1
|
Nale JY, Al-Tayawi TS, Heaphy S, Clokie MRJ. Impact of Phage CDHS-1 on the Transcription, Physiology and Pathogenicity of a Clostridioides difficile Ribotype 027 Strain, R20291. Viruses 2021; 13:v13112262. [PMID: 34835068 PMCID: PMC8619979 DOI: 10.3390/v13112262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 01/05/2023] Open
Abstract
All known Clostridioides difficile phages encode integrases rendering them potentially able to lyse or lysogenise bacterial strains. Here, we observed the infection of the siphovirus, CDHS-1 on a ribotype 027 strain, R20291 and determined the phage and bacterial gene expression profiles, and impacts of phage infection on bacterial physiology and pathogenicity. Using RNA-seq and RT-qPCR we analysed transcriptomic changes during early, mid-log and late phases of phage replication at an MOI of 10. The phage has a 20 min latent period, takes 80 min to lyse cells and a burst size of ~37. All phage genes are highly expressed during at least one time point. The Cro/C1-transcriptional regulator, ssDNA binding protein and helicase are expressed early, the holin is expressed during the mid-log phase and structural proteins are expressed from mid-log to late phase. Most bacterial genes, particularly the metabolism and toxin production/regulatory genes, were downregulated from early phage replication. Phage-resistant strains and lysogens showed reduced virulence during Galleria mellonella colonization as ascertained by the larval survival and expression of growth (10), reproduction (2) and infection (2) marker genes. These data suggest that phage infection both reduces colonization and negatively impacts bacterial pathogenicity, providing encouraging data to support the development of this phage for therapy to treat C. difficile infection.
Collapse
|
2
|
Gabashvili E, Kobakhidze S, Koulouris S, Robinson T, Kotetishvili M. Bi- and Multi-directional Gene Transfer in the Natural Populations of Polyvalent Bacteriophages, and Their Host Species Spectrum Representing Foodborne Versus Other Human and/or Animal Pathogens. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:179-202. [PMID: 33484405 DOI: 10.1007/s12560-021-09460-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Unraveling the trends of phage-host versus phage-phage coevolution is critical for avoiding possible undesirable outcomes from the use of phage preparations intended for therapeutic, food safety or environmental safety purposes. We aimed to investigate a phenomenon of intergeneric recombination and its trajectories across the natural populations of phages predominantly linked to foodborne pathogens. The results from the recombination analyses, using a large array of the recombination detection algorithms imbedded in SplitsTree, RDP4, and Simplot software packages, provided strong evidence (fit: 100; P ≤ 0.014) for both bi- and multi-directional intergeneric recombination of the genetic loci involved collectively in phage morphogenesis, host specificity, virulence, replication, and persistence. Intergeneric recombination was determined to occur not only among conspecifics of the virulent versus temperate phages but also between the phages with these different lifestyles. The recombining polyvalent phages were suggested to interact with fairly large host species networks, including sometimes genetically very distinct species, such as e.g., Salmonella enterica and/or Escherichia coli versus Staphylococcus aureus or Yersinia pestis. Further studies are needed to understand whether phage-driven intergeneric recombination can lead to undesirable changes of intestinal and other microbiota in humans and animals.
Collapse
Affiliation(s)
- Ekaterine Gabashvili
- School of Natural Sciences and Medicine, Ilia State University, 1 Giorgi Tsereteli exit, 0162, Tbilisi, Georgia
- Division of Risk Assessment, Scientific-Research Center of Agriculture, 6 Marshal Gelovani ave., 0159, Tbilisi, Georgia
| | - Saba Kobakhidze
- Division of Risk Assessment, Scientific-Research Center of Agriculture, 6 Marshal Gelovani ave., 0159, Tbilisi, Georgia
| | - Stylianos Koulouris
- Engagement and Cooperation Unit, European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| | - Tobin Robinson
- Scientific Committee, and Emerging Risks Unit, European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| | - Mamuka Kotetishvili
- Division of Risk Assessment, Scientific-Research Center of Agriculture, 6 Marshal Gelovani ave., 0159, Tbilisi, Georgia.
- Hygiene and Medical Ecology, G. Natadze Scientific-Research Institute of Sanitation, 78 D. Uznadze St., 0102, Tbilisi, Georgia.
| |
Collapse
|
3
|
The excluded DNA strand is SEW important for hexameric helicase unwinding. Methods 2016; 108:79-91. [DOI: 10.1016/j.ymeth.2016.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 02/04/2023] Open
|
4
|
Single-molecule visualization of RecQ helicase reveals DNA melting, nucleation, and assembly are required for processive DNA unwinding. Proc Natl Acad Sci U S A 2015; 112:E6852-61. [PMID: 26540728 DOI: 10.1073/pnas.1518028112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA helicases are motor proteins that unwind double-stranded DNA (dsDNA) to reveal single-stranded DNA (ssDNA) needed for many biological processes. The RecQ helicase is involved in repairing damage caused by DNA breaks and stalled replication forks via homologous recombination. Here, the helicase activity of RecQ was visualized on single molecules of DNA using a fluorescent sensor that directly detects ssDNA. By monitoring the formation and progression of individual unwinding forks, we observed that both the frequency of initiation and the rate of unwinding are highly dependent on RecQ concentration. We establish that unwinding forks can initiate internally by melting dsDNA and can proceed in both directions at up to 40-60 bp/s. The findings suggest that initiation requires a RecQ dimer, and that continued processive unwinding of several kilobases involves multiple monomers at the DNA unwinding fork. We propose a distinctive model wherein RecQ melts dsDNA internally to initiate unwinding and subsequently assembles at the fork into a distribution of multimeric species, each encompassing a broad distribution of rates, to unwind DNA. These studies define the species that promote resection of DNA, proofreading of homologous pairing, and migration of Holliday junctions, and they suggest that various functional forms of RecQ can be assembled that unwind at rates tailored to the diverse biological functions of RecQ helicase.
