1
|
Sun H, Vargas-Blanco D, Zhou Y, Masiello C, Kelly J, Moy J, Korkin D, Shell S. Diverse intrinsic properties shape transcript stability and stabilization in Mycolicibacterium smegmatis. NAR Genom Bioinform 2024; 6:lqae147. [PMID: 39498432 PMCID: PMC11532794 DOI: 10.1093/nargab/lqae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Mycobacteria regulate transcript degradation to facilitate adaptation to environmental stress. However, the mechanisms underlying this regulation are unknown. Here we sought to gain understanding of the mechanisms controlling mRNA stability by investigating the transcript properties associated with variance in transcript stability and stress-induced transcript stabilization. We measured mRNA half-lives transcriptome-wide in Mycolicibacterium smegmatis in log phase growth and hypoxia-induced growth arrest. The transcriptome was globally stabilized in response to hypoxia, but transcripts of essential genes were generally stabilized more than those of non-essential genes. We then developed machine learning models that enabled us to identify the non-linear collective effect of a compendium of transcript properties on transcript stability and stabilization. We identified properties that were more predictive of half-life in log phase as well as properties that were more predictive in hypoxia, and many of these varied between leadered and leaderless transcripts. In summary, we found that transcript properties are differentially associated with transcript stability depending on both the transcript type and the growth condition. Our results reveal the complex interplay between transcript features and microenvironment that shapes transcript stability in mycobacteria.
Collapse
Affiliation(s)
- Huaming Sun
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Ying Zhou
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Catherine S Masiello
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Jessica M Kelly
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Justin K Moy
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Dmitry Korkin
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Scarlet S Shell
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
2
|
Kim S, Wang YH, Hassan A, Kim S. Re-defining how mRNA degradation is coordinated with transcription and translation in bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.588412. [PMID: 38659903 PMCID: PMC11042359 DOI: 10.1101/2024.04.18.588412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In eukaryotic cells, transcription, translation, and mRNA degradation occur in distinct subcellular regions. How these mRNA processes are organized in bacteria, without employing membrane-bound compartments, remains unclear. Here, we present generalizable principles underlying coordination between these processes in bacteria. In Escherichia coli, we found that co-transcriptional degradation is rare for mRNAs except for those encoding inner membrane proteins, due to membrane localization of the main ribonuclease, RNase E. We further found, by varying ribosome binding sequences, that translation affects mRNA stability not because ribosomes protect mRNA from degradation, but because low translation leads to premature transcription termination in the absence of transcription-translation coupling. Extending our analyses to Bacillus subtilis and Caulobacter crescentus, we established subcellular localization of RNase E (or its homolog) and premature transcription termination in the absence of transcription-translation coupling as key determinants that explain differences in transcriptional and translational coupling to mRNA degradation across genes and species.
Collapse
Affiliation(s)
- Seunghyeon Kim
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yu-Huan Wang
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Albur Hassan
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sangjin Kim
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Minigene as a Novel Regulatory Element in Toxin-Antitoxin Systems. Int J Mol Sci 2021; 22:ijms222413389. [PMID: 34948189 PMCID: PMC8708949 DOI: 10.3390/ijms222413389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/05/2022] Open
Abstract
The axe-txe type II toxin-antitoxin (TA) system is characterized by a complex and multilayered mode of gene expression regulation. Precise and tight control of this process is crucial to keep the toxin in an appropriate balance with the cognate antitoxin until its activation is needed for the cell. In this report, we provide evidence that a minigene encoded within the axe-txe operon influences translation of the Txe toxin. This is the first example to date of such a regulatory mechanism identified in the TA modules. Here, in a series of genetic studies, we employed translational reporter gene fusions to establish the molecular basis of this phenomenon. Our results show that translation of the two-codon mini-ORF displays an in cis mode of action, and positively affects the expression of txe, possibly by increasing its mRNA stability through protection from an endonuclease attack. Moreover, we established that the reading frame in which the two cistrons are encoded, as well as the distance between them, are critical parameters that affect the level of such regulation. In addition, by searching for two-codon ORFs we found sequences of several potential minigenes in the leader sequences of several other toxins belonging to the type II TA family. These findings suggest that this type of gene regulation may not only apply for the axe-txe cassette, but could be more widespread among other TA systems.
Collapse
|
4
|
A Mutant of Vibrio parahaemolyticus pirAB VP (+) That Carries Binary Toxin Genes but Does Not Cause Acute Hepatopancreatic Necrosis Disease. Microorganisms 2020; 8:microorganisms8101549. [PMID: 33049933 PMCID: PMC7599607 DOI: 10.3390/microorganisms8101549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022] Open
Abstract
Vibrio parahaemolyticus carrying binary toxin genes, pirAB, is one of the etiological agents causing acute hepatopancreatic necrosis disease (AHPND) in shrimp. This disease has emerged recently as a major threat to shrimp aquaculture worldwide. During a routine PCR screening of AHPND-causing V. parahaemolyticus strains, an isolate tested PCR positive for pirB (R13) and another isolate tested positive for both the pirA and pirB (R14) genes. To evaluate the pathogenicity of these isolates, specific pathogen-free (SPF) Penaeus vannamei were experimentally challenged. For both R13 and R14 isolates, the final survival rate was 100% at termination of the challenge, whereas the final survival with the AHPND-causing V. parahaemolyticus was 0%. The nucleotide sequence of the plasmid DNA carrying the binary toxin genes revealed that R13 contains a deletion of the entire pirA gene whereas R14 contains the entire coding regions of both pirA and pirB genes. However, R14 possesses an insertion upstream of the pirA gene. In R14, mRNA for both pirA and pirB genes could be detected but no cognate proteins. This shows that the genome of AHPND-causing V. parahaemolyticus is highly plastic and, therefore, detection of the pirA and pirB genes alone by DNA-PCR is insufficient as a diagnostic test for AHPND.
Collapse
|
5
|
Vargas-Blanco DA, Shell SS. Regulation of mRNA Stability During Bacterial Stress Responses. Front Microbiol 2020; 11:2111. [PMID: 33013770 PMCID: PMC7509114 DOI: 10.3389/fmicb.2020.02111] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5' ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
6
|
Xiao J, Peng B, Su Z, Liu A, Hu Y, Nomura CT, Chen S, Wang Q. Facilitating Protein Expression with Portable 5'-UTR Secondary Structures in Bacillus licheniformis. ACS Synth Biol 2020; 9:1051-1058. [PMID: 32302094 DOI: 10.1021/acssynbio.9b00355] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 5'-untranslated region (5'-UTR) of prokaryotic mRNAs plays an essential role in post-transcriptional regulation. Bacillus species, such as Bacillus subtilis and Bacillus licheniformis, have gained considerable attention as microbial cell factories for the production of various valuable chemicals and industrial proteins. In this work, we developed a portable 5'-UTR sequence for enhanced protein output in the industrial strain B. licheniformis DW2. This sequence contains only ∼30 nt and forms a hairpin structure located right before the open reading frame. The optimized Shine-Dalgarno (SD) sequence was presented as a single strand on the loop of the hairpin for better ribosome recognition and recruitment. By optimizing the free energy of folding, this 5'-element could effectively enhance the expression of eGFP by ∼50-fold and showed good adaptability for other target proteins, including RFP, nattokinase, and keratinase. This 5'-UTR could promote the accessibility of both the SD sequence and start codon, leading to improved efficiency of translation initiation. Furthermore, the hairpin structure protected mRNA against 5'-exonucleases, resulting in enhanced mRNA stability. It is well-known that the stable structure at a ribosome binding site (RBS) impedes initiation in Escherichia coli. In this study, we presented a unique structure at a RBS that can effectively enhance protein production, which is an exception of this prevailing concept. By adjusting a single thermodynamic parameter and holding the other factors affecting protein output constant, a series of 5'-UTR elements with different expression strengths could be rationally designed for wide use in Bacillus sp.
