1
|
Ishikawa Y, Kawai-Yamada M. Physiological Significance of NAD Kinases in Cyanobacteria. FRONTIERS IN PLANT SCIENCE 2019; 10:847. [PMID: 31316540 PMCID: PMC6610520 DOI: 10.3389/fpls.2019.00847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/13/2019] [Indexed: 05/04/2023]
Abstract
Unicellular cyanobacteria are thought to be the evolutionary ancestors of plant chloroplasts and are widely used both for chemical production and as model organisms in studies of photosynthesis. Although most research focused on increasing reducing power (that is, NADPH) as target of metabolic engineering, the physiological roles of NAD(P)(H) in cyanobacteria poorly understood. In cyanobacteria such as the model species Synechocystis sp. PCC 6803, most metabolic pathways share a single compartment. This complex metabolism raises the question of how cyanobacteria control the amounts of the redox pairs NADH/NAD+ and NADPH/NADP+ in the cyanobacterial metabolic pathways. For example, photosynthetic and respiratory electron transport chains share several redox components in the thylakoid lumen, including plastoquinone, cytochrome b6f (cyt b6f), and the redox carriers plastocyanin and cytochrome c6. In the case of photosynthesis, NADP+ acts as an important electron mediator on the acceptor-side of photosystem I (PSI) in the linear electron chain as well as in the plant chloroplast. Meanwhile, in respiration, most electrons derived from NADPH and NADH are transferred by NAD(P)H dehydrogenases. Therefore, it is expected that Synechocystis employs unique NAD(P)(H) -pool control mechanisms to regulate the mixed metabolic systems involved in photosynthesis and respiration. This review article summarizes the current state of knowledge of NAD(P)(H) metabolism in Synechocystis. In particular, we focus on the physiological function in Synechocystis of NAD kinase, the enzyme that phosphorylates NAD+ to NADP+.
Collapse
|
2
|
Xiong Q, Chen Z, Ge F. Proteomic analysis of post translational modifications in cyanobacteria. J Proteomics 2016; 134:57-64. [DOI: 10.1016/j.jprot.2015.07.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/28/2015] [Accepted: 07/30/2015] [Indexed: 01/16/2023]
|
3
|
Patel JG, Kumar JIN, Kumar RN, Khan SR. Biodegradation Capability and Enzymatic Variation of Potentially Hazardous Polycyclic Aromatic Hydrocarbons—Anthracene and Pyrene byAnabaena fertilissima. Polycycl Aromat Compd 2015. [DOI: 10.1080/10406638.2015.1039656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Analysis and identification of ADP-ribosylated proteins of Streptomyces coelicolor M145. J Microbiol 2009; 47:549-56. [PMID: 19851727 DOI: 10.1007/s12275-009-0032-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
Abstract
Mono-ADP-ribosylation is the enzymatic transfer of ADP-ribose from NAD(+) to acceptor proteins catalyzed by ADP-ribosyltransferases. Using m-aminophenylboronate affinity chromatography, 2D-gel electrophoresis, in-gel digestion and MALDI-TOF analysis we have identified eight in vitro ADP-ribosylated proteins in Streptomyces coelicolor, which can be classified into three categories: (i) secreted proteins; (ii) metabolic enzymes using NAD(+)/NADH or NADP(+)/NADPH as coenzymes; and (iii) other proteins. The secreted proteins could be classified into two functional categories: SCO2008 and SC05477 encode members of the family of periplasmic extracellular solute-binding proteins, and SCO6108 and SC01968 are secreted hydrolases. Dehydrogenases are encoded by SC04824 and SC04771. The other targets are GlnA (glutamine synthetase I., SC02198) and SpaA (starvation-sensing protein encoded by SC07629). SCO2008 protein and GlnA had been identified as ADP-ribosylated proteins in previous studies. With these results we provided experimental support for a previous suggestion that ADP-ribosylation may regulate membrane transport and localization of periplasmic proteins. Since ADP-ribosylation results in inactivation of the target protein, ADP-ribosylation of dehydrogenases might modulate crucial primary metabolic pathways in Streptomyces. Several of the proteins identified here could provide a strong connection between protein ADP-ribosylation and the regulation of morphological differentiation in S. coelicolor.