Collapse
|
5
|
Uversky VN. Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e970499. [PMID: 28232880 PMCID: PMC5314882 DOI: 10.4161/21690693.2014.970499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 09/08/2014] [Indexed: 02/07/2023]
Abstract
This review opens a new series entitled “Unreported intrinsic disorder in proteins.” The goal of this series is to bring attention of researchers to an interesting phenomenon of missed (or overlooked, or ignored, or unreported) disorder. This series serves as a companion to “Digested Disorder” which provides a quarterly review of papers on intrinsically disordered proteins (IDPs) found by standard literature searches. The need for this alternative series results from the observation that there are numerous publications that describe IDPs (or hybrid proteins with ordered and disordered regions) yet fail to recognize many of the key discoveries and publications in the IDP field. By ignoring the body of work on IDPs, such publications often fail to relate their findings to prior discoveries or fail to explore the obvious implications of their work. Thus, the goal of this series is not only to review these very interesting and important papers, but also to point out how each paper relates to the IDP field and show how common tools in the IDP field can readily take the findings in new directions or provide a broader context for the reported findings.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Russia; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Regulation of the bacteriophage T4 Dda helicase by Gp32 single-stranded DNA-binding protein. DNA Repair (Amst) 2014; 25:41-53. [PMID: 25481875 DOI: 10.1016/j.dnarep.2014.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 11/20/2022]
Abstract
Dda, one of three helicases encoded by bacteriophage T4, has been well-characterized biochemically but its biological role remains unclear. It is thought to be involved in origin dependent DNA replication, recombination-dependent replication, anti-recombination, and recombination repair. The Gp32 protein of bacteriophage T4 plays critical roles in DNA replication, recombination, and repair by coordinating protein components of the replication fork and by stabilizing ssDNA. Previous work demonstrated that stimulation of DNA synthesis by Dda helicase appears to require direct Gp32-Dda protein-protein interactions and that Gp32 and Dda form a tight complex in the absence of ssDNA. Here we characterize the effects of Gp32-Dda physical and functional interactions through changes in the duplex DNA unwinding and ATPase activities of Dda helicase in the presence of different variants of Gp32 and different DNA repair and replication intermediate structures. Results show that Gp32-Dda interactions can be enhancing or inhibitory, depending on the Gp32 domain seen by Dda. Protein-protein interactions with Gp32 stimulate the unwinding activity of Dda, an effect associated with increased turnover of ATP, suggesting a higher rate of ATPase-driven translocation. Dda-Gp32 interactions also promote the unwinding of DNA substrates at higher salt concentrations and in the presence of substrate-bound DNA polymerase. Conversely, the formation of Gp32 clusters on ssDNA can inhibit unwinding, suggesting that Gp32-ssDNA formation sterically regulates which portions of replication and recombination intermediates are accessible for processing by Dda helicase. The data suggest a mechanism of replication fork restart in which Gp32 promotes Dda activity in template switching while preventing premature fork progression.
Collapse
|
7
|
Aarattuthodiyil S, Byrd AK, Raney KD. Simultaneous binding to the tracking strand, displaced strand and the duplex of a DNA fork enhances unwinding by Dda helicase. Nucleic Acids Res 2014; 42:11707-20. [PMID: 25249618 PMCID: PMC4191417 DOI: 10.1093/nar/gku845] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interactions between helicases and the tracking strand of a DNA substrate are well-characterized; however, the role of the displaced strand is a less understood characteristic of DNA unwinding. Dda helicase exhibited greater processivity when unwinding a DNA fork compared to a ss/ds DNA junction substrate. The lag phase in the unwinding progress curve was reduced for the forked DNA compared to the ss/ds junction. Fewer kinetic steps were required to unwind the fork compared to the ss/ds junction, suggesting that binding to the fork leads to disruption of the duplex. DNA footprinting confirmed that interaction of Dda with a fork leads to two base pairs being disrupted whereas no disruption of base pairing was observed with the ss/ds junction. Neutralization of the phosphodiester backbone resulted in a DNA-footprinting pattern similar to that observed with the ss/ds junction, consistent with disruption of the interaction between Dda and the displaced strand. Several basic residues in the 1A domain which were previously proposed to bind to the incoming duplex DNA were replaced with alanines, resulting in apparent loss of interaction with the duplex. Taken together, these results suggest that Dda interaction with the tracking strand, displaced strand and duplex coordinates DNA unwinding.
Collapse
Affiliation(s)
- Suja Aarattuthodiyil
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
8
|
A mutation in the gene for polynucleotide kinase of bacteriophage T4 K10 affects mRNA processing. Arch Virol 2013; 159:327-31. [DOI: 10.1007/s00705-013-1800-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
|
9
|
Perumal SK, Nelson SW, Benkovic SJ. Interaction of T4 UvsW helicase and single-stranded DNA binding protein gp32 through its carboxy-terminal acidic tail. J Mol Biol 2013; 425:2823-39. [PMID: 23732982 DOI: 10.1016/j.jmb.2013.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/17/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
Bacteriophage T4 UvsW helicase contains both unwinding and annealing activities and displays some functional similarities to bacterial RecG and RecQ helicases. UvsW is involved in several DNA repair pathways, playing important roles in recombination-dependent DNA repair and the reorganization of stalled replication forks. The T4 single-stranded DNA (ssDNA) binding protein gp32 is a central player in nearly all DNA replication and repair processes and is thought to facilitate their coordination by recruiting and regulating the various proteins involved. Here, we show that the activities of the UvsW protein are modulated by gp32. UvsW-catalyzed unwinding of recombination intermediates such as D-loops and static X-DNA (Holliday junction mimic) to ssDNA products is enhanced by the gp32 protein. The enhancement requires the presence of the protein interaction domain of gp32 (the acidic carboxy-terminus), suggesting that a specific interaction between UvsW and gp32 is required. In the absence of this interaction, the ssDNA annealing and ATP-dependent translocation activities of UvsW are severely inhibited when gp32 coats the ssDNA lattice. However, when UvsW and gp32 do interact, UvsW is able to efficiently displace the gp32 protein from the ssDNA. This ability of UvsW to remove gp32 from ssDNA may explain its ability to enhance the strand invasion activity of the T4 recombinase (UvsX) and suggests a possible new role for UvsW in gp32-mediated DNA transactions.