Collapse
Affiliation(s)
- Jun Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Bing Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhaowei Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Ankun Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Yajing Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Christopher T. Nomura
- Department of Chemistry, The State University of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, New York 13210, United States
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Qin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
7
|
The Impact of Leadered and Leaderless Gene Structures on Translation Efficiency, Transcript Stability, and Predicted Transcription Rates in Mycobacterium smegmatis. J Bacteriol 2020; 202:JB.00746-19. [PMID: 32094162 PMCID: PMC7148126 DOI: 10.1128/jb.00746-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Regulation of gene expression is critical for Mycobacterium tuberculosis to tolerate stressors encountered during infection and for nonpathogenic mycobacteria such as Mycobacterium smegmatis to survive environmental stressors. Unlike better-studied models, mycobacteria express ∼14% of their genes as leaderless transcripts. However, the impacts of leaderless transcript structures on mRNA half-life and translation efficiency in mycobacteria have not been directly tested. For leadered transcripts, the contributions of 5' untranslated regions (UTRs) to mRNA half-life and translation efficiency are similarly unknown. In M. tuberculosis and M. smegmatis, the essential sigma factor, SigA, is encoded by a transcript with a relatively short half-life. We hypothesized that the long 5' UTR of sigA causes this instability. To test this, we constructed fluorescence reporters and measured protein abundance, mRNA abundance, and mRNA half-life and calculated relative transcript production rates. The sigA 5' UTR conferred an increased transcript production rate, shorter mRNA half-life, and decreased apparent translation rate compared to a synthetic 5' UTR commonly used in mycobacterial expression plasmids. Leaderless transcripts appeared to be translated with similar efficiency as those with the sigA 5' UTR but had lower predicted transcript production rates. A global comparison of M. tuberculosis mRNA and protein abundances failed to reveal systematic differences in protein/mRNA ratios for leadered and leaderless transcripts, suggesting that variability in translation efficiency is largely driven by factors other than leader status. Our data are also discussed in light of an alternative model that leads to different conclusions and suggests leaderless transcripts may indeed be translated less efficiently.IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, is a major public health problem killing 1.5 million people globally each year. During infection, M. tuberculosis must alter its gene expression patterns to adapt to the stress conditions it encounters. Understanding how M. tuberculosis regulates gene expression may provide clues for ways to interfere with the bacterium's survival. Gene expression encompasses transcription, mRNA degradation, and translation. Here, we used Mycobacterium smegmatis as a model organism to study how 5' untranslated regions affect these three facets of gene expression in multiple ways. We furthermore provide insight into the expression of leaderless mRNAs, which lack 5' untranslated regions and are unusually prevalent in mycobacteria.
Collapse
|
8
|
Viegas SC, Apura P, Martínez-García E, de Lorenzo V, Arraiano CM. Modulating Heterologous Gene Expression with Portable mRNA-Stabilizing 5'-UTR Sequences. ACS Synth Biol 2018; 7:2177-2188. [PMID: 30064211 DOI: 10.1021/acssynbio.8b00191] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA half-lives are frequently perceived as depending on too many variables, and transcript stability is generally missed as a checkpoint amenable to manipulation in synthetic designs. In this work, the contribution of mRNA stability to heterologous protein production levels in E. coli has been inspected. To this end, we capitalized on the wealth of information available on intrinsic mRNA stability determinants, four of which were formatted as portable modules consisting of 5'-untranslated regions (UTRs). The cognate DNA sequences were then assembled in a genetic frame in which mRNA stability endowed by the UTRs was the only variable to run expression of sfGFP. Reporter output and Northern blot-based measurements of absolute mRNA half-lives revealed that such UTRs were found to keep intact their ability to modulate transcript stability when excised from their natural context and placed as the upstream region of the reporter gene. By keeping transcription fixed and combining different UTRs with a constant ribosomal binding site, we showed that mRNA decay can be made the limiting constituent of the overall gene expression flow. Moreover, the data indicated that manipulating mRNA stability had little effect on expression noise in the corresponding population. Finally, augmented heterologous expression brought about by mRNA stability did not make cells more vulnerable to resource-consuming stresses. The tangible result of this work was a collection of well-characterized mRNA-stabilizing sequences that can be composed along with other expression signals in any construct following the assembly rules of the Standard European Vector Architecture (SEVA) format.
Collapse
Affiliation(s)
- Sandra C. Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - Patrícia Apura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - Esteban Martínez-García
- Systems Biology Program, Centro Nacional de Biotecnologia, CSIC, C/Darwin, 3 (Campus de Cantoblanco), Madrid 28049, Spain
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnologia, CSIC, C/Darwin, 3 (Campus de Cantoblanco), Madrid 28049, Spain
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| |
Collapse
|
9
|
McAteer SP, Sy BM, Wong JL, Tollervey D, Gally DL, Tree JJ. Ribosome maturation by the endoribonuclease YbeY stabilizes a type 3 secretion system transcript required for virulence of enterohemorrhagic Escherichia coli. J Biol Chem 2018; 293:9006-9016. [PMID: 29678883 PMCID: PMC5995498 DOI: 10.1074/jbc.ra117.000300] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a significant human pathogen that colonizes humans and its reservoir host, cattle. Colonization requires the expression of a type 3 secretion (T3S) system that injects a mixture of effector proteins into host cells to promote bacterial attachment and disease progression. The T3S system is tightly regulated by a complex network of transcriptional and post-transcriptional regulators. Using transposon mutagenesis, here we identified the ybeZYX-Int operon as being required for normal T3S levels. Deletion analyses localized the regulation to the endoribonuclease YbeY, previously linked to 16S rRNA maturation and small RNA (sRNA) function. Loss of ybeY in EHEC had pleiotropic effects on EHEC cells, including reduced motility and growth and cold sensitivity. Using UV cross-linking and RNA-Seq (CRAC) analysis, we identified YbeY-binding sites throughout the transcriptome and discovered specific binding of YbeY to the "neck" and "beak" regions of 16S rRNA but identified no significant association of YbeY with sRNA, suggesting that YbeY modulates T3S by depleting mature ribosomes. In E. coli, translation is strongly linked to mRNA stabilization, and subinhibitory concentrations of the translation-initiation inhibitor kasugamycin provoked rapid degradation of a polycistronic mRNA encoding needle filament and needle tip proteins of the T3S system. We conclude that T3S is particularly sensitive to depletion of initiating ribosomes, explaining the inhibition of T3S in the ΔybeY strain. Accessory virulence transcripts may be preferentially degraded in cells with reduced translational capacity, potentially reflecting prioritization in protein production.
