1
|
Kertess L, Adamska-Venkatesh A, Rodríguez-Maciá P, Rüdiger O, Lubitz W, Happe T. Influence of the [4Fe-4S] cluster coordinating cysteines on active site maturation and catalytic properties of C. reinhardtii [FeFe]-hydrogenase. Chem Sci 2017; 8:8127-8137. [PMID: 29568461 PMCID: PMC5855289 DOI: 10.1039/c7sc03444j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/05/2017] [Indexed: 11/24/2022] Open
Abstract
Alteration of the [4Fe–4S] cluster coordinating cysteines reveals their individual importance for [4Fe–4S] cluster binding, [2Fe] insertion and catalytic turnover.
[FeFe]-Hydrogenases catalyze the evolution and oxidation of hydrogen using a characteristic cofactor, termed the H-cluster. This comprises an all cysteine coordinated [4Fe–4S] cluster and a unique [2Fe] moiety, coupled together via a single cysteine. The coordination of the [4Fe–4S] cluster in HydA1 from Chlamydomonas reinhardtii was altered by single exchange of each cysteine (C115, C170, C362, and C366) with alanine, aspartate, or serine using site-directed mutagenesis. In contrast to cysteine 115, the other three cysteines were found to be dispensable for stable [4Fe–4S] cluster incorporation based on iron determination, UV/vis spectroscopy and electron paramagnetic resonance. However, the presence of a preformed [4Fe–4S] cluster alone does not guarantee stable incorporation of the [2Fe] cluster. Only variants C170D, C170S, C362D, and C362S showed characteristic signals for an inserted [2Fe] cluster in Fourier-transform infrared spectroscopy. Hydrogen evolution and oxidation were observed for these variants in solution based assays and protein-film electrochemistry. Catalytic activity was lowered for all variants and the ability to operate in either direction was also influenced.
Collapse
Affiliation(s)
- Leonie Kertess
- AG Photobiotechnologie , Lehrstuhl für Biochemie der Pflanzen , Ruhr Universität Bochum , Universitätsstr. 150 , 44801 Bochum , Germany .
| | - Agnieszka Adamska-Venkatesh
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Patricia Rodríguez-Maciá
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Thomas Happe
- AG Photobiotechnologie , Lehrstuhl für Biochemie der Pflanzen , Ruhr Universität Bochum , Universitätsstr. 150 , 44801 Bochum , Germany .
| |
Collapse
|
2
|
|
3
|
Kim JYH, Cha HJ. Recent progress in hydrogenase and its biotechnological application for viable hydrogen technology. KOREAN J CHEM ENG 2013. [DOI: 10.1007/s11814-012-0208-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Fritsch J, Löscher S, Sanganas O, Siebert E, Zebger I, Stein M, Ludwig M, De Lacey AL, Dau H, Friedrich B, Lenz O, Haumann M. [NiFe] and [FeS] Cofactors in the Membrane-Bound Hydrogenase of Ralstonia eutropha Investigated by X-ray Absorption Spectroscopy: Insights into O2-Tolerant H2 Cleavage. Biochemistry 2011; 50:5858-69. [DOI: 10.1021/bi200367u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Johannes Fritsch
- Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany
| | - Simone Löscher
- Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Oliver Sanganas
- Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Elisabeth Siebert
- Technische Universität Berlin, Max-Volmer Institut, 10623 Berlin, Germany
| | - Ingo Zebger
- Technische Universität Berlin, Max-Volmer Institut, 10623 Berlin, Germany
| | - Matthias Stein
- Max-Planck-Institut für Dynamik komplexer technischer Systeme, 39106 Magdeburg, Germany
| | - Marcus Ludwig
- Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany
| | | | - Holger Dau
- Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Bärbel Friedrich
- Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany
| | - Oliver Lenz
- Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany
| | - Michael Haumann
- Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| |
Collapse
|
5
|
Stapleton JA, Swartz JR. A cell-free microtiter plate screen for improved [FeFe] hydrogenases. PLoS One 2010; 5:e10554. [PMID: 20479937 PMCID: PMC2866662 DOI: 10.1371/journal.pone.0010554] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 04/09/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND [FeFe] hydrogenase enzymes catalyze the production and dissociation of H(2), a potential renewable fuel. Attempts to exploit these catalysts in engineered systems have been hindered by the biotechnologically inconvenient properties of the natural enzymes, including their extreme oxygen sensitivity. Directed evolution has been used to improve the characteristics of a range of natural catalysts, but has been largely unsuccessful for [FeFe] hydrogenases because of a lack of convenient screening platforms. METHODOLOGY/PRINCIPAL FINDINGS Here we describe an in vitro screening technology for oxygen-tolerant and highly active [FeFe] hydrogenases. Despite the complexity of the protocol, we demonstrate a level of reproducibility that allows moderately improved mutants to be isolated. We have used the platform to identify a mutant of the Chlamydomonas reinhardtii [FeFe] hydrogenase HydA1 with a specific activity approximately 4 times that of the wild-type enzyme. CONCLUSIONS/SIGNIFICANCE Our results demonstrate the feasibility of using the screen presented here for large-scale efforts to identify improved biocatalysts for energy applications. The system is based on our ability to activate these complex enzymes in E. coli cell extracts, which allows unhindered access to the protein maturation and assay environment.