Collapse
Affiliation(s)
- Senthil K Perumal
- 414 Wartik Laboratories, Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
10
|
Structure and Mechanisms of SF1 DNA Helicases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:17-46. [PMID: 23161005 DOI: 10.1007/978-1-4614-5037-5_2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Superfamily I is a large and diverse group of monomeric and dimeric helicases defined by a set of conserved sequence motifs. Members of this class are involved in essential processes in both DNA and RNA metabolism in all organisms. In addition to conserved amino acid sequences, they also share a common structure containing two RecA-like motifs involved in ATP binding and hydrolysis and nucleic acid binding and unwinding. Unwinding is facilitated by a "pin" structure which serves to split the incoming duplex. This activity has been measured using both ensemble and single-molecule conditions. SF1 helicase activity is modulated through interactions with other proteins.
Collapse
|
11
|
Bianco PR, Webb MR. Helicase unwinding: active or merely perfect? J Mol Biol 2012; 420:139-40. [PMID: 22560995 PMCID: PMC5862422 DOI: 10.1016/j.jmb.2012.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Piero R Bianco
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, NY 14214, USA.
| | | |
Collapse
|
12
|
He X, Byrd AK, Yun MK, Pemble CW, Harrison D, Yeruva L, Dahl C, Kreuzer KN, Raney KD, White SW. The T4 phage SF1B helicase Dda is structurally optimized to perform DNA strand separation. Structure 2012; 20:1189-200. [PMID: 22658750 DOI: 10.1016/j.str.2012.04.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/19/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
Abstract
Helicases move on DNA via an ATP binding and hydrolysis mechanism coordinated by well-characterized helicase motifs. However, the translocation along single-stranded DNA (ssDNA) and the strand separation of double-stranded (dsDNA) may be loosely or tightly coupled. Dda is a phage T4 SF1B helicase with sequence homology to the Pif1 family of helicases that tightly couples translocation to strand separation. The crystal structure of the Dda-ssDNA binary complex reveals a domain referred to as the "pin" that was previously thought to remain static during strand separation. The pin contains a conserved phenylalanine that mediates a transient base-stacking interaction that is absolutely required for separation of dsDNA. The pin is secured at its tip by protein-protein interactions through an extended SH3 domain thereby creating a rigid strut. The conserved interface between the pin and the SH3 domain provides the mechanism for tight coupling of translocation to strand separation.
Collapse
Affiliation(s)
- Xiaoping He
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Byrd AK, Matlock DL, Bagchi D, Aarattuthodiyil S, Harrison D, Croquette V, Raney KD. Dda helicase tightly couples translocation on single-stranded DNA to unwinding of duplex DNA: Dda is an optimally active helicase. J Mol Biol 2012; 420:141-54. [PMID: 22504228 DOI: 10.1016/j.jmb.2012.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/04/2012] [Accepted: 04/01/2012] [Indexed: 01/06/2023]
Abstract
Helicases utilize the energy of ATP hydrolysis to unwind double-stranded DNA while translocating on the DNA. Mechanisms for melting the duplex have been characterized as active or passive, depending on whether the enzyme actively separates the base pairs or simply sequesters single-stranded DNA (ssDNA) that forms due to thermal fraying. Here, we show that Dda translocates unidirectionally on ssDNA at the same rate at which it unwinds double-stranded DNA in both ensemble and single-molecule experiments. Further, the unwinding rate is largely insensitive to the duplex stability and to the applied force. Thus, Dda transduces all of its translocase activity into DNA unwinding activity so that the rate of unwinding is limited by the rate of translocation and that the enzyme actively separates the duplex. Active and passive helicases have been characterized by dividing the velocity of DNA unwinding in base pairs per second (V(un)) by the velocity of translocation on ssDNA in nucleotides per second (V(trans)). If the resulting fraction is 0.25, then a helicase is considered to be at the lower end of the "active" range. In the case of Dda, the average DNA unwinding velocity was 257±42 bp/s, and the average translocation velocity was 267±15 nt/s. The V(un)/V(trans) value of 0.96 places Dda in a unique category of being an essentially "perfectly" active helicase.
Collapse
Affiliation(s)
- Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 516, Little Rock, AR 72205, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Liu J, Ehmsen KT, Heyer WD, Morrical SW. Presynaptic filament dynamics in homologous recombination and DNA repair. Crit Rev Biochem Mol Biol 2011; 46:240-70. [PMID: 21599536 DOI: 10.3109/10409238.2011.576007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Homologous recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments-helical filaments of a recombinase enzyme bound to single-stranded DNA (ssDNA). Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we reviewed the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments; some intrinsic such as recombinase ATP-binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examined dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examined the biochemical properties of recombination proteins from four model systems (T4 phage, Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We proposed that the presynaptic filament has evolved to rely on multiple external factors for increased multilevel regulation of HR processes in genomes with greater structural and sequence complexity.