Collapse
Affiliation(s)
- Sean P McAteer
- From the Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, Scotland, United Kingdom
| | - Brandon M Sy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney 2033, Australia, and
| | - Julia L Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney 2033, Australia, and
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, Scotland, United Kingdom
| | - David L Gally
- From the Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, Scotland, United Kingdom,
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney 2033, Australia, and
| |
Collapse
|
10
|
Ludwig P, Huber M, Lehr M, Wegener M, Zerulla K, Lange C, Soppa J. Non-canonical Escherichia coli transcripts lacking a Shine-Dalgarno motif have very different translational efficiencies and do not form a coherent group. MICROBIOLOGY-SGM 2018; 164:646-658. [PMID: 29469690 DOI: 10.1099/mic.0.000619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Translation initiation in 50-70 % of transcripts in Escherichia coli requires base pairing between the Shine-Dalgarno (SD) motif in the mRNA and the anti-SD motif at the 3' end of the 16S rRNA. However, 30-50 % of E. coli transcripts are non-canonical and are not preceded by an SD motif. The 5' ends of 44 E. coli transcripts were determined, all of which contained a 5'-UTR (no leaderless transcripts), but only a minority contained an SD motif. The 5'-UTR lengths were compared with those listed in RegulonDB and reported in previous publications, and the identities and differences were obtained in all possible combinations. We aimed to quantify the translational efficiencies of non-canonical 5'-UTRs using GusA reporter gene assays and Northern blot analyses. Ten non-canonical 5'-UTRs and two control 5'-UTRs with an SD motif were cloned upstream of the gusA gene. The translational efficiencies were quantified under five different conditions (different growth rates via two different temperatures and two different carbon sources, and heat shock). The translational efficiencies of the non-canonical 5'-UTRs varied widely, from 5 to 384 % of the positive control. In addition, the non-canonical transcripts did not exhibit a common regulatory pattern with changing environmental parameters. No correlation could be observed between the translational efficiencies of the non-canonical 5'-UTRs and their lengths, sequences, GC content, or predicted secondary structures. The introduction of an SD motif enhanced the translational efficiency of a poorly translated non-canonical transcript, while the efficiency of a well-translated non-canonical transcript remained unchanged. Taken together, the mechanisms of translation initiation at non-canonical transcripts in E. coli still need to be elucidated.
Collapse
Affiliation(s)
- Petra Ludwig
- Goethe University, Institute for Molecular Biosciences, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Madeleine Huber
- Goethe University, Institute for Molecular Biosciences, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Matthias Lehr
- Goethe University, Institute for Molecular Biosciences, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Marius Wegener
- Goethe University, Institute for Molecular Biosciences, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Karolin Zerulla
- Goethe University, Institute for Molecular Biosciences, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Christian Lange
- Goethe University, Institute for Molecular Biosciences, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Joerg Soppa
- Goethe University, Institute for Molecular Biosciences, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
11
|
Braun F, Durand S, Condon C. Initiating ribosomes and a 5'/3'-UTR interaction control ribonuclease action to tightly couple B. subtilis hbs mRNA stability with translation. Nucleic Acids Res 2017; 45:11386-11400. [PMID: 28977557 PMCID: PMC5737220 DOI: 10.1093/nar/gkx793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/29/2017] [Indexed: 12/19/2022] Open
Abstract
We previously showed that ribosomes initiating translation of the B. subtilis hbs mRNA at a strong Shine–Dalgarno sequence block the 5′ exoribonuclease RNase J1 from degrading into the coding sequence. Here, we identify new and previously unsuspected features of this mRNA. First, we identify RNase Y as the endoribonuclease that cleaves the highly structured 5′-UTR to give access to RNase J1. Cleavage by RNase Y at this site is modulated by a 14-bp long-range interaction between the 5′- and 3-UTRs that partially overlaps the cleavage site. In addition to this maturation/degradation pathway, we discovered a new and ultimately more important RNase Y cleavage site in the very early coding sequence, masked by the initiating ribosome. Thus, two independent pathways compete with ribosomes to tightly link hbs mRNA stability to translation initiation; in one case the initiating ribosome competes directly with RNase J1 and in the other with RNase Y. This is in contrast to prevailing models in Escherichia coli where ribosome traffic over the ORF is the main source of protection from RNases. Indeed, a second RNase Y cleavage site later in the hbs ORF plays no role in its turnover, confirming that for this mRNA at least, initiation is key.
Collapse
Affiliation(s)
- Frédérique Braun
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sylvain Durand
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ciarán Condon
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
12
|
Radhakrishnan A, Green R. Connections Underlying Translation and mRNA Stability. J Mol Biol 2016; 428:3558-64. [PMID: 27261255 DOI: 10.1016/j.jmb.2016.05.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
Gene expression and regulation in organisms minimally depends on transcription by RNA polymerase and on the stability of the RNA product (for both coding and non-coding RNAs). For coding RNAs, gene expression is further influenced by the amount of translation by the ribosome and by the stability of the protein product. The stabilities of these two classes of RNA, non-coding and coding, vary considerably: tRNAs and rRNAs tend to be long lived while mRNAs tend to be more short lived. Even among mRNAs, however, there is a considerable range in stability (ranging from seconds to hours in bacteria and up to days in metazoans), suggesting a significant role for stability in the regulation of gene expression. Here, we review recent experiments from bacteria, yeast and metazoans indicating that the stability of most mRNAs is broadly impacted by the actions of ribosomes that translate them. Ribosomal recognition of defective mRNAs triggers "mRNA surveillance" pathways that target the mRNA for degradation [Shoemaker and Green (2012) ]. More generally, even the stability of perfectly functional mRNAs appears to be dictated by overall rates of translation by the ribosome [Herrick et al. (1990), Presnyak et al. (2015) ]. Given that mRNAs are synthesized for the purpose of being translated into proteins, it is reassuring that such intimate connections between mRNA and the ribosome can drive biological regulation. In closing, we consider the likelihood that these connections between protein synthesis and mRNA stability are widespread or whether other modes of regulation dominate the mRNA stability landscape in higher organisms.
Collapse
Affiliation(s)
- Aditya Radhakrishnan
- Program in Molecular Biophysics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Department of Molecular Biology and Genetics, Baltimore, MD 21205, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Department of Molecular Biology and Genetics, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
Gualerzi CO, Pon CL. Initiation of mRNA translation in bacteria: structural and dynamic aspects. Cell Mol Life Sci 2015; 72:4341-67. [PMID: 26259514 PMCID: PMC4611024 DOI: 10.1007/s00018-015-2010-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/12/2023]
Abstract
Initiation of mRNA translation is a major checkpoint for regulating level and fidelity of protein synthesis. Being rate limiting in protein synthesis, translation initiation also represents the target of many post-transcriptional mechanisms regulating gene expression. The process begins with the formation of an unstable 30S pre-initiation complex (30S pre-IC) containing initiation factors (IFs) IF1, IF2 and IF3, the translation initiation region of an mRNA and initiator fMet-tRNA whose codon and anticodon pair in the P-site following a first-order rearrangement of the 30S pre-IC produces a locked 30S initiation complex (30SIC); this is docked by the 50S subunit to form a 70S complex that, following several conformational changes, positional readjustments of its ligands and ejection of the IFs, becomes a 70S initiation complex productive in initiation dipeptide formation. The first EF-G-dependent translocation marks the beginning of the elongation phase of translation. Here, we review structural, mechanistic and dynamical aspects of this process.
