb Drug Resist 2000; 5:163-75. [PMID: 10566865 DOI: 10.1089/mdr.1999.5.163] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tn551 inactivation has identified several determinants--fem or auxiliary genes--that, in addition to the mecA gene, are also critical for the expression of high-level and homogeneous resistance to methicillin. Genetic and/or biochemical analysis has shown that of the nearly dozen aux mutations described so far most are in genes involved in cell wall synthesis (murE, pbp2, glmM, glnR, femA/B, llm, etc.) or in complex regulatory functions (sigmaB), suggesting that optimal expression of resistance may involve the cooperative functioning of a number of genes in cell wall metabolism as well as stress response. The exact mechanism of these functions is not known. In an attempt to explore this unusual aspect of methicillin resistance more fully, a Tn551 transposon library, constructed in the background of the highly and homogeneously methicillin-resistant Staphylococcus aureus strain COL, was screened for all independent insertional mutants in which the level of methicillin resistance of the parental strain (MIC, 1,600 microg/ml) was reduced by at least 15-fold and up to 500-fold. We now describe the sequencing of 21 Tn551-inactivated genes and their vicinities in 23 new auxiliary mutants that have been studied before. Using the inverted polymerase chain reaction (IPCR), we amplified fragments corresponding to the right and left junction of the Tn551 insertions, which were then sequenced by primer walking. The two largest groups of these new auxiliary genes encoded either proteins of unknown functions (6 genes) or showed homology with genes encoding proteins involved with putative sensory/regulatory activities (7 genes: protein kinases, ABC transporters, and a catabolite control protein). Sequencing upstream and downstream allowed the identification of a number of additional open reading frames, some of which may also include functions relevant for the expression of antibiotic resistance.
Collapse
Affiliation(s)
- H De Lencastre
- Laboratory of Microbiology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wu SW, De Lencastre H. Mrp--a new auxiliary gene essential for optimal expression of methicillin resistance in Staphylococcus aureus. Microb Drug Resist 2000; 5:9-18. [PMID: 10332717 DOI: 10.1089/mdr.1999.5.9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Screening of a library of Tn551 insertional mutants selected for reduction in the methicillin resistance level of the parental Staphylococcus aureus strain COL resulted in the isolation of mutant RUSA266 in which the minimal inhibitory concentration (MIC) of the parent was reduced from 1,600 to 1.5 micrograms/mL. Cloning and sequencing of the vicinity of the insertion site omega 726 identified an open reading frame (orf1365) encoding a very large polypeptide of more than 1,365 amino acids. A unique feature of the deduced amino acid sequence was the presence of multiple tandem repeats of 75 amino acids in the polypeptide, reminiscent of the structure of high-molecular-weight cell-surface proteins EF* and Emb identified in some streptococcal strains. Mutant RUSA266 with the inactivated gene, which we shall provisionally refer to as mrp (for multiple repeat polypeptide), produced a peptidoglycan with altered muropeptide composition, and both the reduced antibiotic resistance and the altered cell wall composition were co-transduced in back-crosses into the parental strain COL. Additional sequencing upstream of mrp has revealed that this gene was part of a five-gene cluster occupying a 9.2-kb region of the staphylococcal chromosome and was composed of glmM (directly upstream of mrp), two open reading frames orf310 and orf269 coding for two hypothetical proteins, and the gene encoding the staphylococcal arginase (arg). Transcriptional analysis demonstrated that the five genes in the cluster were transcribed together.
Collapse
Affiliation(s)
- S W Wu
- Laboratory of Microbiology, Rockefeller University, New York, NY, USA
| | | |
Collapse
|