Collapse
Affiliation(s)
- Jie Liu
- Departments of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | | | | | | |
Collapse
|
15
|
Liu J, Morrical SW. Assembly and dynamics of the bacteriophage T4 homologous recombination machinery. Virol J 2010; 7:357. [PMID: 21129202 PMCID: PMC3016280 DOI: 10.1186/1743-422x-7-357] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/03/2010] [Indexed: 12/21/2022] Open
Abstract
Homologous recombination (HR), a process involving the physical exchange of strands between homologous or nearly homologous DNA molecules, is critical for maintaining the genetic diversity and genome stability of species. Bacteriophage T4 is one of the classic systems for studies of homologous recombination. T4 uses HR for high-frequency genetic exchanges, for homology-directed DNA repair (HDR) processes including DNA double-strand break repair, and for the initiation of DNA replication (RDR). T4 recombination proteins are expressed at high levels during T4 infection in E. coli, and share strong sequence, structural, and/or functional conservation with their counterparts in cellular organisms. Biochemical studies of T4 recombination have provided key insights on DNA strand exchange mechanisms, on the structure and function of recombination proteins, and on the coordination of recombination and DNA synthesis activities during RDR and HDR. Recent years have seen the development of detailed biochemical models for the assembly and dynamics of presynaptic filaments in the T4 recombination system, for the atomic structure of T4 UvsX recombinase, and for the roles of DNA helicases in T4 recombination. The goal of this chapter is to review these recent advances and their implications for HR and HDR mechanisms in all organisms.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
16
|
Kreuzer KN, Brister JR. Initiation of bacteriophage T4 DNA replication and replication fork dynamics: a review in the Virology Journal series on bacteriophage T4 and its relatives. Virol J 2010; 7:358. [PMID: 21129203 PMCID: PMC3016281 DOI: 10.1186/1743-422x-7-358] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 12/03/2010] [Indexed: 11/10/2022] Open
Abstract
Bacteriophage T4 initiates DNA replication from specialized structures that form in its genome. Immediately after infection, RNA-DNA hybrids (R-loops) occur on (at least some) replication origins, with the annealed RNA serving as a primer for leading-strand synthesis in one direction. As the infection progresses, replication initiation becomes dependent on recombination proteins in a process called recombination-dependent replication (RDR). RDR occurs when the replication machinery is assembled onto D-loop recombination intermediates, and in this case, the invading 3' DNA end is used as a primer for leading strand synthesis. Over the last 15 years, these two modes of T4 DNA replication initiation have been studied in vivo using a variety of approaches, including replication of plasmids with segments of the T4 genome, analysis of replication intermediates by two-dimensional gel electrophoresis, and genomic approaches that measure DNA copy number as the infection progresses. In addition, biochemical approaches have reconstituted replication from origin R-loop structures and have clarified some detailed roles of both replication and recombination proteins in the process of RDR and related pathways. We will also discuss the parallels between T4 DNA replication modes and similar events in cellular and eukaryotic organelle DNA replication, and close with some current questions of interest concerning the mechanisms of replication, recombination and repair in phage T4.
Collapse
Affiliation(s)
- Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 USA
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| |
Collapse
|
17
|
Perumal SK, Raney KD, Benkovic SJ. Analysis of the DNA translocation and unwinding activities of T4 phage helicases. Methods 2010; 51:277-88. [PMID: 20170733 DOI: 10.1016/j.ymeth.2010.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/29/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022] Open
Abstract
Helicases are an important class of enzymes involved in DNA and RNA metabolism that couple the energy of ATP hydrolysis to unwind duplex DNA and RNA structures. Understanding the mechanism of helicase action is vital due to their involvement in various biological processes such as DNA replication, repair and recombination. Furthermore, the duplex DNA unwinding property of this class of enzymes is closely related to their single-stranded DNA translocation. Hence the study of its translocation properties is essential to understanding helicase activity. Here we review the methods that are employed to analyze the DNA translocation and unwinding activities of the bacteriophage T4 UvsW and Dda helicases. These methods have been successfully employed to study the functions of helicases from large superfamilies.
Collapse
Affiliation(s)
- Senthil K Perumal
- 414 Wartik Laboratories, Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
18
|
Brister JR. Origin activation requires both replicative and accessory helicases during T4 infection. J Mol Biol 2008; 377:1304-13. [PMID: 18314134 DOI: 10.1016/j.jmb.2008.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 01/28/2008] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
Abstract
The bacteriophage T4 has served as an in vitro model for the study of DNA replication for several decades, yet less is known about this process during infection. Recent work has shown that viral DNA synthesis is initiated from at least five origins of replication distributed across the 172 kb chromosome, but continued synthesis is dependent on recombination. Two proteins are predicted to facilitate loading of the hexameric 41 helicase at the origins, the Dda accessory helicase and the 59 loading protein. Using a real time, genome-wide assay to monitor replication during infections, it is shown here that dda mutant viruses no longer preferentially initiate synthesis near the origins, implying that the Dda accessory helicase has a fundamental role in origin selection and activation. In contrast, at least two origins function efficiently without the 59 loading protein, indicating that other factors load the 41 helicase at these loci. Hence, normal T4 replication includes two mechanistically distinct classes of origins, one requiring the 59 helicase loader, and a second that does not. Since both mechanisms require an additional factor, repEB, for sustained activation, normal T4 origin function appears to include at least three common elements, origin selection and initial activation, replisome loading, and persistence.
Collapse
Affiliation(s)
- J Rodney Brister
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-1770, USA.
| |
Collapse
|
19
|
Dudas KC, Kreuzer KN. Bacteriophage T4 helicase loader protein gp59 functions as gatekeeper in origin-dependent replication in vivo. J Biol Chem 2005; 280:21561-9. [PMID: 15781450 PMCID: PMC1361368 DOI: 10.1074/jbc.m502351200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T4 initiates origin-dependent replication via an R-loop mechanism in vivo. During in vitro reactions, the phage-encoded gp59 stimulates loading of the replicative helicase, gp41, onto branched intermediates, including origin R-loops. However, although gp59 is essential for recombination-dependent replication from D-loops, it does not appear to be required for origin-dependent replication in vivo. In this study, we have analyzed the origin-replicative intermediates formed during infections that are deficient in gp59 and other phage replication proteins. During infections lacking gp59, the initial replication forks from two different T4 origins actively replicated both leading- and lagging-strands. However, the retrograde replication forks from both origins were abnormal in the gp59-deficient infections. The lagging-strand from the initial fork was elongated as a new leading-strand in the retrograde direction without lagging-strand synthesis, whereas in the wild-type, leading- and lagging-strand synthesis appeared to be coupled. These results imply that gp59 inhibits the polymerase holoenzyme in vivo until the helicase-primase (gp41-gp61) complex is loaded, and we thereby refer to gp59 as a gatekeeper. We also found that all origin-replicative intermediates were absent in infections deficient in the helicase gp41 or the single-strand-binding protein gp32, regardless of whether gp59 was present or absent. These results argue that replication from the origin in vivo is dependent on both the helicase and single-strand-binding protein and demonstrate that the strong replication defect of gene 41 and 32 single mutants is not caused by gp59 inhibition of the polymerase.