Collapse
|
5
|
Gerdes SY, Kurnasov OV, Shatalin K, Polanuyer B, Sloutsky R, Vonstein V, Overbeek R, Osterman AL. Comparative genomics of NAD biosynthesis in cyanobacteria. J Bacteriol 2006; 188:3012-23. [PMID: 16585762 PMCID: PMC1446974 DOI: 10.1128/jb.188.8.3012-3023.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 01/23/2006] [Indexed: 11/20/2022] Open
Abstract
Biosynthesis of NAD(P) cofactors is of special importance for cyanobacteria due to their role in photosynthesis and respiration. Despite significant progress in understanding NAD(P) biosynthetic machinery in some model organisms, relatively little is known about its implementation in cyanobacteria. We addressed this problem by a combination of comparative genome analysis with verification experiments in the model system of Synechocystis sp. strain PCC 6803. A detailed reconstruction of the NAD(P) metabolic subsystem using the SEED genomic platform (http://theseed.uchicago.edu/FIG/index.cgi) helped us accurately annotate respective genes in the entire set of 13 cyanobacterial species with completely sequenced genomes available at the time. Comparative analysis of operational variants implemented in this divergent group allowed us to elucidate both conserved (de novo and universal pathways) and variable (recycling and salvage pathways) aspects of this subsystem. Focused genetic and biochemical experiments confirmed several conjectures about the key aspects of this subsystem. (i) The product of the slr1691 gene, a homolog of Escherichia coli gene nadE containing an additional nitrilase-like N-terminal domain, is a NAD synthetase capable of utilizing glutamine as an amide donor in vitro. (ii) The product of the sll1916 gene, a homolog of E. coli gene nadD, is a nicotinic acid mononucleotide-preferring adenylyltransferase. This gene is essential for survival and cannot be compensated for by an alternative nicotinamide mononucleotide (NMN)-preferring adenylyltransferase (slr0787 gene). (iii) The product of the slr0788 gene is a nicotinamide-preferring phosphoribosyltransferase involved in the first step of the two-step non-deamidating utilization of nicotinamide (NMN shunt). (iv) The physiological role of this pathway encoded by a conserved gene cluster, slr0787-slr0788, is likely in the recycling of endogenously generated nicotinamide, as supported by the inability of this organism to utilize exogenously provided niacin. Positional clustering and the co-occurrence profile of the respective genes across a diverse collection of cellular organisms provide evidence of horizontal transfer events in the evolutionary history of this pathway.
Collapse
Affiliation(s)
- Svetlana Y. Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Oleg V. Kurnasov
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Konstantin Shatalin
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Boris Polanuyer
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Roman Sloutsky
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Veronika Vonstein
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Ross Overbeek
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Andrei L. Osterman
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
6
|
|
7
|
Okuda K, Hayashi H, Nishiyama Y. Systematic characterization of the ADP-ribose pyrophosphatase family in the Cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2005; 187:4984-91. [PMID: 15995214 PMCID: PMC1169527 DOI: 10.1128/jb.187.14.4984-4991.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized four putative ADP-ribose pyrophosphatases Sll1054, Slr0920, Slr1134, and Slr1690 in the cyanobacterium Synechocystis sp. strain PCC 6803. Each of the recombinant proteins was overexpressed in Escherichia coli and purified. Sll1054 and Slr0920 hydrolyzed ADP-ribose specifically, while Slr1134 hydrolyzed not only ADP-ribose but also NADH and flavin adenine dinucleotide. By contrast, Slr1690 showed very low activity for ADP-ribose and had four substitutions of amino acids in the Nudix motif, indicating that Slr1690 is not an active ADP-ribose pyrophosphatase. However, the quadruple mutation of Slr1690, T73G/I88E/K92E/A94G, which replaced the mutated amino acids with those conserved in the Nudix motif, resulted in a significant (6.1 x 10(2)-fold) increase in the k(cat) value. These results suggest that Slr1690 might have evolved from an active ADP-ribose pyrophosphatase. Functional and clustering analyses suggested that Sll1054 is a bacterial type, while the other three and Slr0787, which was characterized previously (Raffaelli et al., FEBS Lett. 444:222-226, 1999), are phylogenetically diverse types that originated from an archaeal Nudix protein via molecular evolutionary mechanisms, such as domain fusion and amino acid substitution.