Collapse
Affiliation(s)
- James A. Stapleton
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
| | - James R. Swartz
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| |
Collapse
|
6
|
|
7
|
Prince RC, Kheshgi HS. The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 2005; 31:19-31. [PMID: 15839402 DOI: 10.1080/10408410590912961] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photosynthetic microorganisms can produce hydrogen when illuminated, and there has been considerable interest in developing this to a commercially viable process. Its appealing aspects include the fact that the hydrogen would come from water, and that the process might be more energetically efficient than growing, harvesting, and processing crops. We review current knowledge about photobiological hydrogen production, and identify and discuss some of the areas where scientific and technical breakthroughs are essential for commercialization. First we describe the underlying biochemistry of the process, and identify some opportunities for improving photobiological hydrogen production at the molecular level. Then we address the fundamental quantum efficiency of the various processes that have been suggested, technological issues surrounding large-scale growth of hydrogen-producing microorganisms, and the scale and efficiency on which this would have to be practiced to make a significant contribution to current energy use.
Collapse
Affiliation(s)
- Roger C Prince
- ExxonMobil Research and Engineering Co., Annandale, New Jersey 08801, USA.
| | | |
Collapse
|
8
|
Coppi MV, O'Neil RA, Lovley DR. Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe(III) and other electron acceptors by Geobacter sulfurreducens. J Bacteriol 2004; 186:3022-8. [PMID: 15126463 PMCID: PMC400607 DOI: 10.1128/jb.186.10.3022-3028.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geobacter sulfurreducens, a representative of the family Geobacteraceae that predominates in Fe(III)-reducing subsurface environments, can grow by coupling the oxidation of hydrogen to the reduction of a variety of electron acceptors, including Fe(III), fumarate, and quinones. An examination of the G. sulfurreducens genome revealed two operons, hya and hyb, which appeared to encode periplasmically oriented respiratory uptake hydrogenases. In order to assess the roles of these two enzymes in hydrogen-dependent growth, Hya- and Hyb-deficient mutants were generated by gene replacement. Hyb was found to be required for hydrogen-dependent reduction of Fe(III), anthraquinone-2,6-disulfonate, and fumarate by resting cell suspensions and to be essential for growth with hydrogen and these three electron acceptors. Hya, in contrast, was not. These findings suggest that Hyb is an essential respiratory hydrogenase in G. sulfurreducens.
Collapse
Affiliation(s)
- Maddalena V Coppi
- Department of Microbiology, University of Massachusetts at Amherst, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
9
|
Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 2002; 66:1-20, table of contents. [PMID: 11875125 PMCID: PMC120778 DOI: 10.1128/mmbr.66.1.1-20.2002] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria may possess several enzymes that are directly involved in dihydrogen metabolism: nitrogenase(s) catalyzing the production of hydrogen concomitantly with the reduction of dinitrogen to ammonia, an uptake hydrogenase (encoded by hupSL) catalyzing the consumption of hydrogen produced by the nitrogenase, and a bidirectional hydrogenase (encoded by hoxFUYH) which has the capacity to both take up and produce hydrogen. This review summarizes our knowledge about cyanobacterial hydrogenases, focusing on recent progress since the first molecular information was published in 1995. It presents the molecular knowledge about cyanobacterial hupSL and hoxFUYH, their corresponding gene products, and their accessory genes before finishing with an applied aspect--the use of cyanobacteria in a biological, renewable production of the future energy carrier molecular hydrogen. In addition to scientific publications, information from three cyanobacterial genomes, the unicellular Synechocystis strain PCC 6803 and the filamentous heterocystous Anabaena strain PCC 7120 and Nostoc punctiforme (PCC 73102/ATCC 29133) is included.