Collapse
Affiliation(s)
- Kathleen C Dudas
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
20
|
Eoff RL, Spurling TL, Raney KD. Chemically modified DNA substrates implicate the importance of electrostatic interactions for DNA unwinding by Dda helicase. Biochemistry 2005; 44:666-74. [PMID: 15641792 DOI: 10.1021/bi0484926] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Helicase-catalyzed disruption of double-stranded nucleic acid is vital to DNA replication, recombination, and repair in all forms of life. The relative influence of specific chemical interactions between helicase and the substrate over a series of multistep catalytic events is still being defined. To this end, three modified DNA oligonucleotides were designed to serve as substrates for the bacteriophage T4 helicase, Dda. A 5'-DNA-PNA-DNA-3' chimera was synthesized, thereby, conferring both a loss of charge and altering the conformational flexibility of the oligonucleotide. The second modified oligonucleotide possessed a single methylphosphonate replacement on the phosphate backbone, creating a gap in the charge distribution of the substrate. The third modification introduced an abasic site into the oligonucleotide sequence. This abasic site retains the charge distribution of the normal DNA substrate yet alters the conformational flexibility of the oligonucleotide. The loss of a base also serves to disrupt the hydrogen-bonding lattice, the intramolecular base-stacking interactions, as well as the intermolecular base-stacking interactions between aromatic amino acid side chains and the substrate. Our results indicate that a gap in the charge distribution along the backbone of the substrate has a more pronounced effect upon helicase-catalyzed unwinding than does the loss of a single base. While all three substrates exhibited some degree of inhibition, analysis of both pre-steady-state and excess enzyme experiments places a greater value upon the electrostatic interactions between helicase and the substrate.
Collapse
Affiliation(s)
- Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Slot 516, Little Rock, Arkansas 72205, USA
| | | | | |
Collapse
|
21
|
Abstract
The bacterium Deinococcus radiodurans is extremely resistant to high levels of DNA-damaging agents, including gamma rays and ultraviolet light that can lead to double-stranded DNA breaks. Surprisingly, the organism does not appear to have a RecBCD enzyme, an enzyme that is critical for double-strand break repair in many other bacteria. The D. radiodurans genome does encode a protein whose closest characterized homologues are RecD subunits of RecBCD enzymes in other bacteria. We have purified this novel D. radiodurans RecD protein and characterized its biochemical activities. The D. radiodurans RecD protein is a DNA helicase that unwinds short (20 base pairs) DNA duplexes with either a 5'-single-stranded tail or a forked end, but not blunt-ended or 3'-tailed duplexes. Duplexes with 10-12 nucleotide (nt) 5'-tails are good unwinding substrates and are bound tightly, while DNA with shorter tails (4-8 nt) are poor unwinding substrates and are bound much less tightly. The RecD protein is much less efficient at unwinding slightly longer substrates (52 or 76 base pairs, with 12 nt 5'-tails). Unwinding of the longer substrates is stimulated somewhat (4-5-fold) by the single-stranded DNA-binding protein from D. radiodurans. These results show that the D. radiodurans RecD protein is a DNA helicase with 5'-3' polarity and low processivity.
Collapse
Affiliation(s)
- Jianlei Wang
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
22
|
Kadyrov FA, Drake JW. UvsX recombinase and Dda helicase rescue stalled bacteriophage T4 DNA replication forks in vitro. J Biol Chem 2004; 279:35735-40. [PMID: 15194689 DOI: 10.1074/jbc.m403942200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rescue of stalled replication forks via a series of steps that include fork regression, template switching, and fork restoration often has been proposed as a major mechanism for accurately bypassing non-coding DNA lesions. Bacteriophage T4 encodes almost all of the proteins required for its own DNA replication, recombination, and repair. Both recombination and recombination repair in T4 rely on UvsX, a RecA-like recombinase. We show here that UvsX plus the T4-encoded helicase Dda suffice to rescue stalled T4 replication forks in vitro. This rescue is based on two sequential template-switching reactions that allow DNA replication to bypass a non-coding DNA lesion in a non-mutagenic manner.
Collapse
Affiliation(s)
- Farid A Kadyrov
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA
| | | |
Collapse
|
23
|
Byrd AK, Raney KD. Protein displacement by an assembly of helicase molecules aligned along single-stranded DNA. Nat Struct Mol Biol 2004; 11:531-8. [PMID: 15146172 DOI: 10.1038/nsmb774] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 04/15/2004] [Indexed: 11/09/2022]
Abstract
Helicases are molecular motors that unwind double-stranded DNA or RNA. In addition to unwinding nucleic acids, an important function of these enzymes seems to be the disruption of protein-nucleic acid interactions. Bacteriophage T4 Dda helicase can displace proteins bound to DNA, including streptavidin bound to biotinylated oligonucleotides. We investigated the mechanism of streptavidin displacement by varying the length of the oligonucleotide substrate. We found that a monomeric form of Dda catalyzed streptavidin displacement; however, the activity increased when multiple helicase molecules bound to the biotinylated oligonucleotide. The activity does not result from cooperative binding of Dda to the oligonucleotide. Rather, the increase in activity is a consequence of the directional bias in translocation of individual helicase monomers. Such a bias leads to protein-protein interactions when the lead monomer stalls owing to the presence of the streptavidin block.