Collapse
Affiliation(s)
- Kenji Okuda
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Japan
| | | | | |
Collapse
|
8
|
Pearson JT, Dabrowski MJ, Kung I, Atkins WM. The central loop of Escherichia coli glutamine synthetase is flexible and functionally passive. Arch Biochem Biophys 2005; 436:397-405. [PMID: 15797252 DOI: 10.1016/j.abb.2005.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 02/02/2005] [Indexed: 10/25/2022]
Abstract
Bacterial glutamine synthetases (GSs) are dodecameric aggregates comprised of two face-to-face hexameric rings, which form a cylindrical aqueous channel. Available crystal structures indicate that each subunit provides a 'central loop' that protrudes into this channel. Residues on either side of this loop contribute directly to substrate or metal ion cofactor binding. Although it has been suggested that this conspicuous structural feature may be functionally important, a systematic structure-function analysis of this loop has not been done. Here, we examine the behavior of a cysteine mutant, E165C, which yields inter-subunit disulfide bonds connecting the central loops. The inter-subunit disulfide bonds are readily detected by electrospray ionization mass spectrometry. Based on molecular models, the disulfide bonds would form only if the engineered cysteines on adjacent subunits moved approximately 5 A. Surprisingly, inter-subunit disulfide bonds between the central loops caused no detectable changes in the KMs for glutamate or ATP, nor the KD for either ATP or the transition state analog (L)-methionine sulfoximine (MSOX). Furthermore, covalent and quantitative adduction of the E165C mutant with iodo-acetamido-pyrene yielded nearly fully active enzyme bearing fluorescent pyrene excimers. The relative contribution of pyrene monomers to excimers in the steady state fluorescence is temperature dependent, suggesting thermal equilibrium between loop conformational states. However, the monomer-excimer ratio is independent of ligands such as MSOX, glutamate, or Mn2+. These results validate the suspected flexibility of the central loop, but raise significant doubt about its direct functional role in GS catalysis via conformational switching, including the proposed regulation of GS via ADP-ribosylation within this loop.
Collapse
Affiliation(s)
- Josh T Pearson
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610, USA
| | | | | | | |
Collapse
|
9
|
Arcondéguy T, Jack R, Merrick M. P(II) signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 2001; 65:80-105. [PMID: 11238986 PMCID: PMC99019 DOI: 10.1128/mmbr.65.1.80-105.2001] [Citation(s) in RCA: 312] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The P(II) family of signal transduction proteins are among the most widely distributed signal proteins in the bacterial world. First identified in 1969 as a component of the glutamine synthetase regulatory apparatus, P(II) proteins have since been recognized as playing a pivotal role in control of prokaryotic nitrogen metabolism. More recently, members of the family have been found in higher plants, where they also potentially play a role in nitrogen control. The P(II) proteins can function in the regulation of both gene transcription, by modulating the activity of regulatory proteins, and the catalytic activity of enzymes involved in nitrogen metabolism. There is also emerging evidence that they may regulate the activity of proteins required for transport of nitrogen compounds into the cell. In this review we discuss the history of the P(II) proteins, their structures and biochemistry, and their distribution and functions in prokaryotes. We survey data emerging from bacterial genome sequences and consider other likely or potential targets for control by P(II) proteins.