Collapse
MESH Headings
- Bacteria/genetics
- Bacteria/metabolism
- Binding Sites/genetics
- Codon, Initiator/genetics
- Codon, Initiator/metabolism
- Models, Genetic
- Nucleic Acid Conformation
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Protein Biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
| | - Cynthia L Pon
- Laboratory of Genetics, University of Camerino, 62032, Camerino, Italy.
| |
Collapse
|
14
|
Design and optimization of short DNA sequences that can be used as 5' fusion partners for high-level expression of heterologous genes in Escherichia coli. Appl Environ Microbiol 2013; 79:6655-64. [PMID: 23974137 DOI: 10.1128/aem.01676-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The 5' terminal nucleotide sequence of a gene is often a bottleneck in recombinant protein production. The ifn-α2bS gene is poorly expressed in Escherichia coli unless a translocation signal sequence (pelB) is fused to the 5' end of the gene. A combined in silico and in vivo analysis reported here further indicates that the ifn-α2bS 5' coding sequence is suboptimal for efficient gene expression. ifn-α2bS therefore presents a suitable model gene for describing properties of 5' fusions promoting expression. We show that short DNA sequences corresponding to the 5' end of the highly expressed celB gene, whose protein product is cytosolic, can functionally replace pelB as a 5' fusion partner for efficient ifn-α2bS expression. celB fusions of various lengths (corresponding to a minimum of 8 codons) led to more than 7- and 60-fold stimulation of expression at the transcript and protein levels, respectively. Moreover, the presence of a celB-based fusion partner was found to moderately reduce the decay rate of the corresponding transcript. The 5' fusions thus appear to act by enhancing translation, and bound ribosomes may accordingly contribute to increased mRNA stability and reduced mRNA decay. However, other effects, such as altered protein stability, cannot be excluded. We also developed an experimental protocol that enabled us to identify improved variants of the celB fusion, and one of these (celBD11) could be used to additionally increase ifn-α2bS expression more than 4-fold at the protein level. Interestingly, celBD11 also stimulated greater protein production of three other medically important human genes than the wild-type celB fragment.
Collapse
|
15
|
Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc Natl Acad Sci U S A 2013; 110:14024-9. [PMID: 23924614 DOI: 10.1073/pnas.1301301110] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The inability to predict heterologous gene expression levels precisely hinders our ability to engineer biological systems. Using well-characterized regulatory elements offers a potential solution only if such elements behave predictably when combined. We synthesized 12,563 combinations of common promoters and ribosome binding sites and simultaneously measured DNA, RNA, and protein levels from the entire library. Using a simple model, we found that RNA and protein expression were within twofold of expected levels 80% and 64% of the time, respectively. The large dataset allowed quantitation of global effects, such as translation rate on mRNA stability and mRNA secondary structure on translation rate. However, the worst 5% of constructs deviated from prediction by 13-fold on average, which could hinder large-scale genetic engineering projects. The ease and scale this of approach indicates that rather than relying on prediction or standardization, we can screen synthetic libraries for desired behavior.
Collapse
|
16
|
Malys N. Shine-Dalgarno sequence of bacteriophage T4: GAGG prevails in early genes. Mol Biol Rep 2011; 39:33-9. [PMID: 21533668 DOI: 10.1007/s11033-011-0707-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 04/20/2011] [Indexed: 11/29/2022]
Abstract
Translation initiation is governed by a limited number of mRNA sequence motifs within the translation initiation region (TIR). In bacteria and bacteriophages, one of the most important determinants is a Shine-Dalgarno (SD) sequence that base pairs with the anti-SD sequence GAUCACCUCCUUA localized in the 3' end of 16S rRNA. This work assesses a diversity of TIR features in phage T4, focusing on the SD sequence, its spacing to the start codon and relationship to gene expression and essentiality patterns. Analysis shows that GAGG is predominant of all core SD motifs in T4 and its related phages, particularly in early genes. Possible implication of the RegB activity is discussed.
Collapse
Affiliation(s)
- Naglis Malys
- Faculty of Life Sciences, MCISB, MIB, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
17
|
Carpousis AJ, Luisi BF, McDowall KJ. Endonucleolytic initiation of mRNA decay in Escherichia coli. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:91-135. [PMID: 19215771 DOI: 10.1016/s0079-6603(08)00803-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Instability is a fundamental property of mRNA that is necessary for the regulation of gene expression. In E. coli, the turnover of mRNA involves multiple, redundant pathways involving 3'-exoribonucleases, endoribonucleases, and a variety of other enzymes that modify RNA covalently or affect its conformation. Endoribonucleases are thought to initiate or accelerate the process of mRNA degradation. A major endoribonuclease in this process is RNase E, which is a key component of the degradative machinery amongst the Proteobacteria. RNase E is the central element in a multienzyme complex known as the RNA degradosome. Structural and functional data are converging on models for the mechanism of activation and regulation of RNase E and its paralog, RNase G. Here, we discuss current models for mRNA degradation in E. coli and we present current thinking on the structure and function of RNase E based on recent crystal structures of its catalytic core.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS et Université Paul Sabatier, 31062 Toulouse, France
| | | | | |
Collapse
|
18
|
Dreyfus M. Killer and protective ribosomes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:423-66. [PMID: 19215779 DOI: 10.1016/s0079-6603(08)00811-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In prokaryotes, translation influences mRNA decay. The breakdown of most Escherichia coli mRNAs is initiated by RNase E, a 5'-dependent endonuclease. Some mRNAs are protected by ribosomes even if these are located far upstream of cleavage sites ("protection at a distance"), whereas others require direct shielding of these sites. I argue that these situations reflect different modes of interaction of RNase E with mRNAs. Protection at a distance is most impressive in Bacilli, where ribosomes can protect kilobases of unstable downstream sequences. I propose that this protection reflects the role in mRNA decay of RNase J1, a 5'-->3' exonuclease with no E. coli equivalent. Finally, recent years have shown that besides their protective role, ribosomes can also cleave their mRNA under circumstances that cause ribosome stalling. The endonuclease associated with this "killing" activity, which has a eukaryotic counterpart ("no-go decay"), is not characterized; it may be borne by the distressed ribosome itself.
Collapse
|
19
|
Dryselius R, Nikravesh A, Kulyté A, Goh S, Good L. Variable coordination of cotranscribed genes in Escherichia coli following antisense repression. BMC Microbiol 2006; 6:97. [PMID: 17118182 PMCID: PMC1661596 DOI: 10.1186/1471-2180-6-97] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 11/21/2006] [Indexed: 12/01/2022] Open
Abstract
Background A majority of bacterial genes belong to tight clusters and operons, which complicates gene functional studies using conventional knock-out methods. Antisense agents can down-regulate the expression of genes without disrupting the genome because they bind mRNA and block its expression. However, it is unclear how antisense inhibition affects expression from genes that are cotranscribed with the target. Results To examine the effects of antisense inhibition on cotranscribed genes, we constructed a plasmid expressing the two reporter genes gfp and DsRed as one transcriptional unit. Incubation with antisense peptide nucleic acid (PNA) targeted to the mRNA start codon region of either the upstream gfp or the downstream DsRed gene resulted in a complete expression discoordination from this artificial construct. The same approach was applied to the three cotranscribed genes in the endogenously expressed lac-operon (lacZ, Y and A) and partial downstream expression coordination was seen when the lacZ start codon was targeted with antisense PNA. Targeting the lacY mRNA start codon region showed no effect on the upstream lacZ gene expression whereas expression from the downstream lacA gene was affected as strongly as the lacY gene. Determination of lacZ and lacY mRNA levels revealed a pattern of reduction that was similar to the Lac-proteins, indicating a relation between translation inhibition and mRNA degradation as a response to antisense PNA treatment. Conclusion The results show that antisense mediated repression of genes within operons affect cotranscribed genes to a variable degree. Target transcript stability appears to be closely related to inhibition of translation and presumably depends on translating ribosomes protecting the mRNA from intrinsic decay mechanisms. Therefore, for genes within operons and clusters it is likely that the nature of the target transcript will determine the inhibitory effects on cotranscribed genes. Consequently, no simple and specific methods for expression control of a single gene within polycistronic operons are available, and a thorough understanding of mRNA regulation and stability is required to understand the results from both knock-down and knock-out methods used in bacteria.