Collapse
Affiliation(s)
- Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|
24
|
Jones CE, Green EM, Stephens JA, Mueser TC, Nossal NG. Mutations of bacteriophage T4 59 helicase loader defective in binding fork DNA and in interactions with T4 32 single-stranded DNA-binding protein. J Biol Chem 2004; 279:25721-8. [PMID: 15084598 DOI: 10.1074/jbc.m402128200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T4 gene 59 protein greatly stimulates the loading of the T4 gene 41 helicase in vitro and is required for recombination and recombination-dependent DNA replication in vivo. 59 protein binds preferentially to forked DNA and interacts directly with the T4 41 helicase and gene 32 single-stranded DNA-binding protein. The helicase loader is an almost completely alpha-helical, two-domain protein, whose N-terminal domain has strong structural similarity to the DNA-binding domains of high mobility group proteins. We have previously speculated that this high mobility group-like region may bind the duplex ahead of the fork, with the C-terminal domain providing separate binding sites for the fork arms and at least part of the docking area for the helicase and 32 protein. Here, we characterize several mutants of 59 protein in an initial effort to test this model. We find that the I87A mutation, at the position where the fork arms would separate in the model, is defective in binding fork DNA. As a consequence, it is defective in stimulating both unwinding by the helicase and replication by the T4 system. 59 protein with a deletion of the two C-terminal residues, Lys(216) and Tyr(217), binds fork DNA normally. In contrast to the wild type, the deletion protein fails to promote binding of 32 protein on short fork DNA. However, it binds 32 protein in the absence of DNA. The deletion is also somewhat defective in stimulating unwinding of fork DNA by the helicase and replication by the T4 system. We suggest that the absence of the two terminal residues may alter the configuration of the lagging strand fork arm on the surface of the C-terminal domain, so that it is a poorer docking site for the helicase and 32 protein.
Collapse
Affiliation(s)
- Charles E Jones
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | | | | | |
Collapse
|
25
|
Ma Y, Wang T, Villemain JL, Giedroc DP, Morrical SW. Dual functions of single-stranded DNA-binding protein in helicase loading at the bacteriophage T4 DNA replication fork. J Biol Chem 2004; 279:19035-45. [PMID: 14871889 DOI: 10.1074/jbc.m311738200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Semi-conservative DNA synthesis reactions catalyzed by the bacteriophage T4 DNA polymerase holoenzyme are initiated by a strand displacement mechanism requiring gp32, the T4 single-stranded DNA (ssDNA)-binding protein, to sequester the displaced strand. After initiation, DNA helicase acquisition by the nascent replication fork leads to a dramatic increase in the rate and processivity of leading strand DNA synthesis. In vitro studies have established that either of two T4-encoded DNA helicases, gp41 or dda, is capable of stimulating strand displacement synthesis. The acquisition of either helicase by the nascent replication fork is modulated by other protein components of the fork including gp32 and, in the case of the gp41 helicase, its mediator/loading protein gp59. Here, we examine the relationships between gp32 and the gp41/gp59 and dda helicase systems, respectively, during T4 replication using altered forms of gp32 defective in either protein-protein or protein-ssDNA interactions. We show that optimal stimulation of DNA synthesis by gp41/gp59 helicase requires gp32-gp59 interactions and is strongly dependent on the stability of ssDNA binding by gp32. Fluorescence assays demonstrate that gp59 binds stoichiometrically to forked DNA molecules; however, gp59-forked DNA complexes are destabilized via protein-protein interactions with the C-terminal "A-domain" fragment of gp32. These and previously published results suggest a model in which a mobile gp59-gp32 cluster bound to lagging strand ssDNA is the target for gp41 helicase assembly. In contrast, stimulation of DNA synthesis by dda helicase requires direct gp32-dda protein-protein interactions and is relatively unaffected by mutations in gp32 that destabilize its ssDNA binding activity. The latter data support a model in which protein-protein interactions with gp32 maintain dda in a proper active state for translocation at the replication fork. The relationship between dda and gp32 proteins in T4 replication appears similar to the relationship observed between the UL9 helicase and ICP8 ssDNA-binding protein in herpesvirus replication.
Collapse
Affiliation(s)
- Yujie Ma
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
26
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Nanduri B, Byrd AK, Eoff RL, Tackett AJ, Raney KD. Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor. Proc Natl Acad Sci U S A 2002; 99:14722-7. [PMID: 12411580 PMCID: PMC137486 DOI: 10.1073/pnas.232401899] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Helicases are molecular motor enzymes that unwind and translocate nucleic acids. One of the central questions regarding helicase activity is whether the process of coupling ATP hydrolysis to DNA unwinding requires an oligomeric form of the enzyme. We have applied a pre-steady-state kinetics approach to address this question with the bacteriophage T4 Dda helicase. If a helicase can function as a monomer, then the burst amplitude in the pre-steady state might be similar to the concentration of enzyme, whereas if the helicase required oligomerization, then the amplitude would be significantly less than the enzyme concentration. DNA unwinding of an oligonucleotide substrate was conducted by using a Kintek rapid quench-flow instrument. The substrate consisted of 12 bp adjacent to 12 nucleotides of single-stranded DNA. Dda (4 nM) was incubated with substrate (16 nM) in buffer, and the unwinding reaction was initiated by the addition of ATP (5 mM) and Mg(2+) (10 mM). The reaction was stopped by the addition of 400 mM EDTA. Product formation exhibited biphasic kinetics, and the data were fit to the equation for a single exponential followed by a steady state. The amplitude of the first phase was 3.5 +/- 0.2 nM, consistent with a monomeric helicase. The burst amplitude of product formation was measured over a range of enzyme and substrate concentrations and remained consistent with a functional monomer. Thus, Dda can rapidly unwind oligonucleotide substrates as a monomer, indicating that the functional molecular motor component of a helicase can reside within a single polypeptide.