Collapse
Affiliation(s)
- T Arcondéguy
- Department of Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|
10
|
Wyman M. Diel rhythms in ribulose-1,5-bisphosphate carboxylase/oxygenase and glutamine synthetase gene expression in a natural population of marine picoplanktonic cyanobacteria (Synechococcus spp.). Appl Environ Microbiol 1999; 65:3651-9. [PMID: 10427062 PMCID: PMC91547 DOI: 10.1128/aem.65.8.3651-3659.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diel periodicity in the expression of key genes involved in carbon and nitrogen assimilation in marine Synechococcus spp. was investigated in a natural population growing in the surface waters of a cyclonic eddy in the northeast Atlantic Ocean. Synechococcus sp. cell concentrations within the upper mixed layer showed a net increase of three- to fourfold during the course of the experiment (13 to 22 July 1991), the population undergoing approximately one synchronous division per day. Consistent with the observed temporal pattern of phycoerythrin (CpeBA) biosynthesis, comparatively little variation was found in cpeBA mRNA abundance during either of the diel cycles investigated. In marked contrast, the relative abundance of transcripts originating from the genes encoding the large subunit of ribulose bisphosphate carboxylase/oxygenase (rbcL) and glutamine synthetase (glnA) showed considerable systematic temporal variation and oscillated during the course of each diel cycle in a reciprocal rhythm. Whereas activation of rbcL transcription was clearly not light dependent, expression of glnA appeared sensitive to endogenous changes in the physiological demands for nitrogen that arise as a natural consequence of temporal periodicity in photosynthetic carbon assimilation. The data presented support the hypothesis that a degree of temporal separation may exist between the most active periods of carbon and nitrogen assimilation in natural populations of marine Synecoccoccus spp.
Collapse
Affiliation(s)
- M Wyman
- Department of Biological Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom.
| |
Collapse
|
11
|
Raffaelli N, Lorenzi T, Amici A, Emanuelli M, Ruggieri S, Magni G. Synechocystis sp. slr0787 protein is a novel bifunctional enzyme endowed with both nicotinamide mononucleotide adenylyltransferase and 'Nudix' hydrolase activities. FEBS Lett 1999; 444:222-6. [PMID: 10050763 DOI: 10.1016/s0014-5793(99)00068-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Synechocystis sp. slr0787 open reading frame encodes a 339 residue polypeptide with a predicted molecular mass of 38.5 kDa. Its deduced amino acid sequence shows extensive homology with known separate sequences of proteins from the thermophilic archaeon Methanococcus jannaschii. The N-terminal domain is highly homologous to the archaeal NMN adenylyltransferase, which catalyzes NAD synthesis from NMN and ATP. The C-terminal domain shares homology with the archaeal ADP-ribose pyrophosphatase, a member of the 'Nudix' hydrolase family. The slr0787 gene has been cloned into a T7-based vector for expression in Escherichia coli cells. The recombinant protein has been purified to homogeneity and demonstrated to possess both NMN adenylyltransferase and ADP-ribose pyrophosphatase activities. Both activities have been characterized and compared to their archaeal counterparts.
Collapse
Affiliation(s)
- N Raffaelli
- Istituto di Biochimica, Facoltà di Medicina e Chirurgia, University of Ancona, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Sundaram S, Karakaya H, Scanlan DJ, Mann NH. Multiple oligomeric forms of glucose-6-phosphate dehydrogenase in cyanobacteria and the role of OpcA in the assembly process. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 6):1549-1556. [PMID: 9639925 DOI: 10.1099/00221287-144-6-1549] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multiple molecular forms of glucose-6-phosphate dehydrogenase (G6PDH) were detected by activity staining in non-denaturing polyacrylamide gels of cell-free extracts from a range of cyanobacteria including Anabaena sp. PCC 7120, Synechococcus sp. PCC 7942, Plectonema boryanum PCC 73110, Synechocystis sp. PCC 6803, Nostoc sp. MAC PCC 8009 and the marine strain Synechococcus sp. WH7803. In most of the species tested, the profile of G6PDH activities was modulated by the growth of the cells in the presence of exogenous 10 mM glucose. Using an antiserum raised against a fragment of G6PDH from Anabaena sp. PCC 7120, it was shown that the different molecular forms of G6PDH all contained an antigenically related subunit, suggesting that the different forms arose from different quaternary structures involving the same monomer. An insertion mutant of Synechococcus sp. PCC 7942 was constructed in which the opcA gene, adjacent to zwf (encoding G6PDH), was disrupted. Although no reduction in the amount of G6PDH monomers (Zwf) was observed in the opcA mutant, activity staining of native gels indicated that most of this protein is not assembled into one of the active oligomeric forms. The oligomerization of G6PDH in extracts of the opcA mutant was stimulated in vitro by a factor present in crude extracts of the wild-type, suggesting that the product of the opcA gene is involved in the oligomerization and activation of G6PDH.