Collapse
Affiliation(s)
- Rikard Dryselius
- Department of Cell and Molecular Biology, Programme for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, 171 77, Stockholm, Sweden
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Abbas Nikravesh
- Department of Cell and Molecular Biology, Programme for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, 171 77, Stockholm, Sweden
| | - Agne Kulyté
- Department of Cell and Molecular Biology, Programme for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, 171 77, Stockholm, Sweden
- Life Sciences, Södertörns University College, Alfred Nobels allé 3, 14152 Huddinge, Sweden
| | - Shan Goh
- Department of Cell and Molecular Biology, Programme for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, 171 77, Stockholm, Sweden
| | - Liam Good
- Department of Cell and Molecular Biology, Programme for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, 171 77, Stockholm, Sweden
| |
Collapse
|
20
|
Abstract
Studies in pro- and eukaryotes have revealed that translation can determine the stability of a given messenger RNA. In bacteria, intrinsic mRNA signals can confer efficient ribosome binding, whereas translational feedback inhibition or environmental cues can interfere with this process. Such regulatory mechanisms are often controlled by RNA-binding proteins, small noncoding RNAs and structural rearrangements within the 5' untranslated region. Here, we review molecular events occurring in the 5' untranslated region of primarily Escherichia coli mRNAs with regard to their effects on mRNA stability.
Collapse
Affiliation(s)
- Vladimir R Kaberdin
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University Departments at Vienna Biocenter, Vienna, Austria.
| | | |
Collapse
|
21
|
Ramírez-Prado JH, Martínez-Márquez EI, Olmedo-Alvarez G. cry1Aa Lacks Stability Elements at Its 5′-UTR but Integrity of Its Transcription Terminator Is Critical to Prevent Decay of Its Transcript. Curr Microbiol 2006; 53:23-9. [PMID: 16775783 DOI: 10.1007/s00284-005-5178-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 11/14/2005] [Indexed: 10/24/2022]
Abstract
We analyzed the influence of the 5' and 3' untranslated regions of the Bacillus thuringiensis cry1Aa on its mRNA stability. Although the cry1Aa gene has a stable transcript (8 min), its 5' UTR did not provide stability to the reporter gene uidA. Stability of cry1Aa could be increased to 40 min by addition of an SP82 stability element at the 5' UTR, suggesting that once the 5' and 3' ends were protected initiation of decay could be effectively blocked. We generated mutations in the transcription terminator and found that changes that reduced the stability of the stem, a larger loop, or elimination of the U-trail sharply decreased the half-life of the transcript. Therefore, unlike some stable bacterial transcripts, cry1Aa lacks special features at the end 5' to prevent decay, but its terminator is the main determinant of its stability.
Collapse
|
22
|
Abstract
The lifetimes of bacterial mRNAs are strongly affected by their association with ribosomes. Events occurring at any stage during translation, including ribosome binding, polypeptide elongation, or translation termination, can influence the susceptibility of mRNA to ribonuclease attack. Ribosomes usually act as protective barriers that impede mRNA cleavage, but in some instances they can instead trigger the decay of the mRNA to which they are bound or send a signal that leads to widespread mRNA destabilization within a cell. The influence of translation on mRNA decay provides a quality-control mechanism for minimizing the use of poorly or improperly translated mRNAs as templates for the production of abnormal proteins that might be toxic to bacteria.
Collapse
Affiliation(s)
- Atilio Deana
- Skirball Institute of Biomolecular Medicine and Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
23
|
Arnold S, Siemann-Herzberg M, Schmid J, Reuss M. Model-based inference of gene expression dynamics from sequence information. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 100:89-179. [PMID: 16270657 DOI: 10.1007/b136414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A dynamic model of prokaryotic gene expression is developed that makes considerable use of gene sequence information. The main contribution arises from the fact that the combined gene expression model allows us to access the impact of altering a nucleotide sequence on the dynamics of gene expression rates mechanistically. The high level of detail of the mathematical model is considered as an important step towards bringing together the tremendous amount of biological in-depth knowledge that has been accumulated at the molecular level, using a systems level analysis (in the sense of a bottom-up, inductive approach). This enables to the model to provide highly detailed insights into the various steps of the protein expression process and it allows us to access possible targets for model-based design. Taken as a whole, the mathematical gene expression model presented in this study provides a comprehensive framework for a thorough analysis of sequence-related effects on the stages of mRNA synthesis, mRNA degradation and ribosomal translation, as well as their nonlinear interconnectedness. Therefore, it may be useful in the rational design of recombinant bacterial protein synthesis systems, the modulation of enzyme activities in pathway design, in vitro protein biosynthesis, and RNA-based vaccination.
Collapse
Affiliation(s)
- Sabine Arnold
- Biotechnology R&D, DSM Nutritional Products Ltd., Bldg. 203/113A, 4002 Basel, Switzerland
| | | | | | | |
Collapse
|
24
|
Komarova AV, Tchufistova LS, Dreyfus M, Boni IV. AU-rich sequences within 5' untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. J Bacteriol 2005; 187:1344-9. [PMID: 15687198 PMCID: PMC545611 DOI: 10.1128/jb.187.4.1344-1349.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 11/05/2004] [Indexed: 11/20/2022] Open
Abstract
We have shown previously that when the Escherichia coli chromosomal lacZ gene is put under the control of an extended Shine-Dalgarno (SD) sequence (10 or 6 nucleotides in length), the translation efficiency can be highly variable, depending on the presence of AU-rich targets for ribosomal protein S1 in the mRNA leader. Here, the same strains have been used to examine the question of how strong ribosome binding to extended SD sequences affects the stability of lacZ mRNAs translated with different efficiencies. The steady-state concentration of the lacZ transcripts has been found to vary over a broad range, directly correlating with translation efficiency but not with the SD duplex stability. The observed strain-to-strain variations in lacZ mRNA level became far less marked in the presence of the rne-1 mutation, which partially inactivates RNase E. Together, the results show that (i) an SD sequence, even one that is very long, cannot stabilize the lacZ mRNA in E. coli if translation is inefficient; (ii) inefficiently translated lacZ transcripts are sensitive to RNase E; and (iii) AU-rich elements inserted upstream of a long SD sequence enhance translation and stabilize mRNA, despite the fact that they constitute potential RNase E sites. These data strongly support the idea that the lacZ mRNA in E. coli can be stabilized only by translating, and not by stalling, ribosomes.
Collapse
Affiliation(s)
- Anastassia V Komarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | | | | | | |
Collapse
|
25
|
Fuglsang A, Engberg J. Non-randomness in Shine-Dalgarno regions: links to gene characteristics. Biochem Biophys Res Commun 2003; 302:296-301. [PMID: 12604345 DOI: 10.1016/s0006-291x(03)00168-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A probabilistic approach to the study of the Shine-Dalgarno region was used to identify the most non-random positions based on parsing of genomes in four species: Escherichia coli, Bacillus subtilis, the AT-rich Clostridium perfringens, and the GC-rich Streptomyces coelicolor. The compositional non-randomness shows a clear peak centered around 9-11 nucleotides upstream of the start codon. This peak was in all species associated with guanine as the most abundant nucleotide, flanked by guanine in the closest proximity and adenines farther away (cytosine in case of S. coelicolor). Using contingency tables, the nucleotides in the Shine-Dalgarno region were shown to have a strong association to the choice of start codons. We also show that gene characteristics such as length, aromaticity, and lipophilicity are related to the nucleotide at this peak position upstream of the start codon.