Collapse
Affiliation(s)
- Paula Tamagnini
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Rikard Axelsson
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Pia Lindberg
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Fredrik Oxelfelt
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Röbbe Wünschiers
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Peter Lindblad
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
10
|
Meek L, Arp DJ. The hydrogenase cytochrome b heme ligands of Azotobacter vinelandii are required for full H(2) oxidation capability. J Bacteriol 2000; 182:3429-36. [PMID: 10852874 PMCID: PMC101916 DOI: 10.1128/jb.182.12.3429-3436.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hydrogenase in Azotobacter vinelandii, like other membrane-bound [NiFe] hydrogenases, consists of a catalytic heterodimer and an integral membrane cytochrome b. The histidines ligating the hemes in this cytochrome b were identified by H(2) oxidation properties of altered proteins produced by site-directed mutagenesis. Four fully conserved and four partially conserved histidines in HoxZ were substituted with alanine or tyrosine. The roles of these histidines in HoxZ heme binding and hydrogenase were characterized by O(2)-dependent H(2) oxidation and H(2)-dependent methylene blue reduction in vivo. Mutants H33A/Y (H33 replaced by A or Y), H74A/Y, H194A, H208A/Y, and H194,208A lost O(2)-dependent H(2) oxidation activity, H194Y and H136A had partial activity, and H97Y,H98A and H191A had full activity. These results suggest that the fully conserved histidines 33, 74, 194, and 208 are ligands to the hemes, tyrosine can serve as an alternate ligand in position 194, and H136 plays a role in H(2) oxidation. In mutant H194A/Y, imidazole (Imd) rescued H(2) oxidation activity in intact cells, which suggests that Imd acts as an exogenous ligand. The heterodimer activity, quantitatively determined as H(2)-dependent methylene blue reduction, indicated that the heterodimers of all mutants were catalytically active. H33A/Y had wild-type levels of methylene blue reduction, but the other HoxZ ligand mutants had significantly less than wild-type levels. Imd reconstituted full methylene blue reduction activity in mutants H194A/Y and H208A/Y and partial activity in H194,208A. These results indicate that structural and functional integrity of HoxZ is required for physiologically relevant H(2) oxidation, and structural integrity of HoxZ is necessary for full heterodimer-catalyzed H(2) oxidation.
Collapse
Affiliation(s)
- L Meek
- Biochemistry and Biophysics Department, Oregon State University, Corvallis 97331-2902, USA
| | | |
Collapse
|
11
|
Jung YS, Vassiliev IR, Yu J, McIntosh L, Golbeck JH. Strains of Synechocystis sp. PCC 6803 with altered PsaC. II. EPR and optical spectroscopic properties of FA and FB in aspartate, serine, and alanine replacements of cysteines 14 and 51. J Biol Chem 1997; 272:8040-9. [PMID: 9065477 DOI: 10.1074/jbc.272.12.8040] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A psaC deletion mutant of the unicellular cyanobacterium Synechocystis sp. PCC 6803 was utilized to incorporate site-specific amino acid substitutions in the cysteine residues that ligate the FA and FB iron-sulfur clusters in Photosystem I (PS I). Cysteines 14 and 51 of PsaC were changed to aspartic acid (C14DPsaC, C51DPsaC, C14D/C51DPsaC), serine (C14SPsaC, C51SPsaC), and alanine (C14APsaC, C51APsaC), and the properties of FA and FB were characterized by electron paramagnetic resonance spectroscopy and time-resolved optical spectroscopy. The C14DPsaC-PS I and C14SPsaC-PS I complexes showed high levels of photoreduction of FA with g values of 2.045, 1. 944, and 1.852 after illumination at 15 K, but there was no evidence of reduced FB in the g = 2 region. The C51DPsaC-PS I and C51SPsaC-PS I complexes showed low levels of photoreduction of FB with g values of 2.067, 1.931, and 1.881 after illumination at 15 K, but there was no evidence of reduced FA in the g = 2 region. The presence of FB was inferred in C14DPsaC-PS I and C14SPsaC-PS I, and the presence of FA was inferred in C51DPsaC-PS I and C51SPsaC-PS I by magnetic interaction in the photoaccumulated spectra and by the equal spin concentration of the irreversible P700(+) cation generated by illumination at 77 K. Flash-induced optical absorbance changes at 298 K in the presence of a fast electron donor indicate that two electron acceptors function after FX in the four mutant PS I complexes at room temperature. These data suggest that a mixed-ligand [4Fe-4S] cluster is present in the mutant sites of C14X-PS I and C51X-PS I (where X = D or S), but that the proposed spin state of S = 3/2 renders the resonances undetectable in the g = 2 region. The C14APsaC-PS I, C51APsaC-PS I and C14D/C51DPsaC-PS I complexes show only the photoreduction of FX, consistent with the absence of PsaC. These results show that only those PsaC proteins that contain two [4Fe-4S] clusters are capable of assembling onto PS I cores in vivo.