Collapse
Affiliation(s)
- Bindu Nanduri
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | | | | | |
Collapse
|
28
|
Nanduri B, Eoff RL, Tackett AJ, Raney KD. Measurement of steady-state kinetic parameters for DNA unwinding by the bacteriophage T4 Dda helicase: use of peptide nucleic acids to trap single-stranded DNA products of helicase reactions. Nucleic Acids Res 2001; 29:2829-35. [PMID: 11433029 PMCID: PMC55784 DOI: 10.1093/nar/29.13.2829] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Measurement of steady-state rates of unwinding of double-stranded oligonucleotides by helicases is hampered due to rapid reannealing of the single-stranded DNA products. Including an oligonucleotide in the reaction mixture which can hybridize with one of the single strands can prevent reannealing. However, helicases bind to single-stranded DNA, therefore the additional oligonucleotide can sequester the enzyme, leading to slower observed rates for unwinding. To circumvent this problem, the oligonucleotide that serves as a trap was replaced with a strand of peptide nucleic acid (PNA). Fluorescence polarization was used to determine that a 15mer PNA strand does not bind to the bacteriophage T4 Dda helicase. Steady-state kinetic parameters of unwinding catalyzed by Dda were determined by using PNA as a trapping strand. The substrate consisted of a partial duplex with 15 nt of single-stranded DNA and 15 bp. In the presence of 250 nM substrate and 1 nM Dda, the rate of unwinding in the presence of the DNA trapping strand was 0.30 nM s(-1) whereas the rate was 1.34 nM s(-1) in the presence of the PNA trapping strand. PNA prevents reannealing of single-stranded DNA products, but does not sequester the helicase. This assay will prove useful in defining the complete kinetic mechanism for unwinding of oligonucleotide substrates by this helicase.
Collapse
Affiliation(s)
- B Nanduri
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
29
|
Morris PD, Tackett AJ, Babb K, Nanduri B, Chick C, Scott J, Raney KD. Evidence for a functional monomeric form of the bacteriophage T4 DdA helicase. Dda does not form stable oligomeric structures. J Biol Chem 2001; 276:19691-8. [PMID: 11278788 DOI: 10.1074/jbc.m010928200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The active form of many helicases is oligomeric, possibly because oligomerization provides multiple DNA binding sites needed for unwinding of DNA. In order to understand the mechanism of the bacteriophage T4 Dda helicase, the potential requirement for oligomerization was investigated. Chemical cross-linking and high pressure gel filtration chromatography provided little evidence for the formation of an oligomeric species. The specific activity for ssDNA stimulated ATPase activity was independent of Dda concentration. Dda was mutated to produce an ATPase-deficient protein (K38A Dda) by altering a residue within a conserved, nucleotide binding loop. The helicase activity of K38A Dda was inactivated, although DNA binding properties were similar to Dda. In the presence of limiting DNA substrate, the rate of unwinding by Dda was not changed; however, the amplitude of product formation was reduced in the presence of increasing concentrations of K38A Dda. The reduction was between that expected for a monomeric or dimeric helicase based on simple competition for substrate binding. When unwinding of DNA was measured in the presence of excess DNA substrate, addition of K38A Dda caused no reduction in the observed rate for strand separation. Taken together, these results indicate that oligomerization of Dda is not required for DNA unwinding.
Collapse
Affiliation(s)
- P D Morris
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Interaction of the Bacteriophage T4 Gene 59 Helicase Loading Protein and Gene 41 Helicase with Each Other and with Fork, Flap, and Cruciform DNA. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61491-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Mueser TC, Jones CE, Nossal NG, Hyde CC. Bacteriophage T4 gene 59 helicase assembly protein binds replication fork DNA. The 1.45 A resolution crystal structure reveals a novel alpha-helical two-domain fold. J Mol Biol 2000; 296:597-612. [PMID: 10669611 DOI: 10.1006/jmbi.1999.3438] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacteriophage T4 gene 59 helicase assembly protein is required for recombination-dependent DNA replication, which is the predominant mode of DNA replication in the late stage of T4 infection. T4 gene 59 helicase assembly protein accelerates the loading of the T4 gene 41 helicase during DNA synthesis by the T4 replication system in vitro. T4 gene 59 helicase assembly protein binds to both T4 gene 41 helicase and T4 gene 32 single-stranded DNA binding protein, and to single and double-stranded DNA. We show here that T4 gene 59 helicase assembly protein binds most tightly to fork DNA substrates, with either single or almost entirely double-stranded arms. Our studies suggest that the helicase assembly protein is responsible for loading T4 gene 41 helicase specifically at replication forks, and that its binding sites for each arm must hold more than six, but not more than 12 nucleotides. The 1.45 A resolution crystal structure of the full-length 217-residue monomeric T4 gene 59 helicase assembly protein reveals a novel alpha-helical bundle fold with two domains of similar size. Surface residues are predominantly basic (pI 9.37) with clusters of acidic residues but exposed hydrophobic residues suggest sites for potential contact with DNA and with other protein molecules. The N-terminal domain has structural similarity to the double-stranded DNA binding domain of rat HMG1A. We propose a speculative model of how the T4 gene 59 helicase assembly protein might bind to fork DNA based on the similarity to HMG1, the location of the basic and hydrophobic regions, and the site size of the fork arms needed for tight fork DNA binding. The fork-binding model suggests putative binding sites for the T4 gene 32 single-stranded DNA binding protein and for the hexameric T4 gene 41 helicase assembly.