Collapse
Affiliation(s)
- Anders Fuglsang
- Royal Danish School of Pharmacy, Institute of Pharmacology, Copenhagen Ø, Denmark.
| | | |
Collapse
|
26
|
Hambraeus G, Karhumaa K, Rutberg B. A 5' stem-loop and ribosome binding but not translation are important for the stability of Bacillus subtilis aprE leader mRNA. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1795-1803. [PMID: 12055299 DOI: 10.1099/00221287-148-6-1795] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Bacillus subtilis aprE leader is a determinant of extreme mRNA stability. The authors examined what properties of the aprE leader confer stability on an mRNA. The secondary structure of the aprE leader mRNA was analysed in vitro and in vivo, and mutations were introduced into different domains of an aprE leader-lacZ fusion. The half-lives of the corresponding transcripts were determined and beta-galactosidase activities were measured. Removal of a stem-loop structure at the 5' end or diminishing the strength of the RBS reduced the half-lives from more than 25 min to about 5 min. Interfering with translation by abolishing the start codon or creating an early stop codon had no or little effect on mRNA stability. The authors conclude that a 5' stem-loop and binding of ribosomes are necessary for the stability of aprE leader mRNA. The present results, together with a number of other data, suggest that translation of a B. subtilis mRNA is generally not important for its stability; the situation seems different in Escherichia coli. It is further concluded that the calculated strength of a B. subtilis RBS cannot be used to predict the stability of the corresponding transcript.
Collapse
Affiliation(s)
- Gustav Hambraeus
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden1
| | - Kaisa Karhumaa
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden1
| | - Blanka Rutberg
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden1
| |
Collapse
|
27
|
O'Donnell SM, Janssen GR. The initiation codon affects ribosome binding and translational efficiency in Escherichia coli of cI mRNA with or without the 5' untranslated leader. J Bacteriol 2001; 183:1277-83. [PMID: 11157940 PMCID: PMC95001 DOI: 10.1128/jb.183.4.1277-1283.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2000] [Accepted: 11/17/2000] [Indexed: 11/20/2022] Open
Abstract
Translational efficiency of an AUG, CUG, GUG, or UUG initiation codon was measured for the naturally leaderless cI mRNA from bacteriophage lambda. In a cI-lacZ translational fusion, only AUG supported a high level of expression; GUG supported a low level of expression, while UUG and CUG expression was barely above background levels. Addition of an untranslated lac leader and Shine-Dalgarno sequence to cI increased expression but still showed a dependence on an AUG for maximum expression. cI-lacZ mRNA with an AUG initiation codon showed a greater in vitro ribosome binding strength and a higher level of full-length in vivo mRNA, suggesting that the initiation codon is an important determinant of ribosome binding strength and translational efficiency for mRNA with or without the 5' untranslated leader.
Collapse
Affiliation(s)
- S M O'Donnell
- Department of Microbiology, Miami University, Oxford, Ohio 45056, USA
| | | |
Collapse
|
28
|
Valadez JG, Hernández-Sánchez J, Magos MA, Ontiveros C, Guarneros G. Increased bar minigene mRNA stability during cell growth inhibition. Mol Microbiol 2001; 39:361-9. [PMID: 11136457 DOI: 10.1046/j.1365-2958.2001.02214.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacteriophage lambda is unable to grow vegetatively on Escherichia coli mutants defective in peptidyl-tRNA hydrolase (Pth) activity. Mutations which allow phage growth on the defective host have been located at regions named bar in the lambda genome. Expression of wild-type bar regions from plasmid constructs results in inhibition of protein synthesis and lethality to Pth-defective cells. Two of these wild-type bar regions, barI+ and barII+, contain minigenes with similar AUG-AUA-stop codon sequences preceded by different Shine-Dalgarno (SD) and spacer regions. The induced expression of barI+ and barII+ regions from plasmid constructs resulted in similar patterns of protein synthesis inhibition and cell growth arrest. Therefore, these deleterious effects may stem from translation of the transcripts containing the minigene two-codon 'ORF' (open reading frame). To test for this possibility, we assayed the effect of point mutations within the barI minigene. The results showed that a base pair substitution within the SD and the two-codon 'ORF' sequences affected protein synthesis and cell growth inhibition. In addition, mRNA stability was altered in each mutant. Higher mRNA stability correlated with the more toxic minigenes. We argue that this effect may be caused by ribosome protection of the mRNA in paused complexes as a result of deficiency of specific tRNA.
Collapse
Affiliation(s)
- J G Valadez
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
29
|
Vytvytska O, Moll I, Kaberdin VR, von Gabain A, Bläsi U. Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev 2000; 14:1109-18. [PMID: 10809669 PMCID: PMC316587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The adaptation of mRNA stability to environmental changes is a means of cells to adjust the level of gene expression. The Escherichia coli ompA mRNA has served as one of the paradigms for regulated mRNA decay in prokaryotes. The stability of the transcript is known to be correlated inversely with the bacterial growth rate. Thus, the regulation of ompA mRNA stability meets the physiological needs to adjust the level of ompA expression to the rate of cell division. Recently, host factor I (Hfq/HF1) was shown to be involved in the regulation of ompA mRNA stability under slow growth conditions. Here, we present the first direct demonstration that 30S ribosomes bound to the ompA 5'-UTR protect the transcript from RNase E cleavage in vitro. However, the 30S protection was found to be abrogated in the presence of Hfq. Toeprinting and in vitro translation assays revealed that translation of ompA is repressed in the presence of Hfq. These in vitro studies are corroborated by in vivo expression studies demonstrating that the reduced synthesis rate of OmpA effected by Hfq results in functional inactivation of the ompA mRNA. The data are discussed in terms of a model wherein Hfq regulates the stability of ompA mRNA by competing with 30S ribosomes for binding to the ompA 5'-UTR.
Collapse
Affiliation(s)
- O Vytvytska
- Institute of Microbiology and Genetics, Vienna Biocenter, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
30
|
Vytvytska O, Moll I, Kaberdin VR, von Gabain A, Bläsi U. Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev 2000. [DOI: 10.1101/gad.14.9.1109] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The adaptation of mRNA stability to environmental changes is a means of cells to adjust the level of gene expression. The Escherichia coli ompA mRNA has served as one of the paradigms for regulated mRNA decay in prokaryotes. The stability of the transcript is known to be correlated inversely with the bacterial growth rate. Thus, the regulation of ompA mRNA stability meets the physiological needs to adjust the level of ompA expression to the rate of cell division. Recently, host factor I (Hfq/HF1) was shown to be involved in the regulation of ompA mRNA stability under slow growth conditions. Here, we present the first direct demonstration that 30S ribosomes bound to the ompA 5′-UTR protect the transcript from RNase E cleavage in vitro. However, the 30S protection was found to be abrogated in the presence of Hfq. Toeprinting and in vitro translation assays revealed that translation of ompA is repressed in the presence of Hfq. These in vitro studies are corroborated by in vivo expression studies demonstrating that the reduced synthesis rate of OmpA effected by Hfq results in functional inactivation of the ompA mRNA. The data are discussed in terms of a model wherein Hfq regulates the stability of ompA mRNA by competing with 30S ribosomes for binding to the ompA 5′-UTR.