Collapse
Affiliation(s)
- Shanthy Sundaram
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Haydar Karakaya
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - David J Scanlan
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Nicholas H Mann
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
13
|
Jakoby M, Tesch M, Sahm H, Krämer R, Burkovski A. Isolation of the Corynebacterium glutamicum glnA gene encoding glutamine synthetase I. FEMS Microbiol Lett 1997; 154:81-8. [PMID: 9297824 DOI: 10.1111/j.1574-6968.1997.tb12627.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Corynebacterium glutamicum glutamine synthetase I (GSI) structural gene glnA was cloned by a PCR approach using oligonucleotide primers derived from conserved amino acid sequences of the GSI proteins from various bacteria. Disruption or deletion of this gene in C. glutamicum led to a glutamine auxotrophic phenotype and complete loss of glutamine synthetase activity, indicating the key role of this enzyme in nitrogen metabolism. Additionally, indications for a second glutamine synthetase, GSII, were found.
Collapse
Affiliation(s)
- M Jakoby
- Forschungszentrum Jülich, Institut für Biotechnologie I, Germany
| | | | | | | | | |
Collapse
|
14
|
Martin G, Haehnel W, Böger P. Oxidative inactivation of glutamine synthetase from the cyanobacterium Anabaena variabilis. J Bacteriol 1997; 179:730-4. [PMID: 9006027 PMCID: PMC178754 DOI: 10.1128/jb.179.3.730-734.1997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In crude extracts of the cyanobacterium Anabaena variabilis, glutamine synthetase (GS) could be effectively inactivated by the addition of NADH. GS inactivation was completed within 30 min. Both the inactivated GS and the active enzyme were isolated. No difference between the two enzyme forms was seen in sodium dodecyl sulfate-gels, and only minor differences were detectable by UV spectra, which excludes modification by a nucleotide. Mass spectrometry revealed that the molecular masses of active and inactive GS are equal. While the Km values of the substrates were unchanged, the Vmax values of the inactive GS were lower, reflecting the inactivation factor in the crude extract. This result indicates that the active site was affected. From the crude extract, a fraction mediating GS inactivation could be enriched by ammonium sulfate precipitation and gel filtration. GS inactivation by this fraction required the presence of NAD(P)H, Fe3+, and oxygen. In the absence of the GS-inactivating fraction, GS could be inactivated by Fe2+ and H2O2. The GS-inactivating fraction produced Fe2+ and H2O2, using NADPH, Fe3+, and oxygen. Accordingly, the inactivating fraction was inhibited by catalase and EDTA. This GS-inactivating system of Anabaena is similar to that described for oxidative GS inactivation in Escherichia coli. We conclude that GS inactivation by NAD(P)H is caused by irreversible oxidative damage and is not due to a regulatory mechanism of nitrogen assimilation.