Collapse
Affiliation(s)
- T C Mueser
- Laboratory of Structural Biology Research, Bldg. 6 Room B2-34A, National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health, Bethesda, MD, 20892-2717, USA.
| | | | | | | |
Collapse
|
32
|
Morrical SW, Beernink HT, Dash A, Hempstead K. The gene 59 protein of bacteriophage T4. Characterization of protein-protein interactions with gene 32 protein, the T4 single-stranded DNA binding protein. J Biol Chem 1996; 271:20198-207. [PMID: 8702746 DOI: 10.1074/jbc.271.33.20198] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The gene 59 protein (gp59) of bacteriophage T4 stimulates the activities of gene 41 protein (gp41), the T4 replicative DNA helicase, by promoting the assembly of gp41 onto single-stranded (ss)-DNA molecules that are covered with cooperatively bound gene 32 protein (gp32). This helicase-ssDNA assembly process, which is important for the reconstitution of the primosome component of the T4 DNA replication fork, appears to require both gp59-gp41 and gp59-gp32 protein-protein interactions. In this study we characterize the physical and functional interactions of gp59 with gp32, the T4 ssDNA-binding protein. Experimental results presented herein indicate: 1) that gp59 binds specifically to both free and ssDNA-bound gp32 molecules; and 2) that in both cases binding involves contacts between gp59 and the acidic C-terminal domain of gp32 (the so-called "A-domain"). We further show that single-stranded DNA molecules coated with (gp32-A), a truncated form of gp32 lacking the A-domain, are refractory to gp59-dependent helicase assembly. The data indicate that specific contacts between gp59 molecules and the A-domains of gp32 molecules are essential for gp59-dependent assembly of gp41 onto gp32-ssDNA complexes. Our results are consistent with a model in which gp59 binds to gp32 molecules within the gp32-ssDNA complex and therein forms a target site for helicase-ssDNA assembly.
Collapse
Affiliation(s)
- S W Morrical
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
33
|
Raney KD, Benkovic SJ. Bacteriophage T4 Dda helicase translocates in a unidirectional fashion on single-stranded DNA. J Biol Chem 1995; 270:22236-42. [PMID: 7673202 DOI: 10.1074/jbc.270.38.22236] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The T4 bacteriophage Dda helicase is believed to be involved in early events in T4 DNA replication and has been shown to stimulate genetic recombination processes in vitro. Dda unwinds double-stranded DNA with 5' to 3' polarity but its ability to translocate on DNA has not been established. The DNA stimulated ATPase activity of Dda helicase has been used to probe translocation on single-strand DNA (ssDNA). Dda exhibits higher ATPase activity in the presence of poly(dT) than oligo(dT)16, indicating that Dda translocates on ssDNA. Oligonucleotides containing biotin/streptavidin blocks on the 5' or 3' end were used to probe directionality of translocation. The Kact (Km for DNA) for Dda ATPase activity was reduced in the presence of a streptavidin block on the 3' end, whereas a streptavidin block on the 5' end had only a small effect on the steady-state ATPase parameters. These results suggest that Dda translocates unidirectionally in a 5' to 3' manner and upon encountering the block remains bound to the oligonucleotide rather than sliding off the 3' end. The direction of translocation on ssDNA is consistent with the direction in which Dda unwinds duplex DNA and is not dependent on duplex structure.
Collapse
Affiliation(s)
- K D Raney
- Chemistry Department, Pennsylvania State University, University Park, 16802, USA
| | | |
Collapse
|
34
|
Abstract
The substantial process of general DNA recombination consists of production of ssDNA, exchange of the ssDNA and its homologous strand in a duplex, and cleavage of branched DNA to maturate recombination intermediates. Ten genes of T4 phage are involved in general recombination and apparently encode all of the proteins required for its own recombination. Several proteins among them interact with each other in a highly specific manner based on a protein-protein affinity and constitute a multicomponent protein machine to create an ssDNA gap essential for production of recombinogenic ssDNA, a machine to supply recombinogenic ssDNA which has a free end, or a machine to transfer the recombinogenic single strand into a homologous duplex.
Collapse
Affiliation(s)
- T Yonesaki
- Department of Biology, Faculty of Science, Osaka University, Japan
| |
Collapse
|
35
|
Barry J, Alberts B. Purification and characterization of bacteriophage T4 gene 59 protein. A DNA helicase assembly protein involved in DNA replication. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(20)30096-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
|
37
|
Santos ME, Drake JW. Rates of spontaneous mutation in bacteriophage T4 are independent of host fidelity determinants. Genetics 1994; 138:553-64. [PMID: 7851754 PMCID: PMC1206207 DOI: 10.1093/genetics/138.3.553] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bacteriophage T4 encodes most of the genes whose products are required for its DNA metabolism, and host (Escherichia coli) genes can only infrequently complement mutationally inactivated T4 genes. We screened the following host mutator mutations for effects on spontaneous mutation rates in T4: mutT (destruction of aberrant dGTPs), polA, polB and polC (DNA polymerases), dnaQ (exonucleolytic proofreading), mutH, mutS, mutL and uvrD (methyl-directed DNA mismatch repair), mutM and mutY (excision repair of oxygen-damaged DNA), mutA (function unknown), and topB and osmZ (affecting DNA topology). None increased T4 spontaneous mutation rates within a resolving power of about twofold (nor did optA, which is not a mutator but overexpresses a host dGTPase). Previous screens in T4 have revealed strong mutator mutations only in the gene encoding the viral DNA polymerase and proofreading 3'-exonuclease, plus weak mutators in several polymerase accessory proteins or determinants of dNTP pool sizes. T4 maintains a spontaneous mutation rate per base pair about 30-fold greater than that of its host. Thus, the joint high fidelity of insertion by T4 DNA polymerase and proofreading by its associated 3'-exonuclease appear to determine the T4 spontaneous mutation rate, whereas the host requires numerous additional systems to achieve high replication fidelity.
Collapse
Affiliation(s)
- M E Santos
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709-2233
| | | |
Collapse
|
38
|
Abstract
Bacteriophage T4 gene 41 encodes a replicative DNA helicase that is a subunit of the primosome which is essential for lagging-strand DNA synthesis. A mutation, rrh, was generated and selected in the helicase gene on the basis of limited DNA replication that ceases early. The survival of ultraviolet-irradiated phage and the frequency of genetic recombination are reduced by rrh. In addition, rrh diminishes the production of concatemeric DNA. These results strongly suggest that the gene 41 replicative helicase participates in DNA recombination.
Collapse
Affiliation(s)
- T Yonesaki
- Department of Biology, College of General Education, Osaka University, Japan
| |
Collapse
|