Collapse
|
31
|
Grunberg-Manago M. Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet 2000; 33:193-227. [PMID: 10690408 DOI: 10.1146/annurev.genet.33.1.193] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The stability of mRNA in prokaryotes depends on multiple factors and it has not yet been possible to describe the process of mRNA degradation in terms of a unique pathway. However, important advances have been made in the past 10 years with the characterization of the cis-acting RNA elements and the trans-acting cellular proteins that control mRNA decay. The trans-acting proteins are mainly four nucleases, two endo- (RNase E and RNase III) and two exonucleases (PNPase and RNase II), and poly(A) polymerase. RNase E and PNPase are found in a multienzyme complex called the degradosome. In addition to the host nucleases, phage T4 encodes a specific endonuclease called RegB. The cis-acting elements that protect mRNA from degradation are stable stem-loops at the 5' end of the transcript and terminators or REP sequences at their 3' end. The rate-limiting step in mRNA decay is usually an initial endonucleolytic cleavage that often occurs at the 5' extremity. This initial step is followed by directional 3' to 5' degradation by the two exonucleases. Several examples, reviewed here, indicate that mRNA degradation is an important step at which gene expression can be controlled. This regulation can be either global, as in the case of growth rate-dependent control, or specific, in response to changes in the environmental conditions.
Collapse
|
32
|
Nivinskas R, Malys N, Klausa V, Vaiskunaite R, Gineikiene E. Post-transcriptional control of bacteriophage T4 gene 25 expression: mRNA secondary structure that enhances translational initiation. J Mol Biol 1999; 288:291-304. [PMID: 10329143 DOI: 10.1006/jmbi.1999.2695] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secondary structure of the mRNA in the translational initiation region is an important determinant of translation efficiency. However, the secondary structures that enhance or facilitate translation initiation are rare. We have previously proposed that such structure may exist in the case of bacteriophage T4 gene 25 translational initiation region, which contains three potential Shine-Dalgarno sequences (SD1, SD2, and SD3) with a spacing of 8, 17, and 27 nucleotides from the initiation codon of this gene, respectively. We now present results that clearly demonstrate the existence of a hairpin structure that includes SD1 and SD2 sequences and brings the SD3, the most typical of these Shine-Dalgarno sequences, to a favourable spacing with the initiation codon of gene 25. Using a phage T7 expression system, we show that mutations that prevent the formation of hairpin structure or eliminate the SD3 sequence result in a decreased level of gp25 synthesis. Double mutation in base-pair V restores the level of gene 25 expression that was decreased by either of the two mutations (C-to-G and G-to-C) alone, as predicted by an effect attributable to mRNA secondary structure. We introduced the mutations into the bacteriophage T4 by plasmid-phage recombination. Changes in the plaque and burst sizes of T4 mutants, carrying single and double mutations in the translational initiation region of gene 25, strongly suggest that the predicted mRNA secondary structure controls (enhances) the level of gene 25 expression in vivo. Hybridization of total cellular RNA with a gene 25 specific probe indicated that secondary structure or mutations in the translational initiation region do not notably affect the 25 mRNA stability. Immunoblot analysis of gp25 in Escherichia coli cells infected by T4 mutants showed that mRNA secondary structure increases the level of gp25 synthesis by three- to fourfold. Since the secondary structure increases the level of gp25 synthesis and does not affect mRNA stability, we conclude that this structure enhances translation initiation. We discuss some features of two secondary structures in the translational initiation regions of T4 genes 25 and 38.
Collapse
Affiliation(s)
- R Nivinskas
- Institute of Biochemistry, Mokslininku 12, Vilnius, 2600, Lithuania.
| | | | | | | | | |
Collapse
|
33
|
Joyce SA, Dreyfus M. In the absence of translation, RNase E can bypass 5' mRNA stabilizers in Escherichia coli. J Mol Biol 1998; 282:241-54. [PMID: 9735284 DOI: 10.1006/jmbi.1998.2027] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Bacilli, ribosomes or 30 S ribosomal subunits that are stalled or bound on mRNAs can stabilize downstream regions, hence the view that the degradation machinery scans mRNAs from their 5' end. In E. coli, several mRNAs can also be stabilized by secondary structures involving their 5' end. To test whether a bound 30 S subunit can act as a 5' stabilizer in E. coli, we compare here the stabilities of two untranslated variants of the lacZ mRNA, the decay of which is controlled by RNase E. In the first variant, a 35 nt region including the Ribosome Binding Site (RBS) is deleted, whereas in the second it is replaced by an 11 nt-long Shine-Dalgarno (SD) sequence lacking an associated start codon. In the latter variant, an 80 nt fragment encompassing the SD and extending up to the mRNA 5' end was stable in vivo (t1/2>one hour), reflecting 30 S binding. Yet, the full-length message was not more stable than when the SD was absent, although two small decay intermediates retaining the 5' end appear somewhat stabilized. A third variant was constructed in which the RBS is replaced by an insert which can fold back onto the lac leader, creating a putative hairpin involving the mRNA 5' end. The fragment corresponding to this hairpin was stable but, again, the full-length message was not stabilized. Thus, the untranslated lacZ mRNA cannot be protected against RNase E by 5' stabilizers, suggesting that mRNA scanning is not an obligate feature of RNase E-controlled degradation. Altogether, these results suggest important differences in mRNA degradation between E. coli and B. subtilis. In addition, we show that mRNA regions involved in stable hairpins or Shine-Dalgarno pairings can be metabolically stable in E. coli.
Collapse
Affiliation(s)
- S A Joyce
- Laboratoire de Génétique Moléculaire, CNRS URA 1302, Ecole Normale Supérieure, 46 rue d'Ulm, Paris, 75230, France
| | | |
Collapse
|
34
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
35
|
Arnold TE, Yu J, Belasco JG. mRNA stabilization by the ompA 5' untranslated region: two protective elements hinder distinct pathways for mRNA degradation. RNA (NEW YORK, N.Y.) 1998; 4:319-330. [PMID: 9510333 PMCID: PMC1369620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The 5' untranslated region (UTR) of the long-lived Escherichia coli ompA transcript functions as an mRNA stabilizer that can prolong the cytoplasmic lifetimes of a variety of messages to which it is fused. Previous studies have identified two domains of this 5' UTR that together are responsible for its stabilizing effect. One is a 5'-terminal stem-loop. The other is a single-stranded RNA segment (ss2) that contains a ribosome binding site highly complementary to 16S ribosomal RNA. Here we report a detailed investigation of the function of these two stabilizing elements. Our data indicate that mRNA protection by a 5' stem-loop requires no sequence features or thermodynamic stability beyond the minimum necessary for stem-loop formation. Stabilization by ss2 appears to result not from a high frequency of translation initiation, but rather from a high degree of occupancy of this 5' UTR segment by bound ribosomes. Although close spacing of translating ribosomes is not critical for message stabilization by the ompA 5' UTR, mRNA longevity does require the periodic passage of ribosomes through the protein-coding region. Unlike bound ribosomes, which hinder mRNA cleavage by RNase E, the 5' stem-loop appears to impede degradation of ompA mRNA via a distinct pathway that is RNase E-independent. These findings imply that the ompA 5' UTR prolongs mRNA longevity by impeding multiple pathways for mRNA degradation.
Collapse
Affiliation(s)
- T E Arnold
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
36
|
Mertens N, Remaut E, Fiers W. Increased stability of phage T7g10 mRNA is mediated by either a 5'- or a 3'-terminal stem-loop structure. Biol Chem 1996; 377:811-7. [PMID: 8997491 DOI: 10.1515/bchm3.1996.377.12.811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mRNA encoding the major capsid protein of phage T7 (T7g10) is highly expressed in Escherichia coli. In common with other highly expressed T7 genes, the 5' end of this mRNA contains a stem-loop structure, while transcription termination at the phage T7 T phi terminator generates a stable 3'-end stem-loop structure. We assessed the influence of these structures on the expression level of T7g10 and on the functional stability of the mRNA. Each one of the 5'- or 3'-hairpin structures was sufficient to increase the functional stability of the T7g10 mRNA more than twofold. A duplication of the 3' T phi-terminator slightly increased the mRNA stability further. Also, differences in the observed functional half-life could be correlated with the expression level of the T7g10 derivatives when these were partially induced. Our data suggest that mRNA stabilization by a 5' stem-loop structure can occur even in the absence of a stem-loop structure that protects RNA against 3' exonucleases.