Collapse
Affiliation(s)
- Y S Jung
- Department of Biochemistry and Center for Biological Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | | | | | | | |
Collapse
|
12
|
McTavish H, Sayavedra-Soto LA, Arp DJ. Comparison of isotope exchange, H2 evolution, and H2 oxidation activities of Azotobacter vinelandii hydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1294:183-90. [PMID: 8645737 DOI: 10.1016/0167-4838(96)00020-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Azotobacter vinelandii hydrogenase was purified aerobically with a 35% yield. The purified enzyme catalyzed H2 oxidation at much greater velocity than H2 evolution. There was a large difference in activation energy for the two reactions. EA was 10 kcal/mol for H2 oxidation and 22 kcal/mol for evolution. This difference in activation energies between the two reactions means that the ratio of oxidation velocity to evolution velocity drops from 70 at 33 degrees C to 8 at 48 degrees C. With D2 and H2O as substrates, both membranes and purified enzyme produced only H2 and no HD in the isotope exchange reaction. The velocity of isotope exchange was equal to the velocity of H2 evolution from reduced methyl viologen, indicating that the two reactions share the same rate-limiting step. D2 and H2 inhibited H2 evolution, but D2 did not inhibit isotope exchange. We conclude that H2 and D2 do not inhibit H2 evolution by competing with H+ for the active site of the reduced enzyme. The Km for D2 in isotope exchange is 40-times greater than its Km in D2 oxidation. The difference in Km cannot be accounted for by differences in kcat. We propose that redox environment regulates hydrogenase's affinity for D2 (and likely H2 as well).
Collapse
Affiliation(s)
- H McTavish
- Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331-2902, USA
| | | | | |
Collapse
|
13
|
Fox JD, Kerby RL, Roberts GP, Ludden PW. Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme. J Bacteriol 1996; 178:1515-24. [PMID: 8626276 PMCID: PMC177833 DOI: 10.1128/jb.178.6.1515-1524.1996] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In the presence of carbon monoxide, the photosynthetic bacterium Rhodospirillum rubrum induces expression of proteins which allow the organism to metabolize carbon monoxide in the net reaction CO + H2O --> CO2 + H2. These proteins include the enzymes carbon monoxide dehydrogenase (CODH) and a CO-tolerant hydrogenase. In this paper, we present the complete amino acid sequence for the large subunit of this hydrogenase and describe the properties of the crude enzyme in relation to other known hydrogenases. The amino acid sequence deduced from the CO-induced hydrogenase large-subunit gene (cooH) shows significant similarity to large subunits of other Ni-Fe hydrogenases. The closest similarity is with HycE (58% similarity and 37% identity) from Escherichia coli, which is the large subunit of an Ni-Fe hydrogenase (isoenzyme 3). The properties of the CO-induced hydrogenase are unique. It is exceptionally resistant to inhibition by carbon monoxide. It also exhibits a very high ratio of H2 evolution to H2 uptake activity compared with other known hydrogenases. The CO-induced hydrogenase is tightly membrane bound, and its inhibition by nonionic detergents is described. Finally, the presence of nickel in the hydrogenase is addressed. Analysis of wild-type R. rubrum grown on nickel-depleted medium indicates a requirement for nickel for hydrogenase activity. However, analysis of strain UR294 (cooC insertion mutant defective in nickel insertion into CODH) shows that independent nickel insertion mechanisms are utilized by hydrogenase and CODH. CooH lacks the C-terminal peptide that is found in other Ni-Fe hydrogenases; in other systems, this peptide is cleaved during Ni processing.
Collapse
Affiliation(s)
- J D Fox
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|