Collapse
Affiliation(s)
- G Martin
- Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, Germany
| | | | | |
Collapse
|
15
|
Kramer JG, Wyman M, Zehr JP, Capone DG. Diel variability in transcription of the structural gene for glutamine synthetase (glnA) in natural populations of the marine diazotrophic cyanobacterium Trichodesmium thiebautii. FEMS Microbiol Ecol 1996. [DOI: 10.1111/j.1574-6941.1996.tb00346.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
16
|
Geipel U, Just I, Aktories K. ADP-ribosylation of an approximately 70-kilodalton protein of Klebsiella pneumoniae. Infect Immun 1996; 64:1720-3. [PMID: 8613383 PMCID: PMC173984 DOI: 10.1128/iai.64.5.1720-1723.1996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An approximately 70-kDa protein in the culture supernatant of a human pathogenic strain of Klebsiella pneumoniae was labeled in the presence of [32P-adenylate]NAD. Labeling was significantly increased by the addition of dithiothreitol ( > 1 mM) but prevented by treatment of the culture supernatant for 3 min at 56 degrees C. The addition of unlabeled NAD, but not of ADP-ribose, blocked labeling of the approximately 70-kDa protein. The radioactive label was released by formic acid but not by HgCl2 (1 mM) or neutral hydroxylamine (0.5 M). The addition of homogenates of human platelets, human neutrophils, rat brain, rat lung, or rat spleen tissues to the culture supernatant did not induce labeling of eukaryotic proteins. The data indicate that the K. pneumoniae strain produces ADP-ribosyltransferase which modifies an endogenous protein.
Collapse
Affiliation(s)
- U Geipel
- Abteilung Bakteriologie und Hygiene, Institut für Medizinische Mikrobiologie und Hygiene, Homburg/Saar, Germany
| | | | | |
Collapse
|
17
|
Soukri A, Hafid N, Valverde F, Elkebbaj MS, Serrano A. Evidence for a posttranslational covalent modification of liver glyceraldehyde-3-phosphate dehydrogenase in hibernating jerboa (Jaculus orientalis). BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1292:177-87. [PMID: 8547342 DOI: 10.1016/0167-4838(95)00200-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The specific activity of D-glyceraldehyde-3-phosphate (G3P) dehydrogenase (phosphorylating) (GPDH, EC 1.2.1.12) found in liver of induced hibernating jerboa (Jaculus orientalis) was 2-3-fold lower than in the euthermic animal. However, the comparative analysis of the soluble protein fraction of these tissues by SDS-PAGE and Western blotting showed no significant changes in the intensity of the 36 kDa protein band of the GPDH subunit. After using the same purification procedure, the GPDH from liver hibernating jerboa exhibited lower values for both apparent optimal temperature and specific activity than the enzyme from the euthermic animal. Similar non-linear Arrhenius plots were obtained, but the Ea values calculated for the GPDH from hibernating tissue were higher. Although in both purified enzyme preparations four isoelectric GPDH isoforms were resolved by chromatofocusing, those of hibernating liver exhibited more acidic pI values (pI 7.3-6.1) than the hepatic isoforms of euthermic animals (pI 8.7-8.1). However, all liver GPDH isoforms exhibited similar native and subunit molecular masses and cross-reacted with an antibody raised against muscle GPDH. The comparison of the kinetic parameters of both purified preparations and the main isoforms isolated from euthermic and hibernating tissues showed the decreased catalytic efficiency of hibernating enzyme being exclusively due to a lower Vmax for both substrates G3P and NAD+. Phosphodiesterase treatment of cell-free extracts increased GPDH activity in the case of hibernating liver only. The pI of the main isoform purified from this tissue, about 6.9, changed after this treatment to an alkaline value (pI 8.44) similar to those of the euthermic GPDH isoforms. Differential ultraviolet absorption spectra of these isoforms indicated that a substance absorbing at 260 nm, that was released by the phosphodiesterase digestion, was present in the enzyme of hibernating tissue. Incubation of purified GPDH with the NO-releasing agent sodium nitroprussite produced under conditions that promote mono-ADP-ribosylation a dramatic decrease of activity (up to 60%) of both euthermic and phosphodiesterase-treated hibernating preparations but only a marginal inhibition of the hibernating enzyme. These data suggest that the liver GPDH of hibernating jerboa exhibits a posttranslational covalent modification, being probably a mono-ADP-ribosylation. The resulting inhibition of enzyme activity could contribute to the wide depression of the glycolytic metabolic flow associated with mammalian hibernation.