Collapse
Affiliation(s)
- N Mertens
- Department of Molecular Biology, Flanders interuniversity Institute of Biotechnology (VIB), University of Gent, Belgium
| | | | | |
Collapse
|
37
|
Winteler HV, Schneidinger B, Jaeger KE, Haas D. Anaerobically controlled expression system derived from the arcDABC operon of Pseudomonas aeruginosa: application to lipase production. Appl Environ Microbiol 1996; 62:3391-8. [PMID: 8795231 PMCID: PMC168137 DOI: 10.1128/aem.62.9.3391-3398.1996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The anaerobically inducible arcDABC operon encodes the enzymes of the arginine deiminase pathway in Pseudomonas aeruginosa. Upon induction, the arcAB mRNAs and proteins reach high intracellular levels, because of a strong anaerobically controlled promoter and mRNA processing in arcD, leading to stable downstream transcripts. We explored the usefulness of this system for the construction of expression vectors. The lacZ gene of Escherichia coli was expressed to the highest levels when fused close to the arc promoter. Insertion of lacZ further downstream into arcA or arcB did not stabilize the intrinsically unstable lacZ mRNA. On the contrary, lacZ mRNA appeared to be a vulnerable endonuclease target destabilizing arcAB mRNAs in the 5'-to-3' direction in P. aeruginosa. The native arc promoter was modified for optional expression in the -10 sequence and in the -40 region, which is a binding site for the anaerobic regulator ANR. In P. aeruginosa grown either anaerobically or with oxygen limitation in unshaken cultures, this promoter was stronger than the induced tac promoter. The P. aeruginosa lipAH genes, which encode extracellular lipase and lipase foldase, respectively, were fused directly to the modified arc promoter in an IncQ vector plasmid. Semianaerobic static cultures of P. aeruginosa PAO1 carrying this recombinant plasmid overproduced extracellular lipase 30-fold during stationary phase compared with the production by strain PAO1 without the plasmid. Severe oxygen limitation, in contrast, resulted in poor lipase productivity despite effective induction of the ANR-dependent promoter, suggesting that secretion of active lipase is blocked by the absence of oxygen. In conclusion, the modified arc promoter is useful for driving the expression of cloned genes in P. aeruginosa during oxygen-limited growth and stationary phase.
Collapse
Affiliation(s)
- H V Winteler
- Laboratoire de Biologie Microbienne, Université de Lausanne, Switzerland
| | | | | | | |
Collapse
|
38
|
Björnsson A, Isaksson LA. Accumulation of a mRNA decay intermediate by ribosomal pausing at a stop codon. Nucleic Acids Res 1996; 24:1753-7. [PMID: 8649996 PMCID: PMC145836 DOI: 10.1093/nar/24.9.1753] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A RNA fragment which is protected from degradation by ribosome pausing at a stop codon has been identified in growing Escherichia coli. The fragment is 261 nt long and corresponds to the 3'-end of the mRNA expressed from a semi-synthetic model gene. The 5'-end of the RNA fragment, denoted rpRNA (ribosomal pause RNA), is located 13 bases upstream of the stop codon. In vivo decay of the complete mRNA and accumulation of rpRNA are dependent on the nature of the stop codon and its codon context. The data indicate that the rpRNA fragment arises from interrupted decay of the S3A'mRNA in the 5'-->m3'direction, in connection with a ribosomal pause at the stop codon. RF-2 decoding of UGA is less efficient than RF-1 decoding of UAG in identical codon contexts, as judged from rpRNA steady-state levels. The half-life of UGA-containing rpRNAs is at least 5 min, indicating that ribosomal pausing can be a major factor in stabilising downstream regions of messenger RNAs.
Collapse
Affiliation(s)
- A Björnsson
- Department of Microbiology, Stockholm University, Sweden
| | | |
Collapse
|
39
|
Abstract
These days, genome research mainly concerns the accumulation of sequence data and their theoretical interpretation based on analogies to known genes, proteins and structures. However, a final identification of gene function can only be verified by experimental data. One step in this process is the expression of the isolated gene in pro- and eukaryotes. In this article we will review some of the basic features of expression in Escherichia coli and mammalian cells that are relevant to the design of expression experiments. Emphasis is put on the first instance of attaining a high enough level of expression in order to be able to detect the cellular effects or to isolate the product of the transferred gene.
Collapse
Affiliation(s)
- G Gross
- Gesellschaft für Biotechnologische Forschung (GBF), Department of Gene Regulation and Differentiation, Braunschweig, Germany
| | | |
Collapse
|
40
|
Sarsero JP, Pittard AJ. Membrane topology analysis of Escherichia coli K-12 Mtr permease by alkaline phosphatase and beta-galactosidase fusions. J Bacteriol 1995; 177:297-306. [PMID: 7814318 PMCID: PMC176591 DOI: 10.1128/jb.177.2.297-306.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mtr gene of Escherichia coli K-12 encodes an inner membrane protein which is responsible for the active transport of trypotophan into the cell. It has been proposed that the Mtr permease has a novel structure consisting of 11 hydrophobic transmembrane spans, with a cytoplasmically disposed amino terminus and a carboxyl terminus located in the periplasmic space (J.P. Sarsero, P. J. Wookey, P. Gollnick, C. Yanofsky, and A.J. Pittard, J. Bacteriol. 173:3231-3234, 1991). The validity of this model was examined by the construction of fusion proteins between the Mtr permease and alkaline phosphatase or beta-galactosidase. In addition to the conventional methods, in which the reporter enzyme replaces a carboxyl-terminal portion of the membrane protein, the recently developed alkaline phosphatase sandwich fusion technique was utilized, in which alkaline phosphatase is inserted into an otherwise intact membrane protein. A cluster of alkaline phosphatase fusions to the carboxyl-terminal end of the Mtr permease exhibited high levels of alkaline phosphatase activity, giving support to the proposition of a periplasmically located carboxyl terminus. The majority of fusion proteins produced enzymatic activities which were in agreement with the positions of the fusion sites on the proposed topological model of the permease. The synthesis of a small cluster of hybrid proteins, whose enzymatic activity did not agree with the location of their fusion sites within putative transmembrane span VIII or the preceding periplasmic loop, was not detected by immunological techniques and did not necessitate modification of the proposed model in this region. Slight alterations may need to be made in the positioning of the carboxyl-terminal end of transmembrane span X.
Collapse
Affiliation(s)
- J P Sarsero
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
41
|
Gursky YG, Beabealashvilli RS. The increase in gene expression induced by introduction of rare codons into the C terminus of the template. Gene 1994; 148:15-21. [PMID: 7926828 DOI: 10.1016/0378-1119(94)90228-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Short oligodeoxynucleotides (oligos) possessing two tandem Arg codons followed by TGA stop codon were inserted near the 3' end of a modified cat gene. It was found that while being decoded in vivo, the AGGAGGTGA oligo increased the yield of gene product and, in addition, caused -1 frameshifting. The 3-10-fold increase of the yield of the polypeptide was accompanied by increased accumulation of corresponding mRNA, indicating a protection from messenger decay. Transformation of the cells by a plasmid overproducing tRNA(4Arg) gene compensates for all the anomalies.
Collapse
Affiliation(s)
- Y G Gursky
- Institute of Experimental Cardiology, Cardiology Research Center, Moscow, Russia
| | | |
Collapse
|