Collapse
Affiliation(s)
- A Soukri
- Laboratoire de Biochimie, Biologie Cellulaire et Moléculaire, Faculté de Sciences-Ain Chock, Maarif, Casablanca, Morocco
| | | | | | | | | |
Collapse
|
18
|
Okazaki IJ, Moss J. Structure and function of eukaryotic mono-ADP-ribosyltransferases. Rev Physiol Biochem Pharmacol 1996; 129:51-104. [PMID: 8898563 DOI: 10.1007/3-540-61435-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
ADP-ribosylation of proteins has been observed in numerous animal tissues including chicken heterophils, rat brain, human platelets, and mouse skeletal muscle. ADP-ribosylation in these tissues is thought to modulate critical cellular functions such as muscle cell development, actin polymerization, and cytotoxic T lymphocyte proliferation. Specific substrates of the ADP-ribosyltransferases have been identified; the skeletal muscle transferase ADP-ribosylates integrin alpha 7 whereas the chicken heterophil enzyme modifies the heterophil granule protein p33 and the CTL enzyme ADP-ribosylates the membrane-associated protein p40. Transferase sequence has been determined which should assist in elucidating the role of ADP-ribosylation in cells. There is sequence similarity among the vertebrate transferases and the rodent RT6 alloantigens. The RT6 family of proteins are NAD glycohydrolases that have been shown to possess auto-ADP-ribosyltransferase activity whereas the mouse Rt6-1 is also capable of ADP-ribosylating histone. Absence of RT6+ T cells has been associated with the development of an autoimmune-mediated diabetes in rodents. Humans have an RT6 pseudogene and do not express RT6 proteins. The reversal of ADP-ribosylation is catalyzed by ADP-ribosylarginine hydrolases, which have been purified and cloned from rodent and human tissues. In principle, the transferases and hydrolases could form an intracellular ADP-ribosylation regulatory cycle. In skeletal muscle and lymphocytes, however, the transferases and their substrates are extracellular membrane proteins whereas the hydrolases described thus far are cytoplasmic. In cultured mouse skeletal muscle cells, processing of the ADP-ribosylated integrin alpha 7 was carried out by phosphodiesterases and possibly phosphatases, leaving a residual ribose attached to the (arginine)protein. Several bacterial toxin and eukaryotic mono-ADP-ribosyltransferases, and perhaps other NAD-utilizing enzymes such as the RT6 alloantigens share regions of amino acid sequence similarity, which form, in part, the catalytic site. The catalytic cleft, found in the bacterial toxins that have been studied thus far, contains a critical glutamate and other amino acids that function to position NAD for nucleophilic attack at the N-glycosidic linkage, for either ADP-ribose transfer or NAD hydrolysis. Amino acid differences among the transferases at the active site may be required for accommodating the different ADP-ribose acceptor molecules.
Collapse
Affiliation(s)
- I J Okazaki
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
19
|
Diruggiero J, Robb FT. Enzymes of central nitrogen metabolism from hyperthermophiles: characterization, thermostability, and genetics. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:311-39. [PMID: 8791628 DOI: 10.1016/s0065-3233(08)60365-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J Diruggiero
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore 21202, USA
| | | |
Collapse
|
20
|
Abstract
Nitrogen metabolism in prokaryotes involves the coordinated expression of a large number of enzymes concerned with both utilization of extracellular nitrogen sources and intracellular biosynthesis of nitrogen-containing compounds. The control of this expression is determined by the availability of fixed nitrogen to the cell and is effected by complex regulatory networks involving regulation at both the transcriptional and posttranslational levels. While the most detailed studies to date have been carried out with enteric bacteria, there is a considerable body of evidence to show that the nitrogen regulation (ntr) systems described in the enterics extend to many other genera. Furthermore, as the range of bacteria in which the phenomenon of nitrogen control is examined is being extended, new regulatory mechanisms are also being discovered. In this review, we have attempted to summarize recent research in prokaryotic nitrogen control; to show the ubiquity of the ntr system, at least in gram-negative organisms; and to identify those areas and groups of organisms about which there is much still to learn.
Collapse
Affiliation(s)
- M J Merrick
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich, United Kingdom
| | | |
Collapse
|